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Experimental studies on axially compressed
cylindrical shells have historically shown large
variability in buckling loads, often challenging
existing theoretical models. Our analysis reveals
that this scatter follows a structured, regime-
dependent trend—formalized here as the mechanistic
design curve (MDC). This curve captures a
systematic transition between three dominant
failure mechanisms as a function of slenderness:
global collapse (Regime 1), transitional recovery
(Regime 2) and localized instability (Regime 3).
Through large-scale Monte Carlo simulations
incorporating measured geometric imperfections
and localized buckling triggers, we demonstrate how
buckling behaviour evolves across these regimes,
exhibiting a characteristic ~dip-recovery—decline
pattern in knockdown factors. The MDC framework
is validated using decades of experimental data
on both cylindrical and conical shells, revealing
consistent regime boundaries despite variations in
geometry and manufacturing quality. By unifying
physics-based mechanisms with statistical robustness,
the MDC replaces empirical lower-bound approaches
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(e.g. NASA SP-8007) with predictive, regime-aware design rules. Case studies demonstrate
weight savings exceeding 14%—and up to 31% in optimized configurations—while
maintaining safety, highlighting the MDC'’s potential to transform lightweight shell design.
This work reinterprets historical scatter and reveals that what appeared chaotic is, in fact,
governed by hidden structure.

1. Introduction

Shell buckling is widely regarded as one of the most complex and perplexing problems in
structural mechanics [1]. Buckling of cylinders [2] under axial compression occurs when a thin-
walled cylindrical structure experiences a stability-driven loss of load-carrying capacity (figure 1),
often at loads far below classical predictions. Classical linear theory [3] predicts the critical
buckling load Nineory after equation (1.1) using a closed-form expression that depends on the
cylinder’s elastic modulus E, wall thickness t and the Poisson’s ratio v.

N 2T E-2
theory = 3 _Uz)-

For decades, engineers and scientists have grappled with the significant discrepancies
observed between theoretical predictions and experimental results. This divergence has limited
the efficiency of structural designs and has contributed to the long-standing perception that
shell buckling behaviour is chaotic and unpredictable—particularly when relevant imperfection
signatures are unknown or cannot be fully characterized in practice.

One of the primary sources of uncertainty in shell buckling is its extreme sensitivity to small

(1.1)

deviations from the ideal geometry, commonly referred to as geometric imperfections [4,5],
figure 2. These imperfections arise from manufacturing processes, material inhomogeneities or
in-service deformations, and they significantly influence the actual buckling strength of a shell.
Unlike other structural failures that are primarily governed by material properties, shell buckling
is heavily influenced by these deviations, leading to large reductions in load-carrying capacity.

Design guidelines, such as NASA SP-8007 [7] for cylindrical shells and NASA SP-8019 [8]
for conical shells, provide empirical lower-bound estimates but fail to capture the underlying
physics driving buckling behaviour. The result is an overly conservative approach that leads
to excessive material use and limits structural efficiency in aerospace, automotive and civil
engineering applications.

Figure 3 highlights the persistent mismatch between theory and experiment by presenting
knockdown factors (KDFs), defined in equation (1.2) as the ratio of the measured buckling load
Nexp to the theoretical prediction Nineory-

(1.2)

Ideally, this ratio according to equation (1.2) should be close to 1, indicating that structures
reach their full theoretical strength. However, experimental data reveal deviations exceeding
70%, highlighting the extreme imperfection sensitivity of shell buckling. Shell buckling design
still predominantly relies on empirical KDFs derived from lower-bound curves, such as those
provided by NASA SP-8007 from equation (1.3). These factors depend on the cylinder radius R
to shell thickness t ratio R/t and are applied to the theoretical buckling load as a safety margin in
structural design.

KDFnasa =1-0902- (1 e~ (/16VRD) (1.3)

These empirical formulae, while widely used, do not capture the true complexity of shell
stability, leading to overdesign. As a result, researchers have turned to more sophisticated
numerical and probabilistic approaches to refine KDFs and enhance design predictions [10,11].
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Figure 1. Cylindrical shells under axial compression: failure in service (left), laboratory test (right) from [2].
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Figure 2. Three-dimensional representation of a cylindrical shell with an imperfection pattern applied (left). A contour plot of

Axial Position [mm]

o

25 50 75 100 125 150 175 200
Circumferential Position [mm]

2D Contourplot of w for Scale 1.000 1o

0.8
0.6
0.4
0.2

0.0

the imperfection pattern distribution along the shell surface from [6] (right).

Cylindrical Shells Under Axial Compression

Conical Shells Under Axial Compression

Radial Displacement [mm]

024

¥ Weingarten et al (161), 1965
==+ NASA SP-8007 (Design Guideline}

10

081

¥ Weingarten et al (133), 1965
=== NASA SP-8019 (Design Limit: KDF = 0.33)

e
A}
g |\ gx 7 X 5 )
~ W B X ¥ ~ o W X X
ol NEE ¥ g 5 Ryx X x
o ki3 ¥ 3?,* 2% % X R % .
2 k! Vg XX X i‘
o ol x Lo & XX X g F
= S~ = £ £ H xx % %
H g e x M H X %X e X
o ¥ S ., X
° ~allx T 04 X X% %
3 el = b ¥
<] T ¥ 1
s | 1 FTTreeeand s
2 | T z
024
o
o 200 600 800 1000 00 1000 1500 2000 2500 3000 3500

400
Radius-to-thickness ratio, R/t
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The predictive accuracy of shell buckling analysis has significantly improved with the
advent of advanced computational tools. Finite element analysis, in particular, has become an
indispensable method for studying thin-walled cylindrical shells subjected to axial compression
[12]. These simulations are now capable of incorporating detailed imperfection fields—either
obtained from experimental measurements or generated statistically—to assess their impact on
structural stability [13-15].

Complementing deterministic approaches, probabilistic frameworks have been developed to
model the inherent variability of geometric imperfections [16,17]. This has led to the concept
of stochastic KDFs, which better capture the range of possible buckling responses in real-world
structures [18].

Despite these advances in simulation, experimental validation remains a critical component of
shell buckling research. Laboratory tests under controlled axial loading provide empirical data on
both initial failure and post-buckling behaviour [19,20]. High-fidelity measurement techniques,
such as digital image correlation, enable precise tracking of deformation fields and surface
imperfections [21].

These experimental datasets are essential for calibrating computational models, especially
with respect to the representation of initial imperfections [22,23]. By aligning simulated and
observed buckling responses—including critical loads and mode shapes—researchers can refine
their numerical models and improve their reliability for design applications [24,25].

Although theoretical frameworks such as Koiter’s imperfection sensitivity theory have laid
the foundation for understanding shell buckling, significant discrepancies between theory and
test results persist in practice—particularly when imperfection data are incomplete or poorly
characterized. Given the high cost and risk of structural failure, engineers often fall back on
empirical design rules such as the NASA SP-8007 KDFs.

