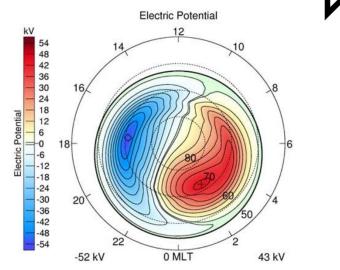
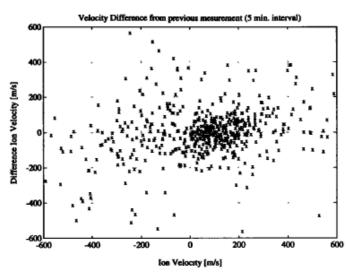

31 August -5 September 2025 Lisbon, Portugal

Convection parameterization and model resolution impacts on Joule heating in T-I models


Florian Günzkofer¹, Hanli Liu, Huixin Liu, Gunter Stober, Gang Lu, Haonan Wu, Kevin Pham, Joseph McInerney, Nicholas Bartel, Frank Heymann, Claudia Borries

¹German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics

High-Latitude electrodynamics in models



Weimer, J. of Geophys. Res., 110, A05306, 2005

convection model	type	parameters/data sources
Heelis	Empirical	Kp index
Weimer	Empirical	Solar wind and IMF parameters
AMIE	Data assimilative	SuperDARN, SuperMAG, Iridium, DMSP
AMGeO	Data assimilative	SuperDARN, SuperMAG, Iridium
GAMERA	MHD code	Solves MHD equations of the magnetosphere; also calculates particle precipitation rates/patterns

Resolution effects

$$\frac{|v_{i} - v_{i+5min}|}{v_{i}} \sim 1.5 \longrightarrow E = e_{m} + x \cdot e_{v} \qquad (e_{v} \sim 1.5e_{m})$$

$$Q_{J} \propto \overline{E}^{2} = \int_{-1}^{+1} (e_{m} + x \cdot e_{v}) \cdot f(x) \, dx = e_{m}^{2} + \frac{e_{v}^{2}}{3} \sim 1.5e_{m}^{2} \qquad 1$$

$$Q_{J} \sim 1.5 \cdot Q_{J,m} \qquad \qquad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2$$

Joule heating factor. This factor is multiplied by the joule heating calculation (see subroutine gjoule_tn in

[Codrescu et al., Geophys. Res. Lett., 22, 2393-2396, 1995]

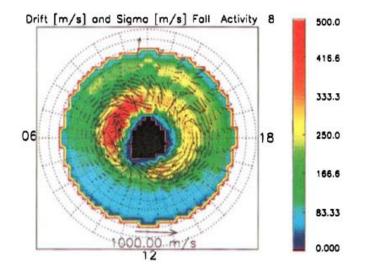
E-field variability depends on:

JOULEFAC

gjoule.F).

Data type: real

Default: 1.5


- Geomagnetic latitude
- Magnetic local time
- Geomagnetic activity

Model resolution affects:

- neutral dynamics
- resolution/sharpness of mesoscale plasma features (e.g. patches, arcs)

[from TIE-GCM userguide]

→ Pedersen conductivity

[Codrescu et al., J. Geophys. Res., 105, A3, 5265-5273, 2000]

Measurements and Models

1//	3D ion velocity measurements with EISCAT beam-swing campaigns
	5 min
Transmitter/ Receiver	$q_{J,E} = \sigma_P(N_{e,E}) \cdot (E_E + u_m \times B)^2$
	$q_{J,m} = \sigma_P(N_{e,m}) \cdot (E_m + u_m \times B)^2$

Stochastic inversion, following Nygren et al., (2011):

$$M = A \cdot x + \epsilon$$

$$\widehat{\mathbf{x}} = \mathbf{Q}^{-1} \cdot (\mathbf{A}^T \cdot \mathbf{\Sigma}^{-1}) \cdot \mathbf{M}$$

