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What’s My Age of Information Again?
The Role of Feedback in AoI Optimization
Under Limited Transmission Opportunities
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Abstract—Real-time applications in the Internet of things
(IoT) commonly require to schedule status updates from remote
sensors to minimize age of information (AoI), a metric that
captures the freshness of received data. Oftentimes, this problem
is tackled assuming that sensors operate over an indefinite time
horizon and can decide when to transmit data leveraging the
knowledge of the current AoI level at the receiver, even when the
communication channel is unreliable. Such a modeling approach,
however, neglects some key aspects of most practical IoT systems,
where the frequency of status reporting is limited due to resource
constraints, such as energy limitations, and tracking the outcome
of the updates would require additional consumption of resources
to acquire a feedback. In this paper, instead, we investigate the
optimal schedule of updates over a finite time horizon for a
resource-constrained sensor that is allowed to perform a limited
number of updates. We discuss the role of the feedback from the
receiver, and whether it is convenient to ask for it whenever this
causes additional energy consumption and consequently allows
the transmission of a lower number of updates. We analytically
identify regions for the feedback cost and the reliability of the
channel where making use of feedback may or may not be
beneficial. Our study covers both the generate-at-will case, in
which a sensor can produce a fresh reading whenever it wants
to communicate with the receiver, and an exogenous setting,
where the transmitter cannot decide when new status updates
are produced. The results highlight some interesting trade-offs,
providing useful design hints for the protocol operation of IoT
remote sensing systems.

Index Terms—Age of Information; Internet of things; Data
acquisition; Feedback; Sensor networks.

I. INTRODUCTION

The problem of transmitting status updates so as to min-
imize age of information (AoI) at a receiver has gained
considerable momentum in the recent literature [1]–[3]. In
fact, this issue is relevant for real-time applications in the
Internet of things (IoT), where timely tracking of a process
is required to gain up-to-date perception and possibly take
prompt intervention whenever needed [4], [5]. Using AoI as
a performance metric retains a mathematical character in the
analysis, while precisely describing the aspect of timeliness
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in system monitoring and actuation, and has been shown to
provide profound insight in many settings [6].

However, most studies that focus on AoI minimization
just consider AoI or related quantities through a long-term
analysis, from the perspective of, e.g., average values, violation
probabilities, or steady-state distributions [7]–[10]. We argue
that practical systems often suffer from resource limitations
and operate over definite and limited horizons. These aspects
can be related to concrete limitations in terms of energy con-
sumption or computational complexity, as well as properties of
the application, which may for example require a task-oriented
approach, or at the same time impose that the constraints are
not just met in the long run, but over specific time windows.
Just to give an example, technical and legislative limitations of
sensor applications based, e.g., on the LoRa standard impose
a constraint on the duty cycle of device activity, and said
constraint must be met not just in the long run, as often
considered in the literature, but specifically with a maximum
number of temporal activity over a definite window [11].

Another aspect where the most common approach found in
the literature may fall short concerns the presence of feedback
and its exploitation. In fact, if transmissions are possibly
subject to failures and the sender receives feedback about it,
the scheduling of status updates can be optimized through
proper online procedures. However, implementing feedback
over a return channel comes at a cost for IoT devices, which is
often neglected in spite of a potentially significant impact. For
instance, the reception of an acknowledgment forces a terminal
to listen to the channel and to process the incoming message,
consuming energy instead of, e.g., going back to sleep mode.
As found by early influential investigations on this matter [12],
and confirmed by commercial chipset implementations, e.g.,
[13], receiving consumes comparable power to transmitting for
many sensor network platforms. Given a finite energy budget,
this may translate into a reduced number of transmissions that
can be performed to deliver status updates.

To address these aspects, we consider a monitoring task of
limited duration, which translates into finite-horizon optimiza-
tion of the scheduling. Within this interval, the transmitter is
allowed to send only a limited number of updates, due to
hardware and cost constraints. For this scenario, we present
multiple analytical formulations depending on the availability
at the transmitter’s side of feedback about the success of up-
dates. We first consider an agnostic optimization that schedules
the instants for transmitting an update so as to minimize the
expected average AoI across the finite horizon; this is done
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without exploiting the online information about the actual
AoI, which is not available. Afterwards, we consider an AoI-
aware optimization of the scheduling instants with an online
approach, based on dynamic programming, assuming that the
sender receives feedback on the outcome of each performed
transmission [14]–[16]. This ultimately results in an analytical
characterization of the regions where using the feedback is
advantageous (or not), depending on the time horizon, the
number of opportunities, the transmission success probability,
and the feedback cost. Finally, this analysis is expanded from
the case where status updates are ”generated at will,” which is
a typical assumption in the literature [17], [18], to a condition
of exogenous generations due to an external source, which
covers a broader umbrella of scenarios.

Our main contributions are thus summarized as follows:
i) focusing on a generate-at-will setting, we provide an ex-

act analysis of the average AoI under agnostic scheduling
for a finite horizon and unreliable channel, which can be
solved to obtain the optimal transmission pattern;

ii) we further derive the optimal transmission policies via
dynamic programming for an AoI-aware scheduling over
a finite horizon in the presence of feedback, accounting
for a reduction in the number of transmission opportuni-
ties for the IoT device;

iii) we then move to the more challenging setup of exoge-
nous, non-persistent updates, where AoI does not reset to
zero, and extend the results above;

iv) we discuss in depth changes in both scheduled transmis-
sion patterns depending on the system parameters, which
eventually leads to a comparison between an agnostic
scheduler and an AoI-aware one with fewer transmission
opportunities due to increased energy consumption.

All of these contributions result in useful guidelines for
practical IoT systems for the transmission of timely updates
under constrained scenarios.

To illustrate our study, we start in Section II by reviewing
related works. Section III presents our model and notation.
Section IV discusses first the case where the source can
generate data at will, whereas Section V expands to the case
with exogenous and non-persistent generation of data. In both
these sections, we present numerical results. Finally, we draw
the conclusions in Section VI.

II. RELATED WORK

Since its proposal in the seminal work [19], many papers
have addressed AoI as a performance evaluation metric, espe-
cially in the context of remote sensing for the IoT. This leads
to different formal approaches, related to various degrees with
the present paper [20]–[22].

The first investigations on this subject generally make
use of queueing theory, to track AoI for different medium
access and/or queueing disciplines [23], [24]. This is somehow
orthogonal to our analysis, since we are instead interested in
planning transmission at specific instants and evaluating their
impact. Albeit queueing theory sheds light on the presence
of preemption or processor sharing, the role of scheduling
is usually absent. We remark that some papers use the term

“scheduling” to denote a choice of one among multiple sources
sharing the same channel [7], [10], but this is a problem
inherently different from the one tackled in the present paper,
where we instead consider a single source and the allocation
of its transmission over time.

Some other works [4], [8], [16], [25]–[28] take this view,
framing the choice of transmission instants as a linear program
or searching for practical policies based on greedy or consec-
utive scheduling. However, in most of them, AoI is included
in the optimization but is not the main direct objective. For
example, it is included as a constraint (e.g., information should
not become too obsolete [16]) or part of the objective function,
in combination with other metrics especially when relating to
energy expenditure [9], [29].

Even when the optimization goal directly relates to min-
imizing information staleness, most of the time it considers
a long-term average AoI [17], which leads to a steady-state
analysis, where a stationary policy is defined for a binary
choice between transmission or idling, depending on the
instantaneous age value, as well as other additional parameters,
such as battery level when energy harvesting is also present
[5], [10], [30], feedback delay [31], or channel state [28].

However, in a finite horizon, the scheduling problem is
inherently non-stationary and made difficult by the principles
of optimal stopping, further expanded to the overall number
of transmission opportunities. In other words, the need for a
timely update in a finite horizon is at odds with the limitations
in the allowed rate of activity, so that transmissions must be
properly distributed over the entire window. It is known that
for this problem a Markovian approach valid at the steady-
state is essentially different from a martingale solution, which
in a finite horizon and discrete time can employ backward
induction [32].