As emphasized in [26]: “The need to use these empirical corrections is nevertheless deplorable
for the theorists since it makes generalizations outside of the range of the existing experiments,
and especially to different types of shells, uncertain’.

Rather than treating buckling strength as the outcome of a single dominant effect, this study
reveals that the observed scatter in experimental data follows a structured pattern—governed
by a continuous shift in the underlying failure mechanisms. This insight lays the foundation for
a new generation of predictive methods in shell design: grounded in physical understanding,
rather than historical correction factors.

2. Stability regimes in cylinder buckling

In recent years, several studies have proposed lower-bound KDF curves for cylindrical shells
under axial compression [27,28], derived from localized buckling mechanisms in perfect
geometries—typically plotted against the Batdorf parameter Z according to equation (2.1).

L2 /(1 —12)
R-t 7

These models, often based on perturbation [29] or reduced-stiffness concepts [30], have
been successful in predicting the worst-case response of shells produced with high geometric
precision—such as filament-wound composites or machined specimens. However, when applied
to shells manufactured by rolling, welding or deep drawing (e.g. Mylar or metal sheets), these
same models often significantly overpredict the buckling load, figure 4.

This discrepancy points to a deeper issue: the effectiveness of local-buckling-based models
is not universally valid but rather depends on the type of manufacturing-specific geometric
imperfection signatures [13].

To investigate this, we performed a large-scale probabilistic Monte Carlo (MC) analysis,
systematically sampling combinations of measured geometric imperfections (MGIs) and localized

7 — (2.1)

buckling triggers, to replicate real-world manufacturing variability and capture worst-case
stability behaviour.
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Figure 4. Comparison of experimental KDFs and local buckling predictions LRSM for different cylinder datasets: for 222 CFRP
composite cylinders [31] (left), for 309 isotropic cylinders [32] (right).

A detailed description of the numerical model, imperfection database, MC set-up and
convergence analysis can be found in the technical appendix A. These aspects were intentionally
excluded here to maintain focus on the physical classification and regime interpretation.

(a) Introduction of mechanistic design curves

For nearly a century, the buckling behaviour of thin-walled cylindrical shells under
axial compression has been interpreted through the lens of imperfection sensitivity—the
principle that small geometric deviations drastically reduce load-carrying capacity. Koiter’s
imperfection sensitivity theory provides a rigorous asymptotic framework for this phenomenon,
demonstrating how imperfections, particularly axisymmetric ones, lead to significant reductions
in buckling loads. However, Koiter’s theory assumes a universal sensitivity to imperfections and
does not systematically address the transition between global and local buckling mechanisms
across varying shell slenderness or manufacturing-induced imperfection patterns.

This study introduces the mechanistic design curve (MDC), a novel framework that reveals
a structured, regime-dependent organization in shell buckling behaviour. Using a probabilistic
MC framework combining MGIs with localized buckling mechanisms via the localized reduced
stiffness method (LRSM), we uncover a non-monotonic trend in the 1% quantile of KDFs
plotted against the Batdorf parameter Z, as shown in figure 5. This trend, termed the MDC,
is characterized by a distinct dip, partial recovery and renewed decline in KDFs, reflecting a
systematic shift in the dominant buckling trigger: from global imperfection-driven failures at
low Z (Regime 1), through a transitional/recovery region (Regime 2), to localized buckling-
driven failures at high Z (Regime 3). The MDC’s non-monotonic behaviour, validated through
thousands of MC simulations (see appendix Ad(ii)) and historical experimental data (figures 6-8),
is not predicted by classical imperfection sensitivity theory and represents a new insight into the
statistical structure of shell stability.

Figure 5 (left) illustrates this trend and enables the classification of shell behaviour into three
distinct stability regimes, each defined by the dominant buckling trigger responsible for the
worst-case scenario (i.e. the 1% quantile of the KDF distribution):

— Regime 1—low Z:
In this regime, the critical failure is triggered by global imperfection patterns—large-
scale geometric deviations introduced by manufacturing processes such as welding,
rolling or deep drawing. These imperfections govern the worst-case response, leading
to significant scatter in KDFs. Localized buckling may occur in individual cases, but
the lowest buckling loads are consistently associated with global imperfection-driven
failures.
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Figure 7. Left: cylindrical shell exp. KDFs from Weingarten et al. [9] versus Z, coloured by stability regime. Right: different
statistical metrics to analyse the exp. data.

— Regime 2—intermediate Z:
As Z increases, localized instability mechanisms begin to emerge even more, and the
buckling behaviour becomes more complex. The worst-case trigger cannot be uniquely
assigned to either global or local effects. Instead, both interact in a non-trivial way. In this
regime, neither imperfection-sensitivity theory nor local buckling models alone suffice to

predict the lower-bound response.

— Regime 3—high Z:
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Figure 8. Left: conical shell exp. KDFs from Weingarten et al. [9] versus Z, coloured by stability regime. Right: different statistical
metrics to analyse the exp. data.

At high slenderness, worst-case-buckling is initiated by localized buckling events—such
as snap-through at isolated weak zones—while global imperfections play a subordinate
role in worst-case scenarios. Predictive design in this regime requires models that can
resolve localized instability, such as the LRSM approach. Though the ultimate collapse
may still appear global, its trigger is distinctly local.

Figure 5 (right) shows the evolution of MDC for different manufacturing qualities, quantified
by the imperfection amplitude-to-shell thickness ratio w/t. As expected, increasing w/t reduces
the overall KDF. More importantly, the boundaries between the three regimes shift with w/t:

— Regime 1 extends to higher Z as w/t increases.
— The onset of Regime 3 is delayed accordingly.

This shows that not only the magnitude of the KDF, but also the dominant buckling trigger,
depend on both slenderness and imperfection pattern and severity.

In the theoretical limit of perfect geometry (w/t=0), only localized buckling remains—the
shell becomes deterministic, and the KDF is governed solely by intrinsic local instability. This
boundary case was first resolved by Wagner et al. [33], and it serves as a limiting anchor point for
the present probabilistic framework.

(b) Validation with historical data

With the theoretical framework established, we now compare the MDCs with historical
experimental data to assess their validity. While this study focuses on cylindrical shells under
axial compression, solving this problem inherently provides insights into related stability
problems. Conical shells can be approximated as cylindrical models by equating their slant length
to the cylinder length and using the average radius of curvature as an approximation for the
cylinder radius. This unified approach effectively addresses two major shell stability challenges
simultaneously, reinforcing the generality of the MDC framework.

The validation of the MDCs begins with a systematic re-evaluation of historical experimental
datasets, spanning from NACA tests in 1933 [34] to NASA campaigns in 1965 [9]. These datasets,
covering cylindrical and conical shells under axial compression, were historically analysed using
R/t as the primary parameter, which often masked underlying trends in buckling behaviour.

To extract meaningful patterns, we reanalyse these data in terms of the Batdorf parameter
Z, which better reflects the stability characteristics of thin-walled shells. Additionally, we
incorporate the thickness ratio w/t as a key indicator of manufacturing quality, allowing a more
refined classification of test results.

