Universitat
Bremen

Investigation and Automation of
Verification Methods for Model-Based
Development of GNC Systems

MASTER’S THESIS

submitted at
UNIVERSITY BREMEN

FacuLrty 4: PRODUCTION ENGINEERING

within the study program

SpACE ENGINEERING M. Sc.

Author: Philipp Kayser
6254563

Examiners: Dr.-Ing. Stephan Theil

Leonardo Borges Farconi

Bremen, May 15, 2025

Abstract

Objective: The presented work considers the development of guidance, navigation and con-
trol (GNC) software in the context of reusable launch vehicles. More specifically, the con-
sidered workflows involve modeling in MATLAB/Simulink and automated code generation
with the goal of deployment to real-time embedded system processors. The objective is to
investigate, evaluate and automate the use of several compatible software verification tools

at different points of this process.

Methods: An example project is developed to resemble the software that is developed in a
project context. The considered tools are introduced and investigated in that context for their
usability and limitations. Both static and dynamic verification are considered, taking current
formal methods into account. Methods for static analysis of MATLAB code, Simulink models

and generated code are presented as well as an alternative method of testing in Simulink.

Results: The work results in a review of the tools capabilities and limitations. A basic frame-
work of wrapper functions to use the tools is developed in the process. This encompasses
an automation concept for the use in GitLab with an automated evaluation of verification

results. Lastly, an initial qualitative evaluation of the tools is provided.

Conclusion: The presented suite of tools is able to significantly increase the level of confi-
dence in software quality, when it is used correctly. This means that they require to be used
in conjunction within a well-defined process and respecting their individual limitations. Con-
cluding, recommendations for next steps and a prioritization for implementation in a project

context are given.

Contents

1. Introduction

2. Fundamentals

2.1.
2.2.

2.3.

2.4.

Guidance, Navigation and Control Modeling
Software Management
221, VersionControl 0 L
2.2.2. Repository Management
2.2.3. Continuous Integration
Software Testing
2.3.1. Terminology
2.3.2. Testing Techniques
Static Analysis
24.1. Terminology
2.4.2. Abstract Interpretation Lo Lo
243. Model Checking

3. Motivation and Goal

4. Methods and Tools

4.1.

4.2.

Thrust Controller Simulation
4.1.1. Controller Function.
4.1.2. Finite State Machine
Verification
4.2.1. Static Analysis of MATLABCode
4.2.2. Static Analysisin Simulink 00000000
4.2.3. Model Checking in Simulink
4.24. TestinginSimulink o oo Lo oo
425, CodeGeneration

11

13
13
17
17
18
19
21
21
23
26
26
29
33

37

Contents Contents

4.2.6. Static Analysis of Generated Code 74

43. Automation 84
43.1. Code Analyzer 85

43.2. Model Advisor 86

433. Simulink Test 87

434. Polyspace 88

5. Results 90
5.1. MatLaB Code Analyzer 90
5.2. Simulink Model Advisor 93
5.3. Simulink Design Verifier 98
5.4. Simulink Test 98
5.5. Embedded Coder 100
5.6. Polyspace 101

6. Discussion 107
7. Conclusion and Outlook 111
A. Appendix 116
A.1l. Model Functions 116
A.2. Verification Functions L 122
A3. Pipeline Configuration 159
A.4. Supplementary Scripts 163

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
3.1.
3.2.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
5.1
5.2.
5.3.
5.4.
5.5.

Basic Control Loop (modified from [9]) 16
BasicGitConcepts L 18
Software Management 20
Control Flow Graph for the Example 25
Parse Tree for the Exemplary Statement 28
Hasse Diagram of the Abstract Domain for (a4, v+) (after [4]) 30
Example FSM (modified from [16]) 35
Simplified Functional GNC Architecture (modified from [7]) 37
Spacecraft GNC Development Process (modified from [19], [20]) 38
Thrust Control (modified from [22]) 42
Thrust Control Simulation 46
Thrust Controller L 47
Controller Simulation Results 47
Controller State Machine 48
Code AnalyzerIssue 50
Design Verifier Analysis 65
Controller Test Harness 67
Baseline Test Case in the Simulink Test Manager 69
Equivalence Test Case in the Simulink Test Manager 70
Equivalence Test Resultsforu, 71
Equivalence Test Coverage Results 71
The Code Generation Process (modified from [35]). 73
Code Analyzer Results Displayed in GitLab 93
Model Advisor Results Displayed in GitLab 97
Test Results Displayed in GitLab 100
Bug Finder Results Displayed in GitLab 105

Code Prover Results Displayed in GitLab 106

List of Tables

2.1.
2.2.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

Result Cases in Software Verification 23
Evaluation of the Abstraction Function ay(S)for SCZ 30
Combustion Values for an Exemplary Propulsion System 44
Estimate Values for Exemplary Propulsion Valves 46
MartLAB Code Analyzer Checks 52
MaTt1AB Code Analyzer Checks (continued) 53
Model Advisor Checks 55
MAB Checks e 57
HISM Checks 58
HISM Checks (continued) 59
Polyspace Defect Checks 81

4.10. Polyspace Run-Time Error Checks 84

List of Symbols

X state vector

u input vector

y output vector

A state matrix

B input matrix

C output matrix

D direct transmission matrix
G(s) transfer function

Ul(s) Laplace transform of the input vector
Y (s) Laplace transform of the output vector
Kp proportional gain

K; integral gain

Kp derivative gain

r(s) reference input signal

e(s) error signal

u(s) controller output signal

v(s) actuator output signal

Ym (S) measured plant output signal
y(s) sensor output signal

Z set of all integers

S set of integers

ot abstraction function

Y+ concretization function

i bottom element

Ty top element

Q state space

q initial state

List of Symbols

input alphabet

transition relation

set of final states

set of atomic propositions
atomic propositions
mixture ratio

oxidizer mass flow

fuel mass flow

total mass flow

chamber pressure
chamber volume
combustion temperature
specific gas constant
combustion density
throat area

characteristic velocity
valve opening

valve response time
oxidizer control command

fuel control command

Acronyms

API application programming interface
AUTOSAR Automotive Open System Architecture
CALLISTO Cooperative Action Leading to Launcher Innovation in Stage

Toss-back Operations

CD continuous delivery

CERT Computer Emergency Response Team
CI continuous integration

CTL computation tree logic

CWE Common Weakness Enumeration
DLR German Aerospace Center

DOM Document Object Model

EN European Standard

ERT embedded real-time

FSM finite state machine

GCC Guidance and Control Computer
GNC guidance, navigation and control
GPT generative pre-trained transformer
GRT generic real-time

GUI graphical user interface

HIL hardware-in-the-loop

HIS Hersteller Initiative Software

HISM High Integrity Systems Modeling
HNS Hybrid Navigation System

IEC International Electrotechnical Commission
ISO International Organization for Standardization

ISTQB International Software Testing Qualifications Board

Acronyms

JMAAB
JSF AV
JSON
LLM
LTI
LTL
MAAB
MAB
MIL
MISRA
MPCV
NASA
NESC
NIST
OASIS

OBC
PIL
ReFEx
RTCA
SARIF
SEI
SIL
VCS
XML

10

Japan MathWorks Automotive Advisory Board
Joint Strike Fighter Air Vehicle

JavaScript Object Notation

large language model

linear, time-invariant

linear temporal logic

MathWorks Automotive Advisory Board
MathWorks Advisory Board

model-in-the-loop

Motor Industry Software Reliability Association
Multi-Purpose Crew Vehicle

National Aeronautics and Space Administration
NASA Engineering & Safety Center

National Institute of Standards and Technology
Organization for the Advancement of Structured Information
Standards

On-Board Computer

processor-in-the-loop

Reusability Flight Experiment

Radio Technical Commission for Aeronautics
Static Analysis Results Interchange Format
Software Engineering Institute
software-in-the-loop

version control system

Extensible Markup Language

1. Introduction

On the morning of June 4th, 1996 the maiden flight of the newly developed Ariane 5 launch
vehicle ended in catastrophic failure. An independent inquiry determined that an unex-
pectedly high value of an internal alignment function caused an operand error due to an
unprotected data type conversion in the internal software of the inertial reference system.
The on-board computer interpreted the resulting diagnostic data output wrongly as flight
data and commanded full engine nozzle deflections, leading to an abnormally high angle of

attack and the subsequent self-destruction of the vehicle after 39 seconds of flight [1].

The investigation revealed that the missing protection in the software as well as the sub-
sequent behavior of the inertial reference system did not violate the specification. Further,
system testing was conducted insufficiently based on false assumptions. According to the
report, these decisions were made out of a general philosophy that software can be consid-
ered correct until it is shown to be at fault. In fact, the authors point out that software should
instead be assumed to be faulty until the currently accepted best practices demonstrate that

it is not [1].

Since the 1990s, the development of control systems has changed considerably. Development
philosophies and life cycles have emerged that are more concurrent in nature and embrace
early and consistent verification [2], [3]. Development and verification are more strongly
driven by more diverse and capable tools and their automation capabilities. Advances in
computer science have brought forth more rigorous verification techniques, that have been

successfully adopted and scaled to industrial applications [4], [5].

The MathWorks Inc. is tightly associated with this process. Being founded in 1984, the com-
pany has grown to marketing and supporting more than 130 individual products associated
with the MATLAB/Simulink development ecosystem [6]. Spacecraft flight software develop-
ment by the Institute of Space Systems at the German Aerospace Center (DLR) is just one of

many example applications of this software suite.

1. Introduction

The thesis at hand aims to investigate the use of several MathWorks software verification
products in this context. As preliminaries, fundamentals of GNC systems and the context
for flight software development are introduced. The term verification for the scope of this
thesis is defined in line with its meaning in software development. The associated technical
fundamentals are therefore introduced too. This thesis follows an emphasis on static analy-
sis and formal verification, but aspects of conventional software testing are considered too.
Based on this, the individual tools are described with a focus on how they might be useful in
the given context. In the process, a basic usage and automatization framework around those
tools that integrates with the existing workflows at the institute is developed. Concluding,

an evaluation of the tools capabilities and recommendations for future use are given.

12

2. Fundamentals

2.1. Guidance, Navigation and Control Modeling

On a spacecraft, the objective of the GNC subsystem is to achieve the desired motion of the
vehicle. This task is divided functionally into guidance, referring to determining the required
trajectory of the spacecraft; navigation, referring to determining the spacecraft position, ve-
locity and attitude; and control, referring to determining the commands needed to achieve
the required trajectory [7]. Some fundamentals in the area of control system engineering are

required to introduce these principles.

Any dynamic systems is characterized by its behavior that changes the system’s condition
over time. This behavior is described by a system of differential equations that can oftentimes
be derived from the physical laws governing the system. As laid out in reference [8], these
differential equations can be converted into the state space representation. By defining state
variables, a higher-order differential equation can be reformulated as a system of first-order
differential equations. Arranging these in a compact and standardized form leads to the state

space representation where

«+ The state vector x contains the state variables of the system, which represent the sys-

tem’s condition at a given time

The input vector u contains the system inputs, which represent the external influences

on the system

+ The output vector y contains the system outputs, which represent observable quanti-

ties derived from the state

The state equation defines how the system’s internal state changes over time

x(t) = f(x,u,t) (2.1)

2.1. Guidance, Navigation and Control Modeling 2. Fundamentals

+ The output equation defines how the internal state and inputs influence the system’s

output
y(t) = g(x,u,t) (2.2)

The state space is the n-dimensional space whose coordinate axes represent the state vari-
ables [8].

A dynamic system exhibits linear behavior when it can be described by linear differential
equations: The dependent variable and its derivatives have to appear only in first-degree.

Following [8], a linear system satisfies two principles:

« superposition: the response to a sum of inputs equals the sum of the responses to each

input individually

» homogeneity: If the input to a system is scaled by a constant factor, the output must

be scaled by the same factor

Linear systems are generally easier to analyze, control and simulate. If a dynamic system
displays nonlinear behavior, it is usually linearized by approximating it around a useful op-
erating point. There are specialized analysis methods for nonlinear methods which however
fall well beyond the scope of this thesis. For the linear case, the state space representation
is

x(t) = A(t) x(t) + B(t) u(t) (2.3)
y(t) = C(t) x(t) + D(t) u(t) (2.4)

where A(t) is called the state matrix, B(¢) the input matrix, C(¢) the output matrix, and

D(t) the direct transmission matrix [8].

In the general form of the state space representation above, the system parameters may
change: vector function g in equation 2.1 and vector function g in equation 2.2 are both
a function of time ¢. If they are not, the system is called a time-invariant system and the state

space representation can be simplified to
x(t) = Ax(t)+Bu(t) (2.5)

y(t) = Cx(t) + D u(t) (2.6)

14

2. Fundamentals 2.1. Guidance, Navigation and Control Modeling

A different system description is the transfer function G(s). It is defined as the ratio of the
Laplace transform of the system’s output Y (s) to the Laplace transform of the system’s input
U(s), under the assumption that all initial conditions involved are zero, with the complex

frequency s = 4 + jw [9].
Y(s)
U(s)

Performing the Laplace transformation and thereby transferring the system from the time

G(s) =

(2.7)

domain into the frequency domain allows to express system dynamics by algebraic equations
instead of differential equations, which is highly useful in system analysis and control design.
As [8] notes, the transfer function includes the units necessary to relate the input to the
output, but does not provide any information concerning the physical structure of the system.
As such, a transfer function can be established experimentally by introducing known inputs
and studying the outputs. In other cases, it is possible to derive it from the physical laws

governing the system, as is demonstrated in chapter 4.

The transfer function methodology is only applicable to linear, time-invariant (LTI) systems
[8]. For such systems, it however allows to describe complex system dynamics with the use

of a limited number of elemental transfer-function forms. Reference [9] names

« the proportional element P with G(s) = Kp

the integral element [with G(s) = £z

the derivative element D with G(s) = Kp s

the proportional-derivative element PD; with G(s) = Kpp, (T s+ 1)

Kpr,
Ts+1

the first-order low-pass element PT} with G(s) =

Kpr,
T2 242 D T s+1)°

the second-order oscillatory element P75 with G(s) = (

System and associated control dynamics can be visualized easily in the frequency domain,
with transfer functions represented as blocks in block diagrams. The layout of a basic control

loop is shown in figure 2.1, which has been adapted from reference [9], where
« r(s) is the reference input
« ¢(s) is the error signal

« u(s) is the controller output

15

2.1. Guidance, Navigation and Control Modeling 2. Fundamentals

« v(s) is the actuator output
 Ym(s) is the measured output from the plant
« y(s) is the feedback signal from the sensor.

The objectives of spacecraft GNC systems are realized with the same underlying structure,
yet have a much higher complexity. The related implications for this thesis are addressed in

chapter 3 and revisited in chapter 4.

e(s) u(s) v(s) Ym(s)

Controller Actuator Plant

y(s)

Sensor

Figure 2.1.: Basic Control Loop (modified from [9])

MatLaB/Simulink is the state-of-the-art tool for dynamic system simulation and control de-
sign in a variety of application domains. It allows to hierarchically model system dynamics
and the associated data manipulation to very high levels of complexity and serves as the

basis for the work done within the scope of this thesis.

The conventional way of modeling with Simulink is using the extensive range of blocks that
allow to model virtually any mathematical operation on data represented as signal lines. In
complex applications such as spacecraft GNC it can be beneficial to perform considerable
parts of the required computation in MATLAB functions embedded in Simulink models. This
background is important to note, as the model verification should take this prioritization into

account.

An important aspect of modeling with Simulink is the model configuration. The configura-
tion parameters of a model form a configuration set and govern how a model is run. Among
others, they contain settings regarding how the simulation is executed, how data is imported
and exported, and what the target hardware for simulation and code generation is [10]. They
are just as important as the correctness of the model itself and thus should also be subject to

verification.

16

2. Fundamentals 2.2. Software Management

MartiaB fully supports object-oriented programming. Objects here are structures that contain
data as properties and functions that operate on that data as methods. They are instances of a
class. When using MATLAB/Simulink and its toolboxes programmatically, they usually have

to be interacted with in the same way.

2.2. Software Management

To work effectively on a shared set of files, software developers typically use version con-
trol systems (VCS). VCS provide a systematic way of documenting and managing how files
change over time. A VCS stores backups of files and shows who made what changes to what
file at which point in time. This allows for different developers to safely make changes on a
code base without inadvertently losing work, or to review and understand changes made by
others [3].

2.2.1. Version Control

At the time of writing, Git is the most widely used VCS. As opposed to other VCS, it uses
a distributed architecture, meaning that when working with Git, all team members have all
project-associated files and metadata on their local machine instead of a central server [3].

In the following, the related basic concepts relevant for this thesis are introduced.

Any set of files that is put under version control by Git is called a repository. A repository
can be stored locally or remotely. Usually, repositories are used for managing source code in

software projects, but version control can be used on any set of files [3].

To work safely on a set of files, developers branch their changes into individual lines of
development. This way, work can be done in parallel while keeping the original line of
development free from unwanted changes. When completing work on a branch, developers
have to merge their changes back into the original branch. This process is governed by the
branching strategy in place. One common example is to work on specific feature branches,
that are branched and merged from a development branch, which is regularly merged with

a more stable main or master branch [3].

Adding changes to a repository happens stepwise. First is staging the changes, second is

committing them to the repository. The staging area functions as a middle step between

17

2.2. Software Management 2. Fundamentals

o n S C—
add commit push
Staging Remote
Workspace
P checkout Area Repository fetch Repository
pull

Figure 2.2.: Basic Git Concepts

working directory and repository. It allows for having control over how changes are grouped
into commits. With a commit, changes are recorded to the repository history. A commit is
the captured state of a set of files at one point in time, and a branch is a reference to the latest

in a series of commits [3].

Finally, when working with a remote repository, committed changes need to be pushed in
order for all other team members to have access to them. Fetching and pulling inversely is
used to update a local repository to the state of a remote [3]. The basic concepts are visualized

in figure 2.2.

2.2.2. Repository Management

There are several providers offering platforms for remote repositories, with GitLab being
the one used within the context of this thesis. It builds upon the functionality of Git with
collaboration tools such as merge requests and issue tracking as well as automation with

pipelines. Its core principles are introduced in the following.

In GitLab, users are organized in groups. Groups allow for managing settings as well as
reviewing development activity across several projects. A project is a container for a Git
repository in GitLab. Within a project, issues are atomic units that organize the work to be
done. They can be used to track tasks, report bugs, request features and more. They pro-
vide a space for discussion among team members and organize responsibility by assignment.
GitLab also introduces merge requests as an additional component available when merging
changes from one branch into another. They display the gathered edits from all commits
in the source branch, making the resulting differences in the target branch transparent. Re-
viewers are assigned and suggestions discussed within the context of a merge request. Upon
completion of review, changes are approved before they are merged into the target branch.

When creating a merge request early, it can function as a space that monitors code quality:

18

2. Fundamentals 2.2. Software Management

Results of tests and scans on the committed changes can be displayed to indicate the impact

of merging [3].

2.2.3. Continuous Integration

By today’s standards, collaborative software development is done incrementally, where the
product is developed and verified in small functional units, and iteratively, where the prod-
uct is improved continuously in repeating cycles. Agile software development is a set of
principles formalizing these in comparison to traditional development more “lightweight”
practices. GitLab is geared towards agile development. Much power of GitLab comes from

its so-called CI/CD pipelines and the associated fundamentals are introduced in the following

[3].

Continuous integration (CI) refers to the act of continuously implementing and verifying
changes to a code base. Its purpose is to ensure that changes integrate well with the ex-
isting code base and arising problems are spotted early on. A typical scenario for this would
be to execute a standardized set of tests, checks or scans on the files affected by the committed

changes [3].

Subsequently, continuous delivery (CD) refers to automatically and periodically transferring
code to the right environment. In conventional software development, an environment de-
scribes how a machine storing and executing software is configured and what tools are avail-
able to it. Depending on the project, there might be environments for development, testing,

integration, production and more [3].

A pipeline is a series of actions performed automatically on files in a GitLab project. It is
usually triggered whenever changes are committed to the repository and can be configured
to manipulate any files inside the project. A GitLab project can only have one pipeline, which

can however be configured to perform different kinds of actions on different parts of the code

base [3].

Pipelines consist of stages. They are used to group tasks that are related to each other, so
a conventional configuration would include a build, a test and a deploy stage. The tasks
performed within a stage are called jobs. Just as a user would pass several commands to a
computer in order to perform a task, jobs contain predefined commands that are executed
according to the pipeline configuration. If not specified otherwise, jobs inside a stage are

executed in parallel, while each stage is executed sequentially [3].

19

2.2. Software Management 2. Fundamentals

The processes executing the pipeline commands are called runners. As jobs typically require
a specific environment, they are not run by the main GitLab applications. Runners need to
be registered with the GitLab instance using the similarly named GitLab Runner application
that has to be installed on the machine that is intended to run the process. A runner then
receives the commands from the GitLab instance based on the pipeline configuration in the

GitLab project, executes them and reports the results back to the GitLab instance [11].

Every job is executed in its own working directory on the machine that executes the runner.
Once a runner receives a job, it creates the associated working directory and fetches the
commit that triggered the pipeline, so the relevant files are available in the correct version
required for the job. The commands are then executed inside the working directory and
artifacts are stored according to the pipeline configuration. This way, multiple jobs in the
same stage per default have the same basis available to them. The outcomes are isolated,

reproducible without conflict and comparable among each other [3].

The executor is the environment in which a runner executes a job. It is specified upon reg-
istration. It is possible to register several runners on one machine and assign different ex-
ecutors to them. The simplest form is the shell executor, which runs jobs in a shell session
of the machine it is running on. The job’s commands are interpreted the same as commands
typed in a command line terminal by a user [11]. GitLab offers several further executor types

better suited for project scalability, these are however out of the scope of this thesis.

Continuous integration

Feature branch —(Q-2+ @;
Commit |) Review Review and
' and push I\/llom‘tor results and approve merge
I changes p'Pel"“e artifacts request
Assign to execution Close
issue /\/ - - - - - issue
Development branch (J \\,‘
Create branch Merge and delete
and merge request | feature branch
Main branch --““-------“-------~--------“-------“-------*--------*------:::{ ---

Figure 2.3.: Software Management

20

2. Fundamentals 2.3. Software Testing

Figure 2.3 presents an attempt to visualize how the introduced concepts relate to each other.
Integration happens continuously and verification, as opposed to more traditional workflows,

is an iterative aspect of development.

2.3. Software Testing

In software development, verification is intended to evaluate the correctness of a development
artifact by comparison with a reference artifact considered as complete and correct [12].
Alongside validation, which evaluates whether the system is fit and effective for its intended

purpose, it is a central activity in any major software project.

There are both static and dynamic verification methods. Static verification intends to discover
software faults directly. Typically this is done either by code review or by using specialized
tools and referred to as static analysis. Dynamic verification intends to uncover failures in
a piece of software by executing it under controlled conditions and is mostly referred to as

software testing [2].

2.3.1. Terminology

In the context of software testing, certain terminology is commonly used but not in all cases
uniformly defined. For the thesis at hand, the foundation syllabus and glossary defined by
the International Software Testing Qualifications Board (ISTQB) are used [2].

The tested piece of software is referred to as test object and a discrepancy between expected
and shown behavior is referred to as defect or failure. Failures in turn are the result of faults
or bugs introduced in the software. Software does not fail in the way that hardware does:
generally speaking, faults are introduced in a system by errors or mistakes made during

development. They are present in a system from the beginning until their removal [2].

The test basis serves as the definition of the expected behavior of the the test object. It usually
consists of a specification and related documentation, but the expertise and experience of the
tester can also be counted towards it. A component or subsystem as test object usually needs
to be broken down into separate testable items. These test items can for example be functions
or methods of the test object [2].

21

2.3. Software Testing 2. Fundamentals

A test case is a description of how a test object is tested in terms of prerequisites, required
input, necessary procedure and expected output. A test case usually has one elemental ob-
jective, which typically is the verification against one requirement. Test suites are sets of test

cases [2].

Test Levels

Defects are identified best at the level of abstraction on which they occur. For this reason,
different testing levels have been established. Due to their varying scopes, they might require

different techniques and tools.

Component tests verify the low level building blocks of a system architecture in isolation from
the rest of the system. A component can itself have lower level building blocks, however the
interaction with other system components is not investigated. Component tests typically
verify the complete and correct implementation of functionality defined in the test object’s
specification by checking input/output behavior. The ISTQB syllabus considers module, unit

or class tests as types of component tests [2].

Integration testing aims at finding faults in the interfaces and the interaction between multi-
ple tested components. As test basis now software architecture, system design and especially
interface specifications have to be considered. The types of failures addressed by integration
testing relate to for example data consistency, dependency issues or error propagation. Ide-
ally, integration testing is done incrementally and adhering to an integration strategy. This
could be top-down or bottom-up in the system architecture or by the availability of the in-

dividual components [2].

System testing is intended to check that the complete, integrated system fulfills its require-
ments. Many functions and system attributes result from the interaction of the system’s
components and can only be verified once the system is fully integrated. At this stage, the
system is verified from the customer’s point of view and incompletely or unsuitably imple-
mented requirements revealed. If requirements are vague or missing, system testing can

show where clarification is required [2].

22

2. Fundamentals 2.3. Software Testing

Result Cases

Test results are categorized depending on whether a reported deviation actually constitutes
a defect. With a true positive or true negative result, the test case correctly identified a
deviation or its absence. False positive or negative results imply that the test case falsely
interprets intended behavior as undesirable or vice versa. This relation is shown in table
2.1.

Table 2.1.: Result Cases in Software Verification

Result evaluation Test object correct Test object faulty

“Failed” False negative True positive

“Passed” True negative False positive

2.3.2. Testing Techniques

The techniques applied in dynamic software testing can roughly be broken down in black-

box and white-box techniques. Choosing the appropriate technique depends on the situation

[2].

Black-Box Testing

In black-box testing, the inner attributes of the test object are unknown. Therefore, the
following test techniques focus on observing output behavior with only inputs and precon-

ditions as variables in test case creation.

In equivalence partition testing, equivalence partitions or classes group inputs together that
are expected to produce the same output of a test object. Testing one member of one equiva-
lence class is assumed to be representative in output behavior for the entire class. The entire
input value range is divided into these classes, also accounting for invalid inputs. Representa-
tives of the created classes are then selected and tested. Analyzing the test object’s behavior

at boundary values is important to reveal ambiguities in the specification [2].

Other testing techniques like decision table testing or pair-wise testing are helpful when indi-

vidual combinations of inputs cause different output behavior of the test object. It is the goal

23

2.3. Software Testing 2. Fundamentals

of these techniques to test every possible combination of inputs in a structured way, which

is most useful when the inputs signify logical conditions [2].

White-Box Testing

The goal of white-box testing techniques is the successful execution of every part of the test
object’s code. In contrast to black-box testing, it is required that the internal composition of

the test object is available for test design [2].

In statement testing, the statements in a test object’s code are sought to be executed. A state-
ment is any single operation or instruction inside the tested code, and with every statement
executed without defect the test object is assumed to function as intended. The ratio of exe-

cuted to total statements is called statement coverage [2].

In decision testing, the decisions following conditional statements in the test object’s code are
evaluated. Following such a statement, the control flow of the test object splits in multiple
outcomes. Testing then attempts to execute each outcome at least once. Decision coverage is
the ratio of executed to total decision outcomes. The technique is more comprehensive than
statement testing but also usually requires more test cases. Full decision coverage guarantees

full statement coverage, but not the other way around [2].

Condition testing addresses decisions that are made based on multiple conditions. In branch
condition testing the outcomes of these atomic conditions are evaluated individually. In
branch condition combination testing, the goal is that the combinations of these logical con-
ditions are tested. As this can become quite comprehensive, modified condition decision
testing addresses only those combinations of conditions that change the result of that deci-

sion [2].

For illustration, consider the following example.

i function compute(x, y, z):

result = 0

1 if (x > 0) and (y > 0) then

5 result = x
6 else

result =y
8 end if

24

2. Fundamentals 2.3. Software Testing

10 if (x > 2) or (z < 0) then
1 result = result + 1

12 end if

14 return result

5 end function

To reach full statement coverage of this function, two test cases are required. Test 1 with e.g.
x=3, y=3, z=3 would evaluate both if-statements to true. Test 2 with x=-1, y=2, z=-5
would additionally cover the missing else-case. The test suite with tests 1 and 2 would
however not reach full decision coverage, which is revealed by considering the control flow
graph of the test object, which is depicted in figure 2.4. Adding test 3 with e.g. x=1, y=1,
z=5 to the test suite would cover the missing false-evaluation of the second if-statement. To
achieve full condition coverage, yet another test case is needed, as so far not every atomic
condition has been evaluated to both true and false. Test 4 with e.g. x=3, y=0, z=10 would
evaluate the missing condition (y > 0) and allow the test suite to achieve full condition

coverage.

result =

(x > 0) and (y > 0)

< o

AN
/

result = x result =y

/
N

(x >2) or (z < 0)

N

result = result + 1

/

return result

Figure 2.4.: Control Flow Graph for the Example

25

2.4. Static Analysis 2. Fundamentals

2.4. Static Analysis

Independent of the testing technique used, dynamic testing is in a realistic scenario not ex-
haustive. Even with extensive testing efforts, at least some faults in any system must be as-
sumed to remain unrevealed. The goal of static verification is to discover faults in software
directly without executing it. Conventionally this is done by experienced programmers re-
viewing the code in question. Software tools are increasingly capable of performing static

analysis with varying scopes and objectives [2].

2.4.1. Terminology

Static analysis tools derive information from the analyzed code similarly to code compilers
[13]. Code compilers translate a source program into instructions readable by the machine
that needs to execute them. Depending on the scope of the analysis, parts of this process
are also executed by a static analysis tool, which is why it is necessary to understand the

background [14].

Code compilation is divided in at least two phases, the front-end and the back-end. In the

front-end phase, a compiler performs three types of analyses [14].
« Lexical analysis identifies the individual units the characters of a program constitute.

« Syntax analysis determines whether this provided sequence is a permissible statement

according to the rules of the programming language.
+ Semantic analysis determines the meaning of the syntactically correct statement.

In the back-end phase, the program synthesis is performed. This is typically done by trans-
lating the information provided from the front-end into an intermediate language, which is
the basis for code optimization. The intermediate program is subsequently translated into

machine code [14].

The front-end is sensitive to the programming language, the back-end to the processor ar-
chitecture. When compilers perform optimization independent of processor architectures,

this is done in an additional phase referred to as middle-end.

Static analysis tools make use of the same techniques as a compiler front-end does. The gath-

ered information is however not processed into an executable output but directly presented

26

2. Fundamentals 2.4. Static Analysis

to the user. Existing tools vary in their scope from mere syntactic to comprehensive semantic

analysis.

Not every programming language is compiled before execution. Such interpreted languages
are executed command-by-command without an explicit compile step. For these languages,
static analysis does not distinguish run-time errors explicitly and can be performed dynami-
cally during edit-time [14]. The fundamentals of the analysis however remain the same and

are presented in the following.

Lexical Analysis

Lexical analysis provides the basis for all static analysis. The characters of the source program
are read one by one and categorized into tokens. These are strings of characters with an
identifiable meaning, such as the operators, keywords, delimiters or identifiers specified by
the programming language in use [14].

The following example aims to illustrate this. Consider the following statement.

if (x> 10) x = x + 1;

This statement would be labeled by a compiler into a stream of tokens that could look like

the following.

operator("if") separator("(") identifier("x") operator(">")

: integer("10") separator(")") identifier("x") operator("=")

; identifier("x") operator("+") integer("1") separator(";")

The actual naming of these tokens would differ depending on the compilation or static anal-
ysis tool used. The result however always is a categorized set of characters for each state-

ment.

Syntax Analysis

Syntax analysis checks if the provided tokens conform to the programming language’s rules
on forming valid expressions, but without considering the language’s meaning and the pro-
gram behavior. This is usually done by building an intermediate representation of the code
called parse tree. The tree represents how a given expression is syntactically composed of

terms and tokens. Syntax analysis is also called hierarchical analysis or parsing [14].

27

2.4. Static Analysis 2. Fundamentals

Considering again the example statement, such a parse tree in a simple form might look like

the following.

if

/N

> then

NN
X/ \+
N,

Figure 2.5.: Parse Tree for the Exemplary Statement

The example illustrates how syntax analysis recognizes hierarchical information. In order
to execute the statement correctly, the compiler or analyzer needs to understand which part
of the statement is dependent upon which other part of it. The syntax of a programming
language defines that an if statement consist of a condition to evaluate and a statement
to execute if that conditions is fulfilled. Similarly, an assignment is defined by its operator,

which in turn defines the hierarchy of the following operations, and so on.

Semantic Analysis

Semantic analysis concludes the front-end phase of the compilation process. The concrete
semantics of a program are not only determined by the semantic rules of the programming
language in use but also the context of the program itself. With this information, the compiler

determines whether the statement’s execution is permissible [14].

Considering again the example, along the parse tree, a compiler would likely have to deter-

mine whether
« x is a valid integer variable and the operation x + 1 is permissible,
« there is no type mismatch and the assignment x = x + 1 is permissible,
« the evaluation x > 10 conforms to the if operation and produces a boolean result,

« the if operation is permissible and the assignment x = x + 1 conforms to it.