This paper specifically addresses the problem of AoI min-
imization for a finite time horizon, where the transmission of
updates happens over an erasure channel. Our aim is to show
how, under these conditions, receiving feedback about the state
of the update (specifically, whether it was successful or subject
to an erasure) improves the scheduling [15]. However, we also
argue how a costly feedback may actually decrease the number
of available transmissions. For these reasons, our analysis
is connected to that of [14], where it was shown that the
AoI computations can be related to geometric considerations.
However, in that reference, the authors consider a different
scenario, with an infinite horizon and each update consisting of
multiple packets, each of which potentially subject to erasures,
so that the choice boils down to whether reset the transmission
of a new update in the presence of an erasure, or keep going
with the current one. Another related work is [33], where a
finite-horizon AoI minimization is performed but considering
multiple sources, so that the scheduling problem in that context
refers to the choice of the source that is allowed to transmit
and feedback is necessary to guarantee network control.

The role of feedback is further explored for an energy
harvesting source in [34], but still for an infinite horizon.
Finally, [35] and [31], extend the analysis to the case of the
feedback being present but possibly erroneous, or delayed
feedback, respectively.
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Fig. 1. In the considered setting, an IoT device sends samples of an observed
process to a receiver over a wireless channel. Within the IoT device, samples
are produced by a sensor and forwarded to a transmitter. The two entities are
logically separate, and the latter may (generate at will) or may not (exogenous
traffic) control when a new sample is produced by the sensor.

Our approach focuses not only on the finiteness of time
horizon, but also on the impact of feedback [21], seen as
a way to obtain an AoI-aware scheduling as opposed to a
pre-planned pattern of status updates instants, but also as a
further cause of energy expenditure that may be unavailable
in massive IoT access [36], [37]. A preliminary version of this
analysis was already presented by the authors in [1] but here
we further expand it with theoretical results and also we relax
the assumption of ”generate at will.”

III. SYSTEM MODEL

Throughout our study we focus on the system illustrated
in Fig. 1, where an IoT device communicates with a receiver
(monitor) over a wireless channel. The device embeds two
independent components: a sensor and a transmitter. The for-
mer produces updates, containing, e.g., readings of a physical
process of interest, and forwards them to the transmitter. This,
in turn, stores the latest incoming reading in a local buffer, and
may decide to send it to the receiver at an appropriate time. In
spite of its simplicity, the considered model is apt to capture
the behavior of many IoT settings of practical relevance, in
which the wireless communication components are fed with
exogenous data, e.g., generated by external sensing blocks, and
cannot control when new information is produced [2], [38].

For convenience, we assume the system to operate over slots
of equal duration, set to be unitary. In other words, a slot
is the atomic operational unit for communication protocols
that will be studied.1 At the beginning of each slot, the
sensor produces a new update with probability u, and remains
inactive otherwise. In the first case, the update is stored in
a one-reading sized buffer at the transmitter, and contains
a time stamp indicating the slot at which it was obtained.
Accordingly, the transmitter always has only one message to
potentially send, containing the latest reading generated by
the sensor.2 At any slot the IoT device may decide to attempt
delivery of the available reading over the wireless channel

1Setting a unitary value corresponds to normalizing both the slot time and
the overall horizon to the basic protocol operations, and offers the advan-
tage of presenting results which are not directly dependent on the specific
implementation or transmission parameters (e.g., air-time of messages).

2The choice of a one-update size buffer implements a pre-emption policy
with replacement in waiting [2], [37]. Its relevance becomes clear in view
of the considered metric, i.e., age of information. Note indeed that, aiming
at information freshness, transmitting an older update when newer data is
available would only degrade performance.

by sending a packet, whose transmission is completed within
the same time unit.3 We tackle the operation of the system
over a finite time horizon of n slots, and assume that the IoT
device can perform at most m ≪ n transmissions within the
considered timespan. The limitation is consistent with practical
IoT settings, where the time spent in transmission may be
capped to preserve battery, or due to normative arguments,
e.g., to a maximum of 1% for LoRaWAN operating in the
ISM band [36].

Each time a packet is sent, it is successfully decoded at the
receiver with probability p, or lost due to channel impairments
with probability 1 − p.4 We model the outcomes of trans-
missions over different slots as independent and identically
distributed, noting that extensions of the present analysis
accounting for correlation or more advanced retransmission
techniques are also possible, e.g., considering approaches
such as [9], [39]. Whenever a transmission is performed, the
receiver may provide feedback to the device, informing it of
whether the message was successfully retrieved or not. When
implemented, we will assume the feedback to be instantaneous
and always successful.5 On the other hand, the use of feedback
entails a cost for the IoT device. For example, the reception
of a message requires the terminal to remain active (as
opposed to entering sleep mode), and decode the incoming
packet, thus consuming energy. This aspect is often key in
IoT systems: many commercial solutions foresee operations
without acknowledgments, as done for instance in LoRaWAN
by Class A devices sending unconfirmed messages [36], or
disable the feedback channel completely to prolong battery
life [42].6

To capture the impact of feedback, we resort to a simple
yet significant model, introducing a feedback cost coefficient
ζ ≥ 0. Accordingly, when feedback is used, the number of
transmission opportunities the IoT device can employ is

m =

⌊
η n

1 + ζ

⌋
. (1)

Within (1), η < 1 is the duty-cycle, which we define as the
fraction of time the device can spend at most in transmission
within the considered time horizon. In turn, the floor operator
is taken to obtain an integer number of attempts. When no cost
is undertaken (ζ = 0), the maximum number of opportunities
(⌊ηn⌋) can be used. Conversely, as ζ grows, the amount

3Note that a reading remains in the buffer even after having being sent,
and is only replaced upon generation of a new one. This also means that the
same reading may be transmitted multiple times.

4The channel statistics are assumed to be known at the device. In typical IoT
systems, these can be estimated through feedback, or can be communicated by
the receiver during logon procedures or with sporadic downlink transmissions.

5Incidentally, we note that this is a common assumption in the literature,
as the feedback packets are usually limited in size and possibly sent over
a different channel. If, similar to the direct channel, errors on the feedback
result in independent erasures where the return message is lost, one can adopt
a timeout policy and account for this loss by increasing the success probability
[40]. Even when they are the result of collisions over a common feedback
channel, they are still tractable [41].

6While turning off feedback may be dictated by energy saving reasons,
this is not the only motivation. For example, there may be scheduling of
other tasks involved [7], [18]. Energy saving may also lead to reducing the
frequency of sampling [26], which would cause fresh information not to be
available at will, which is the reason why in the following we consider both
cases of AoI being reset to 0 or to a value greater than 0.
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Fig. 2. Example of time evolution of δ(t) over a time horizon of n slots.
A total of m = 4 transmission opportunities is assumed, performed at time
instants τi, i ∈ {1, . . . , 4}. Green dots ( ) denote successful transmissions,
resetting the AoI value to τi − σ(τi), whereas the red cross (×) indicates a
sent message that was not delivered. Vertical arrows report instants at which
the sensor produces new updates and makes them available to the transmitter.
In particular, the two dashed arrows show updates which are generated but
not transmitted. In the first (leftmost) case, the update is superseded by a
newer one, generated right before the transmission at τ3. Instead, the final
generated reading is not sent as all the available transmissions have already
been consumed.

of transmissions the IoT node can perform is reduced: for
example, when receiving a message has the same cost of
sending one (ζ = 1), only ⌊ηn/2⌋ updates can be sent.