A critical distinction in this analysis is that experimental test series should not be
indiscriminately merged into a single dataset. Since w/t inherently reflects fabrication quality,
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we assume that within each test campaign, manufacturing conditions were relatively consistent.
Consequently, data from different experimental campaigns are analysed separately to avoid
conflating variations in fabrication quality with fundamental stability trends.

The goal of this section is to determine whether the MDC can be used to interpret past
experimental results in a systematic way. In particular, we seek to identify:

— Whether the historical datasets exhibit consistency with the three regimes (Regimes 1-3)
identified by the MDC framework.

— Whether older tests, despite lacking explicit w/t information, exhibit consistent structure
when viewed through the lens of MDC.

— Whether past experimental scatter can be better understood, rather than dismissed as
purely random variability.

Figures 6-8 present experimental data from three distinct test campaigns on cylindrical and
conical shells under axial compression: (figure 6) cylindrical shells tested by Lundquist [34]
(NASA), (figure 7) cylindrical shells from Weingarten et al. [9] and (figure 8) conical dataset
also attributed to Weingarten et al. [9]. Despite differences in geometry and likely variations in
manufacturing quality (w/t), all three datasets exhibit qualitatively similar structural behaviour
when plotted as KDF versus Batdorf parameter Z.

The datasets from Lundquist and the conical shells tested by Weingarten show comparable
KDFs in the range Z ~ 0 to Z 23500, and the corresponding stability regimes align within similar
Z intervals. This suggests that the transition from imperfection-dominated to local-buckling-
dominated behaviour occurs at consistent slenderness thresholds, regardless of whether the
shell is cylindrical or conical. By contrast, the cylindrical shell data from Weingarten display
significantly lower minimum KDFs overall—dropping from approximately 0.38 to 0.28 across
the Z-range—and the boundaries of the regimes (Regimes 1-3) appear broader and shifted. This
observation strongly suggests that the tested shells had poorer manufacturing quality (higher
w/t), despite the lack of explicit geometric data.

Importantly, all three datasets qualitatively conform to the characteristic shape of the MDCs.
This is not limited to the general trend but includes the detailed structure: a steep initial drop
in KDF at low Z, followed by a localized recovery (or ‘regeneration’) phase, and a renewed
decrease towards higher Z. The qualitative agreement between measured data and predicted
MDC across different geometries and manufacturing backgrounds provides strong visual support
for the proposed regime-based interpretation of shell buckling.

Remarkably, our re-analysis of historical test data through the MDC lens challenges long-
held assumptions about early experimental inaccuracies. Where these results were previously
dismissed as unreliable due to their perceived scatter, the MDC framework demonstrates they
actually cluster precisely where predicted—suggesting the tests were far more accurate than
traditionally credited. This revelation rehabilitates decades of experimental work, showing the
apparent ‘noise’ in fact followed the MDC’s structured pattern of regime-dependent behaviour.

Beyond qualitative agreement, the MDC is also supported by several independent quantitative
metrics, all of which are embedded in figures 6-8 (right). Each metric examines a different aspect
of the buckling data—including envelope shape, data distribution, uncertainty and statistical
alignment—and consistently supports the structured, non-monotonic form of the 1% quantile
curve, summarized in table 1.

Collectively, these quantitative metrics provide compelling statistical evidence that the MDC
is not only qualitatively observable but also quantitatively justified. It represents a reproducible
feature of shell buckling behaviour across manufacturing variations, geometries and slenderness
ratios.
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Table 1. Quantitative metrics to analyse MDC shape in exp. data for cylinders under axial compression.

nr.  Metric description supports MDC? comment
1 empirical 1% quantile lower envelope of yes MDC clearly visible (dip—
experimental KDFs recovery—decline)

across sliding
Z-windows (green

curve)
2 weighted 1% quantile (1/Z)  corrects for Z-clustering yes nearly identical to
bias (orange dashed unweighted; confirms
curve) robustness
3 LOESS smoothing non-parametric estimate of  yes (Weingarten), MDCvisible in Weingarten;
conditional mean (red weak (Lundquist) masked in Lundquist
curve) particularly in transition
between Regime 1and 3
4 bootstrap Cl (95% B(a) confidence band around yes MDC persists within CI; not
1% quantile statistical artefact
5 errorbars (mean 4= D) spread of KDFs within yes narrow spread supports
Z-windows statistical reliability
6  MSE mean squared error of fit yes low error — high
(0.017-0.032) alignment with data
7 coverage of 1%-curve % of data points below the  yes actual values: 0-4%;
curve (expected: 1%) matches statistical
expectation

(c) Probabilistic validation

To validate the predictive capability of the MDC, we conducted extensive MC simulations
that capture the stochastic nature of thin-shell buckling. These simulations integrate MGIs
with localized buckling triggers using the LRSM, providing a comprehensive representation of
real-world manufacturing variability and failure mechanisms.

The results confirm a regime-dependent buckling behaviour: at low Batdorf parameters
(Regime 1), global imperfection patterns dominate, and shells with larger imperfection
amplitudes (high w/t) exhibit the most severe KDFs. As slenderness increases (Regime 3), local
buckling triggers govern the weakest specimens, reducing KDFs regardless of w/t magnitude.
In between lies Regime 2, the transitional /recovery zone, where competing mechanisms interact
and produce a non-monotonic ‘regeneration” of the KDF—a hallmark of the MDC.

(i) Key insights from the synthetic data (figure 9):

— The 1% quantile KDF envelope replicates the MDC profile with high fidelity, showing the
characteristic dip-recovery—decline structure.

— Manufacturing quality (w/t) systematically shifts regime boundaries while preserving
the overall MDC shape.

— Quasi-perfect shells (low w/t <0.5) maintain strong buckling resistance across all Z
values—unless failure is triggered by a dominant local buckling event (e.g. a large LRSM
patch at a sensitive location).

— The location of local buckling initiation (snap-through) plays a critical role: if the LRSM
trigger is placed away from the most sensitive zone (typically mid-height), the global
failure mode is less affected, leading to a higher-than-expected KDF despite the presence
of a localized instability.
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Figure 9. SyntheticKDFs from MCsimulations, coloured by w/t and scaled by local buckling relevance. Results for deep-drawing
(left) and for axial welding (right).

(ii) Impact of manufacturing process on mechanistic design curve shape

While figure 9 focused on variations in imperfection amplitude (w/t), we also investigated
the influence of imperfection morphology induced by different manufacturing processes, deep-
drawing (figure 9, left) and axial welding (figure 9, right).

Both datasets exhibit the general regime structure predicted by the MDC. However, the
intensity and clarity of the non-monotonic behaviour differ significantly:

— Deep-drawn shells show a pronounced dip and partial recovery around Z ~ 0-1000—the
canonical ‘Hook’ shape of the KDF envelope.