28

2. Fundamentals 2.4. Static Analysis

The scope of semantic analysis differs widely and most static analysis tools far exceed these
basic semantic checks. The approach however is the same: preconfigured code patterns are
identified along the parse tree and flagged if they are found. The capability of a static analysis
tools is directly determined by both the quality and the quantity of the checks it includes. The
aim of this thesis is to better illustrate the current possibilities of static analysis in chapter
4.

While most are not, some semantic analysis techniques are mathematically sound. Such tech-
niques employ mathematical logic in order to prove properties of the semantics of a program.
They are able to determine whether a statement is semantically permissible for every possi-
ble execution in the program context [4], [13]. The remaining sections of this chapter provide

an introduction into how this is achieved.

2.4.2. Abstract Interpretation

The use of abstract interpretation in the context of computer program analysis began in 1976
with the first publication on the subject by Patrick and Radhia Cousot. Today, it is used as
a general theory to approximate the possible semantics of a computer program. Its goal is
to simplify a problem by abstraction and to infer a more general or partial solution to the
problem from that abstraction. Apart from its use in program language development, its

main application lies in static program analysis for software verification [4].

The concept of abstract interpretation is rather universal. A general mathematical example

is the rule of signs:

“A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero.
When a positive is to be subtracted from a negative or a negative from a positive, then it is to be
added” [4].

Given the set of all integers Z, the sign can be understood as a property of each element of Z.
An abstract interpretation of the sign rule is performed by an abstraction function a.. which

provides the abstraction of the sign property for a given set of integers .S as follows [4].

29

2.4. Static Analysis 2. Fundamentals

< 0/7& 0\>
N%

Figure 2.6.: Hasse Diagram of the Abstract Domain for (a4, v+) (after [4])

Ty

0
0

14

Table 2.2.: Evaluation of the Abstraction Function a4 (S) for S C Z

S ax(S)
S={}=10 L
SC{.,—3 -2 -1} <0
S C {0} =

S C{1,2,3,..} >0
Sci.,—2,—-1,0} <0
SC{.,—-2-1,1,2,.} #0
S c{0,1,2,..} >0

SC{.,—2-1,01,2.} T.

The concretization function -y provides the meaning of signs as sets of integers, so v+ (L 1) =
0,v+(< 0) ={...,—3,—2,—1} and so on. Thus, a less precise abstraction of S is obtained,
which allows to keep some information about S without having to retain the precise values

of its members [4].

The pair of functions (o, v+) defines the abstract domain, which determines what levels of
precision can be achieved and how they are hierarchically ordered. Hasse diagrams can be

helpful in representing these relations, which for the above example is depicted in figure 2.6

[4].

30

2. Fundamentals 2.4. Static Analysis

In the abstract domain, the element “= 0” for example is more precise than “> 0”: through the
concretization function, the former evaluates to a smaller set than the latter. Likewise, “> 0”
is more precise than “> 0” and represented accordingly in the diagram. “= 0” and “> 0” are
incomparable, as there exists no shared subset between the two. “T.” can evaluate to every
element of Z and thus is the least informative element. “1 .~ is the contradictory element

and evaluates to the empty set ().

Every operation performed in the concrete domain has a representation in the abstract do-
main. A subtraction of two integers n > 0, m < 0 under the rule of signs would according

to [4] be executed in the abstract as

ar({n—m|n €~ (>0)andm € y.(< 0)}) (2.8)
=ar({n—m|ne{0,1,2,..} andm € {..., =3, -2, —1}}) (2.9)
—a.({1,2,3,.1)>0 (2.10)

The relations in the abstract domain allow to retain the best possible abstraction, for each
operation, through entire computer programs. For every operation, an abstraction can be
computed similarly to above. Following the control flow of a program, an analysis then is
able to associate a level of information for each operation in accordance with figure 2.6. In
this example it is trivial to see that a single operation n — m where n > 0 and m < 0
always evaluates to > (. For more complex operations in real computer programs with more
complicated control flow, this can become more useful. While one operation might evaluate
to > 0 and another to < 0, a later combination of both results is less informative but still
evaluates to # 0O (the shared upper bound of both). Such less precise levels of information
can still be helpful in determining properties of a program, in this case the absence of the
possibility of a division by zero for example. Consider the following example, that arbitrarily
transforms some input. The abstraction is performed statement by statement and noted to

the right.

. function transform(input) { input € (—o0, +00)
2 x = input; x € (—o0, +00)

y = 42; y € [42,42]

if (x > 10) { x>10 = x€[1l,4+0)
6 X = X * X; x € [121, +00)

} else { x <10 = x € (—o0, 10]

31

2.4. Static Analysis 2. Fundamentals

X=X+ y; x € (—00,52]
} x € (—00, +00)

while (x < 100) {
x =x + 13; x > 100 = x € [100, +00)

return x - y; x —42 > 58 = return € [58, +0)

The initial input has no specified bounds, so here input € (—o00,+00). The following if
condition results in branching control flow. If the condition is fulfilled, the abstraction be-
comes x € [121,400). If not, it becomes x € (—o0, 52| after the statement. The best possible
abstraction after the control flow merges thus steps back to x € (—o0, +00). This illustrates
how the stepwise calculation of the best abstraction with the help of the abstract domain can
still be useful for parts of the control flow, even though the constraints might later collapse

into a coarser category.

Through the while loop and following operations, the abstraction becomes more informative
with x > 100 so finally return € [58, +00). Any additional operations before the return
statement as well as further uses of the function’s returned value could safely be abstracted

to > 0 for every execution of the program.

In general, if an analysis by abstract interpretation concludes a property to hold, it will always
hold in every execution of the program. More concretely, when such a property is the absence
of a specific kind of defect, this means that the analysis does not provide false negatives (see
table 2.1), no defect is missed [13].

To remain computable, sound techniques however sacrifice mathematical completeness: If
the property is true in the abstraction, the analysis won’t be able to always prove it in the
concrete. There will be true properties that the analysis fails to prove [4]. More concretely,

this means that false positives are still possible [13].

How useful abstract interpretation as an analysis method is depends entirely on the abstract
domain. The worst-case scenario is that the analysis can only provide inconclusive abstrac-

tion results (in the example T.) due to an unprecise abstract domain [15].

32

2. Fundamentals 2.4. Static Analysis

A desirable outcome would be an abstraction that allows to exclude the type of defect targeted
by the analysis. This refinement is theoretically always possible, but might not be computable
by a machine. Finding efficiently computable and still precise abstractions is very difficult in

practice [4].

2.4.3. Model Checking

Another formal verification method relevant in this context is model checking. The tech-
nique requires a finite state transition model that describes the behavior of a control system.
By systematically exploring all possible execution paths, it can be shown that a given system

model satisfies given properties [5].

Finite state machine (FSM) are useful system descriptions in almost any application domain.
They allow to model complex system behavior precisely and without ambiguity, by clearly
describing the relations between system inputs, outputs and conditions. Following [12], a
FSM is defined as a tuple M = (Q, ¢, 3, h, F') where

« () # O is the finite state space, the set of states the FSM can be in,

q € @ is the initial state, the state in which the FSM always starts,

Y # O is the finite input alphabet, the set of symbols that the FSM is able to read,

« h C @ x X X (is the transition relation that describes which state follows which

combination of previous state and given input,
« F € (@ is the set of final states, where the FSM terminates.

Properties in this context are characteristics that a FSM exhibits, usually of qualitative nature.
They must be formulated in an unambiguous syntax, which in the context of model checking

is based on propositional logic, which is introduced in the following based on reference [5].

Propositions can be any factual statement. They are atomic if they are singular and can
not be broken down further. A finite set of atomic propositions is declared AP, of which
single elements are denoted by latin letters a, b, Conventional logical operators indicate
whether a propositions holds or not. For atomic propositions a,b € AP conjunction would
be expressed as

aAb (2.11)

33

2.4. Static Analysis 2. Fundamentals

which holds if and only if both propositions a and b hold. Negation would be denoted as
—a (2.12)

which holds if and only if a does not hold. Other operators are derived: disjunction can be
expressed as
—(maAb)=aVb (2.13)

and implications as
—aVb=a—b (2.14)

just to name the most important relations.

To be useful for the analysis of state transition systems, propositional logic must be extended
by temporal modalities. Two elemental operators are introduced: ¢ indicates “eventually”,
i.e. “eventually in the future”, and [J indicates “always”, i.e. “now and forever in the future”.
Based on propositional logic, two types of semantics exist that allow the specification of

system properties [5].

Linear temporal logic (LTL) is based on the notion that time in a transition system proceeds
linearly, i.e. that at each moment in time there is a single succeeding computation. To ex-
press corresponding properties, two additional modalities are introduced: () indicates “next”,

ie.
Oa (2.15)

holds when at the next computation step a holds; and U indicates “until”, i.e.
alUb (2.16)

holds when at some future moment b holds and a holds until that moment [5].

Computation tree logic (CTL) is based on the notion of branching time, where the time in a
transition system may split into alternative courses. Some properties can only be expressed
in LTL and some others only in CTL. Because with CTL at every moment there may be
several possible future computations, it is possible to formulate properties that only pertain
to some computations originating from a specific state and not all. For this, two additional

path qualifiers are introduced: 3 indicates “exists”, i.e.

40 a (2.17)

34

2. Fundamentals 2.4. Static Analysis

holds when there is at least one execution path along which eventually « is fulfilled; while V

indicates “for all”, i.e.

VOa (2.18)
holds when all execution paths eventually fulfill a [5].

For illustration, consider the FSM shown in figure 2.7. It is an example from reference [16]
that checks whether an input contains the sequence 0, 1 or the sequence 1,0 by traversing
either the state ¢; or ¢ respectively. The state g3 is an accepting state where the automaton

accepts the input sequence and terminates execution.

Figure 2.7.: Example FSM (modified from [16])

With appropriate properties an implementation of this FSM could be verified by a model
checking tool. By defining the set of atomic propositions for the individual states AP =
qo, 41, G2, q3 these can be formulated. For example, if the required sequence is not provided,
the FSM must loop infinitely. This could be described by

10 ¢ (2.19)

which implies that there exists at least one path along which the current state always is ¢;

(or g2 respectively). That every state has an outgoing transition could be described by

VO 3O true (2.20)

35

2.4. Static Analysis 2. Fundamentals

which means that on all paths there always exists one path for which a next step exists.
Further, the accepting state must be reachable from every state. This could be described
by

VO30 g3 (2.21)

which means that on all paths there always exists one path that eventually reaches ¢;. That

this state is in fact accepting could be described by

VO (g3 = YO gs) (2.22)

which means that for all paths being in state g3 always implies that the next state is also gs.
That the corresponding sequence of states for a correct input actually exists can be described
by

30 (@0N3O (@1 ATOg3)) (2.23)

which implies that there exists a path that eventually follows the sequence ¢, ¢1,q3 (or
o, 92, q3 respectively), which is here specified with nested conjunctions. Extending AP with
propositions for explicit input values would allow to further add properties that more directly

verify the existence or absence of system conditions.

A model checking tool typically creates the system model itself after being provided a suitable
specification. The properties have to be provided in a suitable syntax too, against which the
tool then verifies the model automatically by systematically laying out and exploring all

possible execution paths through the model [5].

The considerations so far should have made clear that model checking allows to verify quite
elaborate characteristics. The technique is however appropriate for logic-intensive applica-
tions and less suited for data-intensive applications, as that data typically ranges over infinite

domains [5].

Nevertheless, MathWorks’ model checking tool Simulink Design Verifier attempts to be com-
patible with any control system application. It implements Stalmarck’s proof procedure for
propositional logic, which enables it to perform well in industry-scale scenarios [17], [18].
How exactly the tool converts a Simulink model into a compatible state transition model is
not publicly available. It however has to forgo many of the strengths of model checking in

the process. The tool is introduced in chapter 4 and further discussed in chapter 6.

36

3. Motivation and Goal

At the time of writing, the space industry is experiencing a strong shift towards the devel-
opment of reusable launch vehicles. As such, the DLR is involved in the project Cooperative
Action Leading to Launcher Innovation in Stage Toss-back Operations (CALLISTO) as well
as pursuing the Reusability Flight Experiment (ReFEx) initiative. The Institute of Space Sys-
tems is among other things contributing with the development, verification and validation

of the GNC subsystems for the two spacecraft.

The subsystem components work together conceptually as illustrated in figure 3.1. This
strongly simplified architectural overview was adapted from [7] to better show the resem-
blance to the standard control loop presented in figure 2.1. Both the guidance and the control
function are realized within the Guidance and Control Computer (GCC) or On-Board Com-
puter (OBC) respectively while the navigation function is assumed by the Hybrid Navigation
System (HNS). As opposed to highly integrated systems, such a distributed architecture is
more versatile and can be adapted to different projects with less effort. By clearly defining
the interfaces to other functions, development and verification can be more focused on the

particular function [7].

The GNC algorithms are developed in MATLAB/Simulink using the software management

principles outlined in chapter 2. There are similarities in the development processes across

..

Guidance Reference Control | Actuating System
Trajectory Updates nput Control Error Calculation T signal Actuators Input Plant
Control Command Definition Control Command Calculation :
Feedback
...
Feedback Navigation Sensor Controlled
: Sensors ‘ -
Navigation Calculation Data Variables

Figure 3.1.: Simplified Functional GNC Architecture (modified from [7])

3. Motivation and Goal

GNC subsystem requirements

Software development

Flight software
requirements

Algorithm development

Initial algorithm Flight software
prototyping design
Simulink Code Algorithm integration
model design generation into flight software
e N Festwienlesp |
Modeled Flight software

analysis in

algorithm analysis)
software environment

Code generation

Flight software
analysis in
hardware environment

Autocoded
algorithm analysis

Figure 3.2.: Spacecraft GNC Development Process (modified from [19], [20])

agencies and projects. Authors at the National Aeronautics and Space Administration (NASA)
NASA Engineering & Safety Center (NESC) note how the automatic generation of code from
models has shifted development processes to be more parallel. For projects such as the space
shuttle, GNC development was linearly proceeding from GNC subsystem requirements to al-
gorithm design and via derived requirements to flight software development. For the Orion
Multi-Purpose Crew Vehicle (MPCV), the GNC and flight software development teams are
working side-by-side in the production of the software artifacts that lead to the onboard flight
code. MATLAB/Simulink modeling tools are used to auto-generate the GNC algorithmic flight

software as C++ code [19], [20]. An overview of this approach is presented in figure 3.2.

38

3. Motivation and Goal

At the DLR Institute of Space Systems, the development and verification process is similar.
There are different repositories in use depending on the project affiliation, function and stage
in the GNC development process of the software they contain. The individual repositories are
subject to a quality assurance process based on the fundamentals of software management
and testing outlined in chapter 2. Unit testing is done predominantly using the MATLAB
unit testing framework and GitLab CI, while system testing is done by running extensive

simulation campaigns.

This verification approach generally resembles conventional functional verification, where
the test objects are verified against their functional requirements. What this thesis aims to
add is an evaluation of verification tools that so far are not integrated with the overall de-
velopment process. The goal is to include techniques originating from theoretical computer
science in the areas of program analysis and formal verification. Among others, these con-
sider the formal term of program correctness: A program is considered to be correct when it
produces a correct output for every acceptable input [21]. This notion succinctly captures
the motivation behind the thesis at hand. Rather than analyzing model performance or sim-
ulation parameters, the considerations that follow are more closely related to systematically
targeting the detection of software faults and increasing confidence in correct software exe-
cution throughout the development process. This process is strongly influenced by the tools
that are used, which requires the compatibility of the proposed verification techniques to be

considered.

The research question for this thesis thus is: “How suitable are MathWorks verification tools
for the automated verification of GNC software with respect to correctness?” This question

delineates the intention behind this thesis explicitly:

+ The considerations are limited to verification tools provided by MathWorks. If suitable,

recommendations for alternatives are given in the end.

+ The verification techniques shall be suitable for automation. This mainly pertains to

software execution but can also involve automated results evaluation.

+ The scope of verification are GNC systems. The specifications involved are more data-

intensive than in other application domains.

+ The verification goal is software correctness as opposed to system performance.

39

3. Motivation and Goal

By answering this question, the goal is not only to give an initial evaluation, but also to
develop a basic framework and workflow around the verification tools that applies the lessons

learned during the investigation.

40

4. Methods and Tools

With a good understanding of their theoretical foundation, the verification tools within the
scope of this thesis can be introduced. In order to better understand practical aspects and
limitations, a model of a more or less arbitrarily chosen example system is introduced. This
model has similar characteristics to the actual models in development at the institute with a
lower complexity. It serves as the basis for evaluating the tools and discussing their recom-

mended use.

4.1. Thrust Controller Simulation

After some preliminary literature research, thrust control of chemical propulsion systems
was selected as the application domain for an exemplary simulation. The associated control
problem is presented in figure 4.1, which has been adapted from reference [22] and adjusted
to the arrangement of a standard control loop. It corresponds to a conventional pressure-
fed bipropellant propulsion system, where the supply pressure inside their respective tanks
supplies fuel and oxidizer through feedlines, control valves and injector elements into a main
combustion chamber. Without elaborating on the specifics of rocket engine design, it is
important here to know that the combustion chamber requires fuel and oxidizer in a specific
mixture ratio '

Py = 0 (4.1)

my

of oxidizer and fuel mass flow. It sets the combustion temperature and therefore the engine’s
performance and material temperature, while the total mass flow corresponds to the desired
thrust of the engine [22].

4.1. Thrust Controller Simulation 4. Methods and Tools

pc,set - epc Uo
Controller .
A Oxidizer Mo
Po,supply Valve
T'm . Combustion
) Chamber Pe
Tm,set — Cro, uf
Controller
P Fuel
Pf supply Valve T

Figure 4.1.: Thrust Control (modified from [22])

There are two actuators in such a configuration, namely the fuel and the oxidizer valve,
which need to be controlled. The thrust of the engine corresponds to the chamber pressure
P., which is the primary controlled variable and usually associated with the propellant with
the higher mass flow. The mixture ratio r,, is determined by dividing oxidizer and fuel mass
flow, which is fed back into the mixture ratio control loop governing the fuel mass flow
[22].

These two control loops interact dynamically, so keeping both controlled variables near their
set points presents a significant challenge. Experience shows that the mixture ratio control
loop should be tuned to react faster to set point deviations than the chamber pressure control,

which keeps the engine temperatures at the design conditions [22].

Combustion Chamber

With the information from [22] and [23], it is possible to derive a simplified linear time-

invariant description of the combustion chamber dynamics as follows.

For a combustion chamber with volume V,, the total mass flow into the chamber equals the
sum of the outflow through the nozzle plus the rate of change of mass stored in the chamber
[23].

tin (1) =t (1) + — (pe(t) Ve) (4.2)

42

4. Methods and Tools 4.1. Thrust Controller Simulation

The combustion is assumed to be isothermal and the combustion temperature 7. to be con-

stant. With the specific gas constant R the density p.(¢) becomes

pe(t) = 2. (4.3)

Further, the flow is assumed to be choked, which is a simplification that allows the mass

outflow 7,y (t) for a given throat area and exhaust velocity to be approximated with

mout(t) = é“Dc(t) (44)

The throat area A; is given by the dimensions while the characteristic velocity c* is deter-

mined by the characteristics of the combustion itself. Substituting yields

, Ay d (p. Ay Ve dP.(t)
—P.(t 3 —P.(t . 4.5
() = S Fl0) + dt(V) TR (43)
In order to derive the transfer function, a Laplace transformation is performed.
: Ay Ve A Ve
tu(s) = SERAS) + grisPl) = Puls) (S + s, (46)
Rearranging yields
P, 1 &
. ((8)> T A . (4.7)
me(s =t c-S Ve c*
t c R T, 1+<RTCA,5)S
This represents a transfer function in standard form
P.(s) K
G(s) — _ 48
(s) mr(s) 1+7s “8)
c* V. c*
hK=— =
wit 1 and 7 = RT. A

In order to arrive at the state-space representation introduced in section 2.1, first a suitable

state variable has to be chosen, which here is the chamber pressure ..
2(t) = Pu(t) (49)

Rearranging equation 4.5 to

P.(t) (4.10)

43

4.1. Thrust Controller Simulation

4. Methods and Tools

enables to isolate 4 P,(t) as

d RT. .

RT. A,
SPt) = S () -

Veer

The input to the system is the total mass flow 7, (t):
u(t) = nu(t).
So the state equation becomes
¢u):—<ﬁggﬁx@y+<ﬂ§)mw

RT, A, _RT,
Voo and B = v

with A = . The output equation simply is

P.(1).

(4.11)

(4.12)

(4.13)

(4.14)

so C' = 1 and D = 0. This represents a linear, time-invariant system assuming a combus-

tion at a constant temperature. Suitable values in accordance with [24] for an exemplary

propulsion system with storable propellants are presented in table 4.1.

Table 4.1.: Combustion Values for an Exemplary Propulsion System

Parameter Value

Specific gas constant R~ 300 J kg ' K™!

Chamber temperature 7, 3200 K
Characteristic velocity ¢* 1700 ms™*
Throat area A, 1-107*m?

Chamber volume V, 5-1073 m?

Valves

While references [22], [23] do not provide details on the dynamic behavior of the actuators,

reference [25] notes that their dynamics can not be neglected with respect to the combustion

dynamics themselves. The valves are therefore approximated with an assumed first-order lag

between the command u(t) they receive and their actual opening z,(t). This is characterized

44

4. Methods and Tools 4.1. Thrust Controller Simulation

by the valve’s response time 7, so the valves dynamic behavior is described by the differential

equation

dzx,
Ty,
dt

which corresponds to the already introduced standard form in the frequency domain

+ z,(t) = u(t) (4.15)

1
U
Tps+1

T,(s) = (s). (4.16)

In order to avoid large differences in the orders of magnitude in the simulation, the valve ’s
opening position x,(t) is normalized to the range [0,1] and mapped linearly to the valve’s
actual output mass flow 7(t):

1(t) = MmaxTo (1) (4.17)

The valve’s transfer function from command w(t) to mass flow 172(t) then becomes

m(s) Tmax
u(s) 15+ 17 (4.18)

To arrive at the state-space representation for the valves, as state the opening of the valve is
chosen:
x(t) = x,(t). (4.19)

Equation 4.15 representing the valve dynamics can be rearranged to obtain the state equa-
tion
, 1 1
(t) = ——x(t) + —u(t) (4.20)
T’U T’U
so A= _?lv and B = % The output of the valve is the mass flow through it, so the output
equation is

Y(t) = Mpaxx(t) (4.21)
s0 C' = Miypax and D = 0.

Realistic values for the valve’s characteristics can be obtained from suppliers of propulsion

systems and are listed in table 4.2 in accordance with [26].

45

4.1. Thrust Controller Simulation 4. Methods and Tools

Table 4.2.: Estimate Values for Exemplary Propulsion Valves

Parameter Value

Response time 7, 0.1s

Maximum mass flow 77, 0.1kgs™!

Simulation Model

For the implementation in Simulink, the configuration presented in figure 4.1 is rearranged
to allow for one consolidated controller subsystem. The actuator and plant dynamics are
modeled using state-space blocks. The resulting model is depicted in figure 4.2, the content

of the controller subsystem in figure 4.3.

Thrust Controller Simulation
Reference Implementation

ThrustController
P_c_set P_c_set
P_c_set -
Xns1 = AXy + Bup Xny1 = Axy + Buy,
uo > >+,
md o u_o Yn=Cxn+ Dun m_d_o m_d Yn=Cxn+ Duy P_c
Oxidizer Valve Combustion Chamber
P_c
r_m_set
- u
- u_f Yn= Cxn+ Duy m_d_f
m_d_f Fuel Valve

Figure 4.2.: Thrust Control Simulation

46

4. Methods and Tools 4.1. Thrust Controller Simulation

Chamber Pressure Control

[&D; »(:_ | PID(z) »(1)

Chamber Pressure Controller

Mixture Ratio Control
D' =©—>{ PID(z) »(2)
r_m_set u_f

Mixture Ratio Controller

8
A
x

3
a
=}

B

3
o
.

Figure 4.3.: Thrust Controller

For simulation, the controller receives the objective of achieving a chamber pressure set point
of P, st = 1 MPa while the mass flows of oxidizer and fuel flow converge toward a mixture
ratio set point of r,, 5 = 1.5. Ideally, there should be no overshoot in the chamber pressure
and a moderately fast settling of the process variables. The Control System Toolbox is used
to tune the controller gains for this scenario, which leads to the dynamics shown in figure
4.4. The desired chamber pressure is achieved in just under 2 seconds, while fuel and oxidizer

mass flow settle at the corresponding levels and ratio.

1y X10° Chamber Pressure Fuel and Oxidizer Mass Flow
: : : : : : : : : : 0.04 -

0.035

0.01

0.005

0 L L L L L L L L L 0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s) Time (s)

Figure 4.4.: Controller Simulation Results

47

4.1. Thrust Controller Simulation 4. Methods and Tools

4.1.1. Controller Function

To develop a more expressive example, the controller functionality is implemented program-
matically inside a MATLAB function. In the resulting variant of the simulation model, the new
function thrustControlFunction is called by a MATLAB Function block inside the Controller
subsystem. It contains the sample time and controller gains as hard-coded values and uses
persistent variables to store and accumulate the integrator states over the duration of a sim-

ulation.

Inside the function, first the control output for the oxidizer valve is calculated for the cham-
ber pressure control loop. Then, the control output for the fuel valve for the mixture ratio
control loop is calculated. An optional guard against division by zero is introduced here for

evaluation purposes later. The function can be found in appendix A.1.

4.1.2. Finite State Machine

In order to obtain an implementation for the evaluation of model checking, an additional
variant of the controller implementing a FSM is required. Figure 4.5 depicts the arbitrary

control logic that is used.

Pressurizing

Pc,set Pc,set - Pc < 0]- Pc,set

start —

Pc,set S O Pc,set > O

Figure 4.5.: Controller State Machine

The controller sets the two control outputs u, and u; depending on the actual and set point

chamber pressure P, and P, . Initially, the control outputs are set to u, = uy = 0 so the

48

4. Methods and Tools 4.1. Thrust Controller Simulation

valves remain closed. As soon as a positive P, ;.; is commanded, the valves open to a fixed
position by setting u, and u to a constant value. After F, is close to P, s, the controller cal-
culates the outputs with the function computeControl, which performs the same calculations

as thrustControlFunction but without initializing the persistent variables.

The states are defined as enumerators inside the class ThrustControllerStates. The class
inherits from the Simulink.IntEnumType class. This is required for enumerations that are
used in Simulink and are intended for code generation. The enumerators have an enumerated

name and an underlying integer which is used internally and in the generated code [10].

classdef ThrustControllerStates < Simulink.IntEnumType

2 enumeration

Closed (0)
" Pressurizing (1)
5 Running (2)
6 end
7 end

The MatLAB Function block inside the Controller subsystem of this new simulation variant
now calls the function thrustControlFSM. This function defines a new persistent variable
currentState that holds the enumerator for the current state of the controller. The FSM
itself is then implemented as a switch case statement. The conditions for the transitions are

programmed with nested if statements as shown in the following excerpt.

1 % Switch for current state
> switch currentState
case ThrustControllerStates.Closed
' if P_c_set > 0
5 % Transition Closed to Pressurizing
6 [u o, u_f, currentState, intC, intMR] = ...
updateClosedToPressurizing(P_c_set, P_c, r_m_set,
8 mdo, mdf, intC, intMR);
9 else
10 % Remain in Closed
1 [u_o, u_f, currentState, intC, intMR] = ...
12 remainClosed(currentState, intC, intMR);

13 end

49

4.2. Verification 4. Methods and Tools

updateClosedToPressurizing.m +
1 function [u_o, u_f, newState, intC, intMR] = updateClosedToPressurizing(P_c_set, P_c, r_m_set, m_d_o, m_d_f, intC, intMR)
% Controller transition function from Closed to Pressurizing

kg

% Set new state

newState = ThrustControllerStates.Pressurizing;

% Set output
[u_e, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f, intC, intMR);
=@ 3

o oea o

The value assigned here o 'u_o" appears to be unused. Consider replacing it by ~.| Details ¥ || Fix
Figure 4.6.: Code Analyzer Issue

The transitions themselves are embedded in dedicated transition functions that increment
the integrators and set the desired control outputs. All associated functions can be found in

appendix A.1.

4.2. Verification

The simulation is a representative example for the actual systems that need to be verified
using the methods that follow. Here, the controller subsystem represents the product that
would be verified and delivered. The goal of this section is to provide a basic example on how
to employ each verification tool within that scope. The focus is to gain a basic understanding

and run the verification programmatically, so it can be automated in section 4.3.

4.2.1. Static Analysis of MATLAB Code

MATLAB originally started out as an interpreted language: It didn’t need to be compiled
before execution and was executed command-by-command by its own interpreter. Today,
the language still does not require a dedicated compilation step, but is compiled just-in-time,
i.e. as it is executed, by its execution engine. This increases performance over interpretation
[27].

Static analysis in MATLAB is run automatically during edit-time by the Code Analyzer as
shown in figure 4.6. As soon as one of its checks identifies an issue in the written code, the

line is flagged in the editor interface with a message describing the issue.

Programmatic access to the Code Analyzer is provided by the checkcode function. It runs the

available static analysis checks on the files specified when calling the function and returns

50

4. Methods and Tools 4.2. Verification

the results in a structure array, containing the messages and their locations [6]. Structure
arrays are data types subject not only to MATLAB that are useful for grouping related data.
The checkcode function provides options to return more information, such as the message

identifications as shown in the following listing.

% Define file

: files = 'script.m';

% Run analysis

results = checkcode(files, '-struct');

A Code Analyzer message can be suppressed manually by writing a %#ok directive in the
concerned line of code. The analysis can be configured to ignore these suppression. Further
configuration of the analysis can be done in the Code Analyzer user interface and reused

programmatically with a configuration file [6].

As the analysis already is available to a developer during edit-time, it is prudent to simply
employ the checkcode function as a safeguard to verify whether the files committed to a
repository in fact do not raise any messages. Refer to chapter 5 for the technical details of

how this is implemented.

In newer releases of MATLAB, the issues found by the Code Analyzer are stored in a codeIssues
object. Notably, this object can be used with a fix function to fix certain issues programmat-
ically and a export function to export the results in a standardized format [6]. This is out of

the scope for this thesis, but should be considered for future applications.

Checks

In order to understand the scope of the Code Analyzer in comparison to the other static
analysis tools investigated in the remainder of this chapter, a review of its checks is performed

based on the product’s documentation [6]. A summary is presented in table 4.3.

Of special interest here are the checks related to code generation compatibility. For them,
the analysis has to be explicitly activated by adding the %#codegen directive to the file. Other
than that, the checks aim at achieving correct and efficient MATLAB code but do not have
the same scope as a comprehensive coding standard that for example targets robustness or

security of code employed in embedded systems.

51

4.2. Verification

4. Methods and Tools

Table 4.3.: MaTLAB Code Analyzer Checks

Group Checks Verification objective

Incomplete 18 Reason why an analysis could not be started or com-

analysis pleted, for example due to too high complexity, too deep
nesting or invalid files

Syntax errors 50 Valid use of characters, missing characters, valid use of
operators and valid character sequences

Language 155 Valid use of the MATLAB language, for example in defin-

specification ing attributes, declaring functions, defining classes, us-

errors ing certain language-specific constructs

Bugs 36 Various cases of syntactically detectable dead logic, cor-
rect use of operands, availability of variables

Custom checks 19 Various coding constructs that can be configured to be
flagged as disallowed

Compatibility >200 Usage of functions, methods and properties that have

considerations been or will be removed or replaced in MATLAB and its
toolboxes

Good practices 103 Recommendations for coding constructs that can be in-
efficient, unnecessary, too complicated or can lead to
unwanted or unexpected behavior

Unset variables 7 Missing or not executed variable definitions

Unused construc- 21 Flagging of functions, arguments, operations etc. that

tions might not be used anywhere

Suggested >200 Recommendations for using outdated functions, meth-

improvements ods or properties

Readability 35 Possible simplifications for the use of certain unneces-
sary or more complicated statements

Formatting 7 Unnecessary or recommended use of commas, paren-
theses, semicolons

Performance 44 Recommendations for the use of certain statements that

unnecessarily decrease execution performance

52

4. Methods and Tools 4.2. Verification

Table 4.4.: MATLAB Code Analyzer Checks (continued)

Group Checks Verification objective

Code generation 20 Usage of functions, statements and other constructs

supported for code generation

Deployment 10 Compeatibility relating to packaging and deploying

MATLAB programs as standalone applications

System objects 9 Valid specification relating to MATLAB system objects

used in system blocks within Simulink

Unsupported 13 Flagging of functions that are not supported officially
features

Behavior >200 Flagging of instances where MATLAB handles or will
changes handle statements differently in another release

4.2.2. Static Analysis in Simulink

Simulink offers a static analysis method for models with the Model Advisor. Its capabilities
fall into the scope of both syntactic and non-sound semantic analysis techniques introduced
in section 2.4. Its functionality is integrated into the user interface and meant to assist during
the modeling process. Just like other static analysis tools, it runs a variety of checks with a

predefined objective [10].

Simulink Check extends this functionality with around 300 additional checks with varying
scope. After discussing how they can be run, they are presented based on their classification

in the product.