M: measurement vector

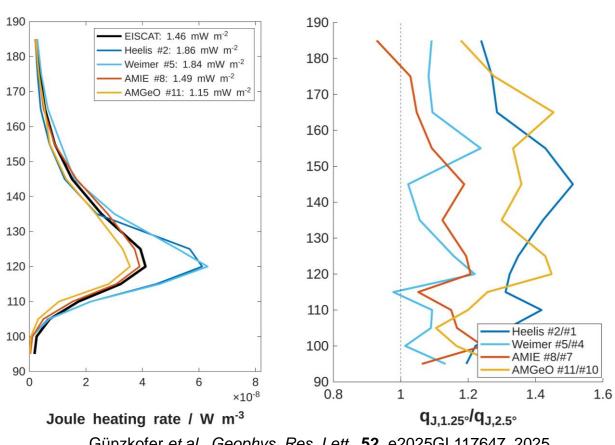
A: theory matrix

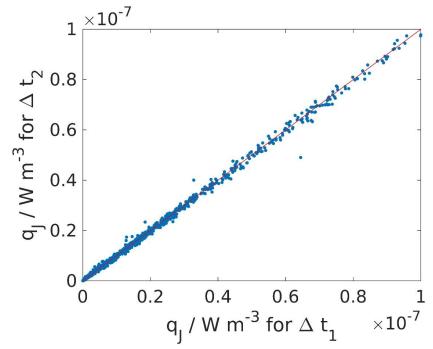
x: unknow variables (v^F)

 ϵ : measurement uncertainties

 \widehat{x} : most probable solution

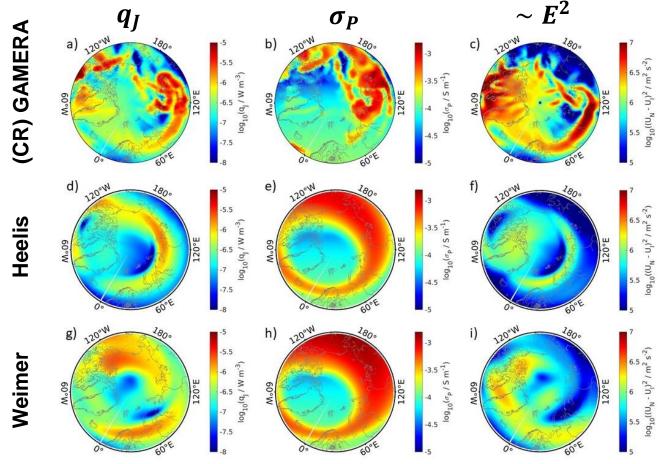
Q: Fisher information matrix


 Σ : covariance matrix of ϵ


$$\mathbf{E}_{\perp} = -\mathbf{v}^F \times \mathbf{B}$$

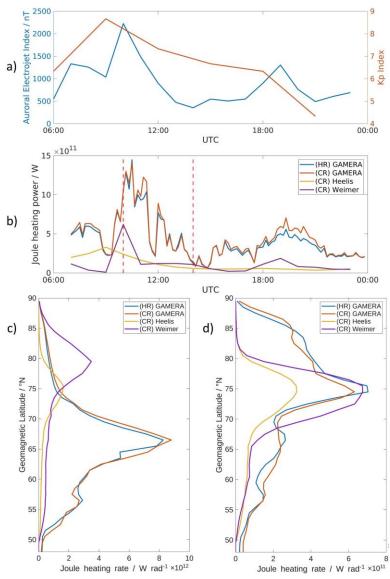
	TIE-GCM		WACCM-X
1.	Convection model:HeelisWeimerAMIEAMGeO	1.	Convection model:HeelisWeimerGAMERA
2.	Model resolution: • 2.5° • 1.25°	2.	Model resolution:
3.	Model version: • 2.0 • 3.0	3.	 Model version: FV-SD (finite volume, specified dynamics) SE (spectral elements)
4.	 EISCAT campaigns: 09 – 28 Sep 2005 14 – 25 Sep 2009 	4.	EISCAT campaigns: • none