— Welded shells, by contrast, display a linear reduction of the KDF envelope with only a
subtle recovery around Z = 800-1000.

This contrast reveals that the MDC shape is process-dependent: its manifestation reflects the
spectral character of the underlying imperfection morphology. Specifically, to reach KDFs as low
as those observed in deep-drawn shells (with w/t~2), welded shells typically require much
larger w/t values (=~ 4). This highlights the critical role of both amplitude and spectral content
in governing buckling sensitivity.

When comparing the historical experimental data in figure 8 (left) with the purely simulated
results in figure 9 (right), one observes a striking similarity in the regime structure for Z=0-
1000. The experimental shells were manufactured using axial lap welding, and the simulations
in figure 9 (right) likewise reflect axially welded imperfection morphologies. This consistency—
despite the simulations being entirely independent—confirms that the MDC shape is not an
artefact of fitting, but a physically grounded response to realistic imperfection patterns.

(d) Phenomenological characterization of buckling modes in low-Z shells

MC simulations at Z =200 revealed a striking divergence in failure mechanisms between shells
with different imperfection patterns, despite having identical global geometry, manufacturing
quality w/t =2 and boundary conditions. Two representative cases were examined, as shown in
figure 10: one with a relatively high KDF (KDF = 0.62, axial welded shell ST6 [16]) and another
with a significantly lower KDF (0.45, deep drawn shell IW1-33 [35]). Their differences are not
merely quantitative—they reflect fundamentally different buckling processes.

The high-KDF shell followed a classical local buckling-triggered buckling: a single
imperfection-initiated buckle led to localized instability, resulting in a soft degradation of
axial stiffness and an initial drop in load-carrying capacity. In simulation, this manifests as a
gradual transition; in practice, such local events often evolve into global buckling through stress
redistribution and imperfection interaction. As loading progresses, the localized dimple spreads
circumferentially, forming a post-buckling wave pattern with partial load recovery. This response
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Figure 10. Load—displacement curve for Z = 200 shells with different imperfection patterns.

is consistent with slender shells where local buckling is the dominant trigger, but global integrity
is not immediately lost—a typical feature of the Local-Trigger Buckling Regime (worst case).

By contrast, the low-KDF shell exhibited a fundamentally different failure mode—the cascade
buckling mechanism—characterized by the amplification of global imperfection patterns across
the full circumference. Unlike classical local buckling, this progressive collapse resembles the
global instability of an axially loaded column: the structure gradually assumes a post-buckling-
like shape under increasing load, with the entire circumference participating synchronously
before abrupt failure. The force plateaued as multiple buckles formed nearly simultaneously,
lacking the clear local-to-global transition seen in conventional buckling.

We propose the term Cascade Buckling to describe this mode, where imperfection patterns
trigger a chain reaction of circumferential instability—visually analogous to column buckling but
with shell-specific coupling effects. This deceptive progression (structurally stable until sudden
collapse) explains why low-Z KDFs are more severe than predicted by local models, revealing a
previously overlooked trigger mechanism critical for design safety.

(e) Manufacturing signatures and imperfection morphology

To better understand the variability of shell buckling performance, we analysed a broad set of
MGIs from both metallic and composite Carbon Fibre Reinforced Polymer (CFRP) cylindrical
shells. These imperfections stem from typical manufacturing processes such as axial welds,
machining, electroplating and deep drawing for metal shells, and hand layup or filament winding
for CFRP structures. All patterns were mapped to ideal cylindrical geometries and used as inputs
in the regime-based MC simulations.

(i) Imperfection signatures from metallic manufacturing processes

A key observation from figure 11 is that the characteristic MDC shape—a non-monotonic dip
in KDF at intermediate Batdorf parameters—emerges consistently across all examined metallic
manufacturing processes. However, the onset and intensity of this dip differ notably depending
on the imperfection morphology associated with each process. Deep-drawn shells exhibit a
pronounced minimum already between Z =400 and Z =700, indicating an early transition into
the instability-sensitive regime. Electroformed shells follow a similar trend but overall higher
KDF values, suggesting that their manufacturing-induced imperfections are less detrimental to
structural performance. Machined and axially welded shells lie in between: they also show visible
dips around Z ~ 400, though with varying depth.

This variation highlights a crucial insight: while the MDC behaviour appears to be a universal
feature of imperfection-driven buckling, its specific manifestation is highly sensitive to the
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Figure 11. 1% KDF trends for different metallic manufacturing processes for w/t = 2.

type and severity of manufacturing-induced imperfections—particularly those introduced by
processes commonly used in the fabrication of metallic shells.

Interestingly, the MC simulations reveal that no single imperfection type consistently yields
the lowest KDF across all conditions. For instance, while deep drawing generally results in strong
knockdown, its relative severity depends on both Z and w/t. In some regimes, imperfections from
axial welds or machining may dominate, figure 11. This reinforces the importance of considering
the interplay between imperfection morphology, shell geometry and the active stability regime
when assessing buckling performance.

Consequently, it is not possible to define a universal worst-case imperfection shape. The
most critical configuration depends strongly on geometric parameters and varies across the
design space. The MDC framework captures this dependency statistically, but the actual failure-
triggering imperfection differs from case to case.

This regime dependency of the worst-case shape makes an MC approach not only justified, but
essential: deterministic assumptions (e.g. single-dimple perturbations) cannot capture the shifting
failure landscape that emerges with varying Z and w/t.

A spectral comparison of measured imperfections from metallic shells (figure 12) reveals a
fundamental difference in morphological character.

The spectral decomposition of MGIs provides a systematic way to characterize typical
deformation patterns induced by various manufacturing processes. Based on the extensive
evaluation of MC simulations conducted in this study, we find that the most critical imperfection
morphologies—i.e. those leading to the lowest KDFs—consistently exhibit a combination of low
axial and circumferential wavenumbers. Specifically, high energy concentration in the modes k=0
or 1 (axial wavenumber) and [ =2-4 (circumferential wavenumber) is strongly associated with
early onset of global-trigger buckling.

This combination produces large-scale global shape deviations, which are particularly effective
at destabilizing the shell under axial compression. Our simulations confirm that such patterns
frequently result in the lowest KDF outcomes across a wide range of geometric configurations.

The underlying mechanics are intuitive:

— k=0 corresponds to axially symmetric imperfections, deforming the shell uniformly
along its length.

— I-values (e.g. I=2-4) produce broad circumferential shapes that do not localize the
instability, but instead cause distributed load redirection, triggering premature buckling.
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Figure 12. Fourier coefficients and geometric imperfection signatures for the shells according to different metallic
manufacturing processes taken from [16] and [35].

These trends are clearly visible in the Fourier spectra of various measured imperfection
datasets. For example, deep-drawn shells exhibit precisely this critical spectral signature and
show consistently low KDFs in both simulation and historical experimental data. By contrast,
processes such as electroforming or filament winding produce more diffuse and less critical
distributions, which aligns with their improved buckling performance.