In this setting, we are interested in understanding the ability
of different transmission strategies towards maintaining an up-
to-date perception at the receiver of the process monitored
by the device. To gauge this, we resort to the notion of age
of information (AoI) [43]. Specifically, at any time slot t in
{0, . . . , n}, we define the instantaneous (current) AoI as

δ(t) := t− σ(t) (2)

where σ(t) is the time-stamp of the last message received by
the monitor from the IoT device as of time t. Without loss of
generality, we set δ(0) = 0, and consider that the instantaneous
AoI is reset to 0 whenever a new update is delivered in the
same time slot it was generated. An example of the time
evolution of δ(t) is reported and discussed in Fig. 2. Leaning
on the definition in (2), we are interested in the average AoI

∆ :=
1

n

n−1∑
t=0

δ(t). (3)

The expression in (3) depends not only on the times at which
transmissions are performed, but also on the realizations of the
r.v.s describing the readings generation and the packet delivery
probability. In the remainder we will then target the expected
average AoI

∆̄ := E [∆]

where the expectation of the r.v. ∆ is taken over all the
aforementioned components.

A. Transmission strategies

The problem of scheduling packet transmissions [17] over
the time horizon n so as to minimize ∆̄ is in general not trivial,
as the limited number of attempts may be prone to losses, and
the transmitter may not be aware of when and if new (fresh)
readings will become available from the sensor. To tackle
this setting, we consider different approaches, inspired by
configurations and capabilities that are typical of IoT systems.

TABLE I
MAIN SYSTEM PARAMETERS

PARAMETER MEANING

n time horizon duration [slot]
m number of transmission opportunities
η duty-cycle
ζ feedback cost coefficient
p transmission success probability
τi slot index of i-th transmission attempt
yi time between (i−1)-th and i-th transmission attempt

• Offline scheduling (OFF): in this case, the transmitter
relies on a pre-computed schedule, e.g., sending packets
at regular intervals. As such, it is completely oblivious of
whether its attempts are successful or not (no feedback
is required), as well as of when the readings from the
sensor are produced. While suboptimal, the approach can
be appealing in view of its simplicity, as it requires
no intelligence at the device, and represents a relevant
baseline benchmark.

• Online scheduling, zero-feedback (ZF): for this policy, we
assume that no feedback is implemented, yet the trans-
mitter is aware of the time elapsed since the generation
of the sensor reading available in its queue, and can
decide at run-time when to attempt delivery. For example,
sending a message as soon as it is generated may be more
convenient with respect to attempting transmission of an
already stale reading, which, if successful, may reset AoI
to a higher value. This solution epitomizes settings in
which feedback is not implemented, e.g., unconfirmed
messages in LoRaWAN [36].

• Online scheduling, with feedback (FB): finally, we con-
sider the possibility to rely not only on the knowledge of
when updates were produced, but also on the outcome of
transmission attempts through receiver feedback. In this
configuration, the transmitter is aware at all times of the
current level of AoI experienced at the monitor, as well as
of how this would change in case of a successful packet
delivery. Thus, it performs online decisions on whether
and when to access the wireless channel. The strategy is
characterized by a trade-off between the stronger ability
to adapt and the fewer transmission attempts that may be
available in view of the feedback cost ζ.

For the online approaches, we assume that the statistics of
update generation rate, u, are known to the transmitter.

B. Notation

In the remainder, we denote as τℓ ∈ [0, n), ℓ ∈ {1, . . . ,m}
the instants at which the IoT device performs its transmission
attempts. Accordingly, the time horizon is partitioned into
m+ 1 intervals yℓ, ℓ ∈ {0, . . . ,m}, such that yℓ = τℓ+1 − τℓ,
with τ0 = 0 and τm+1 = n for consistency. Following this
notation, an instance of transmission schedule implemented
by the IoT device is completely specified by the vector
y = [y0 y1 . . . ym]. An example is illustrated in Fig. 2. The
relevant notation is also summarized in Tab. I.
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IV. THE GENERATE-AT-WILL CASE

As a starting point for our discussion, we consider the case
u = 1, aiming to identify some fundamental trade-offs in a
simpler setup. The configuration corresponds to the sensor
producing a new reading at each slot, or, equivalently, to the
transmitter having always a fresh update to transmit, i.e., a
message that would reset the current AoI to its minimum value
if decoded. The setting, often referred to as generate-at-will,
is representative of situations in which the IoT device can
drive the operation of the sensor, and has received a large
deal of attention in AoI studies in the literature, e.g. [43] and
references therein.

A. Offline scheduling (OFF)
We begin by providing the following result, which holds in

the absence of feedback.

Proposition 1. In the generate-at-will case (u = 1), the
expected average AoI of an offline schedule y is given by

∆̄(y) =
1

n

m∑
ℓ=0

[
yℓ(yℓ+1)

2
+

ℓ−1∑
i=0

yℓyi(1− p)ℓ−i

]
. (4)

Proof. See Appendix A.

Leaning on this result, the problem of finding the optimal
offline schedule can be directly formalized as

min
y

∆̄(y)

s.t.
m∑

ℓ=0

yℓ = n

Applying a continuous relaxation, the minimum AoI can be
found by nulling the gradient ∇∆̄(y), which, in the specific
coordinates yis, corresponds to setting the first-order partial
derivatives of (4) to 0, i.e.,

∂∆̄(y)

∂yℓ
= 0 ∀ℓ. (5)

Observing that, by definition, ym = n − ∑m−1
ℓ=0 yℓ, (5) leads

after simple manipulations to(
2yℓ − n+

∑
i ̸=ℓ

yi

) [
1− (1− p)m−ℓ

]
+
∑
i ̸=ℓ

yi

[
(1− p)|ℓ−i| − (1− p)m−i

]
= 0

for all ℓ ∈ {0, . . . ,m}. Thus, we obtain a full-rank system
of m linear equations in m unknowns, whose solution offers
the optimal transmission times sought in the absence of feed-
back. This can be easily obtained with standard tools, whose
computational complexity, even without leveraging sparsity
properties, is at most O(m3). Note that the corresponding slot
indexes τℓ are then obtained by rounding the solution to the
closest integer, leading to some approximations, which become
negligible for the typical case of large n and m ≪ n.

Remark: In the generate-at-will case, the online, zero-
feedback (ZF) transmission scheme collapses into the offline
(OFF) approach, as no additional benefit can be leveraged by
knowing at run-time the generation time of the updates. Hence,
ZF will not be further discussed in this section.

B. Online scheduling, with feedback (FB)

Even though the number of transmission opportunities may
decrease, the presence of feedback can offer an advantage to
the optimization. Indeed, the IoT device can achieve a more
efficient schedule of the status updates, dynamically adapting
the transmission instants based on the outcome of already
performed attempts, and thus on the current AoI. The optimal
solution in such conditions can be found following a dynamic
programming approach. The problem is classically cast on
defining a state, a control vector, and a noise component [44].

To this aim, we describe the state of the system at the start
of slot ℓ ∈ {0, . . . , n} as x(ℓ) =

(
δ(ℓ),m(ℓ)

)
, where δ(ℓ) is

the instantaneous AoI at time ℓ, whereas m(ℓ) ∈ {0, . . .m}
is the number of transmission opportunities still available at
time ℓ. The state is initialized as x(0) = {0,m}. In turn, the
control of the system c(ℓ) results in a binary choice on whether
to transmit over the ℓ-the slot, while the noise component is
completely captured in the generate-at-will case by the success
probability p. With these conventions, the system evolves from
x(ℓ) as

• x(ℓ+1) =
(
δ(ℓ)+1,m(ℓ)

)
if no update is attempted over

slot ℓ (i.e., c(ℓ)=0). In the absence of transmission, the
AoI increases by a slot duration, and the same number
of transmissions remain available to the IoT device;

• x(ℓ+ 1) =
(
δ(ℓ) + 1,m(ℓ)− 1

)
if m(ℓ) > 0, the device

sends an update during slot ℓ (i.e., c(ℓ)=1), but it is
unsuccessful, which happens with probability 1− p;

• x(ℓ + 1) =
(
0,m(ℓ) − 1

)
if m(ℓ) > 0 and the sensor

sends instead a successful update at time ℓ that resets the
AoI, which happens with probability p.