TIE-GCM Results

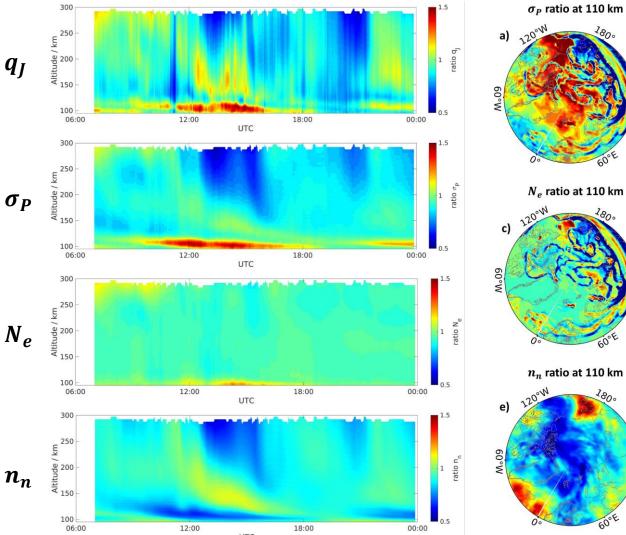


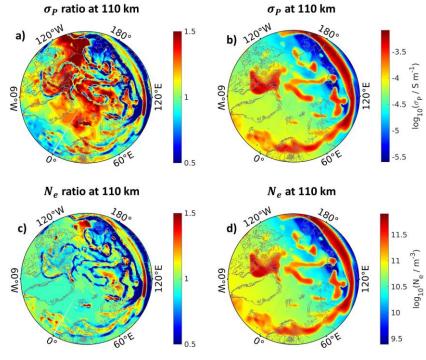
Günzkofer et al., Geophys. Res. Lett., 52, e2025GL117647, 2025

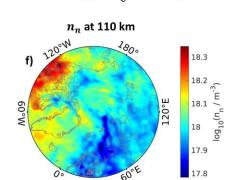
- Günzkofer et al., Geophys. Res. Lett., **52**, e2025GL117647, 2025
- 1. Data assimilative convection models improve agreement of local Joule heating rates and EISCAT measurements by 8%, 28%, and 54% for low, moderate, and high geomagnetic activity
- 2. Increasing the horizontal resolution from 2.5° to 1.25° increases the Joule heating rates by 20% on average
- 3. The internal model time step does not affect the Joule heating rates


WACCM-X Results 1 (24 August 2005 storm)

Günzkofer et al., under review for Geophys. Res. Lett., 2025


- 1. Total Joule heating power increased by 276% in GAMERA coupled runs compared to Heelis and Weimer forcing
- 2. GAMERA forcing shifts maximum Joule heating further south (geomagnetic latitude)
- 3. Small-scale structures resolved in GAMERA-coupled WACCM-X run





WACCM-X Results 2 (24 August 2005 storm)

Ratio between high- (25 km) and coarseresolution (100 km) runs

neutral atmosphere dynamics in the storm recovery phase are strongly altered in highresolution run

- neutral density n_n is decreased at < 120km and > 200 km
- impact on Pedersen conductivity and Joule heating

$$- v_{in} \gg \omega_i \sigma_P \propto n_n^{-1}$$

$$- v_{in} \ll \omega_i$$
$$\sigma_P \ll n_n$$

small-scale effects on electron density (sharpness of pathches and arcs)

Summary

- 1. Data assimilative convection models improve agreement of local Joule heating rates and EISCAT measurements by 8%, 28%, and 54% for low, moderate, and high geomagnetic activity
- 2. Increasing the horizontal resolution from 2.5° to 1.25° increases the TIE-GCM Joule heating rates by 20% on average
- 3. The **internal model time** step does **not affect** the **Joule heating** rates
- 4. Total **Joule heating power increased by 276%** in **GAMERA coupled** runs compared to Heelis and Weimer forcing
- 5. GAMERA forcing shifts maximum Joule heating further south (geomagnetic latitude)
- **6. High-resolution** WACCM-X configuration **affects neutral dynamics** on a global scale
- 7. Sharpness of small-scale electron density structures increased by high-resolution model configuration, resulting in local Joule heating variability

florian.guenzkofer@dlr.de