However, it must be emphasized that Fourier-based evaluation alone is not sufficient to predict
structural capacity. The actual impact of an imperfection on the buckling load depends on the
shell’s geometry—particularly the Batdorf parameter Z, slenderness ratio w/t and boundary
conditions. Two shells with identical spectral content can exhibit vastly different buckling loads
if their geometries differ.

In conclusion, while spectral decomposition provides a powerful means to assess the potential
criticality of imperfection patterns, it cannot replace full nonlinear simulation. The findings
presented here are grounded in large-scale MC simulations combining measured imperfection
data and localized buckling mechanisms, and thus provide a validated, experience-based
framework for interpreting and classifying shell imperfection morphologies.

(i) Imperfection signatures from composite lamination processes

In addition to metallic structures, we also investigated measured imperfection fields from
laminated composite shells, specifically CFRP cylinders manufactured via hand layup and
filament winding. The Fourier decomposition of these imperfections revealed a distinctly
different spectral signature compared with their metallic counterparts. While metallic shells often
exhibit significant energy in the critical mode range k = 0-1, [ =2-4, the composite specimens tend
to show less localized energy concentration, with smoother, more distributed patterns and lower
overall amplitude in the most dangerous modes.

As illustrated in figure 13, CFRP imperfections exhibit rapidly decaying Fourier spectra
dominated by low circumferential mode numbers but with considerably lower energy density.
This difference in spectral structure may explain the absence of a pronounced MDC shape in
the MC analysis for composites within the examined range of slenderness ratios (w/t=0... 2).
Unlike metallic shells, the expected non-monotonic dip-recovery-decline of the 1% quantile
KDF was not observed for composite imperfections in this parameter regime (it forms
forw/t > 3).

Nonetheless, the lower-bound envelopes derived from our simulations still successfully
captured all 222 experimental test cases [31] compiled between 1965 and 2024, as shown in
figure 14 (left). This suggests that the MDC framework remains valid for CFRP cylinders, even
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Figure 13. Fourier coefficients and geometricimperfection signatures for the shells according to different composite lamination
processes taken from [16] and [36].
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Figure 14. MDC for CFRP: experimental validation based on 222 composite cylinder tests [31] (left) and power law fits (right).

if the spectral mechanisms leading to the characteristic curve shape are not as dominant as in
metallic structures.

One possible explanation is that CFRP manufacturing processes inherently suppress the
formation of critical global modes, either due to more uniform layup procedures, curing-induced
symmetry or the use of mandrels that constrain low-frequency deviations. As a result, many
composite imperfections appear less sensitive to global buckling mechanisms, particularly in the
lower w/t regime and may instead fail in Regime 2 or Regime 3 mechanisms, depending on Z
and w/t.

For practical design use, the MDCs for CFRP composite cylinders were fitted with power
laws over a range of w/t=0 to 2, figure 14 (right). These fits enable simple design estimations
but are strictly valid only for quasi-isotropic laminates and axially stiff layups (i.e. A1l > A22 in
the ABD matrix). Notably, the power law approximation shows reduced accuracy in the low-Z
regime (Z < 400) for w/t =1-2. In this region, caution is advised and designers should rely on the
individual data points rather than the fitted curve.

Further investigations across a broader range of w/t, layup architectures and loading
conditions would be required to fully understand the transition behaviour of composite shells.
However, the results shown here already suggest that composite-specific design curves may
benefit from a separate characterization pathway, while still being bounded conservatively by
the same worst-case MDC predictions used for metallic structures.

(f) Summary

This chapter introduces and validates the MDC as a new framework for understanding the
stability of axially compressed cylindrical shells. Unlike traditional approaches based on Koiter’s
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imperfection sensitivity theory—which emphasize asymptotic behaviour near the perfect state—
the MDC is built upon mechanistic realism, measured imperfection signatures and statistical
robustness derived from thousands of MC simulations.

A central insight of the MDC framework is the regime-dependent nature of shell buckling,
characterized by a non-monotonic trend in the 1% quantile KDFs across the Batdorf parameter
Z. By capturing this progression, the MDC explains the structured scatter observed in decades of
experimental data—a behaviour not predicted by classical imperfection sensitivity theory.

Moreover, the MDC incorporates real-world manufacturing influences by analysing the
morphology of MGIs. For metallic shells, the emergence of the MDC's characteristic dip is linked
to low-order axial and circumferential Fourier modes (figure 12), while for composites, smoother
spectra result in more stable behaviour. In low-Z shells, the MDC identifies the cascade buckling
mechanism as a previously overlooked failure mode, where global imperfection patterns lead to
abrupt collapse—a process outside the scope of local buckling models.

Equally important, the LRSM, used to model local failure, also follows a mechanistic
principle: it does not represent a geometric imperfection per se, but directly imposes the
structural effect of imperfection-induced membrane collapse. Together, LRSM and MDC establish
a unified, mechanism-based paradigm—modelling not imperfection shapes but their structural
consequences.

Rather than refining Koiter’s theory, the MDC provides a complementary, data-driven
alternative that connects physical failure mechanisms with statistically validated predictions.
It transforms the interpretation of shell buckling from an abstract sensitivity problem into a
mechanism-based, design-oriented discipline, paving the way for regime-aware optimization
strategies in engineering practice.

3. (asestudies: practical evaluation of the mechanistic design curve framework

While the MDC framework was developed from physical and statistical principles, its practical
utility must ultimately be demonstrated through comparison with real-world design cases. The
following case studies highlight how the MDC improves the predictive quality of existing design
methods and supports mass-efficient, regime-aware structural sizing.

To demonstrate the practical relevance of the MDC approach, we present two representative
application cases from the field of aerospace engineering. These examples do not aim to provide a
comprehensive evaluation across all possible shell geometries or manufacturing scenarios. Rather,
they were deliberately chosen to reflect two realistic and critical use cases in launch vehicle
structures: an aluminium cylindrical interstage and a composite conical adapter.

In both cases, we compare the MDC-based design KDFs (from appendix Ad(v)) with
traditional values prescribed by NASA guidelines (SP-8007 and SP-8019), highlighting the
implications of regime-aware modelling for structural efficiency. An interactive Excel tool
implementing the MDC framework is available at https://doi.org/10.5281/zenodo.16636940,
allowing engineers to explore the KDF landscape and apply the model to their own design cases.

(@) Aluminium interstage cylinder (Wang et al. [14])

The sub-scaled aluminium cylindrical shell (E=70000MPa, Y =450MPa yield stress)
investigated by Wang et al. [14] features a radius of 500mm, a length of 600mm and
a wall thickness of 1.5mm, resulting in a Batdorf parameter of Z=457. The shell was
integrally manufactured using high-precision aerospace fabrication methods, leading to
exceptional geometric quality with minimal imperfections—essentially representing a quasi-
perfect configuration (w/t=0.3), figure 15.