Leaning on these definitions, the FB strategy is defined
by finding the optimal control policy c(ℓ) = µℓ(x(ℓ), p)
to apply at any state x(ℓ), i.e. the strategy that minimizes
the expectation over the time horizon n of an instantaneous
cost gℓ

(
x(ℓ), c(ℓ), p

)
= δ(ℓ). This is proven by the following

proposition.

Proposition 2. For the generate-at-will case, the FB scheme
operates using in each ℓ ∈ {0, . . . , n− 1} the optimal policy

µℓ

(
x(ℓ), p

)
= 1

[
(1−p)Rℓ+1

(
δ(ℓ)+1,m(ℓ)−1

)
+ pRℓ+1 (0,m(ℓ)−1) < Rℓ+1

(
δ(ℓ)+1,m(ℓ)

)]
where

Rℓ

(
δ(ℓ),m(ℓ)

)
=

n∑
i=ℓ

gℓ
(
x(i), µi

(
x(i)

)
, p
)

(6)

and 1[·] is the indicator function.

Proof. The result follows by exploiting Bellman’s optimality
condition [44]. This implies that the optimal choice at time
ℓ when the system state is x(ℓ) is made by comparing the
two alternatives (to transmit or not to transmit), based on
the current reward and the expected future evolution of the
system. Depending on this expected reward being higher when
transmitting or not, µℓ

(
x(ℓ), p

)
is set to 1 or 0, respectively.

Since the horizon is finite, the instantaneous choice is
optimal at the end of the horizon, and also at every previous
instant if the instantaneous best decision is made and then
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Fig. 3. Example of transmission schedules for n = 100 slots, m = 4, for different values of the success probability p, generate-at-will case. Filled rectangles
represent the transmission instants with offline optimization (OFF), whereas empty red rectangles denote the average instants obtained with the online scheme
with feedback (FB). The right plot within subfigure (b) also reports two instances of online schedule based on the outcomes, obtained respectively with 4
consecutive successful transmissions (⋄) or 2 failures followed by 2 successes (∗).

the following ones are according to the previously computed
optimal policy. Indeed, it holds that, if the optimal policy
is described by µ0, µ1, . . . , µn−1, then for any value of an
intermediate state x(ℓ) at time ℓ ∈ {0, . . . , n − 1} occurring
with positive probability, the minimizing policy for the residual
cost from ℓ till n is µℓ, . . . , µn−1.

As clarified by Prop. 2, the optimal control at time ℓ is
achieved by making the decision that minimizes an expected
total cost equal to the AoI, assuming future decisions are
optimally made and averaging over channel errors. Remark-
ably, the only actions for the border cases x(n−1) with any
m(n−1) > 0 and for any state x(ℓ) with m(ℓ) = 0 are to
transmit and not to transmit, respectively, so one can start by
defining µ for these cases and proceed backwards to find the
optimal online scheduling for all reachable states at every ℓ.

In terms of computational complexity, it is worth noting that
finding the optimal policy has a space and time complexity of
O(mn2), since the state x(ℓ) contains n entries, each with
m · O(n) possible values and is sequentially filled. This value
can be lowered if high AoI values in δ(ℓ) are capped. Also, this
computation is just computed preliminarily, not at run-time.

C. Preliminary remarks
Initial insights on the schedules obtained with the OFF

and FB policies can be obtained by looking at the examples
reported in Fig. 3. The plot shows time instants at which
transmissions are performed under different system settings
and for specific realizations of the involved random outcomes.
In all cases, we assume that m = 4 updates can be scheduled
over a time horizon of n = 100 slots. In the presence of
a perfectly reliable channel (p = 1), Fig. 3a shows that the
optimal update instants are uniformly spread over the time
horizon [34], and, as expected, there is no difference between
a stateful and a stateless optimization, since there is anyway
no need for feedback. In Fig. 3b, the probability of success
is set to p = 0.8 and a difference appears between the offline
and online scheduling. In particular, the scheduling instants
for the OFF policy shift towards the center of the window of
interest. For what concerns the case with feedback, the figure
shows the average positions of the scheduling instants, since
they clearly depend on the specific realization of the channel.
The average position of the updates across the time window
is slightly postponed for the online optimization, since the
availability of the feedback can be better exploited and this
allows to intervene even at a later stage. The same trend is
confirmed in Fig. 3c for a lower success probability p = 0.4.
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Fig. 4. Minimum ∆̄ vs. success probability for different values of m,
corresponding to a duty cycle η of 1% and 0.5%. Circle-marked lines
represent the performance of the OFF strategy, whereas plain solid lines the
results of the FB scheme with cost-free feedback. The behavior of FB with
costly feedback ζ = 0.1 is shown by dash-dotted lines. In all cases, n=1600.

For p = 0.8, an extra plot in Fig. 3b shows also a compar-
ison of practical realizations of the schedule in the presence
of feedback, depending on whether the updates succeed or
fail. In more detail, we compare a case where all updates are
successful (example 1, marked as ⋄) with one where the first
two transmissions fail (example 2, marked as ∗). As visible
from the plot, in the latter case, subsequent transmissions are
scheduled much earlier to counteract the missing updates due
to the undergone channel failures.

D. Performance evaluation

To gauge the role of feedback in the generate-at-will setting,
we report and discuss some key trends of interest. Unless
otherwise specified, all numerical results have been obtained
considering a time horizon of n = 1600 slots, and assuming
m = 16 transmissions available to the device when operating
without resorting to feedback. Such a configuration is inspired
by practical IoT systems such as LoRaWAN, where duty
cycles in the order of η = 0.01 are typical for operations
in the ISM band [36].

We start by considering Fig. 4, which shows the average
AoI achieved by optimizing the transmission times over the
time horizon, reported against the probability of success. The
behavior in the absence of feedback (OFF) is represented by
circle-marked lines, whereas plain solid lines were obtained
considering the FB policy under a cost-free feedback (i.e.,
ζ = 0). Finally, dash-dotted lines refer to the FB strategy
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when a costly feedback is implemented (ζ = 0.1), resulting
in a reduction of the number of available transmissions from
the device to the monitor. For the OFF case, the average AoI
was directly computed through the minimization of (4). Con-
versely, in the presence of feedback, the dynamic optimization
process described in Section IV-B was applied to derive the
optimal, exact, schedule. To compute the average AoI, which
depends on the channel realization and the process of arrivals,
we resorted as customary to a Montecarlo methodology.

First, consider the case η = 0.01, corresponding to m = 16
transmission opportunities, and focus on operations without
feedback. As expected, AoI decreases as the success prob-
ability increases, thanks to the more frequent delivery of
status updates, reaching the minimum value n/[2(m + 1)]
when p = 1. In turn, when feedback is available at no cost
(FB, ζ = 0), an improvement emerges. In this case, the
possibility to adapt the upcoming transmission times based
on the outcome of the current attempt is beneficial, enabling a
reduction of the AoI of up to 20%. We note that the achievable
gain is larger for moderately low success probability values,
whereas the two policies behave similarly (and eventually
coincide) when p is either very high or very low.

Notably, things change significantly when the cost entailed
by feedback is accounted for. In fact, while for lower success
rates the use of feedback continues to be beneficial, there exist
values of p (e.g., p > 0.8 in the considered example) for which
an offline optimization of the transmission times emerges as
the policy of choice. In such conditions, the availability of
fewer delivery attempts – induced by employing feedback
procedures – more than counterbalances the positive effects of
dynamically adapting the transmission times, rendering the no-
feedback approach more effective in terms of AoI. The result
offers a first important and non-trivial insight, pinpointing how
the use of a return channel shall be carefully considered in
practical IoT systems.

Similar trends also emerge when the device is allowed to
access the channel less often, e.g. to save energy (curves
with duty cycle η = 0.005 in the plot). In this case, higher
values of AoI are attained by all the strategies considered, as a
consequence of the less frequent transmissions. Interestingly,
when a cost is to be undergone (ζ = 0.1), the OFF strategy
already starts to outperform the FB scheme for values of
p > 0.7. This effect reveals how the reduction in the number
of available attempts becomes critical as transmissions are
sporadic and may be lost due to channel impairments.