MATLAB creates an instance of a Simulink.ModelAdvisor object for each model that is opened
in the current session. Its getModelAdvisor method returns a handle to the object for the
model or subsystem that was specified. It offers object functions to select individual or groups

of checks, run checks, read results and create reports among others [10].

Simulink Check opens up the application programming interface (API) to the Model Advisor,
allowing for the model analysis to be run using the ModelAdvisor.run method. It receives

a cell array of check names and systems as input arguments and returns one ModelAdvisor

53

4.2. Verification 4. Methods and Tools

.SystemResult object per system that was analyzed that in turn contains a ModelAdvisor
.CheckResult object for each check that was run [28]. The following listing already presents

sufficient code to run a Model Advisor analysis programmatically.

% Define checks and model

checkIDs = 'mathworks.design.UnconnectedLinesPorts';

; systems = 'Controller';

5 % Run analysis

; results = ModelAdvisor.run(systems,checkIDs);

Design Checks

The checks available just without Simulink Check have the mathworks.design prefix. They
target common problems with several Simulink features, however also do not represent a

comprehensive standard.

The analyzed aspects mostly go beyond the complexity of the demonstration example. They
however also do not allow for a comprehensive review with a specific goal but rather rep-
resent a selection of common issues and good practices in specific cases. These checks in
general are expected not to fail when run and are therefore incorporated as another safe-

guard that ensures there are no fundamentals flaws introduced in a Simulink model.

54

4. Methods and Tools

4.2. Verification

Table 4.5.: Model Advisor Checks

Group

Verification objective

Modeling elements

Identify common issues with standard Simulink modeling elements
such as merge, outport or integrator blocks as well as unconnected

lines and ports

Model referencing

Identify incorrect configuration settings with respect to including

a Simulink model inside another as a model block

Model file integrity

Identify problems with character encoding and nondefault model

properties

Unit inconsistencies

Identify disallowed, undefined, mismatching or ambiguous unit

specifications and conversions

Library links

Identify common problems with the usage of blocks that are spec-

ified in a library model

Simplified initializa-

Identify incorrect configuration settings with respect to simplified

tion initialization, which aims to make model initialization more pre-
dictable and consistent

Model upgrades Access to the Upgrade Advisor feature to identify the applicability
of features introduced in newer releases of Simulink

Bus usage Identify common problems with buses, which are commonly used

to group signals and parameters

Code generation ef-

ficiency

Identify model configuration settings that can result in a lower ef-

ficiency of code generated from the model

Data transfer effi-

ciency

Identify settings and modeling techniques that can result in low

data transfer efficiency

Advisory Checks

The MathWorks Advisory Board (MAB) provides an extensive set of guidelines for the de-

velopment of control algorithms with MaTLAB/Simulink and their use in embedded systems.
They originate from the MathWorks Automotive Advisory Board (MAAB) established in 1998

55

4.2. Verification 4. Methods and Tools

by Ford, Daimler Benz, and Toyota. Later, both the MAAB and Japan MathWorks Automo-
tive Advisory Board (J]MAAB) developed their own standards, which are now incorporated
into one global MAB standard [28].

The standard has a much wider scope than the default Model Advisor checks discussed be-
fore. It appears suitable as a general guideline for modeling with a variety of rather basic

rules. The MAB structures the guidelines as shown in table 4.6.

High Integrity System Modeling Checks

High Integrity Systems Modeling (HISM) is a concept with which MathWorks refers to set of
standards that apply to software engineering in different domains. Internally, the associated
checks have the prefix mathworks.hism. They incorporate rules from the following standards

and domains [28].

« Radio Technical Commission for Aeronautics (RTCA) documents DO-178C and DO-

331 for the aerospace and defense domain

International Organization for Standardization (ISO) standard 26262 for the automotive

domain

» European Standard (EN) 50128 and 50657 for the rail and transportation domain

International Electrotechnical Commission (IEC) standard 61508 for the industrial au-

tomation and robotics domain

ISO 13485 and IEC 62304 for medical devices

Each HISM check is referenced to a rule in one or several of these standards. Vice versa, the
individual standards have rules with overlapping rationales, which apparently is the subset
of rules covered by the HISM checks. The common goal of these checks is the robustness
of code generated from the model that the checks are run against. Table 4.7 contains an

overview of how the checks are organized and what their objectives are.

The Motor Industry Software Reliability Association (MISRA) standards take up a special po-
sition in this context. These are sets of rules developed specifically with safety, security, and
reliability of embedded system software in mind [29]. While some HISM checks additionally
refer to MISRA standards, further secure coding and MISRA compliance checks are available
with Embedded Coder and covered separately further below.

56

4.2. Verification

4. Methods and Tools

$00]q UOTIOUNJ EVILVIN Ul SJUIUIUIOD PUE SJUIWIIIB]S-ISBI-UIIIMS ‘STULIIS

Jo 98esn papUIUIIOIAI ‘SUOTIOUN] P JO S[2AJ] PUEB IPOJ JO SIUI] UO SIWI] AJIFUIP] S ages
S$Y00[q uonoUNJ EVILVIN SUOIIeId
01 309dsax1 y3m sndino/syndur pue suorRISWINUD ‘Bjep PaIeys JO FeSN PIPUIWUIOINY ¢ -do pue eleq
$300[q uoTouUNJ saurpopIng
VILV]\ Ul I9peay UoIounj © Jo 90uasaid pue sjuauraje)s pajsau Jo Iaquinu AJ1juap] Z souereaddy aVILVIN
SY00[q WA}SASqNS JUBLIEA pUB AIOWIUW 21038
eJep ‘UYo3ims jo adesn 3091100 ‘sprodino pue syzodur Jo Suruorrsod pue Sur3as 3091100 91 SYO0[q I_YIO
}00[q uoIsI1aAuU0d 9dA} pue Ae[op T10jeIdaUI ‘UOIIRINJES ‘SIA[qE) syo0[q
dnx0o] se [[om se s}20[q uonerado [edLIWINU pUE [RUOIR[2I [eII30] JO dGesn 091100 91 uoneradQ
s3ures pue suone[dI I sura)sAsqns
pue surasAsqns [eUOnIPUOd 03 J0adsar yjm aGesn pue JnoLe[Jo0[q PIPUIWOINY 9 [euonIpuo)
sdunjas aw spdures pue 2d4} se [[om se s[eudrs 0}
10adsax yim s1vjourered }o0[q pue s[oqe[‘soureu [eudIs ‘sasng Jo 5esn PIPUIWIUIOINY Al STeusIg
$300[q pa31qryo1d Jo 9sn 3y} pue 2INJONIIS W)
-sAsqns ‘AoUd3sISUOD SUTWEU ‘MO[J [BUSIS ‘SUOI}OUU0D [eudrs ‘suoridirosap ‘Surtuonisod souereadde
‘S9Z1S JUWIA[D ‘SJU0] ‘SSUTIas JnoLe] urpn[our [opow 3y} jo souereadde papuawroday 61 urerger(q
SOT}SOUSEIp [9POW PUB SUOIIB[NITED J091100UT ‘SUIpUNOI s1ajowrered sourPpIng
1989jur ‘ejep uesoog 03 30adsar ym sidjourered uoneIndyuod jo Sur}IRS 1031I0) ¥ uoneIndyuo) Nurnuis
sawreu snq pue sidjourered ‘syeu SUOTJUIAUOD
-31S ‘$HD0[q ‘SwWAISASqNS ‘s9[Y ‘SIIP[O] I0J SI[NI SuTUIeu pue ‘sy}3ud] ‘98esn IajoeIey) 02 - SurureN
9A1109[qO0 UOTIBOYIIaA SHIIYD dnoio adoog

SO GVIN '9'F S[qeL

57

4. Methods and Tools

4.2. Verification

Table 4.7.: HISM Checks

Scope Group Checks Verification objective
Simulink block Naming con- 2 Character usage in model file and element names
considerations ventions
Math opera- 9 Recommended usage of absolute, remainder, reciprocal, square root, logarithm,
tions product, assignment and gain blocks
Ports and sub- 11 Recommended settings for while iterator, for iterator, if and switch case blocks as
systems well as inport and outport specifications
Signal routing 5 Correct usage of data store memory, merge and signal routing blocks as well as
consistent vector and signal indexing
Logic and bit 4 Unambiguous usage of relational operator, logical operator and bit-wise operation
operations blocks
Lookup table 3 Recommended settings regarding lookup table blocks, tunable parameters and bit-
blocks shift operations
Stateflow chart - Out of scope for this thesis
considerations
MATLAB consid- MATLAB func- 3 Complexity and length of MATLAB functions used in models as well as the use of
erations tions strong typing at function interfaces
MATLAB code 8 Code Analyzer checks as well as detection of several undesirable code patterns

58

4.2. Verification

4. Methods and Tools

sgunjes
douerduwod O YYSIIN 10] paxmbai are jey)) s1ojourered uoreInSjuod snoLeA I uonem3yuo)
douerduod O YYSIIN 10] PIPUSUILIOIT JOU SHI0[q JO UOISN[IXT ¢ a8esn yoo[g
SUOTIRId
9[A3s -p1suod ouerd
prepuels O VYSIN 23 3m juerdurod sapni SureN i Surpepoly -wod O VYSIN
SUOT)RIOPISUOD
s1say] s1y1 40f adoos fo o syuawaImbay
9pod uon
pa1eI1oua8 Jo AJN[IqRYLIOA PUB SSIU)SNQOI ISBIIOUI Je} SSUI}IRS UOIJRIdAUAS 9p0)) 6 -BIdUAS 9po)d
duroua
S9OUDIDJAI ST pUE [9pOU JO AJUI)SISUOD 0} PIje[dI SSUTIIRS [-IdJo1 [opo
arempIey uorjejuawayd
159] pue arempirey uoronpoid usamilaq siajawered uorjeIndyuod 1931e} JurdIR [-WI dIempIer]
$saujsNqoI
9p02 03 paje[al s1vjourered uorRINSYUOD JO SUT[QRSTP IO 10 S9FeSSaUI J0LId Suljqeuy 91 sofysougerqg
sadAy
uorjeIauad apod uononpoid 10y sgurnies uedsai pue [eudls o150 ¢ ®Iep pue ylepy
SUOT}eIPIS
uon -uod I9jowrered
-eIoUAS 9p0d uoronpoid 10J pairnbar suorido Sun{se} pue I9AJOS ‘QUIT} UOTJR[NWIIS ¢ I9A[0S uorneIndyuo)
9A1}22(q0 UOTIROYLIDA SYIYD dnoig adoog

(panumnuod) s29Y) NSIH 8% dqBL

59

4.2. Verification 4. Methods and Tools

Code Generation Checks

MathWorks provides a set of modeling guidelines for models that are intended for code gen-
eration for embedded systems with the Embedded Coder toolbox [29]. These guidelines are

structured in four categories.

« Blocks: Use of certain fixed-point operations, precalculation of signals and absence of

redundant blocks with the goal of higher code efficiency

« Modeling patterns: Use of certain signal elements and block placements with respect

to subsystem for more efficient memory usage

« Configuration parameters: Prioritization of code generation objectives for higher code

efficiency

« Component deployment: Identify settings and modeling techniques that can result in

low data transfer efficiency

These guidelines have a rather specific and limited scope in comparison to the standards in-
troduce before. They appear to target code efficiency but do not seem to cover robustness
of the generated code. In the Model Advisor, these guidelines are implemented as checks
with a mathworks. codegen prefix. These are 29 checks that identify inefficient or potentially
ambiguous operations, verify hardware settings, identify non-recommended blocks and con-
figuration parameters, identify correct compilation settings, and verify various settings in

model elements that are required or recommended for production code generation [29].

The scope of these checks suggests to employ them in conjunction with, but before any stan-
dards compliance checks. The rationale would be, that a model needs to be suited and mod-
eled efficiently for code generation, before the compliance with a much more comprehensive
standard is verified, even if only partial. Reviewing the associated check results should take

this prioritization into consideration.

Secure Coding Checks

For embedded systems, there are several coding guidelines addressing security concerns
specifically. They aim at reducing coding constructs that are vulnerable to exploitation in

embedded software. Model Advisor checks for the following guidelines are available for
Embedded Coder [29].

60

4. Methods and Tools 4.2. Verification

+ The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT)
C standard is a set of guidelines for secure coding practices for the C languages. They
“are a work in progress and reflect the current thinking of the secure coding commu-
nity” [30].

+ The Common Weakness Enumeration (CWE) is an extensive, community-developed
list of software and hardware weakness types that under certain circumstances can

become security vulnerabilities in embedded software and hardware [31].

« ISO/IEC TS 19761 is the formal ISO standard for secure coding in C [29].

Additionally, the MISRA standards define a “safe subset” of the C languages that also pro-
tects against safety and security vulnerabilities, but also further increases robustness and
reliability of embedded systems software [32]. The Model Advisor checks associated with
the secure coding standards are grouped with the prefix mathworks.security and overlap

with the MISRA compliance checks with the prefix mathworks.misra.

While code security is not the goal of this thesis, the associated standards generally have
the robustness and reliability of embedded software in mind and as such should be part of a

verification process with respect to correctness.

It is important to note that compliance with a standard can not be fully evaluated with the
model as test object. Running the introduced checks rather “increases the likelihood” of
generating code compliant with the standards [28]. For better results, the use of additional

verification tools is necessary.

4.2.3. Model Checking in Simulink

Simulink Design Verifier is a model checker that is integrated into the MATLAB/Simulink user
interface. It uses a proof system that is based on Stalmarck’s proof procedure for proposi-
tional logic [17]. Understanding the theoretical details of this procedure is not required in

order to operate the tool, but it is helpful in understanding its limitations.

There are three distinct modes that the tool offers. They all represent different aspects of

model checking in general.

61

4.2. Verification 4. Methods and Tools

« Design error detection: In this mode, the analysis can be configured to find one or several
predefined error types in a model or prove their absence. If the analysis is able to find
a design error, it provides a counterexample, an exemplary signal trace that causes the
error [33].

o Test generation: Here, the model checker’s ability to find counterexamples is used sys-
tematically to define new test cases for simulation-based testing that achieve missing
coverage. The coverage objective has to be defined and the coverage data recorded

prior to the analysis [33].

« Property proving: In Simulink, properties are modeled as requirements in the model.
For this purpose, the tool offers proof objective and assumption blocks and functions.

The properties are then proven or falsified by the analysis [33].

For this thesis, design error detection shall be the focus of evaluation. The central issue
with Simulink Design Verifier is the compatibility of the model with the analysis technique.
Due to the nature of model checking, a model that is simulated correctly in Simulink is not
necessarily suitable for an analysis. For this reason, the other two modes that require more

upfront effort are not further pursued here.

The compatibility check is the first step in a Design Verifier analysis. There is a subset of
Simulink blocks that is supported, and it is checked whether the analyzed model contains un-
supported blocks. Blocks in Simulink’s Discrete, Math Operations, Logic Operations, Sinks,
and Sources Libraries are supported for the most part. Notable exclusions are the State-space,
Sine Wave, Square Root and Signal Editor blocks. Blocks from the Continuous Library are
not supported. Limitations exist when using enabled, triggered and variant subsystems as
well as for user-defined functions. For MATLAB function blocks, certain operations like calls
to external C functions as well as most toolbox functions are not supported. S-Functions or
C/C++ code containing for example continuous states, zero-crossing functions and infinite

or not representable objects are also not supported [33].

Incompatibilities are handled automatically by the analysis with a technique called stubbing.
Unsupported blocks are ignored by the analysis and the block output is assumed to be able
to take on any value. In some cases, this might lead to an analysis that is still conclusive.
Another way to approach incompatibilities is by defining replacement rules for the analysis.
These are written in custom MatLaB-files using special syntax. For example, arithmetic
operations on a signal with an expected signal range could be replaced with a precalculated
lookup table of the results [33].

62

4. Methods and Tools 4.2. Verification

If a model is compatible, the analysis proceeds to generate a model representation with sev-
eral approximations. Floating-point values in signals or parameters are converted to rational
numbers in some cases. This prevents numerical errors from affecting the result of the anal-
ysis. In lookup tables, the interpolation is set to linear to increase analysis performance.
Further, while-loop iterations are reduced if no constant bound can be found, so they always
exit [33].

Simulink Design Verifier is run programmatically with the sldvrun function. It accepts a
model or subsystem name and a design verification options object that specifies the analy-
sis. As shown in the following listing, this options object is returned by the sldvoptions
function and contains all analysis settings as parameters with their default values. These are
subsequently modified for the individual analysis. Here, also the replacement rules or cover-
age objective and data files mentioned earlier would be passed to the respective parameter.
The sldvrun function returns a status code status of the analysis result, the report and data

file names files created by the analysis and an error or warning information message msg.

% Define model and create options object

system = 'Controller';

; options = sldvoptions;

s % Configure analysis

, options.Mode = 'DesignErrorDetection';
7 options.DetectDivisionByZero = 'on';
options.SaveReport = 'on';

10

% Run analysis

[status, files, msg] = sldvrun(system, optiomns);

The following are the detectable design errors explained in more detail, based on the tool’s

documentation [33].

« Dead logic: Model elements remain inactive for an entire simulation.

 Out of bound array access: The model tries to access an array element with an invalid

index.

« Division by zero: The denominator of a division operation becomes zero during a sim-

ulation.

63

4.2. Verification 4. Methods and Tools

« Integer overflow: An operation on an integer signal exceeds its representable range.

« Non-finite and NaN floating-point values: A floating-point signal becomes infinite or not

representable during a simulation.

 Subnormal floating point values: A floating-point signal becomes too small to be accu-

rately represented.

« Specified minimum and maximum value violations: The minimum and maximum values

on signals and outports throughout a model are exceeded during a simulation.

 Data store access violations: A data store memory block receives an unintended se-

quence of read and write operations during a simulation.

« Specified block input range violations: The minimum and maximum values on block

input signals in a model are exceeded during a simulation.

Both the plain function implementation as well as the controller FSM are as expected com-
patible with the analysis. Exemplary cases of dead logic or division by zero are correctly
identified as shown in figure 4.7. The associated signal trace is provided too. Both the analy-
sis output as well as the analysis report point to the location of the error, but only at the top
level. It appears as though the analysis does not fully consider nested MATLAB functions and

as such is not able to point to the precise location of an error.

It should further be noted that in spite of the existing approximations, inconclusive analyses
are already produced in the context of the small-scale demonstration example. As noted in
section 2.4, model checking is not suited for data-intensive applications, which here results
in frequent analysis timeouts. For use in a project context, it should prior be evaluated if it
is feasible to specify minimum and maximum values at every root-level inport block of the

analyzed model.

64

4. Methods and Tools 4.2. Verification

Progress .
Objectives processed 227
Valid 0
Falsified 2
Elapsed time 2:27

07-May-2025 18:32:25
Validating cached model representation from 07-May-2025 18:31:45...change detected

07-May-2025 18:32:25

Checking compatibility for design error detection: model ThrustControllerwithFsM'
Compiling model...done

Building model representation...done

07-May-2025 18:32:28
"ThrustControllerWithFSM' is compatible for design error detection with Simulink Design Verifier.

Detecting design errors using model representation from 07-May-2025 18:32:28...

DEAD LOGIC

thrustControlFSM.m

switch currentState implicit default
Analysis Time = 00:00:02

Running additional analysis to reduce instances of rational approximation...

FALSIFIED - NEEDS SIMULATION

Thrust Control Function

Division by zero:

[u_o, u_f] = thrustControlFSM(P_c_set, P_c, r_m_set, m_d_o, m_d_f)
Analysis Time = 00:00:06

Running additional analysis to reduce instances of rational approximation...

Figure 4.7.: Design Verifier Analysis

4.2.4. Testing in Simulink

Simulink Test is MathWorks’ toolset for simulation-based testing. It is of interest here be-
cause it conveniently allows to isolate and test any part of a Simulink model with a test
harness. A clear graphical and a comprehensive programmatic interface help with test au-
thoring, test execution and test management in alignment with the fundamentals of software

testing discussed in chapter 2 [34].

65

4.2. Verification 4. Methods and Tools

Simulink Test exists next to the MATLAB unit testing framework (“MATLAB Unit Test”), from
which it can use several features but should be distinguished. When large parts of a model’s
functionality are implemented in MATLAB code, it is prudent to develop tests in the related
testing framework. It provides several tools to author, execute, evaluate and automate tests
of MATLAB code. Tests can be written as simple scripts, as functions or as classes that inherit
from the matlab.unittest.TestCase superclass to leverage the full capabilities of the frame-
work. Tests are executed by test runners, the fundamental API of MATLAB Unit Test, which

is supplemented by plugins that enable individual evaluation and reporting features [6].

A good testing strategy should define exactly when which testing tool shall be used. A clear
use case with added value for Simulink Test would be integration testing — in conjunction
with unit testing implemented with MATLAB Unit Test. Two testing methods are of interest

here and are demonstrated further below.

Preparation

Independent of the used testing method, there are two prerequisites to be taken care of. First
is creating a test harness, which is realized in Simulink via the subsystem context menu. As
subsystem blocks can contain arbitrary levels of further subsystems, this essentially means
that tests can be authored at any level in the model with little effort. The use of test harnesses
is not unique to Simulink, but can refer to any part of a program that links a testing frame-
work to a component under test and enables the execution and evaluation of a test suite.
Simulink Test however reduces the effort in creating and maintaining them when compared
to conventional programming languages. The test harness for the Thrust Controller subsys-

tem is shown in figure 4.8.

Test harnesses are per default saved in the same file as the associated Simulink model with
changes in the model being updated to the harness when opening. It should be noted that this
proved unreliable in cases where changes in signal names needed to be updated in harnesses
of model files that were copied before. A harness can alternatively be saved externally as an
own model file and linked with a xml file that is created by Simulink Test. This approach
worked more reliably in the context of the demonstration example and could be adopted in

larger projects for better traceability.

Next, the inputs to the component under test have to be defined. Using Simulink’s Signal

Editor block, inputs can be authored manually. Additionally, Simulink Test’s Test Sequence

66

4. Methods and Tools

4.2. Verification

1) » »{P_c_set
P_c_set

P_c_set
P_c_set
u_o > 1
(2> b mdo = TR D)
m_d o m_d_o uo
m_d o
Gy o
P_c P_c
P_c

r_m_se r_m_se
rmset T i uf > uf > 2
- - u_f
m_d_f m_d_f
m_d_f
Signal spec. Controller
and routing

Signal spec.
and routing

Figure 4.8.: Controller Test Harness

block allows to author sequential tests that react to a simulation with steps or transitions

written with MATLAB. For external inputs, there are three additional options [34].

« MATLAB scripts: Input parameters are defined in scripts using the MATLAB language.
At the time of writing, this is the least documented approach and therefore not further

pursued here.

« Excel spreadsheets: Input parameter values are defined for each simulation time step
in an Excel spreadsheet. At the time of writing, this is the most comprehensively docu-
mented approach. Templates with the required layout can be generated when author-
ing a test case. As logged simulation data can be exported to Excel spreadsheets with

a similar layout, this approach promises to be the most versatile.

« MATLAB data files: Input parameters are stored in MATLAB’s binary mat file format.
Manual editing of parameter values is possible with the Signal Editor but less con-
venient than in a conventional spreadsheet format. As .mat is the default export file
format for logged simulation data, this approach however promises to be best suited

for data-driven simulation models such as those investigated here.

The following demonstration makes use of MATLAB data files, which contain the logged data

from the already developed simulations. As signal logging via the Simulink user interface

proved to be unreliable when mapping to a test harness, logging is done with a short script.

67

4.2. Verification 4. Methods and Tools

The sim function runs a simulation and returns a Simulink.SimulationOutput object, which
contains all data associated to the simulation. Logged data is stored in the logsout property

and can be saved to a mat file from there.

% Run the simulation and log the signals enabled for logging

simOut = sim('DiscreteThrustControl');

% Retrieve logged data from simulation output

5 logs = simOut.get('logsout');

7 % Save dataset to MAT file

3

save('inputData.mat', 'logs');

Baseline Testing

In baseline testing, simulation output data is compared to baseline data. This data is obtained
by simulating a component with prior created test harness and input data. The test itself
then verifies whether the component under test produces the same output within a defined

margin [34].

The Test Manager is the user interface for Simulink Test. As graphical interface its test
case templates guide through the test authoring phase, but it offers all required functionality
programmatically too. The baseline test case is shown in figure 4.9. After setting the Simulink
model, the associated harness model, the input data as well as its mapping, the baseline data
can be captured from here. If baseline data is already present, it is set here. Either way,
the output tolerance in absolute and/or relative values as well as the leading and lagging
tolerance with respect to time must be defined here for a functioning test case. Coverage

settings are set at the test file level but can be changed here for the individual test case.

This concludes the required settings for a simple baseline test case. It can now be executed
after new changes to the Controller subsystem. If not specified to overwrite, model config-
uration parameters such as the simulation time should be carried over from the simulation
the test harness is associated to. This however was found to work unreliably too, so in doubt

the applicable overrides should be used.

68

N

10

4. Methods and Tools

4.2. Verification

el Results and Artifacts

gs, e.g. tags: test

~ [Baseline Test Suite

=) Baseline Test Case
Equivalence Test Suite

B Equivalence Test Case

Name [2] Baseline Test Case
Type Baseline Test

Model DiscreteThn

Hamness Name DiscreteThrustControl_Cont
Simulation Mode [Model Settings]

Location CUsersikays_phiDocumen
Enzbled v

Hierarchy ControllerTests » Baseline T
Tags

5 Baseline Test Case

Baseline Test Case

ControllerTests » Baseline Test Suite » Baseline Test Case

Baseline Test
Create Test Case from External File
» TAGS
» DESCRIFTION
» REQUIREMENTS
» SYSTEM UNDER TEST
» PARAMETER OVERRIDES
» CALLBACKS
»INPUTS
» SIMULATION OUTPUTS
» CONFIGURATION SETTINGS OVERRIDES
» FAULT SETTINGS
+BASELINE CRITERIA'
Include baseline data in test result
SIGNAL NAME

+ ¥ baselineData.mat

» ITERATIONS
» LOGICAL AND TEMPORAL ASSESSMENTS
» CUSTOM CRITERIA

» COVERAGE SETTINGS”

485 ToL

&

d.. W Capture

| Enabled

Figure 4.9.: Baseline Test Case in the Simulink Test Manager

The programmatic execution of the test file is demonstrated in the following listing. The

sltest.testmanager namespace contains all functions related to test execution and report-

ing, where this is just a minimal example. Apart from that, there are more functions related

to test authoring, test harnesses, test sequences and assessments [34]. Such comprehensive

programmatic support might be helpful in scaling a testing strategy over many components,

different variants, versions etc.

% Open the test file

testFile = 'TestFile.mldatx';

sltest.testmanager.load(testFile);

% Run all tests

results = sltest.testmanager.run;

% Generate report from results data

sltest.testmanager.report(results, 'TestReport.pdf');

% View simulation output data

sltest.testmanager.view;

69

4.2. Verification 4. Methods and Tools

Equivalence Testing

Equivalence or back-to-back testing verifies whether two simulations produce the same out-
put within a defined tolerance [34]. The associated test case is shown in figure 4.10. The
same input data is now used on two harnesses of two different simulations. Here, the FSM
implementation of the controller subsystem is tested for equivalence against the plain func-
tion implementation. Instead of baseline data, now equivalence criteria and the associated

tolerances must be defined.

QSR Results and Artifacts. (=] Equivalence Test Case
Filter tests by n ortags, e.g. tags: test .] b
“Hec N Equivalence Test Case e
ControlerTests
% Baseline Test Suite ControllerTests » Equivalence Test Suite » Equivalence Test Case

[l Baseline Test Case Equivalence Tes

~ [3 Equivalence Test Suite

Create Test Case from External File
[E Equivalence Test Case

» TAGS

» DESCRIPTION

» REQUIREMENTS
» SIMULATION 1

» SIMULATION 2 Copy settings from Simulation 1

~ EQUIVALENCE CRITERIA

JsioNaLNaE assTol RELTOL LEADING TOL L +
Vuo 0 10.00% 05 0

FRoFERT vALUE Jur 0 10.00% 05 0

Name [E| Equivalence Test Case:

Type Equivalence Test

Simulation 1: Model DiscreteThrustControlWitnF

Simulation 1: Harmess Name DiscreteThrustControlWithF:

Simulation 1: Simulation Mode | [Model Settings]

Simulation 2: Model DiscreteThrustControlWitnF:

Simulation 2. Harmess Name DiscreteThrustControlWithF & Capie I Diste

Simulation 2 Simulation Mode | [(Model Settings] RO

Location C\Usersikays_ph\Documen.

s 7 » LOGICAL AND TEMPORAL ASSESSMENTS

Hierarchy ControllerTests » Equivalen. » CUSTOM CRITERIA

Tags » COVERAGE SETTINGS'

Figure 4.10.: Equivalence Test Case in the Simulink Test Manager

The test execution is identical to before. For either test case, the results are displayed in
the test Manager with a visualization of the specified tolerances. The results for u, in the
equivalence test case are shown as an example in figure 4.11. The tolerance was defined
to account for the fact that the FSM implementation commands a fixed output from the
beginnig of the test case. The transition to the state “Running” however is triggered too late
for the tolerance and as such the test fails. Notable is the associated detailed coverage results

collection shown in figure 4.12.

70

4. Methods and Tools

4.2. Verification

mu_o (Baseine) M u_o (Sim Output) = Tolerance

040
08
om0
0.25
020
015
010
o X oz [s o o o)) 0 T 12 3 s B B 7 T8 s v
Tolerance m Difference
08
oz0{ |
-\
015 \\
\
A
\
010
008
0
-
008
o 01 0.2 03 04 05 0.6 0. 0 oe 1.0 11 1.2 1.2 14 1.5 18 17 1.8 19 o
Figure 4.11.: Equivalence Test Results for u,
ANALYZED MODEL REPORT COMPLEXITY DECISION EXECUTION L
computeControl L 100% — 2
DiscreteThrustControl/Controller a = 100% —
DiscreteThrustControlWithFSM/Controller a3 100% — 100% —
DiscreteThrustControlWithFunction/Controller a3 100% — 100% —
remainClosed L 0% =
remainPressurizing L) 100% — G
remainRunning L) 100% — =
thrustControlFSM A 10 73% — =
thrustControlFunction L 100% — =
updateClosedToPressurizing L) 100% — =
updatePressurizingToClosed L) 0% =
updatePressurizingToRunning L 100% — =
updateRunningToClosed L 0% 2
B

Figure 4.12.: Equivalence Test Coverage Results

71

4.2. Verification 4. Methods and Tools

SIL Testing

Apart from model-in-the-loop (MIL) testing, equivalence testing with Simulink Test also sup-
ports software-in-the-loop (SIL) and processor-in-the-loop (PIL) testing. In SIL testing, the
output of code generated from the component under test is verified. In PIL testing, this
code is run on the target processor after a previous connectivity configuration. These tests
are authored by specifying the associated verification mode in the test harness properties.
This essentially presents an extension of the SIL and hardware-in-the-loop (HIL) simulation
modes that are already part of Embedded Coders functionality. Lastly, also HIL testing is sup-
ported. Here the code is executed on the standalone hardware including its own input/output

connectivity, for which the product Simulink Real-Time is required [34].

4.2.5. Code Generation

While the details of automated code generation are beyond the scope of this thesis, it must
nevertheless be part of the verification process in a basic form. There are three related
code generation products of interest here. MAaTLAB Coder provides the ability to generate
C and C++ code from MATLAB code, while Simulink Coder provides the same capability for
Simulink models. Apart from code optimization and targeting capabilities, Embedded Coder

also contains additional verification functionality [29].

Code generation from a Simulink model can be understood as a process of four to five steps,
of which not all require interaction with the user. A visualization of the process with infor-

mation from references [35] is shown in figure 4.13.

1. The model is configured for code generation through its configuration parameters.
Parameters for example relating to the language specification, compilation toolchain

and optimization can be set here.

2. The coder software is invoked using its slbuild function to generate C++ code. This

concludes the interaction with the user and internally triggers the next step.

3. The coder software generates a model description file. This file contains a description

of the model’s execution semantics in a high-level language.

72

4. Methods and Tools 4.2. Verification

4. The software’s Target Language Compiler converts this intermediate description into
the target-specific code. For this it uses its own function library as well as different tar-
get files. The system target file for example defines the required compilation toolchain

and software settings associated with the intended execution environment.

The last step would be the basis for generating an actual executable if that were required.
The Target Language Compiler creates a Makefile based on the target files and an already
existing template. Makefiles contain instructions for the build process of software, i.e. how
source code has to be compiled and linked to form a correct executable (cf. section 2.4). The
coder software can be configured to automatically execute this file after the Target Language
Compiler has finished its tasks [35].

— Simulink Model

config.m

Simulink Coder —_— |
/ model.rtw
_ Target Language — —
Compiler
target.tic / model.cpp model.mk
C/C++ _
Compiler 7

model.exe

Figure 4.13.: The Code Generation Process (modified from [35])

The configuration parameters of a model can be saved to and restored from a MATLAB data
file. This allows for flexibility and portability in the configuration, but makes traceability of
individual parameter settings cumbersome. Therefore, for this thesis, a provided configura-
tion set is translated into instructions to set the configuration parameters programmatically.
This is done wit MATLAB’s set_param and get_param functions, that set and obtain the con-
figuration parameters of a model. To obtain only the parameters of interest, the configura-
tion set is compared to a default set. It is important to set the system target file from generic
real-time (GRT) ro embedded real-time (ERT), as this changes the availability of certain pa-

rameters.