According to the NASA SP-8007 guideline, such a shell with R/t=333 would be assigned
a conservative KDF of KDF=0.39. However, our MDC framework, which incorporates
imperfection morphology and regime-dependent buckling behaviour, yields an estimated 1%
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Figure 15. Sub-scaled aluminium cylinder and its imperfection pattern from [14] (left). Comparison of exp. KDFs with NASA
SP-8007 and MDC (right).
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Figure 16. CFRP composite cone and its imperfection pattern from [37] (left). Comparison of exp. KDFs with NASA SP-8019 and
different MDC stages (right).

lower-bound KDF of 0.53. This prediction is not only physically justified but also much closer
to the actual experimental result of KDF ~ 0.80.

This comparison underscores the over-conservatism of NASA’s legacy design rule in this
regime and demonstrates that our regime-aware MDC model offers a safer, yet more efficient
prediction—enabling potential mass savings of approximately 14% without compromising
structural reliability.

(b) CFRP composite cone (Khakimova et al. 2016)

The composite cone K6 studied by Khakimova et al. [37] features a semi-vertex angle of 35°, a slant
length of 366 mm, a large radius of 400 mm and an effective thickness of 0.75 mm, resulting in a
Batdorf parameter Z =317. The cone was manufactured from carbon fibre composite using a [30,
0, =30, —30, 0, 30] layup with high-quality surface accuracy and minimal geometric imperfections,
w/t=1.18 [37] (figure 16).

According to traditional NASA guidelines, this structure would be assigned a conservative
KDF of KDF = 0.33—NASA SP-8019 (NASA SP-8007, Rm /t =480, KDF ~ 0.327). By contrast, our
MDC methodology enables a three-stage refinement:

1. Metal-specific MDC:
Yields a 1% quantile KDF of 0.467, already 41% higher than NASA’s estimate.
2. Composite-specific MDC:
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Raises the KDF to 0.497, improving the prediction by 50%.
3. Anisotropic and composite-specific MDC:
Further increases the KDF to 0.69, resulting in a 109% improvement over NASA SP-8019.

The predicted value aligns much more closely with the experimental KDF = 0.87, confirming
the robustness of this regime-aware methodology. In practical terms, increasing the design KDF
from 0.33 to 0.69 allows for up to 31% mass reduction, without compromising safety—a gain of
major importance for composite shell structures in lightweight aerospace applications.

While these case studies focus on launch vehicle structures, the underlying methodology is
directly applicable to a broader class of shell components, provided that relevant imperfection
statistics are available. Future applications may include stiffened shells, domes and hybrid
structures under complex loadings.

4. Conclusion and outlook

This study redefines the analysis of shell buckling by revealing the hidden structure behind
what has long been regarded as chaotic experimental scatter. Through a large-scale MC
framework combining MGIs with localized buckling mechanisms via the LRSM, we introduce
the MDC—a regime-based model that captures the systematic transition between global-driven
and localization-driven buckling (figure 5). The MDC'’s key contributions include:

— Regime-Dependent Buckling: Replaces the ‘one-size-fits-all’ imperfection sensitivity
approach with three distinct stability regimes (global/transitional recovery/local) that
explain previously mysterious experimental scatter.

— MDC: Introduces a physics-based predictive framework that captures the non-monotonic
‘dip-recovery-decline” pattern of KDFs versus slenderness: a fundamental relationship
overlooked for decades.

— Cascade Buckling Mechanism: Identifies and names a new failure mode at low
slenderness where global imperfections trigger synchronous circumferential collapse,
resembling column buckling but with shell-specific coupling effects.

— Manufacturing-Imperfection Link: Demonstrates how specific fabrication processes
(welding, deep-drawing, etc.) create characteristic imperfection signatures that
preferentially trigger certain buckling regimes.

— Rehabilitation of Historical Data: Shows that early experimental scatter was not
measurement error but structured regime behaviour—forcing re-evaluation of twentieth-
century test results.

— Localized versus Global Trigger Separation: Resolves the long-standing ambiguity
about whether buckling initiates locally or globally by showing both occur but dominate
in different slenderness regimes.

— Regime Shifting as Design Tool: Proposes actively manipulating shell geometry to ‘shift’
structures into more favourable buckling regimes (e.g. from local to global) as a deliberate
design strategy.

While Koiter’s imperfection sensitivity theory provides a foundational understanding of
shell buckling, it does not account for the regime-dependent interplay of global and local
buckling triggers or the influence of manufacturing signatures. The MDC complements Koiter’s
framework by offering a data-driven, mechanism-based alternative that reveals structured
patterns in experimental data and enables practical design advancements. For example, while
dimples [38] are often considered representative imperfections, our results show they only
capture worst-case behaviour in high-Z shells (Regime 3). At low Z, global MGI patterns
dominate, highlighting the need for regime-specific imperfection models.

The MDC challenges the notion of universal imperfection sensitivity by demonstrating that
buckling behaviour is governed by a shifting landscape of failure mechanisms, dependent on
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Z and w/t. MC analysis was essential to uncover this structure, as deterministic methods
cannot capture the variability of worst-case imperfection shapes. Critics of MC methods, such as
Champneys et al. [39], raise valid concerns about computational cost and data requirements, but
our framework demonstrates that targeted sampling of MGI patterns and LRSM triggers provides
robust predictions without exhaustive surveys.

The MDC framework opens new avenues for shell design, reducing reliance on overly
conservative guidelines like NASA SP-8007. Future research should extend the MDC to other
loading scenarios (e.g. bending, torsion), incorporate nonlinear material behaviour and explore
machine learning for automated imperfection classification. Ultimately, this work establishes a
foundation for a fully data-driven, regime-aware design methodology that captures the richness
of thin-walled instability with physical realism and statistical robustness.
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Combined Supplementary Dataset [41]. All supporting materials used in this study are openly available via
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The data are provided in the electronic supplementary material [42].
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This work reflects the outcome of seven years of research. The core concept—the characteristic MDC
(formerly referred to as the ‘Hook Curve’)—was initially observed by the first author in 2018 in the dataset
shown in figure 8 but could not be fully explained at the time. The peculiar trend—where the KDF first
decreases, then increases and eventually decreases again—seemed illogical and could only be interpreted
within the limits of the understanding available at the time. The first author tentatively referred to this
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hindsight, such discomfort—when data defies intuition—often signals the presence of a deeper mechanism
waiting to be discovered. The persistent effort to understand and validate this phenomenon ultimately led to
the results presented in this paper.

Technical appendix A

(@) Finite element model

For the MC simulations, the cylindrical shells were discretized using linear shell elements (ANSYS
SHELL181). The element length was selected according to the guideline 0.5+/Rf, following the
recommendation in [12]. Both cylinder ends were modelled with clamped boundary conditions,
implemented via remote displacement constraints tied to reference points to enforce rigid-body
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behaviour at the edges. To apply the axial compression, the upper edge was allowed to move
freely along the axial direction. Nonlinear buckling analyses were performed using the Static
Structural solver in ANSYS, with large deformation effects enabled to capture post-buckling
behaviour accurately.