The impact of the feedback cost is further explored in Fig. 5,
where we report the ratio of the expected average AoI achieved
with the FB policy to that of the optimal OFF schedule. Values
larger than 1 denote thus better performance without feedback,
and trends are shown against the feedback cost ζ. Three
different values of success probability are considered, namely
p ∈ {0.75, 0.9, 0.99}, as identified by different markers, and
in all cases the duty cycle is set to η = 0.01. The trends
highlight how the use of a costly feedback quickly becomes
detrimental for the practical values of success probability
reported in the figure. From this standpoint, for instance, worse
AoI performance is attained already for ζ = 0.1 when p = 0.9.
Furthermore, AoI quickly deteriorates with the feedback cost.
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Fig. 5. Ratio of the expected average AoI with FB to the one obtained with
optimized OFF vs feedback cost ζ for different success probability p. Values
above 1 denote better performance without feedback. In all cases, n = 1600,
η = 0.01.

Interestingly, for ζ = 1, corresponding to a practically relevant
condition in which the reception of feedback may entail an
energy cost similar to the one of a transmission, the expected
average AoI almost doubles in comparison to the simpler
no-feedback approach when ζ = 0.9, as a result of the
much tighter restrictions on the transmission opportunities
(equivalent to operating at a duty cycle η = 0.005).

These remarks trigger a fundamental system design ques-
tion, highlighting the need to understand when the implemen-
tation of feedback can lead to better performance. We tackle
this aspect in Fig. 6, which identifies in the (p, ζ) parameter
plane the region where feedback shall or shall not be used
from an expected average AoI minimization standpoint. The
diagram offers a simple yet useful tool, quickly identifying
the most suitable strategy to be followed under any operating
condition. The importance of carefully considering the cost
of feedback clearly emerges. In particular, the implementation
of a return channel leads to an AoI reduction under harsh
channel conditions (i.e., low probability of success), even
at the expense of the availability of fewer update delivery
attempts. Conversely, a simpler offline optimization is to be
preferred when more reliable transmissions can be performed.

We remark that these trends hold when the IoT device
always has fresh data to send, i.e., it can control the production
of sensor reading. We will see in the next section how the
situation changes under exogenous traffic. Incidentally, we also
note that the staircase shape of Fig. 6 stems from the fact that
a change in performance is only observed when the cost leads
to a reduction of the number of available transmissions, as per
(1). In this sense, increasing the frequency of transmission or
the window length would naturally smooth the curve, without
however altering the fundamental trends that were presented.

To conclude our discussion, we study the impact of the time
horizon over which the IoT device has to operate. To this aim,
we report in Fig. 7 the expected average AoI as a function of
n for the OFF and FB policy (with ζ = 0). Results were
obtained for p = 0.8 and with a duty-cycle of η = 0.01, i.e.,
proportionally increasing the number of available transmission
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not (blank area) in terms of attainable expected average AoI for the generate-
at-will setting. In all cases, n = 1600, η = 0.01.

opportunities as n grows. In the plot, the solid blue and dashed
red lines denote the value of ∆̄ attained with OFF and FB,
respectively. Following the same color-code, the figure also
reports clouds of points obtained for some specific values of n.
Each point, in turn, represents the average AoI value obtained
over a specific realization of the channel conditions (i.e., of
packet losses) when applying the corresponding transmission
policy. In other words, the obtained scattered bars are an
indication of the dispersion of the actual values of ∆ around
its statistical average ∆̄. Two main take-aways emerge from
the plot. First, the expected average AoI grows initially with
n, and later stabilizes. The effect stems from having δ(0)=0,
which reflects in small AoI values at the beginning of the
horizon. This has a stronger effect on the mean value when
the overall time window is short, and its impact vanishes for
larger n. More interestingly, the fact that the metric tends to
settle confirms the broad applicability of the more detailed
results we presented so far for the case n = 1600. As a second
remark, the dispersion of the average AoI is more pronounced
in proportion for low n, so that larger fluctuations around the
predicted value shall be expected at the receiver when the
IoT device has to operate over short horizons. Indeed, for a
given duty-cycle, a lower n corresponds to fewer transmission
opportunities, and thus to fewer occasions to maintain a lower
AoI in case of an uplink failure. For instance, the leftmost
cloud of points for the OFF scheme in Fig. 7 refers to the
setting n = 300, m = 3. In this case, when all three messages
are lost, the AoI is never reset, leading to an average value
of 150 (highest marker in the plot). Finally, Fig. 7 also shows
circle markers. These refer to the mean of the average AoI
obtained for the OFF policy, obtained by means of detailed
Montecarlo simulations. The perfect match exhibited with the
blue line (obtained analytically via (4)) validate the correctness
of the mathematical derivations.

V. THE EXOGENOUS TRAFFIC CASE

We complement our study by considering the more general
case u < 1. This setup in terms of update generation is
often referred to as exogenous traffic, as the transmitter cannot
directly control when new readings are produced [2]. Such
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Fig. 7. Average AoI vs horizon length, n, in the generate-at-will setting.
Lines report analytical results, whereas circle markers show the average AoI
of the offline policy obtained by means of detailed Montecarlo simulations.
The clouds of points show the average AoI value obtained for the offline (blue)
and ideal feedback (red) policies for different realizations of the channel (i.e.,
packet success/failures). In all cases, p = 0.8, η = 0.01.

conditions render the scheduling problem at hand significantly
more challenging, as the device has to decide whether to send
a reading that may already be stale - potentially with a small
reduction of AoI at the receiver - or refrain from doing so and
await for a fresh update - yet allowing AoI to grow in the
meantime. As done for the generate-at-will setting, we first
characterize the expected average AoI for the OFF policy, and
later tackle the online strategies.

A. Offline scheduling (OFF)

Proposition 3. In the exogenous case (u < 1), the expected
average AoI of an offline schedule y is given by (7), reported
at the top of next page.

Proof. See Appendix B.

Clearly, the obtained formulation of ∆̄ falls back to the
generate-at-will case by setting u = 1. More interestingly, (7)
captures the effect of exogenous generation, highlighted by
the terms under brace (a), and pinpoints how their effect is
not independent but rather intertwined with the probability of
successfully delivering an update. The exact result provided by
Prop. 3 can readily be computed offline for any schedule y.
Leaning on this, a minimization problem for the expected av-
erage AoI can be cast following the same approach Sec. IV-A,
leading to a system of equations, which, albeit more involved
and not reported here, can be solved via standard numerical
tools to obtain the optimal schedule for any given (p, u) pair.

B. Online scheduling, with feedback (FB)

Let us first consider the situation in which feedback on
the outcome of a transmission is available. In this case, it
is once more possible to enact an online scheduling, along the
same lines of Sec. IV-B, i.e., through a dynamic programming
approach, applying a binary control c(ℓ).

However, the state of the system in slot ℓ ∈ {0, . . . , n} is
enriched to x(ℓ) =

(
δ(ℓ),m(ℓ), w(ℓ)

)
, where δ(ℓ) and m(ℓ)

have the same meaning (and evolution) as previously defined,
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∆̄(y) =
1

n

m∑
ℓ=0

yℓ

{
yℓ + 1

2
+

ℓ−1∑
i=0

yi(1− p)ℓ−i +

(a)︷ ︸︸ ︷
p(1− u)

u

ℓ−1∑
i=0

(1− p)i
ℓ−i−1∑
j=0

[ 1− (1− u)yj ]

ℓ−i−1∏
w=j+1

(1− u)yw

}
(7)

and w(ℓ) represents the value that AoI will reset to, if a
successful update is performed. This last component of the
state is also subject to further noise, not only due to packet
losses, but also in view of the exogenous generation process.