73

4.2. Verification 4. Methods and Tools

% Load the specified configuration set
data = load('CodeGen.mat');
configSet = data.('CodeGen_cfg');

5 % Create default configuration set for comparison
, defaultConfigSet = Simulink.ConfigSet;
7 set_param(defaultConfigSet, 'SystemTargetFile', 'ert.tlc');

s % Retrieve all parameter names from loaded configuration set
loadedParameters = get_param(configSet, 'ObjectParameters');

paramNames = fieldnames(loadedParameters);

5 %» Retrieve parameters from default configuration set
defaultParameters = get_param(defaultConfigSet, 'ObjectParameters');

s nonDefaultParams = {};

The obtained parameters can then be written explicitly in a configuration script or function.
Even if already set in the model, this step ensures traceability in the code generation process.

The code generation itself is triggered with the s1build function.

% Load model
load_system('Controller');

% Set parameters for C++ code generation

s set_param(model, 'SystemTargetFile', 'ert.tlc'); % System target file

, set_param(model, 'TargetlLang', 'C++'); % Code generation
language

7 set_param(model, 'GenCodeOnly', 'on'); % Do not execute makefile

% Generate code

slbuild(model) ;

4.2.6. Static Analysis of Generated Code
The Polyspace product family serves as the static analysis toolset for this thesis. It is mar-

keted by MathWorks but technically remains separate from the MAaTLAB/Simulink product

environment. There are two products of interest here. Polyspace Bug Finder performs the

74

4. Methods and Tools 4.2. Verification

bulk of both syntactic and semantic static analysis with hundreds of checks for a wide scope
of issues. Additionally, compliance of the analyzed code to industry coding standards can be
checked [36]. Polyspace Code Prover complements this with sound semantic analysis using
abstract interpretation. The analysis thus has a less wide scope but achieves a higher degree
of certainty [37]. Both products can analyze code written in C, C++ and Ada, while C++
shall be the focus here. Other products like Polyspace Access are out of scope for this thesis.

Overall, Polyspace is found to offer the following options to be run.

« Graphical user interface: Polyspace analyses and results are organized in projects. These
can be configured from the graphical user interface. Scope of the analysis, files to be
included and any customizations can be defined here. Analysis results are stored in
a proprietary file format per default. For this thesis, the graphical user interface is

mainly useful in reviewing results for confirmation.

« Integration: To simplify the workflow for verification of code generated from models,
Polyspace can be integrated with MATLAB/Simulink. There, an API allows to configure
and run analyses programmatically. As this represents the use case investigated here,

this approach is further investigated below.

« Command line: Polyspace can also be fully configured and run programmatically from
the command line. This approach should be considered in case of issues with the afore-

mentioned approach.

The integration is performed with a dedicated setup function. This function accepts instal-
lation directories differing from the default and further options. Integration across release

versions is possible but results in limited functionality [36].

% Integrate Polyspace with Matlab/Simulink

> polyspacesetup('install');

After successful integration, there appear to be three approaches to run a Polyspace analysis
from MATLAB programmatically that exist independently of each other. The syntactically
easiest is using the dedicated pslinkrun function. It accepts a model or system name and a
configuration object created by the pslinkoptions function. This function in turn accepts
one of three Simulink object types, which defines the configuration options of the analysis.
This way, a default configuration for either a generic code generator, a Simulink model or a S-
function can be obtained. The options object has around 20 properties relating to the analysis

itself, results export, additional files, data ranges and specifics to the code generator [36].

75

4.2. Verification 4. Methods and Tools

These represent only a simplified subset of the full configuration potential of a Polyspace
analysis. An analysis is run as shown below assuming that code has been generated prior to

the analysis.

% Load Simulink model
model = 'Controller';

load_system(model) ;

% Create configuration object

. options = pslinkoptions(model);

% Configure analysis
options.VerificationMode = 'BugFinder';

options.VerificationSettings = 'PrjConfig';

> % Run analysis

[polyspaceFolder, resultsFolder] = pslinkrun(model,options);

Note that the VerificationSettings property for example does not allow for the inclusion
of C++ specific standards in the analysis. Apart from the default ’PrjConfig’ option, there
are only options to include standards specific to C. This approach therefore is insufficient for

the verification purposes of this thesis.

A more flexible approach is using the dedicated polyspaceBugFinder and polyspaceCodeProver
functions. These are more versatile: With the proprietary .psprj project file as input argu-
ment they open the project, and with the analysis results files . psbf and .pscp respectively
they open the results in Polyspace. With an options object as an input argument they run the
respective analysis. This options object is an instance of the polyspace.BugFinderOptions
class and can be configured similarly to the approach before [36]. In the following example,

the sources, include folders and results directory are set manually.

% Create options object

: options = polyspace.BugFinderOptions;

% Set source file, include folders and results directory manually

options.Sources = {fullfile(pwd, 'sources', 'source.cpp')l};

, options.EnvironmentSettings.IncludeFolders = {fullfile(pwd, 'sources')l};

7 options.ResultsDir = fullfile(pwd, 'results');

76

4. Methods and Tools 4.2. Verification

% Run specified analysis

polyspaceBugFinder (options) ;

% Open analysis results

; polyspaceBugFinder('-results-dir', options.ResultsDir);

At the time of writing there is insufficient documentation on the polyspace.BugFinderOptions
class to fully understand its use. A better documented approach is using the polyspace.Project
class. Instances of this class have a Configuration property to customize the analysis, a
run method to execute the analysis and a Results property that contains the results as a

polyspace.BugFinderResults or polyspace.CodeProverResults object respectively [36].

The polyspace.Project.Configuration property itself has 133 properties that in part ap-
ply to both or either of the analysis types. Reviewing the documentation, they seem to be

structured using intermediate properties to group settings that are related [36].

« The general configuration properties contain settings related to the analysis environ-
ment, constraints on variables, report generation, multitasking and target compiler
information. They are grouped in the intermediate properties EnvironmentSettings,

Multitasking, TargetCompiler etc.

+ The configuration properties for a Bug Finder analysis mainly relate to the scope of
checks, coding standards to be included and metrics to collect. They are grouped in

the intermediate properties BugFinderAnalysis and CodingRulesCodeMetrics.

+ The configuration properties for a Code Prover analysis specify various verification
assumptions and precision aspects of the analysis and are grouped in intermediate

properties such as ChecksAssumption, CodeProverVerification, Precision etc.

When the analyzed code was generated from a Simulink model, it is possible to automate
the configuration using the polyspace.ModelLinkOptions class. An instance of this class
can be associated with the model that the code is generated from. Thereby, the Simulink
model configuration parameters are used to determine a subset of the Polyspace configuration
object properties [36]. This for example sets the target compiler, source and include files or
whether a main function is included in the code. Remaining configuration properties take
their default values and can be modified afterwards. The model must be loaded in Simulink
and code must have been generated from it. The association command then uses Embedded

Coder and enables the generation of a linksData.xml file. The presence of this file in the

77

4.2. Verification 4. Methods and Tools

result directory allows to trace locations of issues in the code back to the corresponding

location in the model via hyperlinks in the Polyspace user interface.

Alternatively, the paths to the code can be defined manually analogous to the last listing
above. This results in missing code-to-model traceability when the code was generated from
a model and no linksData.zxml file is present in the result directory. This way however the

same programmatic approach can be extended to the analysis of handwritten code.

The correct configuration can and should be validated using the .log file that is created
with every analysis, where every analysis setting is listed explicitly. This is important as in
some cases Code Prover analyses were found to produce inconsistent results, which could be
traced to incorrect manual configurations. The automated configuration promises to be less
error-prone and is therefore preferred. The following listing includes a Polyspace analysis

run with the polyspace.Project class.

% Create Polyspace project
project = polyspace.Project;

% Create configuration object associated with model

configuration = polyspace.ModelLinkOptions(model);

7 % Associate project Configuration property with this configuration object

project.Configuration = configuration;

% Specify some additional settings

project.Configuration.BugFinderAnalysis.ChecksUsingSystemInputValues = true

: project.Configuration.BugFinderAnalysis.SystemInputsFrom = 'all';

% Run analysis

status = run(project, 'bugFinder');

7 % 0Obtain results and summary

results = project.Results;

summary = getSummary(results, 'defects');

A full Polyspace analysis covers four verification aspects, which are explained in more detail

below.

78

4. Methods and Tools 4.2. Verification

Defects

What MathWorks refers to as defect checking is executed by Polyspace Bug Finder and repre-
sents the part of the analysis with the widest scope. In the terminology introduced in chapter
2, it includes both syntactic and non-sound semantic static analysis of C/C++/Ada code. As
such, the checks are not able to track the control flow of a program as well as sound seman-
tic analysis methods might be. Due to several assumptions, the analysis is still surprisingly

expressive.

Depending on how global variables are defined, the analysis can conservatively assume an
initialization according to standards and language definitions. For volatile variables, i.e. vari-
ables that might change at any time without an explicit write operation, similar assumptions
are made. A priori, there are also no assumptions for the values of inputs to functions. Er-
rors caused by operations with unbounded variables per default can not be caught by a Bug
Finder analysis. To be flagged as a defect, a variable used in an faulty operation needs to be

bound by an assertion or if statement in the program [36].

These assumptions are intended to lower the rate of false positive defect findings but con-
versely might lead to some false negatives. For several checks, Bug Finder therefore offers
the option to run a more exhaustive analysis where all values of variables or function inputs
are considered. The listing above includes the necessary commands for this as an example.
MathWorks makes no claim about the reliability of these extended analyses other than that

they are still not as exhaustive as a sound formal analysis [36].

The preconfigured defect checks can be divided in 15 groups with different verification ob-
jectives. A review of those has been documented in table 4.9. Even given the limitations, it
becomes apparent how just the defect analysis alone can already provide a substantial degree

of confidence in software quality.

The aforementioned Configuration property of the polyspace.Project class has an in-
termediate BugFinderAnalysis property that applies to running Bug Finder analyses. Its
CheckersPreset property accepts a >default’ setting that applies a predefined set of checks,
while ’all’ applies all available defect checks and ’custom’ enables to configure the checks
to be run. In that case, a defect options object needs to be passed to the the CheckersList
property. This object is instantiated with the polyspace.DefectsOptions class, in which all

defects are listed as Boolean properties and need to be set to true to be enabled [36]. For an

79

4.2. Verification 4. Methods and Tools

analysis with custom checks, the following code would need to be added to the analysis run

with the polyspace.Project class.

% Create defects options object

: defects = polyspace.DefectsOptions;

% Enable some arbitrary checks

s defects.INT_ZERO_DIV = true;
; defects.INT_OVFL = true;
7 defects.BITWISE_NEG = true;

% Extend configuration
project.Configuration.BugFinderAnalysis.CheckersPreset = 'custom';

project.Configuration.BugFinderAnalysis.CheckersList = defects;

Coding Standards

The second verification aspect of Polyspace is the compliance of the analyzed code with
internationally recognized coding standards, which is also covered by Polyspace Bug Finder.
While the software includes checks for a variety of standards, the remarks here focus on

those applicable to C++.

C++ was created in 1979 as “C with Classes” by Bjarne Stroustrup to provide improved pro-
gram organization capabilities yet keep the efficiency and flexibility of the language C. Af-
ter its first commercial release in 1985 it was officially standardized in 1998 with ISO/IEC
14882:1998. It received a minor revision with ISO/IEC 14882:2003. The thus specified lan-
guage is referred to as C++03 [38].

In 2005, the MISRA C++ Working Group was established after MISRA C had become the pre-
dominant coding standard for safety-critical system programming with C. Its objective was
to formulate a single, generic set of guidelines for the use of C++ in safety-critical systems
that are understandable to the majority of programmers. Various existing guidelines were
gathered, reviewed and extended to produce a subset of the programming language that is
safe to use in critical applications. The resulting standard MISRA C++:2008 is applicable
specifically to C++03 [39].

In 2011, C++ received a major modernization, followed by another minor revision in 2014.

Facing these substantial changes as well as a need to use them in safety-critical systems,

80

4. Methods and Tools

4.2. Verification

Table 4.9.: Polyspace Defect Checks

Group Checks Verification objective

Numerical de- 21 Find faults in numerical operations on integer and floating

fects point data types such as overflow, division by zero, precision
loss or negative shift operations

Static memory 17 Find faults relating to memory allocation at compile-time, such
as out of bound access, null pointer or buffer overflow

Dynamic 8 Find faults relating to memory allocation at run-time, such as

memory invalid or mismatched allocations, deallocations and deletions

Data flow 14 Find faults relating to the flow of information, such as dead
code, infinite loops, uncalled functions and other unused code
constructs

Resource 5 Find faults related to file handling, such as mismatched read

management and write or open and close operations

Programming 75 Find errors resulting from wrong syntax. They contain logical

errors errors, incorrect assertion and error handling, type and declara-
tion mismatches, string and character handling errors and data
handling issues. Defects are classified in high, medium and low
impact categories.

Object- 17 Find errors and unsafe operations resulting from incorrect class

oriented usage, inheritance, encapsulation and related assignments

defects

Exceptions 6 Find issues and errors in exception handling

Concurrency 24 Find faults related to multitasking, such as missing or incorrect
usage of data access synchronization

Security 38 Find security weaknesses in file access, privilege handling,
standard function usage, database queries and more

Cryptography 39 Find weaknesses in the use of cryptographic routines

Tainted data 17 Find instances of unvalidated data usage from unsecure sources
such as external inputs and volatile objects

Good practice 37 Find issues and faults that might indicate logical errors, vulner-
ability or maintainability issues. These issues relate to read-
ability, hard-coding, duplications, macros, bad memory man-
agement or the use of forbidden constructs

Performance 46 Find issues that negatively impact performance such as inad-

vertent operations or inefficient function or variable usage

81

4.2. Verification 4. Methods and Tools

Automotive Open System Architecture (AUTOSAR) updated the MISRA C++:2008 standard.
AUTOSAR C++14 specifies obsolete rules, minor improvents on existing rules as well as
additional rules. It applies to both C++11 and C++14 by detailing which features introduced

in either version may be used or shall not be used [40].

Polyspace Bug Finder includes checks for the majority of rules specified by these standards.
They are activated and configured via the intermediate CodingRulesCodeMetrics property of
the polyspace.Project.Configuration property. For the example of MISRA C++:2008, the
property EnableMisraCpp activates the checks while the property MisraCppSubset specifies
the scope. Apart from the default ’required-rules’, all-rules’ as well as other standard-
specific subsets can be activated. Alternatively, the property accepts a coding rules options
object instantiated with the polyspace.CodingRulesOptions class, which allows to create a
custom list of coding rules [36]. To customize coding standard checks, the following code
would need to be included in an analysis run with the polyspace.Project class. Note that
EnableCheckersSelectionByFile has to be enabled, since the analysis internally uses an
XML file to enable the coding rule checkers.

% Create coding rules options object

> rules = polyspace.CodingRulesOptions('misraCpp');

% Disable some arbitrary check

rules.Section_1_General.rule_1 _0_1 = false;

7 % Extend configuration

project.Configuration.CodingRulesCodeMetrics.EnableMisraCpp = true;
project.Configuration.CodingRulesCodeMetrics.MisraCppSubset = rules
project.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile =

true;

Apart from the two introduced standards, Bug Finder also includes the Joint Strike Fighter
Air Vehicle (JSF AV) C++ as well as the SEI CERT C++ standards. With respect to C, there
are several further standards included, which however all fall beyond the scope of this thesis
[36].

It should be noted that C++17 received further refinements and simplifications with ISO/IEC
14882:2017. To account for these changes as well as the increased use of automatic tools in
development and verification, MISRA has released the MISRA C++:2023 standard. It incor-
porates the AUTOSAR guidelines and provides better decidability for its rules, specifically so

82

4. Methods and Tools 4.2. Verification

that static analysis can achieve greater coverage [41]. The guideline is included in Polyspace
releases 2024a and later [36].

Code Metrics

Lastly, Polyspace Bug Finder is able to collect statistical data about the analyzed program
[36]. These are trifold:

« Project metrics relate to size and number of function calls in a project.
« File metrics relate to comment density and interdependency of functions in a file.

« Function metrics relate to comment density, complexity and used variables.

These metrics alone do not present decidable criteria for the evaluation of software qual-
ity. However, the Hersteller Initiative Software (HIS) has developed recommended upper
levels for these metrics which can be used as criteria for analysis checks. Metrics collec-
tion is activated with the CodeMetrics and threshold checking with the Guidelines prop-
erties within the Configuration.CodingRulesCodeMetrics property. Alternatively, custom
thresholds are provided via an XML file [36].

Run-Time Errors

What MathWorks refers to as run-time error detection corresponds to sound semantic anal-
ysis executed by Polyspace Code Prover using abstract interpretation. In principle, the tool
is operated similar to Bug Finder, with a number of predefined checks that are evaluated
autonomously. However, as the analysis method generates a much more elaborate represen-
tation of the semantics of the analyzed program, it is not surprising that there are differences

in the details of configuration.

Generally, the analysis is set up within the CodeProverVerification intermediate property
of the polyspace.Project.Configuration property. For example, the classes and meth-
ods that are of interest for the analysis can be specified and characterized more closely.
Also, the tool needs to be instructed whether it shall use a main function within the an-
alyzed program, ignore it, or generate one if none is provided. In case of the latter, fur-
ther customization with respect to variable initialization and function calls is possible. The

checks and associated assumptions are controlled individually via the ChecksAssumption

83

4.3. Automation 4. Methods and Tools

Table 4.10.: Polyspace Run-Time Error Checks

Group Checks Verification objective

Data flow 8 Find errors relating to the flow of information such as un-
called or unreachable functions and code or uninitialized
pointers or variables

Numerical errors 5 Find errors in arithmetic operations such as division by zero,
overflow, subnormal results and invalid shift operations

Static memory 3 Find errors relating to memory allocation at compile-time
such as out of bounds array access

Control flow 2 Find control flow errors such as non-terminating loops

C++ specific er- 5 Find errors related to invalid C++ specific operations, incor-

rors rect object oriented programming or uncaught exceptions

Further checks 8 Find errors specific to C/C++ standard libraries and AU-
TOSAR libraries

property. The Code Prover analysis can be further customized using the Precision, Scaling

and VerificationAssumption properties [37].

While these properties all have default values, they are just as important as the general analy-
sis settings with respect to environment, target compiler etc. Setting up the analysis requires
good knowledge about the program that is analyzed. Other properties are only described
vaguely by MathWorks as e.g. “certain verification approximations” or generic “precision
level” [37]. Their impact would rather need to be evaluated experimentally. Within the
scope of this thesis, it is therefore preferred to obtain the analysis settings from the model

configuration parameters using the polyspace.ModelLinkOptions class introduced above.

An overview of the available checks in Polyspace Code Prover is presented in table 4.10.
They have a more narrow scope than the sets of checks introduced so far, but as described

in section 2.4 correspond to a much more rigorous analysis.

4.3. Automation

It has been shown so far that there already exists extensive support for the programmatic use
of MathWorks verification software. This is a main prerequisite for effectively automating

the introduced tools. Another cornerstone is setting up the remote repository to support the

84

4. Methods and Tools 4.3. Automation

automated execution of tasks. Here, this is done by first setting up a GitLab runner that is
available to the example project and then configuring a CI/CD pipeline for this project that

contains the desired verification steps.

For the evaluation purposes here, it is sufficient to set up a local computer as runner using
the shell executor, by which MATLAB is executed in batch mode. The general idea of file-
based results exporting and evaluation for CI that is used hereafter has been taken from an

example on Simulink integration with the CI/CD software Jenkins [42].

4.3.1. Code Analyzer

Instead of solely relying on the command line output returned by the checkcode function,
a better evaluation of Code Analyzer results in the context of a GitLab pipeline would be
preferable. GitLab natively supports the processing of static analysis results with its Code
Quality feature. For that, the results must be provided in a JavaScript Object Notation (JSON)
file formatted according to a variation of the standardized Code Climate report format. The
file format JSON is typically used for the transfer of structured data, and Code Climate re-
quires a single JSON array in which every object corresponds to an issue found in the code

[11]. The general structure is shown in the listing below.

{
"description": "This is a description of a check.",
"check _name": "Name of check",
"severity": "minor",
"location": {
"path": "directory/file.m",
"lines": {
"begin": 42
}
}
b

The Code Analyzer does not provide exporting capabilities, but the creation of a file in this
format can be accomplished fully within MATLAB. A structure array that represents this for-
mat can be created in MATLAB and populated with the analysis results provided by checkcode.
MATLAB’s jsonencode can be used to write the structure array to a JSON file, which is then

made available to GitLab as an artifact.

85

4.3. Automation 4. Methods and Tools

After writing the file, the pipeline could terminate as failed in case Code Analyzer issues
have been found. This is easily implemented, as GitLab automatically evaluates exit codes
returned by applications run in a pipeline. For exit codes other than 0, the job in which it
was returned per default terminates as failed [11]. MATLAB can deliberately be terminated
with an exit code using the quit or exit functions. This terminates the session, which then

is evaluated by GitLab and terminates the associated job as failed.

4.3.2. Model Advisor

Better capabilities to evaluate the Model Advisor check results would be desirable too. To
that end, the display of check results in the GitLab graphical user interface (GUI) and the

deliberate termination of a pipeline job in case of a failed check are introduced.

GitLab natively has the ability to process test results that are specified in Extensible Markup
Language (XML) files following the JUnit format specification. JUnit is the testing framework
for the programming language Java, but its specifications meanwhile have been adopted
more broadly [43]. As the Model Advisor check results are already obtained as checkResults
object inside MATLAB, it is convenient to further process them there. MATLAB provides an
interface for operating on xml files with the com.mathworks.xml.XMLUtils class. It grants
access to the programming language Java’s API for xml processing [6]. Part of this in turn
is the Document Object Model (DOM) API, which provides the basis for all document oper-
ations in this context. A document is represented as a tree structure, where the document
object itself is the root and associated objects are nodes. Foundational objects are elements,
which in turn might have attributes. The API provides the required methods to manipulate
all of those objects [44].

In practice, this means that a Java XML document object is created with the createDocument
method. The root element of this document is referenced to a variable, which allows to
create and append further elements using the createElement and appendChild methods.
With further operations and associated methods such as the setting of attributes, stepwise
the document is created. The document object is then written to an actual XML file with

MATLAB’s xmlwrite function. The following listing contains a simple example.

document = com.mathworks.xml.XMLUtils.createDocument ('root');

: root = document.getDocumentElement;

; child = document.createElement('child');

child.appendChild(document.createTextNode('text'));

86

S5

6

4. Methods and Tools 4.3. Automation

root.appendChild(child);

xmlwrite (document)

Using this class, the challenge now is to write the content of the checkResult object obtained
from a Model Advisor run into the JUnit XML structure [43]. It is shown in its very basic

form in the following listing.

<?xml version="1.0" encoding="UTF-8"7>
<testsuite name="TestSuite" tests="2" failures="1" errors="0">
<testcase name="Test Case 1"/>
<testcase name="Test Case 2">
<failure message="Test failed"/>

</testcase>

; </testsuite>

After writing the file, the pipeline should also terminate as failed if a Model Advisor check

fails. This can be implemented with the same approach as discussed in section 4.3.1.

4.3.3. Simulink Test

To make Simulink Test result output compatible with CI systems, test files can be run with
MATLAB Unit Test. The implementation therefore resembles the approach described in sec-
tion 4.2: From a Simulink Test test file, a test suite and a test runner are created, which is then
customized with the required plugins. These can originate from either Simulink Test with
the sltest.plugins or MATLAB Unit Test with the matlab.unittest namespace. The fol-
lowing listing is a minimal example and includes and adds the TestManagerResultsPlugin

which is required to make Test Manager results available to MATLAB Unit Test.

% Import necessary classes

import matlab.unittest.TestRunner

; import matlab.unittest.TestSuite

import sltest.plugins.TestManagerResultsPlugin

% Create test suite and test runner

; suite = testsuite('SimulinkTest.mldatx');

runner = TestRunner.withNoPlugins;

87

4.3. Automation 4. Methods and Tools

% Add Test Manager Results plugin
tmrPlugin = TestManagerResultsPlugin;

: runner.addPlugin(tmrPlugin) ;

% Run test suite

results = runner.run(suite);

The goal then is to find a way that provides meaningful results in CI systems. This should
entail test reports that can be processed by GitLab such as JUnit XML files as well as human-
readable formats. Further, the achieved test coverage should at least be collected and ideally

also be exported and displayed as a result.

4.3.4. Polyspace

Due to limitations mainly in the reporting features of MATLAB’s polyspace.Project class,
it was decided to execute Polyspace in the pipeline using shell commands. At the cost of
having to find a solution for interfacing with the MaTLAB/Simulink environment, access to
the full configuration and reporting capabilites of Polyspace is provided this way. For code
generated from a Simulink model, MATLAB’s polyspacePackNGo function mostly automates
this process. The function receives a model name as input argument and automatically ex-
tracts a Polyspace analysis configuration from it [10]. This requires the model configuration
parameters to be set accordingly, which however already was a prerequisite for using the
slbuild function. If s1lbuild was configured to pack the generated code in an archive file,
polyspacePackNGo adds the analysis configuration to that same archive. When further con-
figuration e.g. related to the analysis assumptions is required, polyspacePackNGo accepts the

Polyspace options object introduced in section 4.2.6 as a second input argument [36].

Due to the many configuration options, Polyspace accepts an options file, a text file that
substitutes providing the same information in an otherwise possibly very lengthy shell com-
mand. polyspacePackNGo saves the configuration in such an options file, which means that a
Polyspace analysis can be executed without further adjustment in the environment that the
generated code is deployed to. In practical terms, this requires to append the code generation

commands from section 4.2.5 as shown in the following listing.

% Load Simulink model

model = 'Controller';

88

4. Methods and Tools 4.3. Automation

5 load_system(model) ;

% Set parameter for code generation

, set_param(model, 'GenCodeOnly', 'on');

7 set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on');

% Generate code and Polyspace options file
slbuild(model)
zipFile = polyspacePackNGo (model)

Afterwards, the generated archive can be deployed and unpacked. Then Polyspace can be
executed in the pipeline using shell commands. The operation is completed with a few lines
as shown in the following listing. The generated options file in the polyspace subdirec-
tory of the archive contains all information so that Polyspace can be called from there. In
the example, Polyspace Bug Finder is executed with additional checks for MISRA C++:2008

compliance and metrics collection.

7z x Controller.zip

> cd Controller\polyspace

;s polyspace-bug-finder -options-file optionsFile.txt -misra-cpp -code-metrics

polyspace-results-export -format json-sarif

Last is a a command to export the analysis results in a JSON file in the standardized Static
Analysis Results Interchange Format (SARIF) defined by the Organization for the Advance-
ment of Structured Information Standards (OASIS). Unfortunately, GitLab does not recognize
the SARIF standard yet. As discussed in section 4.3.1, GitLab however supports the process-
ing of static analysis results with its Code Quality feature. The conversion to this format
can also be accomplished within MATLAB. Its jsondecode function is able to parse the file
exported by Polyspace. Then, a structure array can be created and populated just like before.
MATLAB’s jsonencode writes the file, which is then again made available to GitLab as an
artifact for display in the GUL

Lastly, the pipeline should also terminate deliberately if any undesirable check results are
raised. This can be achieved in a similar fashion to before, by terminating MATLAB with an
exit code using the quit or exit functions if issues with certain characteristics are found in

the decoded JSON file.

89

5. Results

The thesis at hand yields results of two kinds. First is the basic framework around the ver-
ification tools that makes them immediately usable. It mostly consists of various wrapper
functions that configure a tool and then execute it via its API. They have been written by
making use of the respective documentation and the official MATLAB generative pre-trained
transformer (GPT) large language model (LLM) [45]. They are concrete, measurable results
and as such described in the remainder of this chapter. Second is the evaluation of strengths
and limitations of the tools that result in a series of recommendations. These are separately

discussed in chapter 6.

In order to make these remarks suitable as independent documentation, some repetition
could not be avoided. Automation is based on a pipeline configuration that runs every tool in
sequence and uploads corresponding artifacts for use in GitLab. It can be found in appendix
A.3. All model functions and supplementary scripts are documented in appendices A.1 and
A4

5.1. MATLAB Code Analyzer

The Code Analyzer analysis is implemented in the function runCodeAnalyzer. It looks for

any MATLAB files in the directory using MATLAB’s dir function and wildcard characters.

2 % Find all MATLAB files

s mFiles = dir('**x/*x.m');

It runs static analysis with the Code Analyzer using its checkcode function and subsequently

displays a message for each file with issues as well as for each issue within those files.

5. Results 5.1. MatLAB Code Analyzer

53 /» Run Code Analyzer analysis on files and display message
5+ 1ssuesFound = false;

55 for k = 1:numel(mFiles)

36 filePath = fullfile(mFiles(k).folder, mFiles(k) .name);
37 messages = checkcode(filePath, '-id', '-struct');
38 if ~isempty(messages)

39 % Display issues

40 disp(['Code Analyzer: Issues found in: ', filePath]);

a for i = 1:numel(messages)

12 lineNum = messages(i).line;

13 colRange = messages(i).column;

44 msgText = messages(i) .message;

15 msgID = messages(i).id;

16 fprintf(' Line %d (Columns %d-%d): %s\n', lineNum, colRange(1),
colRange(end), msgText);

The function writes each issue into a structure array, which is required to later pass the found
issues to the function writeToCodeQuality. To fulfill the required Code Quality formatting,
each issue receives a unique fingerprint which is realized with a counter. A Boolean flag is

used to mark that issues were found.

48 % Create unique fingerprint

19 fingerprint = sprintf('%s_%d', msgID, resultCounter);

50 resultCounter = resultCounter + 1;

51

52 % Append issue details to issues array
53 issue = struct(

54 'description', msgText,

55 'check_name', msgID,

56 'fingerprint', fingerprint,

57 'severity', 'minor',

58 'location', struct(

59 'path', filePath,

60 'lines', struct('begin', lineNum)
62)

63 issues = [issues; issue];

64 end

91

5.1. MatLAB Code Analyzer 5. Results

issuesFound = true;

end

7 end

)

If no issues were found, the function displays an according message. If it did, it passes the
found issues to the function writeToCodeQuality. Finally, it includes an option to exit with

exit code 1 if any issues are found, or code 0 if none are found.

As the issues structure array already has the required formatting, writeToCodeQuality sim-

ply has to encode and write it to a JSON file.

s %» Convert the structure array to JSON text

, jsonText = jsonencode(issues, 'PrettyPrint', true);

s % Write JSON text to the specified file
fid = fopen(filename, 'w');
if fid == -1

error('Cannot open file s for writing.', filename);

> end

5 furite(fid, jsonText, 'char');

fclose(fid);

The full functions can be found in appendix A.2. Declaring the created JSON file as Code
Quality report artifact in the pipeline configuration lets GitLab display the results after run-

ning the associated job as shown in figure 5.1.

92

5. Results 5.2. Simulink Model Advisor

Updated Code Analyzer report generation
@ Passed Kayser, Philipp created pipeline for commit 1cfaggasf [y just now, finished just now

For main

latest €0 1job () 34 seconds, queued for 1 seconds

Pipeline Jobs 1 Tests 0 Code Quality 23

Found 23 code quality issues
This report contains all Code Quality issues in the source branch.

@® Minor - The value assigned here to 'u_f' appears to be unused. Consider replacing it by ~.
in \thrust-controller\models\updateClosedToPressurizing.m:8

@ Minor - Input argument 'P_c_set' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updatePressurizingToClosed.m:1

@® Minor - Input argument 'P_c’' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updatePressurizingToClosed.m:1

@ Minor - Input argument 'r_m_set' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updatePressurizingToClosed.m:1

@® Minor - Input argument 'm_d_o' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updatePressurizingToClosed.m:1

@ Minor - Input argument 'm_d_f* might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updatePressurizingToClosed.m:1

@® Minor - Input argument 'P_c_set' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updateRunningToClosed.m:1

@ Minor - Input argument 'P_c' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updateRunningToClosed.m:1

@® Minor - Input argument 'r_m_set' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updateRunningToClosed.m:1

@ Minor - Input argument 'm_d_o' might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updateRunningToClosed.m:1

@ Minor - Input argument 'm_d_f* might be unused, although a later one is used. Consider replacing it by ~.
in \thrust-controller\models\updateRunningToClosed.m:1

Figure 5.1.: Code Analyzer Results Displayed in GitLab

5.2. Simulink Model Advisor

The Model Advisor analysis is realized with three dependent functions. The function getCheckIDs
returns check IDs for a Model Advisor analysis as a cell array. The cell arrays of all check IDs

are defined with the name of the check as a comment, as shown in the following example.

5 % Define Simulink checks

51 designIDs = {

93

35

309

310

311

312

313

314

315

316

s xmlReportPath

5.2. Simulink Model Advisor 5. Results

'mathworks.design.UnconnectedLinesPorts', ... % Identify unconnected

lines, input ports, and output ports

'mathworks.design.AmbiguousUnits', ... % Identify ambiguous
units in the model

};

This is repeated for the individual check ID groups that have been introduced in chapter 4.
The cell arrays are returned based on what option keyword is passed to the function with a

simple switch case statement.