(b) Geometricimperfection

(i) Terminology clarification: imperfections versus instabilities

To ensure clarity and consistency with the shell buckling literature, we distinguish between
commonly conflated concepts:

Geometric Imperfections: Any deviation from the ideal shell shape, including measured
global imperfection patterns (MGIs) (e.g. from manufacturing processes like welding or
deep drawing) and local imperfections (e.g. dimples or cutouts). MGIs are characterized
by their spatial distribution and amplitude-to-thickness ratio w/t, with critical patterns
often exhibiting low axial k=0-1 and circumferential /=2-4 wavenumbers (§2e,
figure 12).

Local Buckling: An instability mechanism triggered by localized geometric or material
weaknesses, modelled deterministically using the LRSM (see appendix Ac). Local
buckling does not refer to an imperfection shape but to the failure process, which can be
initiated by various triggers, including dimples, stress concentrations, cutouts or global
MGI patterns.

Global Buckling: A failure mechanism driven by large-scale imperfection patterns, often
leading to abrupt, multi-buckle collapses, such as the cascade buckling mode at low
Z (§2d). Global buckling is distinct from local buckling in its trigger mechanism and
deformation pattern.

Dimple-type Imperfections: Canonical local imperfections used in literature as worst-
case shapes [38]. However, they only represent a subset of possible deviations and are
less critical at low Z, where global MGIs dominate (§2a).

Trigger versus Mechanism: Trigger: initiates failure (dimple, cutout); mechanism: how
failure unfolds (snap-through, local buckling).

This distinction is crucial: imperfections define the initial geometry, while buckling
mechanisms govern the failure process. The MDC captures the regime-dependent interplay
between these mechanisms, showing how global imperfections dominate at low Z (Regime 1),
local buckling prevails at high Z (Regime 3) and a complex interaction occurs in the transitional
Regime 2 (§2a, figure 5). By clarifying these terms, we align with Koiter’s imperfection sensitivity
framework while highlighting the MDC’s novel contribution: a regime-based classification that
extends beyond universal imperfection sensitivity to address real-world manufacturing and
design challenges.

(ii) Fourier representation of real measured geometric imperfections

The data used in this section originate from a comprehensive experimental campaign conducted
at TU Delft, which forms the basis of the imperfection data repository detailed in [43,44]. The focus
here lies on the mathematical characterization of the MGIs using a Fourier-based representation.
Readers seeking additional information on the test set-up and evaluation procedures are referred
to [45] and to the documentation provided by Dancy [36].

The geometric imperfection fields of the metallic shell specimens were recorded
experimentally and decomposed into Fourier coefficients Ay and By using the half-wave cosine
expansion method, as described in [16].

The half-wave cosine method described in [17] is expressed in equation (A1) and provides
a parametric representation of the imperfection field z(x,y) over the cylindrical shell surface.
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This approximation depends on the shell geometry—specifically the length L, radius R and
wall thickness t—as well as on the spatial coordinates x and y and the corresponding axial and
circumferential wavenumbers k and [. The summation limits 77 and np define the maximum
number of axial and circumferential modes included in the series expansion.

z(x,y) :tz1 chos (kn%) . (Akl cos (%) + By sin (%)) . (A1)

k=0 I=0

() Localized reduced stiffness method for local buckling

The LRSM is built upon the characteristic membrane stress state observed in axially compressed
cylindrical shells. When pronounced localized imperfections are present, they can initiate local
buckling, which in turn may evolve into global instability—a phenomenon often referred to
as snap-through buckling (figure 17, left). This instability mechanism leads to a near-complete
release of membrane stresses in the affected zone, effectively reducing them to zero along the
axial path of the imperfection (figure 17, right).

Such behaviour is closely associated with the characteristic lower-bound plateau of the critical
buckling load, commonly observed in thin-walled shells. Once this stress collapse has occurred,
further increases in imperfection amplitude in that region no longer affect the buckling load, as
the membrane force contribution has already vanished [30].

The LRSM is not introduced as a local imperfection in the classical sense, but rather as a
mechanistic surrogate for the failure process induced by imperfections. The core idea is that
imperfections, such as dimples, lead to a local collapse of membrane stresses—the main load-
carrying mechanism in shells. Instead of introducing a specific imperfection shape (e.g. dimple),
we directly impose the resulting effect—the local loss of membrane stiffness—to replicate the
critical instability. In this sense, the LRSM models the failure trigger, not the initial imperfection
geometry. This distinguishes the approach from Koiter’s framework, which links geometric
deviations to energy reductions, but does not explicitly model regime-dependent stiffness
collapse.

In the LRSM framework, membrane stiffness is selectively reduced within a confined region
of the shell to replicate the limiting membrane stress state associated with local buckling.

While the LRSM introduces a localized instability artificially this step is not arbitrary.
In practice, local buckling can be triggered by various imperfection types—including
unresolved geometric features due to limited MGI resolution [46], thickness variations, material
inhomogeneities or load imperfections such as uneven shell edges. However, such data are often
incomplete, difficult to obtain or prohibitively expensive to measure—particularly for thin-walled
structures manufactured at scale. Rather than attempting to capture all possible imperfection
sources explicitly, we use the LRSM to deliberately trigger local buckling in a controlled and
repeatable manner. This approach ensures that the structure’s sensitivity to localized instabilities
is systematically explored—even when the exact trigger remains unknown or unmeasured. The
goal is not to reproduce every possible imperfection scenario, but to statistically quantify their
potential impact on structural capacity.

A schematic depiction of the area selected for membrane stiffness reduction in the cylindrical
shell is presented in figure 18 (left). The cylindrical shell consists of two distinct regions: the main
shell surface and a reduced membrane stiffness surface. The main shell surface is modelled in
ANSYS using a standard shell section, defined either by a homogeneous thickness or a composite
layup. By contrast, the reduced stiffness region is defined via the ABD matrix approach, where
all nine components of the membrane stiffness matrix A are divided by a reduction factor «
[30], while the bending-extension coupling matrix B is set to zero. For all studies, the membrane
stiffness reduction factor was set to & =1000, which represents a converged value (« > 1000 do
not further reduce buckling load for cylinder under axial compression) based on prior sensitivity
analyses [30].
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Figure 17. Load—displacement curve for local buckling (left), membrane stress state of a cylinder (right) from [32].
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Figure 18. LRSM theory [30] (left) and implementation within MC framework (right).

When applying the LRSM to composite shells, all components of the bending-extension
coupling matrix B must be set to zero within the locally reduced stiffness region. This step is
necessary to avoid numerical singularities in the global stiffness matrix.

To systematically assess the sensitivity of the buckling load to the extent of the weakened
zone, the radius of the LRSM region Rs is varied relative to the shell radius R. By incrementally
increasing the size of this region, the influence of localized stiffness loss on the global buckling
behaviour can be quantified. The resulting minimum buckling load obtained from this parameter
study—illustrated in the LRSM characteristic diagram (figure 18—left)—is then taken as the
design-relevant lower bound.