The evolution of x(ℓ) can be tracked as follows. First,
w(ℓ+ 1) can take value

• 0 if new data is generated, which happens with probability
u. Indeed, with fresh data, a successful transmission
would reset the AoI to its minimum value, as was the
case in the generate-at-will setting;

• w(ℓ) + 1 otherwise, i.e., with probability 1−u.
Then, δ(ℓ+ 1) is set to

• w(ℓ+1) if an update is attempted in slot ℓ, thus requiring
c(ℓ) = 1, and such update is successful, which happens
with probability p

• or δ(ℓ)+1 if no update is delivered over slot ℓ, i.e, if no
transmission is attempted or a transmission is attempted
but it is not successful.

Finally, m(ℓ+1) is set to [m(ℓ)− c(ℓ)]+, with [x]+ denoting
max(x, 0). That is, the number of transmission opportunities
left is decreased by 1 with respect to m(ℓ) if the control
action c(ℓ) = 1, which in turn requires m(ℓ) > 0, i.e.,
some transmission opportunities are still available. Otherwise,
if m(ℓ) = 0, then c(ℓ) must be 0 and the value of m(ℓ + 1)
also stays zero.

Similarly to the generate-at-will case, also within this frame-
work the optimal control policy µℓ

(
x(ℓ), p, u

)
can be found

by dynamic programming, i.e., obtained through backward
induction from the last stage. It is also immediate to prove
further properties such as threshold behaviors for δ(ℓ) and
w(ℓ), along the lines of [45], as we clarify in the following.

Proposition 4. In the exogenous case (u < 1), when feedback
is available, it holds:

(a) The optimal control satisfies a lower-threshold condi-
tion on δ(ℓ), i.e., if µℓ

(
δ(ℓ),m(ℓ), w(ℓ)

)
= 1, then

µℓ

(
x,m(ℓ), w(ℓ)

)
= 1 for every x > δ(ℓ).

(b) The optimal control satisfies an upper-threshold con-
dition on w(ℓ), i.e., if µℓ

(
δ(ℓ),m(ℓ), w(ℓ)

)
= 1, then

µℓ

(
δ(ℓ),m(ℓ), x

)
= 1 for every x s.t. 0 ≤ x < w(ℓ).

(c) The optimal control policy µℓ

(
x(ℓ), p, u

)
has a further

dependence on u and is computed as

µℓ

(
x(ℓ), p, u

)
= 1

[
Yℓ+1

(
δ(ℓ),m(ℓ), w(ℓ)

)
> (8)

pXℓ+1

(
m(ℓ)−1, w(ℓ)

)
+ (1−p)Yℓ+1

(
δ(ℓ),m(ℓ)−1, w(ℓ)

)]
where:

Xℓ

(
m,w

)
= uRℓ

(
0,m, 0

)
+ (1−u)Rℓ

(
w+1,m,w+1

)
Yℓ

(
δ,m,w

)
= uRℓ

(
δ+1,m, 0

)
+ (1−u)Rℓ

(
δ+1,m,w+1

)
and Rℓ

(
x(ℓ)

)
is defined as in (6).

Proof: Statements (a) and (b) are immediate conse-
quences of Bellman condition, following from monotonic
properties of δ(ℓ). For (c), the optimality of the policy in (8)
can be proven analogously to Prop. 2.

We remark that the optimal policy found in Prop. 4, similar
to the one found in Prop. 2, is nonstationary, which implies
that approaches of long-term average AoI minimization with
steady-state conditions, neglecting slot index ℓ, would neces-
sarily be suboptimal.

For what concerns computational complexity, the same
considerations of Sec. IV-B apply, in that the optimal policy is
computed once and just works as a look-up during run-time.
This time, since the state has an extra element w, whose size
is O(n), the complexity is O(mn3), but in reality neither δ(ℓ)
nor w(ℓ) reach value n if not rarely.

C. Online scheduling, zero feedback (ZF)

Finally, consider the case of exogenous generation without
feedback. Here, the transmitter is unaware of the transmission
outcomes, but still knows whether new data have been gener-
ated or not. This means being fully aware of the value of w(ℓ)
but not of δ(ℓ). However, since past transmission instants are
known, the expected value of δ(ℓ) can be computed through
the success probability by considering all possible cases of
past successes/failures [31].

Thus, the optimal control action µℓ

(
x(ℓ), p, u

)
, as derived

through (8), would still be valid, but the uncertainty over
the instantaneous AoI δ(ℓ) requires it to be replaced with its
estimate A(ℓ) = E[δ(ℓ)], which is the expected AoI in slot ℓ.

One can compute A(ℓ) through the following inductive
procedure. Recalling that the transmission attempt times are
denoted as τ1, τ2, . . . , τm, if ℓ < τ1, then A(ℓ) = δ(ℓ) = ℓ.
Moreover, it holds:

A(τj) = p · w(τj) + (1−p) ·
(
A(τj−1)+1

)
(9)

A(ℓ) = A(τj)+(ℓ−τj) for τj<ℓ<τj+1 or ℓ=n

In other words, A(ℓ) grows linearly in between transmission
attempts because of the linearity of the expectation. In each
transmission attempt, the options bifurcate between a success-
ful transmission with probability p, which would reset AoI to
w(ℓ), and a packet loss with probability 1−p, which causes
AoI to continue growing like before.

All the values of w(ℓ), τj , and p are known to the transmitter
even in the ZF case, making the use of A(ℓ) feasible. However,
since A(ℓ) is in general fractional, we take the optimal control
action as dictated by

[
A(ℓ)

]
, where

[
·
]

denotes rounding to
the closest integer. This only introduces a quantization error,
that is actually negligible if updates are very sporadic. Instead,
replacing δ(ℓ) with A(ℓ) is still optimal for the case where δ(ℓ)
is not available but A(ℓ) is, as proven below.
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Fig. 8. Expected average AoI vs success probability under exogenous traffic,
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trends for the online solution relying on feedback, with different cost factors.
In all cases, n = 1600, η = 0.01.

Proposition 5. Control µℓ

(
x(ℓ), p, u

)
, as specified in (8),

is optimal up to the quantization error in the absence of
feedback, i.e., if x(ℓ) =

(
[A(ℓ)],m(ℓ), w(ℓ)

)
is used.

Proof: The proof immediately follows from applying
Bellman’s condition (8) to choose the optimal action between
the two available ones (transmit or not) as the one with lower
expectation of the cumulated penalty g

(
x(ℓ), c(ℓ), p

)
, which,

as per (6), is the AoI. Thus, the comparison boils down to
evaluating whether the cumulated sum of E[A(t)] = A(t) =
E[δ(t)] is lower when transmitting or not. As a side note,
using [A(ℓ)] instead of A(ℓ) (as we are forced to do, since
µℓ

(
x(ℓ), p, u

)
only takes discrete values for x(ℓ)) implies

a quantization error, which is however kept limited by the
threshold nature of the optimal policy, as argued in Prop. 4.

Compared to the case with feedback (FB), where δ(ℓ) is
precisely known as time unfolds, not only in expectation, the
scheduling of this resulting ZF approach may be different,
depending on the value of p. This uncertainty over past
transmissions is minimized when p → 1 (but also when it ap-
proaches 0). Overall, knowing only w(ℓ) and A(ℓ) = E[δ(ℓ)],
we obtain an intermediate AoI between an agnostic scheduling
that knows nothing, and the FB case where also δ(ℓ) is known.

D. Performance Evaluation

We focus again on the reference setting with n = 1600 slots,
and with a duty cycle η = 0.01. Initial insights are offered in
Fig. 8, which reports the expected average AoI against the
success probability for u = 0.1. In the plot, the performance
of the optimized OFF policy is shown with circle markers,
whereas square markers denote the results of the ZF solution.
Lines without markers refer to the FB policy, considering both
the ideal case ζ = 0 (solid line) and settings in which feedback
entails a cost (dashed, dash-dotted lines).

Let us focus first on the OFF and zero-cost FB (ζ = 0)
strategies. Under exogenous traffic, both solutions suffer a per-
formance degradation compared to the generate-at-will case.