% Determine which cell arrays to concatenate and return
switch lower (option)
case 'all'
checkIDs = [designIDs, maabIDs, hismIDs, codegenIDs, misralDs];
case 'design'
checkIDs = designIDs;
case 'advisory'
checkIDs = maabIDs;
case 'integrity'
checkIDs = hismIDs;
case 'codegen'
checkIDs = codegenlIDs;
case 'misra'’
checkIDs = misralDs;
otherwise
error('Invalid option.');

end

The function runModelAdvisor runs the given list of Model Advisor checks programmatically
and generates a HTML report. It requires the name of the Simulink model to analyze and the
cell array of Model Advisor check IDs to run provided by the function getCheckIDs. The

analysis is run using the ModelAdvisor.run method.

% Define the report format and path
reportFormat = 'html';

reportName = 'ModelAdvisorReport';

xmlReportName 'ModelAdvisorReport.xml';

fullfile(artifactDir, xmlReportName) ;

94

5. Results 5.2. Simulink Model Advisor

ss /o Run Model Advisor checks

50 checkResult = ModelAdvisor.run(model, checkIDs ,

10 'DisplayResults', 'Details’',
41 'ReportFormat', reportFormat,
a2 'ReportPath', artifactDir,
e 'ReportName', reportName) ;

The function calls the function convertToXML to generate a JUnit-compatible XML results
file. It then also optionally exits with a non-zero code if any checks have failed via a fail flag

array. This way, the function safely performs the evaluation after the results export.

s /o Determine exit code based on check results if activated
w» 1f autEval

50 % Extract SystemResult object

51 systemResult = checkResult{1};

53 % Retrieve array of individual check results and preallocate
54 checkObjs = systemResult.CheckResultObjs;
55 failFlags = false(l, length(checkObjs));

56

57 % Populate failFlags array

55 for i = 1:length(checkObjs)

59 failFlags(i) = strcmp(checkObjs(i).status, 'Fail');
60 end

61

62 % Display a message indicating completion

63 if any(failFlags)

64 disp('Model Advisor: Some checks failed. Exiting with error code
1.');

65 exit(1);

66 else

67 disp('Model Advisor: All checks passed or warnings only. Exiting
with error code 0.');

68 exit (0);

69 end

70 end

95

N}

1N}

)
3

)

39

40

41

42

43

5.2. Simulink Model Advisor 5. Results

The function convertToXML converts the Model Advisor check results into a JUnit-compatible
XML report. First, it obtains the results and initializes the data structure for the later ex-

port.

% Extract SystemResult object from check results cell array

. systemResult = checkResult{1};

% Get array of individual check results from SystemResult

checkObjs = systemResult.CheckResultObjs;

% Initialize XML document
docNode = com.mathworks.xml.XMLUtils.createDocument('testsuites');

testsuites = docNode.getDocumentElement;

5 /» Create a testsuite element with appropriate attributes

, testsuite = docNode.createElement('testsuite');

testsuite.setAttribute('name', 'ModelAdvisorChecks');

;s testsuite.setAttribute('tests', num2str(length(checkObjs)));
» testsuites.appendChild(testsuite);

It then writes the check results in this structure. The test case name is set using the checkName
property. If a check has a warning or failure status a generic message is added, pointing to
the Model Advisor report for details. This is done as the check results object does not contain

this information in the release of MATLAB used for this thesis.

% Iterate over each check result

for i = 1:length(checkObjs)
% Create a test case element for each check result
testCase = docNode.createElement('testcase');
% Use checkName for test case name

testCase.setAttribute('name', checkObjs(i).checkName) ;

% Define a generic message to be used for warnings and failures

message = 'See Model Advisor report for details.';

% If check failed, add a failure element with message
if strcmp(checkObjs(i).status, 'Fail')
failure = docNode.createElement('failure');

failure.setAttribute('message', ['Check failed. ' messagel);

96

48

49

50

51

52

53

54

55

5. Results

5.2. Simulink Model Advisor

testCase.appendChild(failure);

% If check returned a warning, add a systemOut element with message

elseif strcmp(checkObjs(i).status, 'Warn')

systemOut = docNode.createElement ('system-out');

systemQOut . appendChild(docNode.createTextNode (['Check returned a

warning. ' messagel));
testCase.appendChild (systemQOut) ;

end

% Append test case element to testsuite
testsuite.appendChild(testCase) ;

end

The XML file itself is finally written using MATLAB’s xmlwrite function. Again, the complete

functions can be found in appendix A.2. Declaring the written file as JUnit report artifact in

the pipeline configuration enables the results to be displayed like test cases in GitLab as

shown in figure 5.2.

Updated Model Advisor checks
@ Pasced Kayser, Philipp created pipeline for commit 165a4e%h [y 6 minutes ago, finished just now
For main

latest GO 8 jobs (3 6 minutes 18 seconds, queued for 3 seconds.

Pipeline Jobs 8 Tests 39 Code Quality 22

< run-model-advisor

37 tests 0 failures 0 errors 100% success rate 0.00ms
Tests

Suite Name Filename Status Duration Details

Model Advisor Checks Identify unconnected lines, input ports, and output ports @ 0.00ms View details

Model Advisor Checks Check root model Inport block specifications @ 0.00ms View details

Model Advisor Checks Check diagnostic settings ignored during accelerated model reference simulation @ 0.00ms View datails

Model Advisor Checks Check for parameter tunability information ignored for referenced models @ 0.00ms View details

Model Advisor Checks Check for implicit signal resolution @ 0.00ms e —

Model Advisor Checks Check for optimal bus virtuality @ 0.00ms Vs datIE
Model Advisor Checks Check for calls to siDataTypeAndScale() @ 0.00ms e

Figure 5.2.: Model Advisor Results Displayed in GitLab

97

)
®

5.3. Simulink Design Verifier 5. Results

5.3. Simulink Design Verifier

The function runDesignVerifier configures Simulink Design Verifier for design error de-
tection, runs the analysis on the specified model and saves a report with data file. The con-
figuration is done with the design verification options object s1dvOptions and if required

could be adjusted here.

27 % Configure Simulink Design Verifier for design error detection
sldvOptions = sldvoptions;

sldvOptions.Mode = 'DesignErrorDetection’;
sldvOptions.DetectBlockInputRangeViolations = 'off';
sldvOptions.DetectDeadlLogic = 'off';
sldvOptions.DetectDivisionByZero = 'on';

s sldvOptions.DetectInfNaN = 'off';
sldvOptions.DetectIntegerOverflow = 'off';

;5 s1dvOptions.DetectOutOfBounds = 'off';

s s1ldvOptions.DetectSubnormal = 'off';

;7 s1ldvOptions.SaveReport = 'on';

The analysis is run with these options using the sldvrun function.

% Run Design Verifier analysis

[status, files, ~] = sldvrun(model, sldvOptions);

The returned character status is used to discern between suitable messages addressing the
analysis results. Apart from the conventional error exit code, there is a case for an analysis
timeout. The function displays an appropriate message for each case. Finally, a HTML report
as well as an analysis data file is saved. The latter contains the raw model checking traces
that the Design Verifier used.

5.4. Simulink Test

Testing with Simulink Test is implemented in the function runTests. In its final implemen-
tation, the function runs the defined tests using the MATLAB Unit Test framework. The test
files are loaded with the Simulink Test Manager, from which MATLAB Unit Test creates a test

suite and a test runner.

98

2

24

25

«

5

5. Results 5.4. Simulink Test

% Open the test file

'ControllerTests.mldatx';

fullfile(pwd, 'tests', fileName);

fileName
filePath

, sltest.testmanager.load(filePath) ;

% Create test suite from test file
import matlab.unittest.TestSuite

suite = testsuite(filePath);

52 f» Create test runner

; import matlab.unittest.TestRunner

runner = TestRunner.withNoPlugins;

As with any MAaTLAB Unit Test script or function, plugin classes are added that provide the

required reporting capabilities. Here, a PDF and a XML report in JUnit format are created.

; % Add plugin to produce MATLAB Test Report
7 import matlab.unittest.plugins.TestReportPlugin

pdfFile = fullfile(artifactDir, 'TestReport.pdf');
trp = TestReportPlugin.producingPDF (pdfFile);
addPlugin(runner,trp)

% Add plugin to add Test Manager results to Test Report
import sltest.plugins.TestManagerResultsPlugin

tmr = TestManagerResultsPlugin;

s addPlugin(runner,tmr)

7 % Add plugin to create XML results file
s import matlab.unittest.plugins.XMLPlugin

resfile = fullfile(artifactDir, 'TestResults.xml');
plugin = XMLPlugin.producingJUnitFormat (resfile);
addPlugin(runner,plugin)

Simulink Test plugins provide additional coverage collection and reporting capabilities. In
this case, decision coverage is collected and exported to a report in the standardized Cober-

tura format.

% Set coverage metrics to collect

import sltest.plugins.coverage.CoverageMetrics

99

56

58

6(

61

62

5.5. Embedded Coder 5. Results

s cmet = CoverageMetrics('Decision',true);

% Set coverage report properties

import sltest.plugins.coverage.ModelCoverageReport

import matlab.unittest.plugins.codecoverage.CoberturaFormat
rptfile = fullfile(artifactDir, 'TestCoverage.xml');

rpt = CoberturaFormat (rptfile);

; % Create model coverage plugin

import sltest.plugins.ModelCoveragePlugin

s mcp = ModelCoveragePlugin('Collecting',cmet, 'Producing',rpt);

; addPlugin (runner,mcp)

Finally, the test are run using the run method of the matlab.unittest.TestRunner class. The
created artifacts are declared in the pipeline configuration and are accordingly displayed by

GitLab as shown in figure 5.3.

Updated test execution
@ Passed Kayser, Philipp created pipeline for commit £asdd454 [& 5 minutes ago, finished 1 minute ago
For main

latest GO 8 jobs (Y 4 minutes 12 seconds, queued for 1 seconds

Pipeline Jobs 8 Tests 2 Code Quality

< run-tests
2 tests 1 failures 0 errors 50% success rate 40.50s
Tests
Suite Name Filename Status Duration Details
ControllerTests > Equivalence Test Suite Equivalence Test Case ® 19.59s View details.
ControllerTests > Baseline Test Suite Baseline Test Case @ 20.91s View detalls

Figure 5.3.: Test Results Displayed in GitLab

5.5. Embedded Coder

The code generation process is encapsulated in two functions. The function setConfiguration
sets the desired model configuration parameters. The configuration was obtained by running
the script getConfiguration. For clarity, the parameter settings are commented as shown in

the following excerpt.

100

™o

24

5. Results 5.6. Polyspace

% Set parameters for C++ code generation

set_param(model, 'SystemTargetFile', 'ert.tlc'); % System target
file
set_param(model, 'TargetLang', 'C++'); % Select code

generation language

set_param(model, 'GenCodeOnly', 'on'); % Do not execute
makefile when generating code

set_param(model, 'TargetLangStandard', 'C++03 (IS0)'); % Language
standard

set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on'); % Automatically
run packNGo after the build is complete

set_param(model, 'BuildConfiguration', 'Faster Runs'); % Choose a build

configuration defined by the toolchain

After calling setConfiguration, the function generateCode invokes Embedded Coder and

subsequently creates the Polyspace options file.

% Set configuration parameters

. setConfiguration(model) ;

% Generate the code

slbuild(model) ;

% Generate and package Polyspace options files

> polyspacePackNGo (model) ;

5.6. Polyspace

The dedicated functions runPolyspaceBugFinder and runPolyspaceCodeProver execute a
Polyspace analysis from within MATLAB and can be found in appendix A.2. The aforemen-
tioned and more favorable execution with shell commands is described in the pipeline con-

figuration.

For Polyspace Bug Finder, the following pipeline script applies. The generated code archive
is unpacked, where the Polyspace configuration is found in the automatically created op-

tions file. From there, the analysis is started, which in this case includes all Bug Finder

101

5.6. Polyspace 5. Results

checks and the required part of the MISRA C++:2008 rules. The options file contains rela-
tive paths pointing to all required functions. Afterwards, the results are exported to a SARIF
formatted JSON file, which must be converted to the Code Quality format by the function

convertToCodeQuality.

script:

- 7z x ThrustController.zip

- cd thrust-controller\polyspace

- polyspace-bug-finder -options-file optionsFile.txt -checkers all
-misra-cpp required-rules

- polyspace-results-export —-format json-sarif -output-name
bugFinderResults. json

-cd ..\..

- matlab -wait -batch
"convertToCodeQuality(’thrust-controller\polyspace\bugFinderResults. json’,
’bugFinderCodeQuality.json’)"

;7 artifacts:

reports:
codequality:
- bugFinderCodeQuality. json

The OASIS SARIF format is more complex than the Code Quality format. Additionally, the
output files differ slightly in structure between Bug Finder and Code Prover, which leads
to the function convertToCodeQuality being quite comprehensive. The general approach
is however similar to before, where an appropriately formatted structure array is populated
with the found issues and then written to a JSON file. Only this time, the results have to be
decoded from another JSON file beforehand.

; %» Read and decode the input SARIF file

» fid = fopen(inSarifFile, 'r');

s raw = fread(fid, '#*char')';

2 fclose(fid);

sarifData = jsondecode(raw);

% Initialize an empty struct array for the output

53 gitlabFindings = struct('description', {}, 'check_name', {}, 'fingerprint',

{}, 'severity', {}, 'location', {});

102

o~

80

81

5. Results 5.6. Polyspace

In the SARIF format, results are structured in individual runs, which needs to be considered
with an additional for loop. Further, the source JSON file contains a dedicated section listing
the full names associated with the IDs of check rules. As this list is different depending on the
results found in an analysis, it is dynamically stored in a MATLAB Map object to later obtain

the rule names.

; % Build a mapping from rule IDs to rule names

ruleMap = containers.Map;
if isfield(runData, 'tool') && isfield(runData.tool, 'driver') && ...
isfield(runData.tool.driver, 'rules')
for iRule = 1:numel(runData.tool.driver.rules)
thisRule = runData.tool.driver.rules(iRule);
if isfield(thisRule, 'id') && isfield(thisRule, 'name')
ruleKey = strtrim(char(thisRule.id));
ruleMap(ruleKey) = thisRule.name;
end
end

end

After obtaining the paths of the files with issues from the artifacts section in the source file,
the actual results can be processed. It was found that decoding a Bug Finder JSON file yields
a cell array, while a Code Prover JSON file does not. To be able to read results from both

tools, this is checked with MATLAB’s iscell function.

7 % Process results

for iRes = 1:numel(runData.results)
if iscell(runData.results) 7% Bug Finder JSON
res = runData.results{iRes};
else J, Code Prover JSON
res = runData.results(iRes);

end

% Extract description message
if isfield(res, 'message') && isfield(res.message, 'text')

descriptionText = strtrim(char(res.message.text));

else
descriptionText = '(No message provided)';

end

103

82

83

84

85

86

5.6. Polyspace 5. Results

% Extract rule ID and look up rule name
if isfield(res, 'ruleId')
ruleld = strtrim(char(res.ruleld));

if isKey(ruleMap, ruleld)

checkName = ruleMap(ruleld);
else

checkName = ruleld;

end

else
ruleld = 'unknown_rule';
checkName = 'unknown_rule';

end

The same has to be considered for determining the file paths. With these prerequisites, the
fields description, check_name and location for the target Code Quality JSON file can be
populated. The field fingerprint is again realized with a counter, and for severity the

helper function mapSeverity is used.

The function mapSeverity per default returns the severity ’info’. For Bug Finder, the type
of defect is used for the severity classification, which is stored in the metaFamily property.

For Code Prover, the color of the issue is used instead.

% Use metaFamily mapping for Bug Finder
if ~isempty(metaFamily)
switch metaFamily
case 'Defect'
severity = 'major';
case 'Coding Rule'
severity = 'minor';

end

% Use color mapping for Code Prover
elseif ~isempty(color)

switch color

case 'RED'

severity = 'critical';
case 'GRAY'

severity = 'major';

104

5. Results 5.6. Polyspace

47 case 'ORANGE'
a8 severity = 'minor';
49 end

With the returned severity string, convertToCodeQuality can write the JSON output.

156 /% Encode results to JSON

17 jsonOut = jsonencode(gitlabFindings, 'PrettyPrint', true);
138

13 % Write JSON output

1w fid = fopen(outGitlabFile, 'w');

i fwrite(fid, jsonOut, 'char');

2 fclose(fid);

Optionally, the function can also quit with exit code 1 and terminate the job as failed if
any found result has >critical’ severity. Declaring the created file as Code Quality report
artifact in the pipeline configuration lets GitLab process and display the findings as shown

in figure 5.4.

Included Bug Finder results

@ Passed Kayser, Philipp created pipeline for commit 69c4%eh4 [fy 2 minutes ago, finished just now

For main

latest €0 7 jobs (D 2 minutes 21 seconds, queued for 3 seconds
Pipeline Jobs 7 Tests 0 Code Quality 78

Found 76 code quality issues
This report contains all Code Quality issues in the source branch.

¥ Major - Avoid returning handles to object internals. A client referring to an object of this class and calling this method may medify the associated object contents.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1

Minor - Macro 'MIN_int32_T' does not expand to compliant construct.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

® Minor - Macro 'MIN_int8_T' does not expand to compliant construct.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

Minor - Macro 'MAX_int8_T' does not expand to compliant construct.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

@ Minor - #define should only be used for include guards.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

Minor - #define should only be used for include guards.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

@ Minor - #define should only be used for include guards.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

Minor - Macro 'MAX_uint8_T' does not expand to compliant construct.
in [thrust-controller/ThrustControllerWithFunction_ert_rtw/rtwtypes.h:1

Figure 5.4.: Bug Finder Results Displayed in GitLab

For Polyspace Code Prover, the entire approach is similar. The results are displayed in GitLab

as shown in figure 5.5.

105

5.6. Polyspace 5. Results

Included Code Prover results

® Passed Kayser, Philipp created pipeline for commit 32518cch [y 3 minutes ago, finished just now

For main

latest €0 7 jobs (3 2 minutes 22 seconds, queued for 3 seconds
Pipeline Jobs 7 Tests O Code Quality 23

Found 23 code quality issues
This report contains all Code Quality issues in the source branch.

©® Info - The section of code is unreachable or the condition is redundant. If-condition always evaluates to false at line 68 (column 8). Block ends at line 88 (column

4
in) [thrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1
©® Info - The section of code is unreachable or the condition is redundant. Switch-expression never evaluates to 1 at line 84 (column 10).
in fthrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1
©® Info - The section of code is unreachable or the condition is redundant. Default switch clause is unreachable. switch-expression at line 64 (column 10).
in fthrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1

©® Info - Function 'memset’ is called with valid argument(s) # Checks on first argument (destination): (ok) Not null. (ok) Is a memory area that is accessible within
the boundary given by the third argument. Actual value of first argument (pointer to void): points at offset 0 in buffer of 8 bytes. Actual value of third argument

(unsigned int 32): 8
in fthrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1

©® Info - Function 'memset’ is called with valid argument(s) # Checks on first argument (destination): (ok) Not null. (ok) Is a memory area that is accessible within
the boundary given by the third argument. Actual value of first argument (pointer to void): points at offset 0 in buffer of 48 bytes. Actual value of third argument

(unsigned int 32): 48
in fthrust-controller/ThrustControllerWithFunction_ert_rtw/ThrustControllerWithFunction.cpp:1

Figure 5.5.: Code Prover Results Displayed in GitLab

106

6. Discussion

Any attempt to automate software verification is only as good as the processes themselves are
defined, accepted and run. To cite Fewster and Graham, “automating chaos just gives faster
chaos” [2]. While it is beyond the scope of this thesis to consider an entire development and

verification process, several contributions in that regard can however be noted.

In their online presence, MathWorks emphasize what can theoretically be achieved with
their software verification products. It is however difficult to get an overview of the applica-
ble prerequisites and constraints. The impression arises that an admirable level of software
quality can be achieved swiftly and user-friendly. Throughout chapter 5, it has been shown
that in fact, automation of every tool under consideration is possible without difficulty just
by following the documentation. The addition of functionality as here in the context of re-
sults evaluation is possible due to MATLAB’s wide scripting possibilities. It should be noted
that, while comprehensive, MathWorks documentation oftentimes does not have the char-
acter of a cohesive user guide. This thesis aims to provide just that with chapters 4 and 5.
With regard to the research question, the answer is different for each tool. More fine-grained

critique depends on the technical details and must be given individually.

In chapter 2 it was shown that the expressiveness of static analysis completely depends on
the preconfigured checks a tool offers. The Code Analyzer is the only option with respect to
static analysis of MATLAB code. As was shown in table 4.3, the tool provides a basic level of
software quality for general MATLAB applications but falls short when it comes to production
code generation. The tool alone is generally not sufficient for software verification with
respect to correctness. As it is easy to integrate in a development and verification process, the
recommendation here is to apply it nevertheless as an additional early layer that improves
code quality. Apart from the justification of individual issues, global configuration of the
analysis can be done programmatically if needed, which promises to make the tool flexible

and unobtrusive in its use [6].

6. Discussion

With the Model Advisor, MathWorks provides static model analysis capabilities at a deep
semantic level. Simulink Check is an inevitable addition to use the Model Advisor consis-
tently in a verification process, both because of the programmatic access and the compliance
checks the product provides. These checks serve as a benchmark for a basic level of model
quality and the Model Advisor in that regard is again without any alternative. With respect
to software correctness, the tool must inevitably be complemented by additional measures
further downstream in the development and verification process. As can be seen in tables 4.5
to 4.8, the checks encompass breadth over depth. Various industry standards are included
but not fully covered. Achieving full compliance to one of the standards would be associ-
ated with considerable manual work either way. Additionally, none of the standards pertain
to spacecraft systems directly. NASA published a set of guidelines for modeling with MAT-
LAB/Simulink that was developed and applied during the development of the Orion GNC
algorithms and flight software [20]. The starting point were the MAB guidelines, additional
rules and custom checks were added over time from learnings of the development process.
The recommendation here is to follow the same procedure and to first apply the MAB guide-
lines and then to customize them with the Orion GNC MATLAB/Simulink Standards as tem-

plate.

With respect to model checking, a general advantage is that the accurate modeling of a sys-
tem can already lead to the discovery of ambiguities and inconsistencies in a specification.
A verification with model checking on the other hand is only as good as the model of the
system [5]. Simulink Design Verifier adds to that limitation in its attempt to make model
checking compatible with any Simulink model. Compared to how versatile a verification
with model checking theoretically can be, the preconfigured checks of the Design Verifier
are rather limited. While custom properties can be modeled as assertions, the degree of elab-
oration that LTL and CTL formulae offer are superior. A case study conducted at the Univer-
sity of Konstanz demonstrated that this restriction considerably limits the tools usefulness
in real-world scenarios. For the properties that could be modeled as assertions, the stan-
dalone model checker SPIN concluded the analysis orders of magnitude faster than Simulink
Design Verifier. Scaling the analyzed model further amplified this discrepancy [46]. When
applied to feedback control systems, compatibility issues with Simulink were found to make
the analysis unpredictable which might lead to low acceptance of the tool among developers.
This is only reinforced by the fact that static analysis tools provide the same error detection
capabilities at source code level with much more detailed context. At this time, the tool can
therefore not be regarded suitable for the verification of GNC systems. The recommenda-

tion here is to investigate if an applicable scenario can be found where root level signals of a

108

6. Discussion

model can be consistently limited to a finite range and a Design Verifier analysis can be run
robustly without timeout and compatibility issues. Based on the results of this thesis, it has

to be expected that this might not be possible.

Simulink Test was first and foremost found to be an interface for functionality that is already
provided by Simulink and Embedded Coder. In that regard, a main benefit of the tool is the
Test Manager which makes structured test authoring and management easy. The added value
of the tool towards verification however depends mostly on the quality of the tests written
for it, which can be facilitated but not substituted by the tool. Nevertheless, Simulink Test
can be considered a valuable supplement to MATLAB Unit Test mainly due to its aptness for
integration in a CI workflow. In particular, the intuitive definition of tolerance bands, the
ease of SIL testing and the coverage metrics collection were found to be promising features —
with especially the latter being of importance in the verification for correctness. With respect
to the research question, the Simulink Test can be regarded as suitable, however under the
condition that it is used adequately. The recommendations here is to use it for automated

integration and SIL testing in conjunction with unit testing with MATLAB Unit Test.

At the time of writing, there are more than 300 reported bugs related to incorrect code gen-
eration with Embedded Coder in the MATLAB/Simulink release used for this thesis [29]. In
the development and verification process, these are added to the bugs inherent to the source
code compiler (cf. figure 4.13). This fact undermines any verification results that was pro-
vided prior to code generation and emphasizes the importance of static analysis later in the
process. As table 4.9 shows, a Polyspace Bug Finder analysis is rather comprehensive. In com-
parison, the Clang static analyzer for example features around 100 non-experimental checks
and can check compliance with one coding standards (SEI CERT C with experimental checks)
[47]. With around 190 checks, the static analysis tool cppcheck is more comprehensive but
does not consider coding standards [48]. This comparison of course does not consider the
quality of the checks, but semantic configuration options like the Polyspace tools offer are
at the time of writing not documented for both. As the added value of a consistently applied
Polyspace analysis stands out among all tools considered for this thesis, the recommenda-
tion here is to prioritize the integration of Polyspace Bug Finder into the development and
verification process. With the methods presented in chapter 4 the configuration of the anal-
ysis can be created largely automated and reused for Polyspace Code Prover. In order not to
obstruct the existing continuous integration workflows, it is recommended to run the default
set of Polyspace Bug Finder defect checks automated in a pipeline, while coding guideline

compliance checks are run asynchronously.

109

6. Discussion

A static analysis tool is expected to ideally find all defects present in the analyzed code (i.e.
minimize the amount of false negatives) without reporting issue that do not constitute actual
errors (i.e. minimize the amount of false positives). While in this small-scale demonstration,
the reproduction of either in the generated code was not possible, it is difficult to guarantee
the same in industry-scale applications. Static analysis by abstract interpretation provides
the added benefit of a mathematically sound analysis without any false negatives. It was
shown that this is achieved for the sake of completeness and entirely depends on the expres-
siveness of the abstract domain (cf. chapter 2). With this in mind, sound static analysis tools
like Polyspace Code Prover can be regarded as instrumental for software verification with
respect to correctness in any safety-critical application. The recommendation here is to run
Polyspace Code Prover asynchronously and complementary to Polyspace Bug Finder. The
results of these less frequent but more rigorous analyses should then inform the justification

of potential issues reported by Bug Finder’s defect checks.

Evaluation in this context is non-trivial, which is why dedicated benchmark test suites for
static analysis tools exist. The National Institute of Standards and Technology (NIST) Juliet
Test Suite for C/C++ for example contains more than 60 000 test cases that cover around 1
600 types of defects. With these, tool providers can obtain evaluation metrics such as the
rate of true positives — the ratio of true defects recognized by the tool to true defects in the
code — and the rate of false positives — the ratio of false positives to defect-free statements
and expressions in the code. Generally, a low false positive rate in conjunction with a high
true positive rate is desirable. For sound analysis tools, a true positive rate of 1 is a functional
requirement and the false positive rate is the primary metric [13]. It should be noted that
MathWorks does not report these metrics for the Polyspace analysis tools, which is why a
qualified answer regarding their evaluation with respect to other tools can not be given at
this time. The recommendation here is to consider a detailed comparison with competing
tools at a future point in time. The static analysis tool Astrée for example was evaluated to
satisfy the rigorous Ockham Sound Analysis Criteria and is even used for the verification of
the aforementioned Juliet Test Suite for C/C++ [49].

110

7. Conclusion and Outlook

In conclusion, it can be stated that the presented suite of tools is overall well suited for the
verification of flight software in the context of GNC systems with respect to correctness. It
was discussed in detail that this suite is neither complete nor that tools fulfill this statement
individually. But reflecting on the introductory statement that software should be assumed

to be faulty until demonstrated otherwise, MathWorks provides the means to do just that.

Comprehensive semantic analysis of source code in conjunction with abstract interpretation
is the cornerstone of this verification approach. The tool suite does not substitute testing,
but complement it. Only model checking was found to be unsuitable, all other tools employ
techniques that directly or indirectly raise software quality. This comes at a significant pric-
ing, so the investigation should not be seen as concluded here. In fact, comparable theses

consider one tool in isolation and conduct appropriate case studies [46], [50].

Looking forward, Code Analyzer and Polyspace Bug Finder can already be implemented
in project context. In parallel, use cases for Simulink Test can be identified and first test
cases written. In the mid-term, a tailored configuration of static analysis checks should have
been created, which can then be used to include an automated evaluation of analysis results.
Polyspace Code Prover would be run asynchronously but regularly by designated developers.
More test cases for Simulink Test would have been created by then and can be implemented
in pipelines, possibly extending to SIL testing. In the long term, a more profound evaluation
of all tools in project context should exist. These could for example be detailed case studies,
should be more distinct and quantitative than this thesis and take into consideration that
some of the tools have alternatives. Several examples that merit further investigation have
been named in this thesis. In general, the fact that lowering the dependence on MathWorks

products creates new possibilities can also have a positive impact on software quality.

Bibliography

(4]

[5]

J.-L. Lions, Ariane 501 Inquiry Board Report, Jul. 1996.

A. Spillner and T. Linz, Software Testing Foundations, A Study Guide for the Certified Tester Exam.
Rocky Nook, 2021, 1sBN: 9781681988535.

C. Cowell, Automating DevOps with GitLab CI/CD Pipelines, N. Lotz and C. Timberlake, Eds.
Packt Publishing, 2023, 1sBN: 9781803242934.

P. Cousot, “Abstract Interpretation: From 0, 1, to co,” in Challenges of Software Verification.
Springer Nature Singapore, 2023, pp. 1-18, 1SBN: 9789811996016. po1: 10.1007/978-981-19-
9601-6_1.

C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, Massachusetts: The MIT
Press, 2008, 1SBN: 9781435643277.

The MathWorks Inc., Matlab Documentation, Natick, Massachusetts, United States, 2025. [On-
line]. Available: https://www.mathworks . com/help/simulink/index . html (Last ac-
cessed 04/18/2025).

R. Schwarz, D. Kiehn, G. F. Trigo, et al, “Overview of Flight Guidance, Navigation, and Control
for the DLR Reusability Flight Experiment (ReFEx),” 2019. por: 10.13009/EUCASS2019-739.

K. Ogata, Modern Control Engineering. Prentice-Hall, 2010, 1sBN: 9780136156734.

R. C. Dorf, Moderne Regelungssysteme, 10th ed., R. H. Bishop, Ed. Miinchen: Pearson Studium,
2007, 1SBN: 9783863266233.

The MathWorks Inc., Simulink Documentation, Natick, Massachusetts, United States, 2025. [On-
line]. Available: https ://www.mathworks . com/help/simulink/index . html (Last ac-
cessed 04/25/2025).

GitLab Inc., GitLab Documentation, 2025. [Online]. Available: https://docs.gitlab.com/
(Last accessed 05/08/2025).

J. Peleska and W.-1. Huang, Test Automation: Foundations and Applications of Model-Based Test-
ing, Lecture Notes, Nov. 2021.

https://doi.org/10.1007/978-981-19-9601-6_1
https://doi.org/10.1007/978-981-19-9601-6_1
https://www.mathworks.com/help/simulink/index.html
https://doi.org/10.13009/EUCASS2019-739
https://www.mathworks.com/help/simulink/index.html
https://docs.gitlab.com/

Bibliography Bibliography

[13]

[17]

[18]

[19]

J. Herter, D. Késtner, C. Mallon, and R. Wilhelm, “Benchmarking Static Code Analyzers,” Reli-

ability Engineering & System Safety, vol. 188, pp. 336-346, Aug. 2019. por: 10.1016/j.ress.
2019.03.031.

H. Herold, Grundlagen der Informatik, 4th ed., B. Lurz, M. Lurz, and J. Wohlrab, Eds. Miinchen:
Pearson, 2023, 1SBN: 9783863263515.

R. Giacobazzi, I. Mastroeni, and E. Perantoni, “How Fitting is Your Abstract Domain?” In Springer
Nature Switzerland, 2023, pp. 286-309, 1sBN: 9783031442452. por: 10 . 1007 /978-3-031-
44245-2_14.

T. Tantau, The TikZ and PGF Packages, 2025. [Online]. Available: https://pgf-tikz.github.
io/pgf/pgfmanual . pdf (Last accessed 04/17/2025).

W. A. Storm, “A Model Checking Example: Solving Sudoku Using Simulink Design Verifier,”
Lockheed Martin Corporation, 2009.

M. Sheeran and G. Stalmarck, “A Tutorial on Stdlmarck’s Proof Procedure for Propositional
Logic,” in Formal Methods in Computer-Aided Design. Springer Berlin Heidelberg, 1998, pp. 82—
99, ISBN: 9783540495192. por: 10.1007/3-540-49519-3_7.

NASA Engineering & Safety Center, Technical Update 2015, 2015. [Online]. Available: https:
//www . nasa . gov/nesc/knowledge - products /technical - updates/ (Last accessed

04/28/2025).

