MEASUREMENT-INFORMED AURALIZATION FOR A DISTRIBUTED PROPULSION SYSTEM OF AN URBAN AIR MOBILITY VEHICLE

Acoustics of Drones and Urban Air Mobility Vehicles

Stephen Schade, S. Guérin, L. Klähn, K.-S. Rossignol

18th DEGA Symposium

09th September 2025

Agenda

01 Auralization framework

Q2 Application on distributed, ducted fans

03 Application on distributed propellers

Motivation – Auralization

- sound signatures of distributed propulsion systems still mainly unknown
- > psychoacoustic sound characteristics impact aural impression
- → auralization as an important tool to make noise signatures audible early in the development process
- enables a direct link between psychoacoustic studies and propulsion system design

Analytical auralization framework

Tilt-duct vehicle and fan design (project VIRLWINT)

Low-broadband fan stage
31 rotors 10 stators

Baseline fan stage

21 stators

18 rotors

- → Payload of **500 kg**
- → Mission length of 150 km
- → Cruise speed of 200 km/h
- → Number of fans 26

aseline

Impact on fan design on sound quality

Schade et al. JASA 2025

Limitation

Analytical noise prediction?

The better the prediction of the sound sources, the higher the quality of the auralization result

How do the results change if we use measured amplitudes as an input?

> several measurements with individual fans / propellers will be combined to form the distributed propulsion system

Measurement-informed auralization

Propagation into the far field

auralization framework

Distributed ducted fans

Fan in-duct measurements: setup

 $D = 453.6 \, \text{mm}$ n = 4500 rpm $\dot{m} = 6.9 \, kg/s$

 $M_{\rm tip} = 0.3$ $Re = 500\ 000$

Tapken et al. AIAA 2021-2314

at design conditions

degrees of freedom: fan design, rotor-stator distance, BLI, rotational speed

Fan in-duct measurements: mode analysis

Microphones mounted wall-flushed in rotating duct

Tapken et al. AIAA 2014-3318

Radial Mode Analysis

$$p(x,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} A_{mn}^{\pm} e^{i(k_{mn}^{\pm}x+m\theta)} f_{mn}(r)$$

2 different Methods for tonal and broadband noise are used

Extrapolation of CRAFT in-duct measurements to far field

input: induct mode amplitudes A_mn from CRAFT experimental results

 \rightarrow extrapolation to calculate a far-field directivity p_mn

Guérin AIAA 2017-4037

Static rotational speed distribution

rotational speed variation: measurements performed at 100%, 99%, 98%, 97% and 96% rpm

rotational speed variations seem to considerably affect the **emitted sound levels** and **sound quality**.

Listening tests: To some extent, increasing $\Delta N\%$ seems

beneficial for sound perception.

Schade et al., AIAA 2024-3273

> Merino Martinez and Schade, InterNoise 2025

static, random (Gauß) rotational speed variation applied to the fan stages before flyover

Tilt-duct results and comparison with PN

Baseline fan stage

directivities

measured input

analytical input

mean deviation: 1.3dB

mean deviation f<250Hz: 28dB

Tilt-duct results and comparison with PN

Baseline fan stage

measured input

Low-broadband

Low-tone

Distributed propeller

Tilt-prop vehicle and fan design (project VIRLWINT)

- → Payload of **500 kg**
- → Mission length of 150 km
- → Cruise speed of 200 km/h
- → Number of propeller 8

tiltable, variable pitch propeller

	Cruise	Hover
pitch angle [deg]	43	25
Thrust [N]	260	2800
Mtip	0.3	0.5

Measurement-informed auralization

Propeller: measurement setup (AWB)

degrees of freedom: stagger, rotation direction, phase, AOA, prop spacing, advance ratio, wing flap angle

Propeller: Data preparation

Wind tunnel corrections

- Shear-layer refraction and convective amplification:
 - use Amiet's standard correction
 - Amplitude correction for range 68°< theta < 133° within 1 dB!! also for curved shear-layers! (Jiao 2017)
 - Robust propagation path change compensation also for curved shear-layers! (Jiao 2017)
- Haystacking:
 - Use beta2 model (P. Sijstma, 2014) for AWB conditions to layout microphone positions
 - Validated using dedicated flow and acoustic measurements in AWB

Data acquisition and processing

- Sampling rate : 81 kHz
- Acquisition duration : 60 s
- ~2700 fft averages
- Cyclo-stationary data analysis on a 4-rotation basis
- Computation of spectral and cyclo-stationary averages
- Empirical mode decomposition used to filter cyclic components from broadband sound

Tilt-prop results: Impact of propeller clocking

 $\Delta \phi = 0^{\circ}, 30^{\circ}$ and random

Receiver time [s]

Tilt-prop results: Impact of propeller clocking

SPLmax (tone+bbn)

- the relative blade-to-blade angle noticeably impacts tonal noise immission
- lowest noise levels for $\Delta \phi = 30^{\circ}$ (half propeller spacing) and random
- → similar trends observed in Monteiro et al. (AIAA 2024-3321)

Summary

- measurement-informed auralization framework to obtain UAM flyover sounds for psychoacoustic studies
- extensive fan and propeller measurement campaigns (parameter variations)

What's next?

- auralization studies to acoustically and psychoacoustically investigate the degrees of freedom,
 such as clocking positions, prop and rotor-stator distances, rotation directions...
- listening test
- sound quality analysis

Thank you for your attention!

German Aerospace Center (DLR)

Department of Engine Acoustics

Stephen Schade, S. Guérin, L. Klähn, K.-S. Rossignol

e-mail: Stephen.Schade@dlr.de