For instance, for a success probability p = 0.7, the expected
average AoI of the OFF scheme increases by 8% compared
to what shown in Fig. 4, whereas the loss is contained to
just 1.4% with ideal feedback. Moreover, the two schemes
no longer offer the same performance under perfect channel
conditions p = 1 as discussed for u = 1, and the optimal
offline schedule leads to a value of ∆̄ almost 20% worse than
what achieved by the FB solution. Both remarks stem from the
intrinsic advantage of online approaches to adapt to the traffic
generation pattern and to the benefit that sending a packet
might have on the current level of AoI at the receiver. In this
perspective, it is also interesting to notice how the region of p
values where the use of feedback is convenient even when
a cost has to be undergone is increased. For instance, for
ζ = 0.2, the expected average AoI of the FB policy improves
over the optimal offline schedule as soon as the packet loss
rate is higher than 7% (p = 0.93), whereas in such conditions
a performance loss of more than 10% was undergone with
feedback in the generate at will case. Similarly, it is now
possible to find p values for which FB outperforms OFF even
for ζ = 0.33, in contrast to the u = 1 case (see Fig. 6).

To better isolate the role played by the knowledge of the
current AoI at the receiver and the knowledge of the update
generation times, consider now the simpler ZF solution. The
scheme requires no feedback (i.e., it operates agnostically with
respect to δ(t)), and only adapts the schedule dynamically
based on the time-stamp of the currently available reading at
the transmitter. As expected, the scheme always outperforms
an offline approach. Notably, the gain grows with p, and
thus becomes relevant especially for operating conditions of
practical relevance (e.g., p > 0.8). Note in fact that, when there
is little uncertainty on the successful delivery of an update, the
decisions made by the ZF approach are almost optimal, and
the scheme actually converges to the full-blown ideal FB case
for p = 1. From this standpoint, the use of a simple online
scheme emerges as a good solution for reasonably reliable
communication links, as it suffices to attain remarkable and
close-to-optimal improvements over an offline solution without
the need to implement a return channel from receiver to IoT
device. In fact, ZF outperforms FB when a feedback cost has
to be undergone. For instance, in the setting under study, an
AoI reduction of ∼15% is attained with respect to FB with a
limited cost of ζ = 0.2 for p = 0.9.

From the above discussion, two aspects can be stressed: the
importance of relying on a dynamic schedule, and the fact that
the trade-off between AoI reduction and feedback cost changes
significantly in the case of exogenous traffic when compared
to a generate-at-will setting. In turn, both aspects crucially
depend on how frequently new readings are made available
for transmissions. To further explore this aspect, we consider
the impact of the generation rate u in Fig. 9. The plot is akin to
Fig. 5, reporting the ratio of the expected average AoI attained
with ZF or FB to that of the optimal offline schedule derived
via (7). Dashed and dotted lines indicate the performance with
a costly feedback for different values of ζ, whereas the solid,
circle marked line that of a cost-free feedback. Finally, the
solid, square-marked curve denotes the behavior of the ZF
solution. The results were obtained considering p = 0.7, and
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n = 1600, η = 0.01, p = 0.7.

we recall that values below 1 pinpoint conditions where the
OFF strategy is outperformed.

An interesting trend emerges, as the improvement offered
by all the online approaches peaks for a certain value of
u. Notably, such values are comparable to the duty cycle
(η = 0.01), so that the maximum benefit is attained when the
average number of updates produced over the time horizon is
similar to the number of available transmission opportunities.
In such conditions, the expected average AoI is reduced by
more than 35% with a cost-free feedback, or by roughly 22%
with the simpler ZF scheme. This behavior can be explained
observing how, when readings are seldom produced (i.e., very
low values of u), all online schemes tend to converge towards
transmitting as soon as a new update is available and have thus
little room for adaptation. Eventually, for u → 0, the difference
with the offline strategy vanishes, as AoI can never be reset.
Conversely, as u increases (rightmost part of the plot), fresh
messages are available more often - and, on average, more
frequently compared to the duty cycle - so that a dynamic
adaptation to the traffic generation loses leverage compared to
the OFF solution.

Fig. 9 also highlights that, for a relatively low feedback cost
(ζ = 0.1), the FB scheme outperforms the offline schedule
regardless of the generation rate. Moreover, even for larger val-
ues of ζ the availability of feedback can be convenient in terms
of AoI reduction for sufficiently low u. In this perspective,
the cost undergone for the implementation of a return channel
may be valuable in applications that can only produce readings
sporadically, e.g., due to sensor limitations, processing times,
or energy expenditure. In the reported setting, for instance,
the possibility to adapt transmissions to the time-stamp of
the available reading as well as to the current level of AoI
at the receiver is convenient also for ζ = 0.3 as long as
u < 0.03. On the other hand, severe performance degradation
can be incurred with a FB strategy under certain conditions.
Considering again the not too high cost ζ = 0.3, ∆̄ can
be up to 30% worse than the basic OFF case when updates
are generated frequently enough. In addition, we observe that
the simple ZF solution can outperform the full-blown FB

10−2 10−1 100

0.2

0.4

0.6

0.8

1

update generation probability, u

su
cc
es
s
p
ro
b
ab

il
it
y,

p

Fig. 10. The blue-shaded region reports the (u, p) pairs for which the use
of a costly feedback is convenient over the simpler online, zero-feedback
approach. Conversely, the white region indicates where the zero-feedback
approach offers lower expected average AoI. The circles report all the (u, p)
pairs that were considered. Results were obtained for n = 1600, η = 0.01
and ζ = 0.2.

approach when the presence of feedback decreases the number
of transmission opportunities. In the setting of Fig. 9, this is
the case for ζ > 0.2.

The final remarks clearly point out the importance of
understanding which strategy shall be preferred under which
conditions. From this standpoint, an ideal (and impractical)
cost-free feedback always performs best, and an offline sched-
ule is always outperformed by the ZF scheme. The more
interesting question of whether a costly feedback shall be
considered in place of the ZF approach is instead tackled in
Fig. 10. In the plot, a cost ζ = 0.2 was considered, and the
shaded area denotes the (p, u) pairs in which the FB scheme
provides a lower expected average AoI compared to ZF. A total
of 90 different configurations were tested, with p ∈ [0.1, 0.9]
and u ∈ [0.01, 1], and are shown by circle markers.

In very harsh channel conditions, e.g., values of p < 0.2 for
the setting under study, the ZF scheme offers lower AoI. In this
case, having more transmission attempts is preferable in terms
of dynamic schedule adaptation compared to knowing their
(already likely failed) outcome. Conversely, the FB approach
becomes dominant for intermediate values of p. Here, the
ability to adapt and react to potential packet losses becomes
paramount, and outweighs the availability of fewer transmis-
sions. This is especially true for lower values of u, where
feedback remains convenient for the tested values of p up to
0.9. In the generate-at-will case (u = 1), as already discussed,
the ZF solution coincides with the basic offline approach, and
may beneficial compared to the use of feedback with a reduced
number of transmission opportunities depending on p (see
Fig. 6). In general, the framework we presented provides a
useful tool, as diagrams like the one of Fig. 10 can easily
be generated for any value of ζ, determining the non-trivial
conditions in terms of of both application specific generation
rates and channel reliability of the channel that shall drive the
scheduling approach of choice.

Finally, we study the impact of the time horizon duration on
the considered scheduling policies also under exogenous traffic
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Fig. 11. (a): expected average AoI vs horizon length. For the offline case,
markers report the outcome of simulation results, verifying the analysis in
(7) (solid line). (b): standard deviation of the average AoI, normalized to the
duration of the time horizon. All results for p = 0.8, η = 0.01, u = 0.01.

conditions. Fig. 11a reports the expected average AoI against
n for a fixed duty cycle η = 0.01, p = 0.8 and u = 0.01, for
the OFF (solid blue line), ZF (dashed green line) and zero-cost
feedback (dash-dotted, red line). For all the policies, Fig. 11b
shows the standard deviation of the average AoI obtained over
different realizations of the channel conditions, normalized to
the duration of the time horizon. The fundamental remarks
highlighted in the generate-at-will case (Fig. 7) still hold,
supported by same reasoning: as n grows, ∆̄ tends to stabilize,
and the standard deviation of the average AoI value becomes
proportionally smaller. Interestingly, Fig. 11b also pinpoints
a consistently smaller normalized standard deviation for the
FB policy with respect to its competitors, hinting at another
potential benefit of the fully-aware scheduling enabled in the
presence of feedback.