M. Jackson and J. Henry, “Orion GN&C Model Based Development: Experience and Lessons
Learned,” in AIAA Guidance, Navigation, and Control Conference, American Institute of Aero-

nautics and Astronautics, Aug. 2012. por: 10.2514/6.2012-5036.
V. Hadzilacos, Introduction to the Theory of Computation, Lecture notes, 2007.

C. F. Lorenzo and J. L. Musgrave, “Overview of Rocket Engine Control,” in AIP Conference
Proceedings, vol. 246, AIP, 1992, pp. 446—455. por: 10.1063/1.41807.

Y. C.Lee, M. R. Gore, and C. C. Ross, “Stability and Control of Liquid Propellant Rocket Systems,”
Journal of the American Rocket Society, vol. 23, no. 2, pp. 75-81, Mar. 1953, 1sSN: 1936-9964. DOTI:
10.2514/8.4544.

G. P. Sutton, Rocket Propulsion Elements, 9th ed., O. Biblarz, Ed. Hoboken, New Jersey: John
Wiley & Sons Inc., 2017, 1 p., ISBN: 9781118753651.

H. Coxinho, T. Raposo, and E. Moreno, “Mixture Ratio and Thrust Control of a Liquid-Propellant
Rocket Engine,” 2016.

ArianeGroup GmbH, Orbital Propulsion Fluidic Equipment.

113

https://doi.org/10.1016/j.ress.2019.03.031
https://doi.org/10.1016/j.ress.2019.03.031
https://doi.org/10.1007/978-3-031-44245-2_14
https://doi.org/10.1007/978-3-031-44245-2_14
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://doi.org/10.1007/3-540-49519-3_7
https://www.nasa.gov/nesc/knowledge-products/technical-updates/
https://www.nasa.gov/nesc/knowledge-products/technical-updates/
https://doi.org/10.2514/6.2012-5036
https://doi.org/10.1063/1.41807
https://doi.org/10.2514/8.4544

Bibliography Bibliography

[27]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

[39]

[40]

114

L. Shure and D. Bergstein, Run Code Faster With the New MATLAB Execution Engine, Blog post,
Feb. 2016. [Online]. Available: https://blogs.mathworks.com/loren/2016/02/12/run-

code-faster-with-the-new-matlab-execution-engine/ (Last accessed 04/22/2025).

The MathWorks Inc., Simulink Check Documentation, Natick, Massachusetts, United States,
2025. [Online]. Available: https : //www . mathworks . com/help/slcheck/index . html
(Last accessed 05/06/2025).

The MathWorks Inc., Embedded Coder Documentation, Natick, Massachusetts, United States,
2025. [Online]. Available: https : //www . mathworks . com/help/ecoder/ (Last accessed
05/01/2025).

Software Engineering Institute, SEI CERT C Coding Standard: Rules for Developing Safe, Reliable,
and Secure Systems, 2016.

The MITRE Corporation, Common Weakness Enumeration, 2024.

Motor Industry Software Reliability Association, MISRA C:2012 Guidelines for the Use of the C
Language in Critical Systems, Nuneaton, UK, 2013.

The MathWorks Inc., Simulink Design Verifier Documentation, Natick, Massachusetts, United
States, 2025. [Online]. Available: https://www.mathworks.com/help/sldv/ (Last accessed
04/29/2025).

The MathWorks Inc., Simulink Test Documentation, Natick, Massachusetts, United States, 2025.
[Online]. Available: https://www.mathworks.com/help/sltest/ (Last accessed 04/20/2025).

The MathWorks Inc., Simulink Coder Documentation, Natick, Massachusetts, United States,
2025. [Online]. Available: https : / / www . mathworks . com / help / rtw/ (Last accessed
04/21/2025).

The MathWorks Inc., Polyspace Bug Finder Documentation, Natick, Massachusetts, United States,
2025. [Online]. Available: https://www.mathworks . com/help/bugfinder/index.html
(Last accessed 05/10/2025).

The MathWorks Inc., Polyspace Code Prover Documentation, Natick, Massachusetts, United States,
2025. [Online]. Available: https://www.mathworks.com/help/codeprover/index.html
(Last accessed 04/30/2025).

B. Stroustrup, A Tour of C++ (C++ In-Depth Series), Third edition. Boston: Addison-Wesley,
2023, 299 pp., 1SBN: 0136816487.

Motor Industry Software Reliability Association, MISRA C++:2008 Guidelines for the Use of the
C++ Language in Critical Systems, Nuneaton, UK, 2008.

Automotive Open System Architecture, Guidelines for the Use of the C++14 Language in Critical
and Safety-Related Systems, 2018.

https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
https://www.mathworks.com/help/slcheck/index.html
https://www.mathworks.com/help/ecoder/
https://www.mathworks.com/help/sldv/
https://www.mathworks.com/help/sltest/
https://www.mathworks.com/help/rtw/
https://www.mathworks.com/help/bugfinder/index.html
https://www.mathworks.com/help/codeprover/index.html

Bibliography Bibliography

[41]

[42]

[43]

[45]

[46]

[47]

[48]

Motor Industry Software Reliability Association, MISRA C++:2023: Guidelines for the Use of
C++17 in Critical Systems, Nuneaton, UK, 2023.

J. Frey, Jenkins Simulink Model Advisor, GitHub Repository, 2017. [Online]. Available: https:
//github.com/dapperfu/Jenkins-Simulink-Model-Advisor (Lastaccessed 04/23/2025).

S. Bechtold, S. Brannen, J. Link, et al., JUnit 5 User Guide, 2025. [Online]. Available: https :
//junit.org/junits/docs/current/user-guide/ (Last accessed 05/11/2025).

Oracle, Java Document Object Model Interface Documentation, 2020. [Online]. Available: https:
//docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html (Last
accessed 04/16/2025).

The MathWorks Inc., The Official MATLAB GPT by MathWorks, 2025. [Online]. Available: https:
//chatgpt.com/g/g-QFTjbeK3U-matlab (Last accessed 05/05/2025).

F. Leitner-Fischer and S. Leue, “Simulink Design Verifier vs. SPIN - A Comparative Case Study,’
in Participant’s Proceedings of FMICS 2008, ERCIM Working Group on Formal Methods for Indus-
trial Critical Systems, 2008.

LLVM Contributors, Clang Compiler User’s Manual, 2025. [Online]. Available: https://clang.
1lvm.org/docs/UsersManual . html (Last accessed 05/05/2025).

D. Marjamaki, Cppcheck - A Tool for Static C/C++ Code Analysis, 2025. [Online]. Available:
https://sourceforge.net/p/cppcheck/wiki/Home/ (Last accessed 05/04/2025).

P. E. Black and K. S. Walia, SATE VI Ockham Sound Analysis Criteria. May 2020. po1: 10.6028/
nist.ir.8304.

M. Liliegard and V. Nilsson, “Model-Based Testing with Simulink Design Verifier,” M.S. thesis,
Chalmers University Of Technology, Géteborg, Sweden, 2014.

115

https://github.com/dapperfu/Jenkins-Simulink-Model-Advisor
https://github.com/dapperfu/Jenkins-Simulink-Model-Advisor
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://chatgpt.com/g/g-QFTjbeK3U-matlab
https://chatgpt.com/g/g-QFTjbeK3U-matlab
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://sourceforge.net/p/cppcheck/wiki/Home/
https://doi.org/10.6028/nist.ir.8304
https://doi.org/10.6028/nist.ir.8304

20

21

22

23

24

25

26

28

29

A. Appendix

A.1. Model Functions

function [u_o, u_f] = thrustControlFunction(P_c_set, P_c, r_m_set, m_d_o, m_d_f)

h
h

%#tcodegen
% Thrust controller function

DESCRIPTION:
This function is an implementation of the thrust controller as a MATLAB
function. It is designed to be called at each simulation step. The
integral terms are stored in persistent variables so that they
accumulate across time steps.

INPUTS:
P_c_set - Desired chamber pressure
P_c - Measured chamber pressure
r m_set - Desired mixture ratio
m_d_o - Current oxidizer mass flow
m_d_f - Current fuel mass flow

OUTPUTS:
u_o - Control output for oxidizer valve (chamber pressure loop)
u_f - Control output for fuel valve (mixture ratio loop)

% Sample time
Ts = 0.001;

% Controller gains

KpC = 1le-7; % Proportional gain for chamber pressure
KiC = 1le-6; % Integral gain for chamber pressure
KpMR = -0.3; % Proportional gain for mixture ratio

KiMR = -3; % Integral gain for mixture ratio

A. Appendix A.1. Model Functions

31 % Persistent states for the integrators
32 persistent intC intMR

33

34 % Initialize the integrators on the first call
35 if isempty(intC)

36 intC = 0;

37 intMR = 0;

38 end

39

40 %% Chamber Pressure Controller

41

2 % Error

43 eC = P_c_set - P_c;

44

45 % Integrator update

46 intC = intC + eC * Ts;

47

a8 % PI output

49 u_o = KpC * eC + KiC * intC;
50

51 %% Mixture Ratio Controller
52

53 % Compute mixture ratio

54 if m_d_f ==

55 rm = 0;

56 else

57 rm=mdo / mdf;

58 end

59

60 % Error

61 eMR = r_m_set - r_m;

62

63 % Integrator update

64 intMR = intMR + eMR * Ts;

65

66 % PI output

67 u_f = KpMR * eMR + KiMR * intMR;
68

¢ end

1 classdef ThrustControllerStates < Simulink.IntEnumType

2 % Enumeration of controller states

117

<

N

20

21

22

23

24

25

26

27

28

29

30

A.1. Model Functions A. Appendix

enumeration
Closed (0) % Valves fully closed, no control
Pressurizing (1) 7% Bringing chamber pressure up to desired level
Running (2) % Normal operation, both loops active
end
end

function [u_o, u_f] = thrustControlFSM(P_c_set, P_c, r_m_set, m_d_o, m_d_f) Y#codegen
% Thrust controller state machine implementation

o

% DESCRIPTION:

% This function represents a state machine implementation for a thrust

yA controller with persistent variables. Each transition is encapsulated

% in a helper function.

h

% INPUTS:

% P_c_set - Desired chamber pressure

% P_c - Measured chamber pressure

% r m_set - Desired mixture ratio

% m_d_o - Current oxidizer mass flow

% m_d_f - Current fuel mass flow

b

% OUTPUTS:

% u_o - Control output for oxidizer valve (chamber pressure loop)
%o u_f - Control output for fuel valve (mixture ratio loop)

% Persistent variables for the FSM

persistent currentState intC intMR

if isempty(currentState)
currentState = ThrustControllerStates.Closed;
intC = 0;
intMR = 0;

end
% Initialize outputs
uo = 0;

u_f = 0;

% Switch for current state

switch currentState

case ThrustControllerStates.Closed
if P_c_set > 0

118

39

40

41

42

48

50

51

52

60

Appendix A.1. Model Functions

end

% Transition Closed to Pressurizing

[u_o, u_f, currentState, intC, intMR] = ...
updateClosedToPressurizing(P_c_set, P_c, r_m_set,
m_d_o, m_d_f, intC, intMR);

else

% Remain in Closed

[u_o, u_f, currentState, intC, intMR] = ...
remainClosed(currentState, intC, intMR);

end

case ThrustControllerStates.Pressurizing
if P_c_set <=0
% Transition Pressurizing to Closed
[u_o, u_f, currentState, intC, intMR] = ...
updatePressurizingToClosed(P_c_set, P_c, r_m_set,
m_d o, m_d_f, intC, intMR);
elseif abs(P_c_set - P_c) < 0.1 * P_c_set
% Transition Pressurizing to Running
[u_o, u_f, currentState, intC, intMR] = ...
updatePressurizingToRunning(P_c_set, P_c, r_m_set,
m d o, m_d_f, intC, intMR);
else
% Remain in Pressurizing
[u_o, u_f, currentState, intC, intMR] = ...
remainPressurizing(P_c_set, P_c, r_m_set, m_d_o,
m_d_f, currentState, intC, intMR);

end

case ThrustControllerStates.Running
if P_c_set <=0
% Transition Running to Closed

[u_o, u_f, currentState, intC, intMR] = ...

updateRunningToClosed(P_c_set, P_c, r_m_set, m_d_o,

m_d_f, intC, intMR);
else
% Remain in Running
[u_o, u_f, currentState, intC, intMR] = ...
remainRunning(P_c_set, P_c, r_m_set, m_d_o, m_d_f,
currentState, intC, intMR);
end

end

119

A.1. Model Functions A. Appendix

. function [u_o, u_f, newState, intC, intMR] = remainClosed(oldState, intC, intMR)
h#tcodegen

% Controller transition function from Closed to Closed

o

4 % Set new state
5 newState = oldState;

7 % Set output
8 uo = 0;

9 uf = 0;

10 end

i function [u_o, u_f, newState, intC, intMR] = updateClosedToPressurizing(P_c_set,
P c, rm_set, m_d_ o, m_d_f, intC, intMR) Y#codegen

2 % Controller transition function from Closed to Pressurizing

4 % Set new state

5 newState = ThrustControllerStates.Pressurizing;

7 % Set output

8 [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,
intC, intMR);

9 u_o = 0.3;

10 uf = 0.2;

11 end

1 function [u_o, u_f, newState, intC, intMR] = updatePressurizingToClosed(P_c_set,
P c, r_m_set, m_d_o, m_d_f, intC, intMR) %#codegen

2 % Controller transition function from Pressurizing to Closed

) % Set new state
5 newState = ThrustControllerStates.Closed;

7 % Reset integrators
8 % intC = 0; intMR = 0;

10 % Set output
11 u_o = 0;

12 uf = 0;

15 end

i function [u_o, u_f, newState, intC, intMR] = remainPressurizing(P_c_set, P_c,
r_m_set, m_d_o, m_d_f, oldState, intC, intMR) J#codegen

120

9

10

A. Appendix A.1. Model Functions

end

% Controller transition function from Pressurizing to Pressurizing

% Set new state

newState = oldState;

% Set output

[u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,
intC, intMR);

u_o = 0.3;

uf = 0.2;

function [u_o, u_f, newState, intC, intMR] = updatePressurizingToRunning(P_c_set,

end

P c, rm_set, m_d_ o, m_d_f, intC, intMR) Y#codegen

% Controller transition function from Pressurizing to Running

% Set new state

newState = ThrustControllerStates.Running;

% Set output
[u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,
intC, intMR);

function [u_o, u_f, newState, intC, intMR] = remainRunning(P_c_set, P_c, r_m_set,

end

m_d_o, m_d_f, oldState, intC, intMR) Y#codegen

% Controller transition function from Running to Running

% Set new state

newState = oldState;

% Set output
[u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,
intC, intMR);

function [u_o, u_f, newState, intC, intMR] = updateRunningToClosed(P_c_set, P_c,

r_m_set, m_d_o, m_d_f, intC, intMR) J#codegen

% Controller transition function from Running to Closed

% Set new state

newState = ThrustControllerStates.Closed;

121

1

2

22

A.2.

Verification Functions A. Appendix

end

% Set output
uo = 0;
uf = 0;

function [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o,

m_d_f, intC, intMR) Y#codegen

% Control computation function

end

% Gains and sample time

Ts = 0.001;
KpC = le-T7; KiC = le-6;
KpMR = -0.3; KiMR = -3;

% Chamber pressure

eC = P_c_set - P_c;
intC = intC + eC * Ts;
u_o = KpC * eC + KiC * intC;

% Mixture ratio
if m_d_f ==

rm = 0;
else

rm=mdo / md_f;
end
eMR
intMR = intMR + eMR * Ts;
u_f KpMR * eMR + KiMR * intMR;

r_m_set - r_m;

A.2. Verification Functions

function runCodeAnalyzer (autoEval)

122

% Run Code Analyzer on MATLAB files in the directory

b

’% DESCRIPTION

% This function looks for any MATLAB files in the directory and

% checks each for Code Analyzer issues. For each file with issues, it
% displays a message and passes the found issues to the function

% writeToCodeQuality. Optionally, it exits with exit code 1 if any

% issues were found.

A. Appendix A.2. Verification Functions

1 % INPUTS

12 yA autoEval - Option to activate automatic evaluation
13 A

14 % OUTPUTS

15 % none

17 % Define function arguments and defaults
18 arguments

19 autoEval (1,1) logical = false

20 end

21

22 % Find all MATLAB files

23 mFiles = dir('**/*.m');

24 if isempty(mFiles)

25 disp('Code Analyzer: No MATLAB files found.');
2% exit (0);

27 end

28

29 % Initialize array to collect all issues
30 issues = [];

31 resultCounter = 1;

33 % Run Code Analyzer analysis on files and display message
34 issuesFound = false;

35 for k = 1:numel(mFiles)

36 filePath = fullfile(mFiles(k).folder, mFiles(k) .name);
37 messages = checkcode(filePath, '-id', '-struct');

38 if ~isempty(messages)

39 % Display issues

40 disp(['Code Analyzer: Issues found in: ', filePath]);
a1 for i = 1:numel(messages)

2 lineNum = messages(i).line;

13 colRange = messages(i).column;

14 msgText = messages(i) .message;

45 msgID = messages(i).id;
46 fprintf(' Line %d (Columns %d-%d): %s\n', lineNum, colRange(1),
colRange(end) , msgText);

48 % Create unique fingerprint
19 fingerprint = sprintf('%s_%d', msgID, resultCounter);
50 resultCounter = resultCounter + 1;

51

123

59

60

61

62

63

64

65

66

A.2.

Verification Functions

A. Appendix

end

% Append issue details to issues array
issue = struct(
'description', msgText,
'check_name', msgID,
'fingerprint', fingerprint,
'severity', 'minor',
'location', struct(
'path', filePath,

'lines', struct('begin', lineNum)

);
issues = [issues; issue]l;
end
issuesFound = true;
end

end

if ~issuesFound
disp('Code Analyzer: No issues found.');
else
writeToCodeQuality(issues, 'codeAnalyzerCodeQuality.json');

end

% Exit with non-zero exit code if issues were found
if autoEval
if issuesFound
exit(1);
else
exit (0);
end

end

function writeToCodeQuality(issues, filename)

124

% Write Code Analyzer results to Code Quality JSON file

b

% DESCRIPTION

% This function accepts a structure array of Code Analyzer issues
% and writes it to a JSON file.

% INPUTS
yA issues - structure array of Code Analyzer issues
% filename - name of the created results file

19

20

21

22

23

24

25

A. Appendix

A.2. Verification Functions

h
h
h

h

OUTPUTS

none

Convert the structure array to JSON text

jsonText = jsonencode(issues, 'PrettyPrint', true);

% Write JSON text to the specified file

fid = fopen(filename, 'w');
if fid == -1

error ('Cannot open file %s for writing.', filename) ;

end

furite(fid, jsonText, 'char');
fclose(fid);

end

function loadModel (model)

h
h
h
h
h
h
h
A
h
h
b

h

Load model

DESCRIPTION
This helper function adds the model directory to the MATLAB path

and loads the specified model.

INPUTS

model - name of the model to load

OUTPUTS

none

Add path

addpath('models')

b

Load model

load_system(model) ;

end

function checkIDs = getCheckIDs(option)

h
h
h
h
h
h

Get Model Advisor check IDs

DESCRIPTION
This function returns check IDs for a Model Advisor analysis as a

cell array based on the option provided.

125

8

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

38

39

A.2.

Verification Functions

A. Appendix

126

% INPUTS

% option - one of the following:

h all - returns all available check IDs concatenated into one cell
array

% design - returns the base Simulink checks

yA advisory - returns the MathWorks Advisory Board guideline checks
yA integrity - returns the High Integrity Systems Modeling guidelines
checks

yA codegen - returns the code generation checks

yA misra - returns the MISRA compliance checks

b

% OUTPUTS

% checkIDs - cell array of check IDs

b

% NOTES

% To get all check IDs see doc Simulink.ModelAdvisor:
% ma = Simulink.ModelAdvisor.getModelAdvisor (model)
% checks = ma.getCheckAll

% Define function arguments
arguments
option (1,1) string

end

% Define Simulink checks

designIDs = {
'mathworks.design.UnconnectedLinesPorts',

unconnected lines, input ports, and output ports
'mathworks.design.RootInportSpec',

model Inport block specifications

'mathworks.design.ModelRefSIMConfigCompliance',

% Identify

% Check root

% Check

diagnostic settings ignored during accelerated model reference simulation

'mathworks.design.ParamTunabilityIgnored',

parameter tunability information ignored for referenced models

'mathworks.design.ImplicitSignalResolution',
implicit signal resolution
'mathworks.design.OptBusVirtuality',
optimal bus virtuality
'mathworks.design.CallslDataTypeAndScale',
calls to slDataTypeAndScale()

'mathworks.design.DiscreteTimeIntegratorInitCondition',

Discrete-Time Integrator blocks with initial condition uncertainty

% Check for

% Check for

% Check for

% Check for

% Check for

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

A. Appendix A.2. Verification Functions

'mathworks.design.DisabledLibLinks', ... % Identify
disabled library links

'mathworks.design.ParameterizedLibLinks', ... % Identify
parameterized library links

'mathworks.design.UnresolvedLibLinks', ... % Identify
unresolved library links

'mathworks.design.CSStoVSSConvert', ... % Identify
configurable subsystem blocks in the model for converting to variant subsystem
blocks.

'mathworks.design.CheckForProperFcnCallUsage', ... % Check
usage of function-call connections

'mathworks.design.CheckMaskDisplayImageFormat', ... % Check and
update mask image display commands with unnecessary imread() function calls

'mathworks.design.CheckMaskRunInitFlag', ... % Check and
update mask to affirm icon drawing commands dependency on mask workspace

'mathworks.design.DiagnosticSFen', ... % Runtime
diagnostics for S-functions

'mathworks.design.DiagnosticDataStoreBlk', ... % Check if
Read/Write diagnostics are enabled for Data Store blocks

'mathworks.design.DataStoreMemoryBlkIssue', ... % Check Data
Store Memory blocks for multitasking, strong typing, and shadowing issues

'mathworks.design.SLXModelProperties', ... % Check
Model History properties

'mathworks.design.SFuncAnalyzer', ... % Check
S-functions in the model

'mathworks.design.CheckVirtualBusAcrossModelReferenceArgs', ... % Check for
large number of function arguments from virtual bus across model reference
boundary

'mathworks.design.ReplaceZ0HDelayByRTB', ... % Check
Delay, Unit Delay and Zero-Order Hold blocks for rate transition

'mathworks.design.BusTreatedAsVector', ... % Check bus
signals treated as vectors

'mathworks.design.DelayedFcnCallSubsys', ... % Check for
potentially delayed function-call block return values

'mathworks.design.OutputSignalSampleTime', ... % Identify
block output signals with continuous sample time and non-floating point data type

'mathworks.design.MergeBlkUsage', ... % Check
usage of Merge blocks

'mathworks.design.InitParamQutportMergeBlk', ... % Check
usage of Outport blocks

'mathworks.design.DiscreteBlock', ... % Check

usage of Discrete-Time Integrator blocks

127

60

61

63

64

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

A.2.

Verification Functions A. Appendix

128

'mathworks.design.ModelLevelMessages', ... % Check
model settings for migration to simplified initialization mode

'mathworks.design.NonContSigDerivPort', ... % Check for
non-continuous signals driving derivative ports

'mathworks.design.DataStoreBlkSampleTime', ... % Check data
store block sample times for modeling errors

'mathworks.design.OrderingDataStoreAccess', ... % Check for
potential ordering issues involving data store access

'mathworks.design.UnitMismatches', ... % Identify
unit mismatches in the model

'mathworks.design.AutoUnitConversions', ... % Identify
automatic unit conversions in the model

'mathworks.design.DisallowedUnitSystems', ... % Identify
disallowed unit systems in the model

'mathworks.design.UndefinedUnits', ... % Identify
undefined units in the model

'mathworks.design.AmbiguousUnits', ... % Identify
ambiguous units in the model

};

% Excluded checks

% 'mathworks.design.StowawayDoubles', ... % Identify
questionable operations for strict single-precision design (requires Coder
license)

% 'mathworks.design.OptimizationSettings', ... % Check

optimization settings (requires Coder license)

% 'mathworks.design.MismatchedBusParams', ... % Check
structure parameter usage with bus signals (requires Coder license)

% 'mathworks.design.ReplaceEnvironmentControllerBlk', ... % Identify
Environment Controller blocks to be replaced with Variant Source blocks

(relevant since R2021b)

% Define MAB compliance checks

mabIDs = {

'mathworks.maab.hd_0001"', ... % Check for prohibited sink blocks

'mathworks.maab.db_0142"', ... % Check whether block names appear below
blocks

'mathworks.maab.db_0143', ... % Check for mixing basic blocks and
subsystems

'mathworks.maab.db_0110"', ... % Check usage of tunable parameters in
blocks

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

. Appendix

A.2. Verification Functions

'mathworks.maab.jc_0061',
names
'mathworks.maab.jc_0081",
'mathworks.maab.jc_0131"',
blocks
'mathworks.maab.db_0140",
'mathworks.maab.na_0008",
'mathworks.maab.na_0009"',
'mathworks.maab.na_0003',
'mathworks.maab.na_0004"',
nonstandard display attributes
'mathworks.maab.na_0034',
MATLAB Functions
'mathworks.maab.na_0024",
'mathworks.maab.na_0039"',
charts
'mathworks.maab.na_0036",
'mathworks.maab.na_0037"',
conditionals
'mathworks.maab.na_0019',
names
'mathworks.maab.na_0021",
MATLAB Function block
'mathworks.maab.na_0022"',
for Switch/Case statements
'mathworks.maab.na_0017",
MATLAB Function blocks
'mathworks.maab.himl_0003"',

individual checks don't work in R2020a)

'mathworks.maab.jc_0011",
Boolean data (vs. double)

'mathworks.maab.jc_0021",

'mathworks.maab.na_0011",

'mathworks.maab.jc_0141",

'mathworks.maab.na_0031"',

'mathworks. jmaab.jc_0627",
Integrator block

'mathworks. jmaab.jc_0653",
between subsystems

'mathworks. jmaab.na_0020"',
Subsystems

'mathworks. jmaab.jc_0624",

%

YA
YA

)
YA
A
A
b
%

YA
A

)
YA

A

A

YA

YA

h

YA

YA

A

%

YA

YA

A

YA

YA

Check

Check
Check

Check

Check

Check

Check

Check

Check

Check
Check

Check
Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

Check

the display attributes of block

display for port blocks

usage of Relational Operator

for nondefault block attributes
signal line labels

for propagated signal labels
logical expressions in If blocks
for Simulink diagrams using

input and output settings of

MATLAB code for global variables

use of Simulink in Stateflow

use of default variants

use of single variable variant
usage of restricted variable
usage of character vector inside
usage of recommended patterns
the number of function calls in
MATLAB Function metrics (the two
Implement logic signals as

model diagnostic parameters
scope of From and Goto blocks
usage of Switch blocks

usage of enumerated values

usage of Discrete-Time

for avoiding algebraic loops

for missing ports in Variant

for cascaded Unit Delay blocks

129

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

A.2. Verification Functions

A. Appendix

130

'mathworks
'mathworks
'mathworks
'mathworks
'mathworks
'mathworks
'mathworks
'mathworks
mode
'mathworks
'mathworks
'mathworks
and bus names
'mathworks
'mathworks
level of model
'mathworks
'mathworks
names
'mathworks
'mathworks
'mathworks
'mathworks
'mathworks
blocks

'mathworks.

. jmaab
. jmaab

. jmaab

. jmaab

. jmaab

path

. jmaab

. jmaab

. jmaab
. jmaab
. jmaab
. jmaab

. jmaab

jmaab

.jmaab.ar_0001'
.jmaab.ar_0002'
.jmaab.jc_0211"'
.jmaab.jc_0201"'
.jmaab.jc_0231"'
. jmaab.jc_0008"'
.jmaab. jc_0009'
.jmaab.jc_0642'

.jc_0659"
.jc_0110"
.jc_0222"

.jc_0241"
.jc_0242"

.jc_0243"
.jc_0244"

.jc_0245"
.jc_0247"
.jc_0604"
.jc_0610"
.jc_0621"

.jc_0645"

defined as named constants

'mathworks.

jmaab

blocks and If blocks

'mathworks.
'mathworks.
expressions
'mathworks.
names
'mathworks.

'mathworks.

incorrect calculation results

jmaab

jmaab

jmaab

jmaab

jmaab

.jc_0656"

.jc_0626"
.jc_0622"

.jc_0791"

.jc_0603"
.jc_0806"

'mathworks. jmaab.jc_0651"

blocks

'mathworks. jmaab. jc_0602'

names

'mathworks. jmaab.jc_0641"

>

>

3

>

>

>

>

>

>

>

b

>

>

>

>

>

>

>

>

>

>

>

>

>

b

>

>

>

%
A
YA
YA
b
)
YA
YA

b
b
%

YA
A

)
YA

YA
b
b
%
A
A
)

YA
YA

A

A
YA

b

YA

YA

Check
Check
Check
Check
Check
Check
Check
Check

Check

Check

Check

Check
Check

Check
Check

Check

Check

Check

Check

Check

Check

Check

Check
Check

Check

Check
Check

Check

Check

Check

file names

folder names

port block names

subsystem names

character usage in block names
definition of signal labels
Signal name propagation

Signed Integer Division Rounding

usage of Merge block

block orientation

character usage in signal names
length of model file name
length of folder name at every
length of
length of

subsystem names

Inport and Outport

length of
length of
if blocks

operator order of Product blocks

signal and bus names
block names

are shaded in the model
icon shape of Logical Operator

if tunable block parameters are

default/else case in Switch Case

usage of Lookup Tables

for parentheses in Fcn block

duplication of Simulink Data

Model Description

diagnostic settings for

output data type of operation

for consistency in model element

for sample time setting

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

164

165

166

. Appendix

A.2. Verification Functions

'mathworks

'mathworks

'mathworks

'mathworks
blocks

'mathworks
blocks

'mathworks

. jmaab
. jmaab
. jmaab

. jmaab

. jmaab

.jc_0121"
.db_0112"
.db_0097"
.db_0042"

.jc_0161"

.maab.db_0141",

'mathworks. jmaab.db_0146"
and iterator blocks
'mathworks. jmaab.db_0032'

'mathworks.maab.db_0081"',

blocks

'mathworks. jmaab.jc_0630"'
Multiport Switch blocks

'mathworks.
Switch blocks

'mathworks.

jmaab

jmaab

with non-zero bias

'mathworks.
product blocks
'mathworks
'mathworks
'mathworks
names
'mathworks

'mathworks.

jmaab

. jmaab
. jmaab

. jmaab

. jmaab

jmaab

.jc_0650"
.jc_0643"
.jc_0611"
.jc_0644"
.jc_0628"

.jc_0232"

.jc_0246"
.jc_0640"

conditional subsystems

'mathworks. jmaab. jc_0800'

types in Simulink

'mathworks. jmaab.jc_0792'

'mathworks. jmaab.na_0002'

numerical operations

'mathworks. jmaab.na_0010"'

'mathworks. jmaab.jc_0171"'

subsystems

};

% Excluded checks
% ‘'mathworks.maab.na_0016"',

(might be replaced by 'mathworks.maab.himl_0003')

>

>

3

>

>

>

>

b

>

>

>

>

>

>

>

>

>

>

>

>

%
A
YA
YA
)

A
YA

b
%

YA

A

YA

YA

A

%

YA

A
b

%

YA
b

%
A

Check
Check
Check
Check

Check

Check
Check

Check
Check

Check

Check

Check

Check

Check

Check

Check

Check
Check

Check

Check
Check

Check
Check

usage of Sum blocks

Indexing Mode

position of signal labels
position of Inport and Outport

for usage of Data Store Memory

signal flow in model

position of conditional blocks

signal line connections

for unconnected signal lines and
settings for data ports in

input and output datatype for
usage of fixed-point data type
signs of input signals in

type setting by data objects
usage of the Saturation blocks

character usage in parameter

length of parameter names

undefined initial output for

comparison of floating point

unused data in Simulink Model

fundamental logical and

usage of vector and bus signals

connections between structural

% Check lines of code in MATLAB Functions

131

A.2. Verification Functions A. Appendix

167 % ‘'mathworks.maab.na_0018', ... % Check nested conditions in MATLAB Functions
(might be replaced by 'mathworks.maab.himl_0003')

168 % 'mathworks.jmaab.jc_0623', ... ¥ Check usage of Memory and Unit Delay blocks
(might cause issue)

169 % 'mathworks.jmaab.jc_0801', ... 7% Check for use of C-style comment symbols
(might cause issue)

170

171 % Define High Integrity System Modeling checks

172 hismIDs = {

173 'mathworks.hism.himl 0001', ... % Check usage of standardized MATLAB
function headers (might cause issue)

174 'mathworks.hism.himl_0002', ... % Check for MATLAB Function interfaces
with inherited properties (might cause issue)

175 'mathworks.hism.himl_0003', ... % Check MATLAB Function metrics (might
cause issue)

176 'mathworks.hism.himl_0004', ... % Check MATLAB Code Analyzer messages
(might cause issue)

177 'mathworks.hism.himl_0006', ... % Check if/elseif/else patterns in
MATLAB Function blocks (might cause issue)

178 'mathworks.hism.himl_0007', ... % Check switch statements in MATLAB
Function blocks (might cause issue)

179 'mathworks.hism.himl_0012"', ... % Check MATLAB functions not supported
for code generation (might cause issue)