(d) Monte Carlo analysis for determining the 1% quantile of the buckling load

The nonlinear stability of cylindrical shells subjected to axial compression remains a critical
challenge due to their extreme sensitivity to imperfections. Traditional deterministic approaches
fail to capture the stochastic nature of buckling loads, necessitating a robust numerical strategy.
To systematically determine the 1% quantile of the buckling load, an MC-based approach similar
to [47,48] was employed, incorporating MGIs and localized buckling effects.

(i) Methodology: geometrically nonlinear analysis with randomized imperfections
Each MC realization involves a geometrically nonlinear analysis with imperfections (GNIA) after

[49], where four key parameters are randomly varied:

1. Selection of a MGI Pattern

— A dataset of about 70 experimentally MGI fields is available, ensuring realistic initial
geometry deviations.
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— The imperfections are normalized to the shell thickness (w/t=1), meaning the
maximum deviation of the chosen pattern is normalized to the shell thickness,
independent of its shape.

— This approach allows for an unbiased evaluation of the effect of imperfection
geometry without absolute scaling factors affecting the results.

2. Definition of Local Buckling Position

— A localized buckling trigger is randomly positioned on the cylindrical shell surface.
— While only one LRSM patch is applied per realization, this simplification is
justified by experimental evidence: most failures are initiated by a single dominant
buckle. Moreover, adding multiple LRSM sites would increase computational cost
and complexity without significantly improving predictive fidelity, as multi-defect
effects are already implicitly captured by the measured MGI fields.
— The location is defined by two randomly sampled parameters:
(i) axial coordinate z (uniformly distributed along the shell height), and
(ii) circumferential position 6 (uniformly distributed around the shell circumference).
3. Definition of Local Buckling Amplitude

— The amplitude (patch size) of the local buckling trigger is also randomly chosen.

— The values are drawn from a uniform distribution but restricted to the range (bottom
10%) leading to the lowest possible buckling load within the LRSM, as shown in
(figure 18—right).

— This ensures that only physically relevant localized imperfections affecting critical
load reductions are considered.

4. Execution of the GNIA-Simulation

— The randomly selected imperfections are incorporated into a fully nonlinear finite
element simulation.

— The force-displacement curve is recorded, and the maximum load is extracted.

— Each simulation result is stored in a dataset for statistical evaluation.

— A total of 250 independent realizations are conducted for each cylindrical geometry
Z.

(i) Convergence analysis of the Monte Carlo simulations

Since the primary objective is to determine the 1% quantile of the buckling load, ensuring
numerical convergence is essential. Multiple convergence criteria are applied to validate the
statistical stability of the MC results:

1. Relative Change in the 1% Quantile

— The difference between the last two computed 1% quantiles is monitored.
— If the relative change falls below a predefined threshold, the simulation is deemed
converged.

2. Bootstrap Error Band Analysis

— A bootstrapping method (resampling with replacement) is applied to estimate the
standard deviation of the 1% quantile.

— If the bootstrapped confidence interval is sufficiently narrow, the result is considered
stable.

3. Wasserstein Distance Metric

— The Wasserstein distance is computed between successive subsets of the MC dataset
to quantify changes in the probability distribution.

— If the Wasserstein distance falls below a threshold, the distribution is assumed to
have stabilized.
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4. Kolmogorov-Smirnov (KS) Test

— The KS test is performed between consecutive subsets of the MC dataset to assess
whether they originate from the same distribution.
— A high p-value indicates that the dataset has reached statistical stability.

By combining these four independent convergence criteria, a robust statistical estimate of the
1% quantile is obtained, ensuring computational efficiency without excessive simulations. Based
on these criteria, 250 realizations per Z-value were determined to be sufficient for convergence.

(i) Monte Carlo simulation results

The MC analysis for each cylindrical shell geometry Z provides the 1% quantile of the buckling
load along with its 99% confidence interval (upper and lower bounds). To construct a complete
MDC for a given imperfection-to-thickness ratio (w/t=1), simulations were performed at the
following Batdorf parameter values:

Z =150,100, 200,400, 700, 1000, 1500, 2000, 3000, 5000, 10 000

For each of these values, 250 independent GNIA simulations were conducted, resulting in a
total of 2750 simulations per MDC. To assess the influence of the imperfection-to-thickness ratio
on the buckling response, the entire process was repeated for w/t values ranging from 0 to 8.

This extensive numerical investigation provided not only a statistically robust estimate of the
buckling load but also key physical insights into the effects of imperfection placement and shape
on shell stability.

(iv) Implications and conclusion

The MC-based GNIA framework introduced in this study enables a mechanistic and statistically
robust prediction of shell buckling behaviour under realistic imperfections. By combining
measured geometric data (MGIs), localized failure triggers (via the LRSM) and nonlinear
simulations, we construct MDCs that reveal a structured, regime-dependent stability landscape.

Key implications include:

— A clear differentiation between Regime 1 (global imperfection—triggered collapse) and
Regime 3 (local instability via membrane collapse), with a transitional Regime 2 in
between.

— A departure from classical shape-based imperfection modelling: both MDC and LRSM
represent mechanistic effects, not geometric deviations.

— Predictive lower bounds for KDFs across varying Z and w/t, enabling weight-optimized,
fabrication-aware design.

— A reinterpretation of historical test scatter as structured behaviour, rather than
randomness—replacing empirical KDFs with physics-based quantiles.

Importantly, only in the theoretical limit of perfect geometry (w/t=0) does a single failure
mechanism dominate. In all practical cases, the buckling response is regime-specific and must be
modelled accordingly.

This study reframes shell buckling as a mechanistically driven, data-informed design problem,
laying the foundation for future research and improved design standards.

(v) MDC for metallic cylinders with application boundaries

The MDC KDFs presented here are derived from extensive MC simulations, following a consistent
set of modelling assumptions to ensure robustness and comparability. The primary constraints
include figure 19:
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Figure 20. Heatmap of the MDC data: KDF of 1% quantile with 99% confidence intervals.

— Boundary conditions: The shell is clamped at both, while one end remains free to move
axially, allowing compression to be applied.

— Material properties: The analysis assumes an isotropic, homogeneous material.

— Linearity assumption: The study considers linear-elastic stability for relative slenderness

ratios A > 1.45 with A = \/yield stress/elastic buckling stress = / Y/0theory-

— Imperfection types: The MC dataset accounts for typical metal shells (machining, axial
welding, electroplating and deep drawing) but does not account for strong radial
imperfections (e.g. welded joints, circumferential misalignments), meaning the MDC may
not be valid for shells with dominant manufacturing defects in this category.

The MDC KDFs for metal shells are given in figure 20 as a heatmap.
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Glossary

L Cylinder length

N Buckling load

R Cylinder radius

Rm Mean radius of curvature

t Cylinder wall thickness

w/t  Imperfection amplitude-to-thickness ratio, manufacturing quality
Y Yield stress

V4 Batdorf parameter
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