VI. CONCLUSIONS AND FUTURE WORK

We investigated the role of feedback in AoI-optimal finite-
horizon scheduling for IoT devices with limited transmission
opportunities over an erasure channel. We compared an ag-
nostic scheduler, where the status update reporting times over
the finite horizon are predefined in advance, and an online
scheduling, which instead allows for adjusting the transmission
pattern at run time, depending on the outcome of channel
transmissions. For both, we developed different optimization
frameworks, and we further extended the analysis to different
conditions concerning the frequency of update generation. In
particular, we considered the most common scenario where
updates are generated at will [10], [14], but also the case for
exogenous non-persistent generation, where AoI is reset to an
intermediate value. The latter setting actually results in three
different schedulers, namely, one that is totally agnostic and
planned in advance; one that is fully aware of the current
AoI value, as well as the value of the freshest information
available at the transmitter’s side; and finally an intermediate
zero-feedback case, where the scheduling can still be adjusted
at runtime, but the current AoI is only known in expectation.

In all these situations, we performed comparative evalua-
tions towards the evaluation of whether a feedback from the
monitoring node is required if it comes at a cost, which is

× ×
t

δ(t)

nτ1 τ2 τ3 τ4

y3

y1 + y2

A0 A1

A2

A3

A4

Fig. 12. Example of time evolution for δ(t) for the derivation of Prop. 1,
generate-at-will case. m = 4 transmissions are performed, out of which the
central two are not successful (×). The shaded area A3 is the area contribution
of the transmission performed at time τ3, corresponding to the area of an
isosceles triangle of side y3 and of a rectangle of sides y3 and y1 + y2.

captured by a reduction in the number of available sensor
transmissions. The takeaway message is that in many cases,
especially if the feedback cost is heavy, a predefined agnostic
scheduling may be sufficient to obtain good performance, and
even better than waiting for an expensive feedback.

A possible direction for future work would be to expand the
time horizon, keeping it finite while allowing for concatenation
of different scheduling cycles, which can be a realistic way
to represent operation of IoT nodes. The comparison of
different techniques, and its implications on the utility of
exploiting a feedback at the transmitter’s side can be extended
to more general scenarios, including multiple nodes [20],
access protocol aspects [22], or energy harvesting [30]. In
particular, the study of schemes that foresee the possibility to
send aggregate feedback acknowledging multiple packets to
save energy, or of solutions that jointly tackle minimization of
AoI and performed transmissions may be of notable practical
relevance.

APPENDIX A
PROOF OF PROPOSITION 1

The proposition follows from geometric arguments. With
reference to Fig. 12, the average AoI can be expressed as the
sum of multiple components, so that

∆̄(y) = E

[
1

n

m∑
ℓ=0

Aℓ

]
. (10)

Here, Aℓ is the sum of the yℓ AoI values within the ℓ-th
transmission interval, and the expectation is intended over the
outcomes of all the transmissions performed within the time
horizon. By the linearity of expectation, we tackle the generic
term E[Aℓ], and observe that Aℓ can be expressed as the sum
of two components:

Aℓ =
yℓ(yℓ + 1)

2
+ yℓZℓ. (11)

The first addend corresponds to the sum of AoI values within
the isosceles triangle of side yℓ, capturing the unavoidable
linear growth of AoI during the interval, whereas the second
accounts for a rectangle of sides yℓ and Zℓ. In turn, the r.v. Zℓ

represents the value of the current AoI at the start of the ℓ-th
transmission period, i.e., δ(τℓ). As exemplified in Fig. 12, Zℓ

is zero if the ℓ-th transmission succeeds, or equals Zℓ−1+yℓ−1
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Fig. 13. Example of time evolution for δ(t) for the derivation of Prop.
3, exogenous case. m = 4 transmissions are performed, out of which the
central two are not successful (×). The shaded area is the contribution of the
transmission performed at time τ3, expressed as the sum of A3 and B3.

otherwise, as the current AoI grows linearly over the previous
interval. Leaning on this, and recalling that the outcome of
successive attempts is i.i.d., we express the expectation of Zℓ

in recursive form as

E[Zℓ] = (1− p)yℓ−1 + (1− p)E[Zℓ−1].

Moreover, we have E[Z0] = 0, given the assumption δ(0) = 0.
Simple manipulations lead to the compact expression

E[Zℓ] =

ℓ−1∑
i=0

yi(1− p)ℓ−i (12)

for ℓ ≥ 1. Plugging (12) into (11) and taking the summation
in (10) leads to the result.

APPENDIX B
PROOF OF PROPOSITION 3

Following once more geometric arguments, the area below
the AoI curve can be computed as

∆̄(y) = E

[
1

n

m∑
ℓ=0

(Aℓ + Bℓ)

]
.

In this case, the contribution of the ℓ-th transmission interval is
split in two terms. The former, Aℓ, is the one already defined in
(11). On the other hand, Bℓ corresponds to the sum of the AoI
values within a rectangle of side yℓ and height equal to the last
value at which the AoI was successfully reset. This component
accounts for the propagating effect of delivering a non-fresh
update, and is intrinsic to the exogenous traffic generation
case. To characterize this aspect, let us introduce the r.v.s Uℓ,
ℓ = 0, . . . ,m, denoting exactly the value of δ(t) after the last
update delivery as of time τℓ−1. By definition, U0 = 0. Let us
furthermore consider the r.v.s Xℓ, ℓ = 0, . . . ,m, indicating the
value at which the AoI would be reset by the ℓ-th transmission
if this was successful. In other words, the variable captures the
number of slots elapsed since tha last update generation as of
time τℓ. Examples of both quantities are reported in Fig. 13.

Following these definitions, for any ℓ ∈ {1, . . . ,m}:

Uℓ =

{
Uℓ−1 w/ prob. (1− p)

Xℓ w/ prob. p.

Accordingly, the expectation of the r.v. can be conveniently
expressed in recursive form as

E[Uℓ] = (1− p)E[Uℓ−1] + pE[Xℓ].

Recalling that Bℓ = yℓ Uℓ, we also have after simple manipu-
lations

E[Bℓ] = yℓ p

ℓ−1∑
i=0

(1− p)i E[Xℓ−i]. (13)

The expression in (13) clarifies how a computation of the first
order moment of the r.v.s Xℓ suffices to obtain the sought
expected average AoI. To this aim, we observe that Xℓ can be
written as

Xℓ =

{
x w/ prob. u(1− u)x

Xℓ−1 + yℓ−1 w/ prob. (1− u)yℓ−1

where x ∈ 0, . . . , yℓ−1 − 1. Here, the first case corresponds
to having a new reading generated by the sensor within
the ℓ-th interval, specifically at the (yℓ−x)-th slot of the
period. Conversely, if no update is produced within the interval
(probability (1− u)yℓ ), the whole yℓ-slot duration is added to
the time elapsed since the last generation. The expected value
of the r.v. takes thus the form

E[Xℓ] = (1−u)yℓ−1
(
yℓ−1+ E[Xℓ−1]

)
+

yℓ−1−1∑
x=0

xu(1−u)x.

with E[X0] = 0. Simple algebraic steps applied to this
recursion lead to the compact expression

E[Xℓ] =

ℓ−1∑
i=0

(1− u)[1− (1− u)yi ]

u

ℓ−1∏
j=i+1

(1− u)yj . (14)

Plugging (14) into (13), and combining the result with the
derivation of E[Aℓ] presented in (11)-(12) finally leads to the
complete formulation of ∆̄ in (7).
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