180 'mathworks.hism.hisl_0006"', ... % Check usage of While Iterator blocks

181 'mathworks.hism.hisl_0007"', ... % Check usage of For and While Iterator
subsystems

182 'mathworks.hism.hisl_0020', ... % Check for blocks not recommended for

C/C++ production code deployment

183 'mathworks.hism.hisl_0021', ... % Check for inconsistent vector indexing
methods

184 'mathworks.hism.hisl_0023"', ... % Check usage of variant blocks

185 'mathworks.hism.hisl_0024"', ... % Check for root Inports with missing
properties

186 'mathworks.hism.hisl_0031', ... % Check model file name

187 'mathworks.hism.hisl_0033"', ... % Check usage of lookup table blocks

188 'mathworks.hism.hisl_0040', ... % Check safety-related solver settings
for simulation time

189 'mathworks.hism.hisl _0066', ... % Check usage of Gain blocks

190 'mathworks.hism.hisl_0071', ... % Check safety-related settings for

hardware implementation
191 'mathworks.hism.hisl_0072"', ... % Check for parameter tunability ignored

for referenced models

132

A. Appendix A.2. Verification Functions

192 'mathworks.hism.hisl_0013', ... % Check safety-related diagnostic
settings for data store memory

193 'mathworks.hism.hisl_0036"', ... % Check safety-related diagnostic
settings for saving

194 'mathworks.hism.hisl_0037', ... % Check safety-related model referencing
settings

195 'mathworks.hism.hisl_0041', ... % Check safety-related solver settings

for solver options

196 'mathworks.hism.hisl_0042"', ... % Check safety-related solver settings
for tasking and sample-time

197 'mathworks.hism.hisl_0043', ... % Check safety-related diagnostic
settings for solvers

198 'mathworks.hism.hisl_0044"', ... % Check safety-related diagnostic
settings for sample time

199 'mathworks.hism.hisl_0045"', ... % Check safety-related optimization
settings for logic signals

200 'mathworks.hism.hisl_0046', ... % Check safety-related block reduction
optimization settings

201 'mathworks.hism.hisl_0048"', ... % Check safety-related optimization
settings for application lifespan

202 'mathworks.hism.hisl_0052"', ... % Check safety-related optimization
settings for data initialization

203 'mathworks.hism.hisl_0053', ... % Check safety-related optimization
settings for data type conversions

204 'mathworks.hism.hisl_0054"', ... % Check safety-related optimization
settings for division arithmetic exceptions

205 'mathworks.hism.hisl_0056"', ... % Check safety-related optimization
settings for specified minimum and maximum values

206 'mathworks.hism.hisl_0038', ... % Check safety-related code generation
settings for comments

207 'mathworks.hism.hisl_0039', ... % Check safety-related code generation
interface settings

208 'mathworks.hism.hisl_0047', ... % Check safety-related code generation
settings for code style

209 'mathworks.hism.hisl_0049', ... % Check safety-related code generation
identifier settings

210 'mathworks.hism.hisl_0301"', ... % Check safety-related diagnostic
settings for compatibility

211 'mathworks.hism.hisl_0302', ... % Check safety-related diagnostic
settings for parameters

212 'mathworks.hism.hisl_0303"', ... % Check safety-related diagnostic
settings for Merge blocks

133

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

A.2. Verification Functions

A. Appendix

134

'mathworks.hism

.hisl_0304',

settings for model initialization

'mathworks.hism

settings for data used for debugging

'mathworks.hism
settings for signal

'mathworks.hism

.hisl_0305',

.hisl_0306',
connectivity
.hisl_0307',

settings for bus connectivity

'mathworks.hism

settings that apply to function-call

'mathworks.hism

.hisl_0308',

.hisl_0309"',

settings for type conversions

'mathworks.hism

.hisl 0310',

settings for model referencing

'mathworks.hism
settings for signal

'mathworks.hism

.hisl _0314',
data
.hisl _0074"',

settings for variants

'mathworks.hism
expressions

'mathworks.hism

MATLAB Function blocks (might cause issue)

'mathworks.hism
functions in MATLAB
'mathworks.hism
(might cause issue)
'mathworks.hism
'mathworks.hism
'mathworks.hism
Subsystem blocks

'mathworks.hism

.himl_0011",

.himl_0008",

.himl_0010',

%

YA

A

%

Check

Check

Check

Check

safety-related diagnostic

safety-related diagnostic

safety-related diagnostic

safety-related diagnostic

% Check safety-related diagnostic

connectivity

% Check safety-related diagnostic

YA

YA

h

YA

A

Check

Check

Check

Check

Check

safety-related diagnostic

safety-related diagnostic

safety-related diagnostic

type and size of condition

usage

of relational operators in

% Check usage of logical operators and

Function blocks (might cause issue)

.himl_0013',
.hisl_0001"',
.his1_0008",

.hisl_0010',

.hisl_0011",

Switch Case Action Subsystem blocks

'mathworks.hism
subsystems

'mathworks.hism

.hisl 0012,

.hisl 0016',

floating-point signals

'mathworks.hism
blocks

'mathworks.hism

'mathworks.hism

'mathworks.hism

.hisl_0017"',

.hisl _0018"',
.hisl_0019',
.hisl 0015',

% Metrics for generated code complexity

A

h

YA

YA

A

%

YA

h

YA
YA

Check

Check

Check

Check

Check

Check

Check

Check

Check
Check

usage
usage
usage

usage

usage

of Abs blocks
of For Iterator blocks
of If blocks and If Action

of Switch Case blocks and

of conditionally executed

relational comparisons on

usage

usage
usage

usage

of Relational Operator

of Logical Operator blocks
of bitwise operations

of Merge blocks

A. Appendix A.2. Verification Functions

236 'mathworks.hism.hisl_0022', ... % Check data types for blocks with index
signals
237 'mathworks.hism.hisl_0025"', ... % Check for root Inports with missing

range definitions

238 'mathworks.hism.hisl_0026"', ... % Check for root Outports with missing
range definitions

239 'mathworks.hism.hisl_0029', ... % Check usage of Assignment blocks

240 'mathworks.hism.hisl_0032"', ... % Check model object names

241 'mathworks.hism.hisl_0034"', ... % Check usage of Signal Routing blocks

242 'mathworks.hism.hisl 0063', ... % Check for length of user-defined
object names

243 'mathworks.hism.hisl_0102"', ... % Check data type of loop control
variables

244 'mathworks.hism.hisl_0073"', ... % Check usage of bit-shift operations

245 'mathworks.hism.hisl_0028"', ... % Check usage of Reciprocal Sqrt blocks

(might cause issue)
246 'mathworks.hism.hisl_0067"' ... % Check for divide-by-zero calculations

(might cause issue)

247 };

248

249 % Define code generation checks

250 codegenlDs = {

251 'mathworks.codegen.PCGSupport', ... % Check

for blocks not recommended for C/C++ production code deployment

252 'mathworks.codegen.EfficientTunableParamExpr', ... % Check
configuration parameters for generation of inefficient saturation code

253 'mathworks.codegen.LUTRangeCheckCode', ... yA
Identify lookup table blocks that generate expensive out-of-range checking code

254 'mathworks.codegen.LogicBlockUseNonBooleanQutput', ... % Check
output types of logic blocks

255 'mathworks.codegen.HWImplementation', ... % Check
the hardware implementation

256 'mathworks.codegen.SWEnvironmentSpec', ... yA
Identify questionable software environment specifications

257 'mathworks.codegen.CodeInstrumentation', ... %
Identify questionable code instrumentation (data I/0)

258 'mathworks.codegen.UseRowMajorAlgorithm', ... %
Identify blocks generating inefficient algorithms

259 'mathworks.codegen.QuestionableSubsysSetting', ... %
Identify questionable subsystem settings

260 'mathworks.codegen.RowMajorCodeGenSupport', ... % Check

for blocks not supported for row-major code generation

135

A.2. Verification Functions A. Appendix

261 'mathworks.codegen.RowMajorUnsetSFunction', ... yA
Identify TLC S-Functions with unset array layout

262 'mathworks.codegen.BlockSpecificQuestionableFxptOperations', ... %
Identify blocks that generate expensive fixed-point and saturation code

263 'mathworks.codegen.QuestionableFxptOperations', ... %
Identify questionable fixed-point operations

264 'mathworks.codegen.ExpensiveSaturationRoundingCode', ... yA
Identify blocks that generate expensive rounding code

265 'mathworks.codegen.BlockNames', ... % Check
block names

266 'mathworks.codegen.cgsl_0101', ... %
Identify blocks using one-based indexing

267 'mathworks.codegen.SolverCodeGen', ... % Check
solver for code generation

268 'mathworks.codegen.codeGenSupport', ... % Check
for blocks not supported by code generation

269 'mathworks.codegen.MdlrefConfigMismatch', ... % Check
for model reference configuration mismatch

270 'mathworks.codegen.ModelRefRTWConfigCompliance', ... % Check
for code generation identifier formats used for model reference

271 'mathworks.codegen.SubsysCodeReuse', ... % Check
reuse of subsystem code

272 'mathworks.codegen.SampleTimesTaskingMode', ... % Check
sample times and tasking mode

273 'mathworks.codegen.ConstraintsTunableParam', ... % Check

for blocks that have constraints on tunable parameters

274 'mathworks.codegen.QuestionableBlks',

275 'mathworks.codegen.CodeGenSanity',

276 'mathworks.codegen.checkEnableMemcpy',

277 'mathworks.codegen.toolchainInfoUpgradeAdvisor.check', ... % Check

and update model to use toolchain approach to build generated code

278 'mathworks.codegen.codertarget.check', ... % Check
and update embedded target model to use ert.tlc system target file

279 'mathworks.design.datastoresimrtwcmp', ... % Check

for relative execution order change for Data Store Read and Data Store Write

blocks
280 } 3
281
282 % Define MISRA compliance checks
283 misraIDs = {
284 'mathworks.misra.CodeGenSettings', ... % Check

configuration parameters for MISRA C:2012

136

A. Appendix A.2. Verification Functions

285 'mathworks.misra.BlkSupport', ... % Check for
blocks not recommended for MISRA C:2012

286 'mathworks.misra.BlockNames', ... % Check for
unsupported block names

287 'mathworks.misra.AssignmentBlocks', ... % Check usage of
Assignment blocks

288 'mathworks.misra.SwitchDefault', ... % Check for
switch case expressions without a default case

289 'mathworks.misra.AutosarReceiverInterface', ... % Check for
missing error ports for AUTOSAR receiver interfaces

290 'mathworks.misra.BusElementNames', ... % Check bus
object names that are used as bus element names

201 'mathworks.misra.ModelFunctionInterface', ... % Check for
missing const qualifiers in model functions

292 'mathworks.misra.CompliantCGIRConstructions', ... % Check for
bitwise operations on signed integers

293 'mathworks.misra.RecursionCompliance', ... % Check for
recursive function calls

294 'mathworks.misra.CompareFloatEquality', ... % Check for
equality and inequality operations on floating-point values

295 'mathworks.misra.IntegerWordLengths', ... % Check integer
word length

296 'mathworks.security.CodeGenSettings', ... % Check

configuration parameters for secure coding standards

297 'mathworks.security.BlockSupport', ... % Check for
blocks not recommended for secure coding standards

298 };

299

300 % Determine which cell arrays to concatenate and return

301 switch lower(option)

302 case 'all'

303 checkIDs = [designIDs, maabIDs, hismIDs, codegenIDs, misralDs];

304 case 'design'

305 checkIDs = designIDs;

306 case 'advisory'

307 checkIDs = mablDs;

308 case 'integrity'

309 checkIDs = hismIDs;

310 case 'codegen'

311 checkIDs = codegenlDs;

312 case 'misra'’

313 checkIDs = misralDs;

137

314

315

316

317

1

20

21

22

23

24

25

26

27

28

29

30

31

A.2.

Verification Functions A. Appendix

end

otherwise
error('Invalid option.');

end

function runModelAdvisor(model, checkIDs, autoEval, artifactDir)

138

% Run Model Advisor checks on the specified model

% DESCRIPTION

% This function runs a specified list of Model Advisor checks

% programmatically. It generates an HTML report and a JUnit-compatible
% XML results file. It exits with a non-zero code if any checks have

% failed and automatic evaluation has been activated.

b

% INPUTS

% model - Name of the Simulink model to analyze

% checkIDs - Cell array of Model Advisor check IDs to run
yA artifactDir - Directory to save the generated report

yA autoEval - Option to activate automatic evaluation

b

% OUTPUTS

% none

% Define function arguments and defaults
arguments
model
checkIDs
autoEval (1,1) logical = false
artifactDir (1,1) string = fullfile(pwd, 'artifacts')

end

% Create artifact directory if necessary
if ~exist(artifactDir, 'dir')
mkdir (artifactDir);

end

% Define the report format and path
reportFormat = 'html';

reportName = 'ModelAdvisorReport';
xmlReportName = 'ModelAdvisorReport.xml';

xmlReportPath = fullfile(artifactDir, xmlReportName) ;

% Run Model Advisor checks

42

43

44

45

52

53

54

55

60

61

62

63

64

66

67

68

69

70

Appendix A2

. Verification Functions

end

checkResult = ModelAdvisor.run(model, checkIDs,
'DisplayResults', 'Details’,
'ReportFormat', reportFormat,
'ReportPath', artifactDir,

'ReportName', reportName) ;

% Convert results to JUnit XML format
convertToXML (checkResult, xmlReportPath);

% Determine exit code based on check results if activated
if autoEval

% Extract SystemResult object

systemResult = checkResult{1};

% Retrieve array of individual check results and preallocate

checkObjs = systemResult.CheckResultObjs;
failFlags = false(l, length(checkObjs));

% Populate failFlags array
for i = 1:length(check0Objs)
failFlags(i) = strcmp(checkObjs(i).status, 'Fail');

end

% Display a message indicating completion

if any(failFlags)

disp('Model Advisor: Some checks failed. Exiting with error code.');

exit(1);

else

disp('Model Advisor: All checks passed or warnings only.');

exit (0);
end

end

function convertToXML(checkResult, xmlReportPath)

% Convert check results to JUnit formatted XML file
pA
% DESCRIPTION:

% This function converts the Model Advisor check results into a

% JUnit-compatible XML report.
h
% INPUTS:

% checkResult - Cell array containing one SystemResult object

139

39

40

41

42

43

48

49

50

A.2. Verification Functions

A. Appendix

140

h
h

xmlReportPath - Full path where the XML report is to be saved

% OUTPUTS:

h

% Extract SystemResult object from check results cell array

systemResult = checkResult{1};

% Get array of individual check results from SystemResult
checkObjs = systemResult.CheckResultObjs;

% Initialize XML document

docNode

= com.mathworks.xml.XMLUtils.createDocument ('testsuites');

testsuites = docNode.getDocumentElement;

% Create a testsuite element with appropriate attributes

testsuite = docNode.createElement('testsuite');

testsuite.setAttribute('name', 'Model Advisor Checks');

testsuite.setAttribute('tests', num2str(length(check0bjs)));

testsuites.appendChild(testsuite);

% Iterate over each check result

for i

1:1length(checkObjs)

% Create test case element and set attributes

testCase = docNode.createElement ('testcase');
testCase.setAttribute('classname', 'Model Advisor Checks');
testCase.setAttribute('name', checkObjs(i).checkName);

message = 'See Model Advisor report for details.';

% If check failed, add a failure element with message

if strcmp(checkObjs(i).status, 'Fail')

failure = docNode.createElement('failure');

failure.setAttribute('message', ['Check failed. ' messagel);

testCase.appendChild(failure);

% If check returned a warning, add a systemOut element with message

elseif strcmp(checkObjs(i).status, 'Warn')

systemOut = docNode.createElement ('system-out');

systemQOut . appendChild(docNode.createTextNode(['Check returned a warning.

message])) ;

testCase.appendChild (systemOut) ;

51

52

53

54

55

56

58

59

1

20

21

22

23

24

25

26

27

28

A. Appendix

A.2. Verification Functions

end

% Append test case element to testsuite

testsuite.appendChild(testCase);

end

% Write XML document to file

xmlwrite (xmlReportPath, docNode);

end

function metricIDs = getMetricIDs(option)

% Get metric IDs

% DESCRIPTION
% This function returns

% option provided.

% INPUTS

% option -
YA all -
yA size -
% architecture -
yA compliance -
yA readability -

% OUTPUTS

metric IDs as a cell array based on the

one of the following:

returns
returns
returns
returns

returns

all available metric IDs

only
only
only
only

% metricsList - cell array of metric

% Define function arguments

arguments
option (1,1) string

end

% Define size metrics

size metrics
architecture metrics
compliance metrics

readability metrics

IDs

sizeMetrics = {'mathworks.metrics.SimulinkBlockCount',...

number of blocks in the model

'mathworks.metrics.SubSystemCount',...

number of subsystems in the model

'mathworks.metrics.LibraryLinkCount', ...

number of library-linked blocks in the model

'mathworks.metrics.MatlabLOCCount',...

number of effective lines of MATLAB code

% Calculates

% Calculates

% Calculates

% Calculates

the

the

the

the

141

29

30

32

33

34

35

39

40

41

42

43

44

45

47

48

49

50

51

A.2.

Verification Functions

A.

Appendix

142

'mathworks.metrics.SubSystemDepth',... pA
subsystem depth of the model

'mathworks.metrics.I0Count',... %
number of inputs and outputs in your model

'mathworks.metrics.ExplicitIOCount',... %
number of inputs and outputs in your model

'mathworks.metrics.FileCount', ... %
number of model and library files

'mathworks.metrics.MatlabFunctionCount',... %
number of MATLAB Function blocks in your model

'mathworks.metrics.ModelFileCount', ... %
number of model files

'mathworks.metrics.ParameterCount'}; %

Calculates

Calculates

Calculates

Calculates

Calculates

Calculates

Calculates

the

the

the

the

the

the

the

number of instances of data objects that parameterize the behavior of a model

% Define architecture metrics

architectureMetrics = {'mathworks.metrics.CyclomaticComplexity',...

Calculates the cyclomatic complexity of the model

'mathworks.metrics.CloneContent',...

Calculates the fraction of total number of subcomponents that are clones

'mathworks.metrics.CloneDetection', ...

Calculates the number of clones in components across the model hierarchy

'mathworks.metrics.LibraryContent'};

b

%

h

b

Calculates the fraction of total number of components that are linked library

blocks

% Define compliance metrics

complianceMetrics = {'mathworks.metrics.MatlabCodeAnalyzerWarnings',...

Determines warnings for MATLAB code blocks in your model
'mathworks.metrics.DiagnosticWarningsCount', ...

Calculates the number of diagnostic warnings reported

'mathworks.metrics.ModelAdvisorCheckCompliance.hisl_dol78',...

Returns the fraction of checks the model passes from Model Advisor

D0-178C/D0-331 Standards

'mathworks.metrics.ModelAdvisorCheckCompliance.maab'};

Returns the fraction of checks the model passes from Model Advisor MAB

% Define readability metrics

readabilityMetrics = {'mathworks.metrics.DescriptiveBlockNames',...

Determines nondescriptive Inport, Outport, and Subsystem block names

'mathworks.metrics.LayerSeparation'};

Calculates the data and structure layer separation

b

%

Standard

60

61

62

63

64

65

66

21

22

23

24

A. Appendix A.2. Verification Functions

% Determine which cell arrays to concatenate
switch lower(option)
case 'all'
metricIDs = [sizeMetrics, architectureMetrics, complianceMetrics,
readabilityMetrics];
case 'size'
metricIDs = sizeMetrics;
case 'architecture'
metricIDs = architectureMetrics;
case 'compliance'
metricIDs = complianceMetrics;
case 'readability'
metricIDs = readabilityMetrics;
otherwise
error('Invalid option.');
end

end

function collectModelMetrics(model, metricIDs, artifactDir)
% Collect model metrics of the the specified model
h
’ DESCRIPTION
% This function collects metrics of a model specified in a list of
% metric IDs.
b
% INPUTS
% model - Name of the Simulink model to analyze
% metricsList - Cell array of model metrics to calculate
yA artifactDir - Directory to save the generated report
b
% OUTPUTS

% none

% Define function arguments and defaults
arguments
model
metricIDs
artifactDir (1,1) string = fullfile(pwd, 'artifacts')

end

% Create artifact directory if necessary

if ~exist(artifactDir, 'dir')

143

A.2. Verification Functions

A. Appendix

25 mkdir (artifactDir);

26 end

28 % Initialize the metric engine
29 metricEngine = slmetric.Engine();

30 setAnalysisRoot(metricEngine, 'Root', model);

32 % Execute the metrics collection

33 execute (metricEngine, metricIDs);

35 % Retrieve and display model metrics
36 res = getMetrics(metricEngine, metricIDs);

37 metricData = {'MetricID', 'ComponentPath', 'Value'};

39 % Loop through each metric and display the results
40 cnt = 1;

a1 for n = 1:length(res)

12 if res(n).Status ==

43 results = res(n).Results;

44 for m = 1:length(results)

45 disp(['MetricID: ', results(m).MetricID]);

46 disp([' ComponentPath: ', results(m).ComponentPath]);
47 disp([' Value: ', num2str(results(m).Value)]);
18 metricData{cnt+1, 1} = results(m).MetricID;

49 metricData{cnt+1, 2} = results(m).ComponentPath;
50 metricData{cnt+1, 3} = results(m).Value;

51 cnt = cnt + 1;

52 end

53 else

54 disp(['No results for: ', res(n).MetricID]);

55 end

56 disp(' ");

57 end

59 % Export the metrics to an XML file
60 filename = 'MetricResults.xml';

61 exportMetrics(metricEngine, filename, artifactDir);

63 disp('Simulink Check: Model Metrics collection completed.');

6« end

i function runDesignVerifier (model, artifactDir)

2 % Run Simulink Design Verifier in Design Error Detection mode

144

20

21

22

23

24

25

38

39

40

41

42

44

A. Appendix

%
% DESCRIPTION

% This function configures Simulink Design Verifier for design error

% detection, runs the analysis on the specified model and saves a report

% with data file.

b

% INPUTS

yA model - Name of the Simulink model to analyze

% artifactDir - Directory to save the generated report

% OUTPUTS

% none

% Define function arguments and defaults
arguments
model
artifactDir (1,1) string = fullfile(pwd, 'artifacts')

end

% Create artifact directory if necessary
if ~exist(artifactDir, 'dir')
mkdir(artifactDir);

end

% Configure Simulink Design Verifier for design error detection
sldvOptions = sldvoptions;

sldvOptions.Mode = 'DesignErrorDetection’;
sldvOptions.DetectBlockInputRangeViolations = 'off';
sldvOptions.DetectDeadLogic = 'off';
sldvOptions.DetectDivisionByZero = 'on';
sldvOptions.DetectInfNaN = 'off';
sldvOptions.DetectIntegerOverflow = 'off';
sldvOptions.DetectOutOfBounds = 'off';
sldvOptions.DetectSubnormal = 'off';

sldvOptions.SaveReport = 'on';

% Run Design Verifier analysis

[status, files, ~] = sldvrun(model, sldvOptions);

% Handle the status of the analysis and save results
switch status

case -1

A.2. Verification Functions

21

22

23

24

25

26

28

29

A.2.

Verification Functions A. Appendix

end

disp('Design Verifier: Analysis exceeded the maximum processing time.');
case 0
disp('Design Verifier: Error occurred during design error detection.');
case 1
disp('Design Verifier: Design error detection completed successfully.');
% Save the generated report
copyfile(files.Report, fullfile(artifactDir,
'DesignVerifierReport.html'));
% Save the data file
copyfile(files.DataFile, fullfile(artifactDir,
'DesignVerifierData.sldv'));

end

function runTests(artifactDir)

% Run tests with Simulink Test

b

% DESCRIPTION

146

% This function runs predefined test cases with Simulink Test.
b
% INPUTS

% artifactDir - Directory to save the generated report

% QUTPUTS

% none

% Define function arguments and defaults
arguments
artifactDir (1,1) string = fullfile(pwd, 'artifacts')

end

% Create artifact directory if necessary
if ~exist(artifactDir, 'dir')
mkdir (artifactDir);

end

% Open the test file

fileName = 'ControllerTests.mldatx';
filePath = fullfile(pwd, 'tests', fileName);
sltest.testmanager.load(filePath);

% Create test suite from test file

import matlab.unittest.TestSuite

A. Appendix

A.2. Verification Functions

69

71 end

suite = testsuite(filePath);

% Create test runner
import matlab.unittest.TestRunner

runner = TestRunner.withNoPlugins;

% Add plugin to produce MATLAB Test Report

import matlab.unittest.plugins.TestReportPlugin
pdfFile = fullfile(artifactDir, 'TestReport.pdf');
trp = TestReportPlugin.producingPDF (pdfFile) ;
addPlugin(runner,trp)

% Add plugin to add Test Manager results to Test Report
import sltest.plugins.TestManagerResultsPlugin
tmr = TestManagerResultsPlugin;

addPlugin(runner,tmr)

% Add plugin to create XML results file

import matlab.unittest.plugins.XMLPlugin

resfile = fullfile(artifactDir, 'TestResults.xml');
plugin = XMLPlugin.producingJUnitFormat(resfile);
addPlugin(runner,plugin)

% Set coverage metrics to collect
import sltest.plugins.coverage.CoverageMetrics

cmet = CoverageMetrics('Decision',true);

% Set coverage report properties

import sltest.plugins.coverage.ModelCoverageReport

import matlab.unittest.plugins.codecoverage.CoberturaFormat
rptfile = fullfile(artifactDir, 'TestCoverage.xml');

rpt = CoberturaFormat(rptfile);

% Create model coverage plugin
import sltest.plugins.ModelCoveragePlugin
mcp = ModelCoveragePlugin('Collecting',cmet, 'Producing',rpt);

addPlugin(runner,mcp)

% Run the test

result = run(runner,suite);

147

A.2. Verification Functions

A. Appendix

1 function setConfiguration(model)

2

3

4

21

22

23

24

25

26

27

28

29

30

32

33

% Set configuration for C++ code generation
b
% DESCRIPTION

% This function configures a specified Simulink model for C++ code

% generation with Embedded Coder.

% INPUTS

% model - Name of the Simulink model to configure

% OUTPUTS

% none

% NOTE

% The configuration is taken from the configuration parameters obtained

% from the file 'CodeGen.mat' using the script 'getParameters.m'.

% Set parameters for C++ code generation

set_param(model, 'SystemTargetFile', 'ert.tlc'); yA
set_param(model, 'TargetLang', 'C++'); %
generation language

set_param(model, 'GenCodeOnly', 'on'); yA
makefile when generating code

set_param(model, 'TargetLangStandard', 'C++03 (IS0)'); %
set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on'); %

packNGo after the build is complete
set_param(model, 'BuildConfiguration', 'Faster Runs'); %

configuration defined by the toolchain

% Optimization
set_param(model, 'InstructionSetExtensions', 'None'); YA

hardware instruction set extensions

S

set_param(model, 'InlinelInvariantSignals', 'on'); pA
inline the values of invariant signals
set_param(model, 'EfficientFloat2IntCast', 'on'); pA

floating-point to integer conversions that wraps out-of-range

% Report
set_param(model, 'GenerateReport', 'on');)
generation report

1

set_param(model, 'LaunchReport', 'on'); %

automatically

System target file

Select code

Do not execute

Language standard

Automatically run

Choose a build

Leverage target

Precompute and

Remove code from

values

Create code

Open report

34

35

36

38

39

40

41

42

43

44

45

47

48

49

50

51

A. Appendix A2

Verification Functions

% Comments

set_param(model, 'RegsInCode', 'on');
requirements into the generated code as a comment
set_param(model, 'MATLABFcnDesc', 'on');

comments into the generated code as comments

% Identifiers
set_param(model, 'ManglelLength', 4);
length

% Interface

set_param(model, 'SupportComplex', 'off');
complex numbers

set_param(model, 'SupportAbsoluteTime', 'off');
absolute time

set_param(model, 'SupportContinuousTime', 'off');

continuous time

% Code Style

set_param(model, 'ParenthesesLevel', 'Maximum');
of parenthesization in the code
set_param(model, 'PreserveExpressionOrder', 'on');

order in expression

set_param(model, 'EnableSignedLeftShifts', 'off');
multiplications by powers of two with signed bitwise shifts
set_param(model, 'EnableSignedRightShifts', 'off');

on signed integers

set_param(model, 'CastingMode', 'Standards');

end

function generateCode(model)
% Generate C++ Code from Simulink model
YA
% DESCRIPTION

YA

)

%

YA

)

2

)

%

%

)

%

Insert entered

Insert MATLAB user

Minimum mangle

Do not support

Do not support

Do not support

Specify the level

Preserve operand

Replace

Allow right shifts

Set casting mode

% This function configures a specified Simulink model for C++ code

% generation with Embedded Coder, generates code from that model and

% extends the archive with a Polyspace options file.
T
% INPUTS

% model - Name of the Simulink model to configure and generate code from

h
% OUTPUTS

149

20

21

22

23

24

25

26

1

A.2.

Verification Functions A. Appendix

end

% none

% Set configuration parameters

setConfiguration(model);

% Generate the code
slbuild(model) ;

% Generate and package Polyspace options files

polyspacePackNGo (model) ;

% Display a message confirming code generation completion

disp('Embedded Coder: C++ code generation completed.');

function integrated = isPolyspacelntegrated()

end

% Check if Polyspace is integrated with MATLAB

b

’% DESCRIPTION

% This helper function checks for Polyspace integration by verifying
% the existence of Polyspace functions within MATLAB.

h

% INPUTS

% none

% OUTPUTS

% integrated - true if integrated, otherwise false

integrated = exist('pslinkoptions', 'file') && exist('pslinkrun', 'file');

if integrated

disp('Polyspace is integrated with MATLAB.');
else

disp('Polyspace is not integrated with MATLAB.');

end

function runPolyspaceBugFinder (model, artifactDir)

150

% Configure and run Polyspace Bug Finder analysis

b

’% DESCRIPTION

% This function configures Polyspace to run a Bug Finder analysis on
% a specified model. It uses a polyspace.Project object for

% configuration. There are different options available for defect and

23

24

25

26

A. Appendix

A.2. Verification Functions

pA compliance checking.

% INPUTS

% model - Name of the Simulink model to analyze
% artifactDir - Directory to save the generated report
h

% OUTPUTS

% none

% Define function arguments and defaults
arguments

model

artifactDir (1,1) string = fullfile(pwd, 'artifacts', 'bugFinder')

end

% Create artifact directory if necessary
if ~exist(artifactDir, 'dir')
mkdir (artifactDir);

end

% Create Polyspace Project object
proj = polyspace.Project;

% Associate project configuration with model specific information

proj.Configuration = polyspace.ModelLinkOptions(model);

% Configure the analysis

proj.Configuration.ResultsDir = artifactDir;

% Extend defect checking

proj.Configuration.BugFinderAnalysis.CheckersPreset = 'all';

% Enable code metric calculation

proj.Configuration.CodingRulesCodeMetrics.CodeMetrics =

% Enable Guideline checkers

true;

proj.Configuration.CodingRulesCodeMetrics.EnableGuidelines = true;

proj.Configuration.CodingRulesCodeMetrics.Guidelines = 'all';

% Enable and extend MISRA C++:2008 checking
proj.Configuration.CodingRulesCodeMetrics.EnableMisraCpp
proj.Configuration.CodingRulesCodeMetrics.MisraCppSubset

true;

'all-rules';

151

A.2. Verification Functions A. Appendix

51 % Configure report generation

52 proj.Configuration.MergedReporting.EnableReportGeneration = true;

53 proj.Configuration.MergedReporting.ReportOutputFormat = 'HTML';

54 proj.Configuration.MergedReporting.BugFinderReportTemplate = 'BugFinder';
55

56 % Run analysis

57 bfStatus = run(proj, 'bugFinder');

58

59 % Open results

60 resultsFile = fullfile(artifactDir, 'ps_results.psbf');
61 polyspaceBugFinder(resultsFile)

62 end

1 function runPolyspaceCodeProver(model, artifactDir)

2 % Configure and run Polyspace Code Prover analysis

3 b

4 % DESCRIPTION

5 yA This function configures Polyspace to run a Code Prover analysis on
6 % a specified model. It uses a polyspace.Project object for

7 % configuration.

8 b
9 % INPUTS
10 % model - Name of the Simulink model to analyze

11 % artifactDir - Directory to save the generated report

12 T

13 % OUTPUTS

14 % none

15

16 % Define function arguments and defaults
17 arguments

18 model

19 artifactDir (1,1) string = fullfile(pwd, 'artifacts', 'codeProver')
20 end

21

22 % Create artifact directory if necessary
23 if ~exist(artifactDir, 'dir')

24 mkdir (artifactDir);

25 end

26

27 % Create Polyspace Project object

28 proj = polyspace.Project;

29

152

44

45

46

47

20

21

22

A. Appendix A.2. Verification Functions

end

% Associate project configuration with model specific information

proj.Configuration = polyspace.ModelLinkOptions (model) ;

% Configure the analysis

proj.Configuration.ResultsDir = artifactDir;

% Configure report generation
proj.Configuration.MergedReporting.EnableReportGeneration = true;
proj.Configuration.MergedReporting.ReportOutputFormat = 'HTML';

proj.Configuration.MergedReporting.CodeProverReportTemplate = 'Developer';

% Run analysis

cpStatus = run(proj, 'codeProver');

% Open results
resultsFile = fullfile(artifactDir, 'ps_results.pscp');

polyspaceCodeProver (resultsFile)

function generatePolyspaceReport(artifactDir)

% Generate report from Polyspace analysis results

h

’ DESCRIPTION

yA This function uses the more customizable system command to generate
% a Polyspace report from a Polyspace results file. A Polyspace

yA analysis has to be run beforehand to obtain that results file.

% INPUTS

yA artifactDir - Directory to save the analysis report

% OUTPUTS

% none

% Define parts of the command
templatePath = 'C:\Program
Files\Polyspace\R2021b\toolbox\polyspace\psrptgen\templates\bug_finder\BugFinder.rpt'

outputName =
'C:\Users\kays_ph\Documents\MATLAB\ThrustController\artifacts\PolyspaceReport.html';
format = 'html';

% Concatenate the full command

command = ['polyspace-report-generator -template "', templatePath,

'" -output-name "', outputName,

153

23

24

25

26

27

28

29

30

31

35

36

1

20

21

22

23

24

25

26

27

28

A.2.

Verification Functions

A. Appendix

end

'" -results-dir , artifactDir,

-format ', format];
% Execute the command

[status, cmdout] = system(command) ;

% Check the status and display appropriate message
if status ==
fprintf ('Polyspace report generated successfully.\n');
else
fprintf ('Error generating Polyspace report.\n');
fprintf ('Command output:\n%s\n', cmdout);

end

function convertToCodeQuality(inSarifFile, outGitlabFile, autoEval)

154

% Convert a Polyspace SARIF JSON file to a GitLab Code Quality

% compliant JSON file.

b

% DESCRIPTION

% This function reads a Polyspace SARIF JSON file and writes out a
yA JSON file compliant with GitLab Code Quality.

% INPUTS

yA inSarifFile - Directory and file name of a OASIS SARIF JSON

% file exported by Polyspace Bug Finder or Code Prover

% outGitlabFile - Intended directory and file name of the created
% Code Quality JSON file

yA autoEval - Option to activate automatic evaluation

% OUTPUTS

% none

% Define function arguments and defaults
arguments

inSarifFile

outGitlabFile

autoEval (1,1) logical = false

end

% Read and decode the input SARIF file
fid

raw

fopen(inSarifFile, 'r');
fread(fid, 'xchar')';

A. Appendix A.2. Verification Functions

29 fclose(fid);

30 sarifData = jsondecode(raw);

32 % Initialize an empty struct array for the output

33 gitlabFindings = struct('description', {}, 'check_name', {}, 'fingerprint', {7},

34 'severity', {}, 'location', {});

36 % Counter for unique fingerprint generation

37 resultCounter = 1;

39 % Process each run in the SARIF file

10 for iRun = 1:numel (sarifData.runs)

a1 runData = sarifData.runs(iRun);

a2

43 % Build a mapping from rule IDs to rule names
44 ruleMap = containers.Map;

15 if isfield(runData, 'tool') && isfield(runData.tool, 'driver') && ...
46 isfield(runData.tool.driver, 'rules')

47 for iRule = 1:numel(runData.tool.driver.rules)

48 thisRule = runData.tool.driver.rules(iRule);

49 if isfield(thisRule, 'id') && isfield(thisRule, 'name')
50 ruleKey = strtrim(char(thisRule.id));

51 ruleMap(ruleKey) = thisRule.name;

52 end

53 end

54 end

56 % Get the artifact list for file paths

57 artifacts = [];

58 if isfield(runData, 'artifacts')
59 artifacts = runData.artifacts;
60 end

62 % If no results, skip this run

63 if ~isfield(runData, 'results')

64 continue;

65 end

66

67 % Process results

68 for iRes = 1:numel(runData.results)

69 if iscell(runData.results) 7 Bug Finder JSON

155

90

91

92

93

94

A.2.

Verification Functions

A. Appendix

156

res = runData.results{iRes};
else J Code Prover JSON
res = runData.results(iRes);

end

% Extract description message
if isfield(res, 'message') && isfield(res.message, 'text')
descriptionText = strtrim(char(res.message.text));

else

descriptionText = '(No message provided)';

end

% Extract rule ID and look up rule name
if isfield(res, 'ruleId')
ruleld = strtrim(char(res.ruleld));
if isKey(ruleMap, ruleId)
checkName = ruleMap(ruleld);
else

checkName = ruleld;

end

else
ruleld = 'unknown_rule';
checkName = 'unknown_rule';

end

% Map severity of analysis results

severity = mapSeverity(res);

% Determine file path from first location
filePath = '(no file)';
if isfield(res, 'locations') && ~isempty(res.locations)
if iscell(res.locations)
loc = res.locations{1};
else
loc = res.locations(1);
end

if isfield(loc, 'physicallLocation') &&

isfield(loc.physicallocation, 'artifactLocation') && ...

isfield(loc.physicalLocation.artifactLocation, 'index')

artIndex = loc.physicallocation.artifactLocation.index + 1;

if ~isempty(artifacts) && artIndex <= numel(artifacts)

artifactUri = artifacts(artIndex).location.uri;

A. Appendix A.2. Verification Functions

12 % Remove any leading "file:/" or similar prefix

113 filePath = regexprep(artifactUri, '“file:/+', '');
114 end

115 end

116 end

118 % Create unique fingerprint

119 fingerprint = sprintf('%s_%d', ruleld, resultCounter);

120 resultCounter = resultCounter + 1;
121

122 % Build GitLab Code Quality finding
123 newFinding = struct(

124 'description', descriptionText,
125 'check_name', checkName,

126 'fingerprint', fingerprint,

127 'severity', severity,
128 'location', struct('path', filePath, 'lines', struct('begin', 1))
129)

130

131 % Append new finding to output struct array

132 gitlabFindings(end+1) = newFinding;
133 end

134 end

135

136 % Encode results to JSON

137 jsonOut = jsonencode(gitlabFindings, 'PrettyPrint', true);
138

139 % Write JSON output

140 fid = fopen(outGitlabFile, 'w');

141 fwrite(fid, jsonOut, 'char');

142 fclose(fid);

144 fprintf ('Wrote GitLab Code Quality results to: %s\n', outGitlabFile);

146 % Quit with exit code 1 if any result has critical severity

147 if autoEval

148 anyCritical = any(strcmp({gitlabFindings.severity}, 'critical'));
149 if anyCritical

150 exit(1);

151 end

152 end

153 end

157

A.2.

Verification Functions

A. Appendix

1 function severity = mapSeverity(res)

2

20

21

22

23

24

25

26

27

28

29

30

158

% Map the severity of an analysis result

% DESCRIPTION
% This function maps the severity of a static analysis result

% depending on the analysis performed.

% INPUTS

% res - Result

% OUTPUTS

% severity - Severity

% Default severity

severity = 'info';

% Initialize empty strings

metaFamily = '';

color = '';

% Obtain properties
if isfield(res, 'properties')
if isfield(res.properties, 'metaFamily')
metaFamily = strtrim(char(res.properties.metaFamily)) ;
end
if isfield(res.properties, 'color')
color = strtrim(char(res.properties.color));
end

end

% Use metaFamily mapping for Bug Finder
if ~isempty(metaFamily)
switch metaFamily
case 'Defect'
severity = 'major';
case 'Coding Rule'
severity = 'minor';

end

% Use color mapping for Code Prover
elseif ~isempty(color)

switch color

50

51

52

53

60

8

19

20

A.

Appendix

A.3. Pipeline Configuration

end

case 'RED'
severity

case 'GRAY'
severity

case 'ORANGE'
severity

end

% Otherwise fallback
elseif isfield(res, '
switch lower(res.
case 'error'
severity
case 'warning
severity
end

end

= 'critical';

= 'major';

= 'minor';

to level mapping

level')
level)

= 'major';

= 'minor';

A.3. Pipeline Configuration

This pipeline includes all verification jobs for the Thrust Controller example

repository.

It defines seven stages and runs seven jobs using the defined templates.

include:
- local: 'jobs/code-analyzer.yml'
- local: 'jobs/model-advisor.yml'
- local: 'jobs/design-verifier.yml'
- local: 'jobs/test.yml'
- local: 'jobs/code.yml'
- local: 'jobs/bug-finder.yml'
- local: 'jobs/code-prover.yml'
default:
tags:
- matlab
- windows
stages:

code-analyzer

model-advisor

159

w

55

56

A.3. Pipeline Configuration

A. Appendix

- design-verifier
- test

- code

- bug-finder

- code-prover

variables:
MODEL: "ThrustController"

run-code-analyzer:
extends: .run-code-analyzer

stage: code-analyzer

run-model-advisor:
extends: .run-model-advisor

stage: model-advisor

run-design-verifier:
extends: .run-design-verifier

stage: design-verifier

run-tests:
extends: .run-tests

stage: test

run-coder:
extends: .run-coder

stage: code

run-bug-finder:
extends: .run-bug-finder

stage: bug-finder

run-code-prover:
extends: .run-code-prover

stage: code-prover

This job runs static analysis of MATLAB files with the dedicated function

runCodeAnalyzer,

which calls writeToCodeQuality to display the findings in the GitLab UI.

.run-code-analyzer:

script:

160

A. Appendix A.3. Pipeline Configuration

6 - echo "Executing Code Analyzer function ..."

7 - matlab -wait -batch "runCodeAnalyzer();"
s artifacts:

9 reports:

10 codequality:

1 - codeAnalyzerCodeQuality. json

1 # This job runs static analysis of Simulink models with the Model Advisor with a
dedicated function.

2 #

3 # The job expects the following variables to be defined:

+ # - $MODEL

¢ .run-model-advisor:

7 script:

8 - matlab -wait -batch "loadModel ('models/$MODEL'); checkIDs =
getCheckIDs('design'); runModelAdvisor ('$MODEL', checkIDs);"

9 artifacts:

10 when: always

1 paths:

12 - artifacts

13 reports:

14 junit: artifacts/ModelAdvisorReport.xml

1 # This job performs model checking in Simulink with a dedicated function.
2 #

5 # The job expects the following variables to be defined:

+ # - $MODEL

¢ .run-design-verifier:

7 script:

8 - matlab -wait -batch "loadModel('models/$MODEL'); runDesignVerifier ('$MODEL') ;"
o artifacts:

10 when: always

1 paths:

12 - artifacts

1 # This job executes tests with Simulink Test with a dedicated function.
2 #

3 # The job expects the following variables to be defined:

« # - $MODEL

¢ .run-tests:

161

A.3. Pipeline Configuration

A. Appendix

script:
- matlab -wait -batch "loadModel ('models/$MODEL'); runTests();"
artifacts:
when: always
paths:
- artifacts
reports:
junit: artifacts\TestResults.xml
coverage_report:
coverage_format: cobertura

path: artifacts\TestCoverage.xml

This job executes code generation for a specified model with a dedicated function.
It saves the generated archive as artifact to be available for following stages.

#

The job expects the following variable to be defined:

- $MODEL

.run-coder:
script:
- matlab -wait -batch "loadModel('models/$MODEL'); generateCode('$MODEL') ;"
artifacts:
paths:

- ThrustControllerWithFunction.zip

This job executes a Polyspace Bug Finder analysis with a generated code archive

that has a Polyspace options file.

+H*+

It exports and converts the results to be available in GitLab with a dedicated

function.

Environmental variables:
- $CI_PROJECT_NAME

H O H H H

File names have to be adjusted manually.

.run-bug-finder:
script:
- 7z x ThrustController.zip
cd $CI_PROJECT_NAME\polyspace

- polyspace-bug-finder -options-file optionsFile.txt -misra-cpp required-rules

- polyspace-results—export -format json-sarif -output-name bugFinderResults.json

- cd ..\..

162

16

A. Appendix A.4. Supplementary Scripts

- matlab -wait -batch
"convertToCodeQuality('$CI_PROJECT_NAME\polyspace\bugFinderResults.json',
'bugFinderCodeQuality. json')"
artifacts:
reports:
codequality:
- bugFinderCodeQuality. json

This job executes a Polyspace Bug Finder analysis with a generated code archive
that has a Polyspace options file.

It exports and converts the results to be available in GitLab with a dedicated
function.

#

Environmental variables:

- $CI_PROJECT_NAME

#

File names have to be adjusted manually.

.run-code-prover:

script:
- 7z x ThrustController.zip
- cd $CI_PROJECT_NAME\polyspace
- polyspace-code-prover -options-file optionsFile.txt
- polyspace-results—export -format json-sarif -output-name codeProverResults.json
- cd ..\..
- matlab -wait -batch
"convertToCodeQuality('$CI_PROJECT_NAME\polyspace\codeProverResults.json',
'codeProverCodeQuality.json')"

artifacts:
reports:

codequality:

- codeProverCodeQuality. json

A.4. Supplementary Scripts

% runVerification.m

b

% DESCRIPTION

% This script defines model and directories and subsequently runs all
% functions defined for the automated verification and code generation

yA for the Thrust Control simulation.

163

20

21

22

23

24

N}

w

A.4. Supplementary Scripts

A. Appendix

close all
clear

clc

%% Load model
model = 'DiscreteThrustControl';
loadModel (model) ;

%% Check Model Compliance with Model Advisor and Simulink Check
checkIDs = getCheckIDs('design');
runModelAdvisor (model, checkIDs);

%% Collect Model metrics with Simulink Check
metricIDs = getMetricIDs('all');

collectModelMetrics(model, metricIDs);

%% Run Design Error Detection with Simulink Design Verifier

s runDesignVerifier (model) ;

%% Run Tests with Simulink Test

runTests();

%% Generate C++ Code with Embedded Coder

generateCode (model) ;

%% Run Polyspace Bug Finder Analysis
if isPolyspaceIntegrated()
runPolyspaceBugFinder (model) ;

end

%% Run Polyspace Code Prover Analysis
if isPolyspaceIntegrated()
runPolyspaceCodeProver (model) ;

end

%% Close the model
close_system(model, 0);

disp('Script completed all tasks.');

% getParameters.m
YA
% DESCRIPTION

% This script obtains the simulation parameters for the Thrust Control

164

19

2(

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

46

A. Appendix

A.4. Supplementary Scripts

% simulation using functionality of the Control Systems Toolbox.

close all
clear

clc

%% Define Thrust Chamber as Plant

% Define parameters

R = 300;
T c = 3200;
c_s = 1700;
At = 1.0e-4;
V_c = 5.0e-3;

h
h
h
h
h

Specific gas constant in J/kg-K
Chamber temperature in K
Characteristic velocity in m/s
Nozzle throat area in m™2

Chamber volume in m~3

% Compute transfer function variables

Kp=c_s/ A_t;

tau_p = (V_c * c_s) / (R * T_c * A_t);

% Create transfer function object

G_p = tf(K_p, [tau_p, 11);

% Create stace-space model

S_p = ss(G_p);

object

% Convert to discrete time and compare
S_pd = c2d(S_p,0.001, 'foh');

step(S_p,'-',S_pd,'--"');

%% Define Valve as Actuator

% Define parameters
m_d max = 0.1;

tau_v =0.1;

b
h

Maximum mass flow in kg/s

Valve response time in s

% Create transfer function object

G_a = tf(m_d_max, [tau_v, 1]);

% Create space-space model object

S_a = ss(G_a);

% Convert to discrete time and compare

165

47

66

67

68

69

70

A.4. Supplementary Scripts

A. Appendix

S_ad = c2d(S_a,0.001, 'foh');
step(S_a,'-',S_ad,'--");

%% Define Kalman Filter for Plant
% Provide a model sys that has an input for the noise w.
% sys is not the same as Plant, because Plant takes the input un = u + w.

sys = S_pdx[1 1];

% Specify the noise covariances. Assume both noise sources have unit

% covariance and are not correlated (N = 0)

Q=1
R =1;
N = 0;

% Design the filter
[kalmf,L,P] = kalman(sys,Q,R,N);

s %% Define parameters explicitly

% Simulation parameters

P_c_set = 1e6; % Chamber pressure set point
r_m_set = 1.5; % Mixture ratio set point
m_d_0 = le-3; % Nonzero initial actuator state

% Plant parameters

S_pd.A = 0.9888; % Plant state transition matrix
S_pd.B = 16.2002; % Plant control input matrix

5 S_pd.C = 1.1719e+04; % Plant measurement matrix
S_pd.D = 9.5640e+04; % Plant feedthrough matrix

% Actuator parameters

S_ad.A = 0.9900; % Actuator state transition matrix
S_ad.B = 9.9006e-04; % Actuator control input matrix
S_ad.C = 1; % Plant measurement matrix

S_ad.D = 4.9834e-04; % Plant feedthrough matrix

% getConfiguration.m

b

% DESCRIPTION

% This script obtains and lists all configuration parameters of a model

% that are not set to their default values.

166

28

29

30

31

3

8

A. Appendix A.4. Supplementary Scripts

% Clear workspace
clear

clc

% Load the specified configuration set
data = load('CodeGen.mat');
configSet = data.('CodeGen_cfg');

% Create default configuration set for comparison

defaultConfigSet = Simulink.ConfigSet;

7 set_param(defaultConfigSet, 'SystemTargetFile', 'ert.tlc');

% Retrieve all parameter names from loaded configuration set
loadedParameters = get_param(configSet, 'ObjectParameters');

paramNames = fieldnames(loadedParameters) ;

% Retrieve parameters from default configuration set

defaultParameters = get_param(defaultConfigSet, 'ObjectParameters');

s nonDefaultParams = {};

% Compare parameters between loaded and default configuration set
for n = 1:length(paramNames)

paramName = paramNames{n};

% Check if parameter exists in both configurations

if isfield(defaultParameters, paramName)

currentValue = get_param(configSet, paramName);

defaultValue = get_param(defaultConfigSet, paramName);

% Compare values

if ~isequal(currentValue, defaultValue)
nonDefaultParams{end+1, 1} = paramName; Y#ok
nonDefaultParams{end, 2} = currentValue;

defaultValue;

nonDefaultParams{end, 3}
end

else

warning('Parameter "7s" not found in default configuration set.', paramName);

end

5 end

% Display non-default parameters

disp('Configuration parameters not set to their default values:');

167

49

50

)

23

2

=

A.4. Supplementary Scripts A. Appendix

disp(table(nonDefaultParams(:,1), nonDefaultParams(:,2), nonDefaultParams(:,3),

'VariableNames', {'ParameterName', 'CurrentValue', 'DefaultValue'}));

% getInputs.m

b

% DESCRIPTION

% This script obtains input data from a simulation in a MAT file for

% the signals that have been enabled for logging.

% Run the simulation and log the signals enabled for logging

simOut = sim('DiscreteThrustControl');

% Retrieve logged data from simulation output

logs = simOut.get('logsout');

% Save dataset to MAT file

save('inputData.mat', 'logs');

% Visualize the logged input signal for confirmation
inputSignal = logs.getElement('P_c').Values;

figure;

plot(inputSignal.Time, inputSignal.Data);
xlabel('Time (s)');

ylabel('Signal Value');

title('Logged Input Signal');

disp('Script completed all tasks.');

% createTests.m
yA
% DESCRIPTION

% This script creates arbitrary test cases for testing with Simulink Test.

% Create the test file, test suite, and test case structure

tf = sltest.testmanager.TestFile('controllerBaselineTest');

ts createTestSuite(tf, 'Baseline Test Suite');

tc createTestCase(ts, 'baseline', 'Baseline Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');

remove (tsDel) ;

% Assign the system under test to the test case

168

A. Appendix A.4. Supplementary Scripts

setProperty(tc, 'Model', 'DiscreteThrustControlWithFunction');

s % Capture the baseline criteria

baseline = captureBaselineCriteria(tc, 'baselineData.mat',true);

% Set the baseline criteria tolerance for one signal
sc = getSignalCriteria(baseline);
sc(1) .AbsTol = 0.1;

s % Turn on coverage settings at test-file level

cov = getCoverageSettings(tf);

27 cov.RecordCoverage = true;

% Enable MCDC and signal range coverage metrics

cov.MetricSettings = 'mr';

169

Declaration of Authorship

[hereby affirm that I have written the present work independently and have used no sources
or aids other than those indicated. All parts of my work that have been taken from other
works, either verbatim or in terms of meaning, have been marked as such, indicating the
source. The same applies to drawings, sketches, pictorial representations and sources from
the internet, including Al-based applications or tools. The work has not yet been submitted

in the same or a similar form as a final examination paper.

I have used Al-based applications and/or tools and documented them in the appendix "Use

of Al-Based Applications".

Date Signature

Declaration of Publication

I agree that my thesis may be viewed by third parties in the university archive for academic

purposes.

[agree that my thesis may be viewed by third parties for academic purposes in the university

archive after 30 years (in accordance with §7 para. 2 BremArchivG).

Date Signature

Declaration of Consent

Submitted papers can be checked for plagiarism using qualified software in accordance with
§ 18 of the General Section of the Bachelor’s or Master’s Degree Examination Regulations
of the University of Bremen. For the purpose of checking for plagiarism, the upload to the

server is done using the plagiarism software currently used by the University of Bremen.

I agree that the work I have submitted and written will be stored permanently on the ex-
ternal server of the plagiarism software currently used by the University of Bremen, in a
library belonging to the institution (accessed only by the University of Bremen), for the

above-mentioned purpose.

Consent to the permanent storage of the text is voluntary. Consent can be withdrawn at any
time by making a declaration to this effect to the University of Bremen, with effect for the
future. Further information on the checking of written work using plagiarism software can
be found in the data protection and usage concept. This can be found on the University of

Bremen website.

With my signature, I confirm that I have read and understood the above explanations and

confirm the accuracy of the information provided.

Date Signature

Use of Al-Based Applications

All prompts were submitted to the official MaTLaB GPT by MathWorks. Where suitable,

follow-up queries were submitted after the listed prompts.

Number Prompt Comment
1 Explain the basics of Git and GitLab. Good first overview. More help-
tul for Git as GitLab’s own doc-
umentation is very comprehen-
sive.
2 Explain to me how I can perform static analy- Good introduction into the
sis of Matlab code. legacy MLint and more recent
Code Analyzer and codelssues
capabiltites.
3 Explain to me what Simulink Check is and Overview of product. Read-
how to use it. ing the documentation was then
found to be more helpful.
4 Explain the following message: The model initial understanding of
includes floating-point arithmetic. Simulink Simulink Design Verifier.
Design Verifier approximates floating-point
arithmetic with rational number arithmetic.
5 Brainstorm ideas for a system to be mod- Initial ideas for the example

eled in Simulink. The model shall be used
to demonstrate the Simulink model-based
verification workflow using Simulink Design
Verifier, Simulink Check, Simulink Test and

Simulink Coverage in an illustrative way.

project. After that, further liter-
ature research was required re-

garding the suitability.

6 Explain to me how model checking can be ap- Generic answer with a lot of un-
plied to control systems. I know that model certainty. In the end not in-
checking can be done for models that employ cluded in thesis as there is no
logical conditions, switching (e.g. as state ma- certainty here.
chine), but I don’t understand how that can be
applied to a feedback control system.

7 Walk me through the process of discretizing GPTs are currently still not very
and building the model outlined in the figure helpful in modeling.
in the attachment in Simulink.

8 Explain to me how to model a rocket engine Another more concrete attempt.
fuel valve, that has pressure and area as an in-
put and mass flow as an output in Simulink as
a discrete transfer function.

9 Explain to me how i can a) enforce custom Initial understanding of these
coding guidelines and b) trace back errors products. Again, reading the
from code to model in a model-based software documentation was more help-
engineering workflow using Matlab Embed- ful.
ded Coder and Polyspace products.

10 Explain the attached paper to me. Explanation of Stadlmarck’s
proof method for propositional
logic. Was decided to be out of
scope for this thesis.

11 Show me how to implement the transfer func- Modeling the contents of the pa-
tion (first equation on page 2) from this paper per Overview of Rocket Engine
in Simulink. Control.

12 Generate a Matlab script, that for a model file Initial draft of
performs verification with the attached Mat- runVerification.m.
lab/Simulink verification products.

13 Encapsulate the functionality of the attached Initial draft of verification func-

scripts in functions.

tions.

14 Write a Matlab script that opens a configSet Initial draft of
file stored in a .mat file and lists all configura- getConfiguration.m.
tion parameters that are not set to their default
value.

15 Describe how to model this closed loop rocket Better understanding but in the
engine control in open loop. Most important end discarded.
to me is what would be the required inputs and
outputs.

16 Walk me through the differences between Very detailed and comprehen-
MISRA C++ 2008 and 2023. sive but cumbersome to verify.

17 Name all changes from C++03 to C++11. Again very detailed but not eas-

ily verifiable.

18 Change the following function so that instead Normalization after unfavorable
of the valve area, it accepts the “opening” as a numeric results.
value from 0 to 1.

19 Describe how Git flow, GitHub flow and Git- Overview of branching strate-
Lab flow work. gies.

20 What steps are necessary in order to create a Again, documentation was
GitLab runner. more helpful after getting an

overview.

21 Explain to me how the results of a Polyspace GPT was not aware of export
analysis are typically processed in an auto- functionality, but remarks about
mated way. other tools were helpful.

22 Compare the CodeClimate report format to Information from the GitLab
the SARIF format. documentation.

23 How can I verify the toolbox requirements of Not always trivial.

a Matlab command?
24 Can a GitLab CI/CD pipeline be configured to Helpful explanation about exit

pass or fail depending on specific command

line output?

codes.

25 In a GitLab CI/CD pipeline, how canIsave and Pointer to documentation and
reuse artifacts from one job to another? artifact default behavior.

26 Look into the following repository: Initial idea of results reporting
https://github.com/dapperfu/Jenkins- in GitLab.
Simulink-Model-Advisor and explain what it
does.

27 The attached file contains a list of Model Ad- GPT was not able to reliably per-
visor checks. Group the individual check IDs form this task.
into cell arrays in a useful way.

28 Provide an example function for programmat- Initial draft of Model Advisor
ically running Model Advisor checks and ex- automation.
porting them as XML.

29 Explain statement, decision and condition Helpful explanation but exam-
coverage with a simple control flow graph. ple was not very suitable.

30 Consider the attached papers and everything Helpful to some degree.
else you know about chemical rocket engine
control. Is it possible to describe an atti-
tude thruster for a spacecraft as a linear time-
invariant system?

31 Brainstorm ways to combine a basic PID con- Initial idea of gain scheduling
troller and a simple state machine in a control with a FSM.
loop.

32 How are pressure-fed spacecraft propulsion Not entirely accurate summary.
systems throttled? What is controlled and
how?

33 Verify that both example files are indeed struc- Troubleshooting the JSON file
tured the same. List differences that might af- conversion for Polyspace re-
fect analysis of the files with Matlab. sults.

34 Develop a Matlab function that converts re- Initial draft that had to be trou-

sults files provided by Polyspace analyses in
the OASIS SARIF JSON format to a GitLab
Code Quality compliant JSON file.

bleshooted extensively.

35

The attached image tries to illustrate what
happens during the analysis phase of compi-
lation, i.e. lexical analysis and syntax analysis.
Find a more illustrative example with a shorter

statement.

Shorter example provided.

36

The attached image is an excerpt of an expla-
nation of abstract interpretation. I am not sure
what the benefit of using such a Hasse diagram
is. Try to find a way to explain abstract in-
terpretation how it is done by static analysis

tools.

Helpful in addition to Cousot’s

literature.

37

Append the main function so that Matlab is
quit with an exit code 1 when there is at least

one result with severity ’critical’.

Inclusion of autoEval function-

ality.

38

Simulink Design Verifier to the my best
knowledge is a Model Checker integrated into
Simulink. As far as I know, model checking
is only applicable to finite automata, however
the Toolbox in principle seems to be compati-
ble also with, say, a standard closed-loop con-
trol loop with a PID controller. Explain to me
in detail how this is possible from a theoretical

point of view.

Another attempt that resulted in

vague information.

39

The following excerpt is from an introduction
in abstract interpretation for static analysis.

Explain what it means.

Better explanation of the back-
ground of soundness in proof

theory.

40

Assume a standard control loop including the
conventional Controller, Actuator and Plant
blocks. When I want to implement a very ba-
sic Kalman filter, how do I have to connect it

correctly?

Overview of Kalman filter inte-

gration, in the end excluded.

41

Transform the attached in SI units.

Processing of values from Rocket

Propulsion Elements.

42 When K is the nominator in a transfer function Confirmation after the derived
of a LTI system, is then always C=K in its state state-space representation
space representation? seemed quite simple.

43 Compare cppcheck, Polyspace and Astrée. A rather generic overview, with
more details found in the docu-
mentation.

44 The following is a list of Simulink checks re- Another unsuccessful attempt.

lating to compliance. Try to group and sum-
marize them according to their meaning.

45 Write Matlab code that performs the exact Initial function implementation.
same task as the depicted subsystem.

46 In the Kalman Filter Simulink block, what Understanding of Kalman filter
needs to be specified in the System Model sec- in Simulink, later excluded.
tion of its properties?

47 Explain what MathWorks means with HISM. Understanding of Simulink
Is HISM itself a standard? modeling guidelines.

48 I want to use equivalence testing in Simulink Understanding of Kalman filter
Test to verify the performance/accuracy of a in Simulink, later excluded.
Kalman Filter in a conventional feedback con-
trol loop. What signals would I need to com-
pare?

49 Matlab code does not need to be compiled tobe Not quite accurate overview of
run, right? So, from knowing that static anal- static analysis for interpreted
ysis is somewhat similar to compilation, what languages.
are the differences in Matlab?

50 Explain in detail the Simulink model configu- Good overview of model config-
ration and configuration parameters. uration behavior.

51 Explain OOP in Matlab. Good overview of how Mat-

lab handles object-oriented pro-

gramming.

52 Summarize chapter 2 of this paper. Another summary of A Tutorial
on Stdlmarck’s Proof Procedure
for Propositional Logic.

53 What is a level-2 Matlab S-function? Overview of S-functions.

54 What exactly is a Design Verifier model repre- Another vague answer.

sentation?

55 Explain static and dynamic memory allocation Good explanation of the ques-
in C/C++. tion.

56 How exactly are numeric data types handled Overview of typing in Matlab.
in Matlab?

57 Consider the following Matlab function. In- Initial version of the FSM imple-
stead of using one control function, I want to mentation.
implement this control behavior as a state ma-
chine with the attached logic.

58 What are the phases in the testing process ac- Reminder of the testing process.
cording to ISTQB?

59 Give an overview of C++ versions and their in- Good overview of the question.
dividual features/changes. Add some historic
context where suitable.

60 Show me how to declare optional input ar- Overview of argument handling
guments to a Matlab function with a default functionality in Matlab.
value.

61 With the goal of code generation, is it possible Understanding the relation of
to implement a controller in a Simulink sim- model referencing and code
ulation model and then generate code for the generation.
subsystem, or do I have to save it as individual
model and reference it in the simulation?

62 I have two version of Matlab installed. When Help in handling automated ex-

starting in batch mode, how do i specify the

version?

ecution.

63 I have my machine set up as a GitLab runner. Fruther help in handling auto-
When I run Matlab from the command line, it mated execution.
works as expected, but when I run the exact
same command in the corresponding GitLab
pipeline, there is a license error. Is this to be
expected?

64 How can I set variables from within a Matlab Use of the function assignin
function to be available from the Workspace? that is not advisable.

65 Is there an equivalent to Clang-format for Reference to third-party open
Matlab code? source tools.

66 I have a GitLab pipeline comprised of several Explanation of CI/CD compo-
stages. Show me how to encapsulate each of nents.
its job in a separate yml file.

67 What options do I have for queuing GitLab
pipeline executions (based on the availability
of a license that software run in the pipeline
needs)?

68 Suppose my repository is located at Understanding GitLab variables.
something/my-repo and called “My Repo”,
what GitLab CI variable will output “my-repo”
instead of “My Repo™?

69 In software development, what is an integra- Better understanding of conven-
tion or an release build? tional software development.

70 Explain the context of Overview of the Matlab Java
com.mathworks.xml.XMLUtils. XML processing APL

71 Is there something similar to the classes Explanation when which func-
plugins.codecoverage.CoverageResult and tionality was added.
coverage.result.CoverageSummary in earlier
releases of Matlab?

72 How can I programmatically access the cover- Explanation of missing func-

age results for display in merge requests using
Matlab/Simulink R2021b?

tionality.

	Introduction
	Fundamentals
	Guidance, Navigation and Control Modeling
	Software Management
	Version Control
	Repository Management
	Continuous Integration

	Software Testing
	Terminology
	Testing Techniques

	Static Analysis
	Terminology
	Abstract Interpretation
	Model Checking

	Motivation and Goal
	Methods and Tools
	Thrust Controller Simulation
	Controller Function
	Finite State Machine

	Verification
	Static Analysis of Matlab Code
	Static Analysis in Simulink
	Model Checking in Simulink
	Testing in Simulink
	Code Generation
	Static Analysis of Generated Code

	Automation
	Code Analyzer
	Model Advisor
	Simulink Test
	Polyspace

	Results
	Matlab Code Analyzer
	Simulink Model Advisor
	Simulink Design Verifier
	Simulink Test
	Embedded Coder
	Polyspace

	Discussion
	Conclusion and Outlook
	Appendix
	Model Functions
	Verification Functions
	Pipeline Configuration
	Supplementary Scripts

