
Investigation and Automation of

Verification Methods for Model-Based

Development of GNC Systems

Master’s Thesis

submitted at

University Bremen

Faculty 4: Production Engineering

within the study program

Space Engineering M. Sc.

Author: Philipp Kayser

6254563

Examiners: Dr.-Ing. Stephan Theil

Leonardo Borges Farconi

Bremen, May 15, 2025

Abstract

Objective: The presented work considers the development of guidance, navigation and con-

trol (GNC) software in the context of reusable launch vehicles. More speci�cally, the con-

sidered work�ows involve modeling in Matlab/Simulink and automated code generation

with the goal of deployment to real-time embedded system processors. The objective is to

investigate, evaluate and automate the use of several compatible software veri�cation tools

at di�erent points of this process.

Methods: An example project is developed to resemble the software that is developed in a

project context. The considered tools are introduced and investigated in that context for their

usability and limitations. Both static and dynamic veri�cation are considered, taking current

formal methods into account. Methods for static analysis of Matlab code, Simulink models

and generated code are presented as well as an alternative method of testing in Simulink.

Results: The work results in a review of the tools capabilities and limitations. A basic frame-

work of wrapper functions to use the tools is developed in the process. This encompasses

an automation concept for the use in GitLab with an automated evaluation of veri�cation

results. Lastly, an initial qualitative evaluation of the tools is provided.

Conclusion: The presented suite of tools is able to signi�cantly increase the level of con�-

dence in software quality, when it is used correctly. This means that they require to be used

in conjunctionwithin awell-de�ned process and respecting their individual limitations. Con-

cluding, recommendations for next steps and a prioritization for implementation in a project

context are given.

Contents

1. Introduction 11

2. Fundamentals 13

2.1. Guidance, Navigation and Control Modeling 13

2.2. Software Management . 17

2.2.1. Version Control . 17

2.2.2. Repository Management . 18

2.2.3. Continuous Integration . 19

2.3. Software Testing . 21

2.3.1. Terminology . 21

2.3.2. Testing Techniques . 23

2.4. Static Analysis . 26

2.4.1. Terminology . 26

2.4.2. Abstract Interpretation . 29

2.4.3. Model Checking . 33

3. Motivation and Goal 37

4. Methods and Tools 41

4.1. Thrust Controller Simulation . 41

4.1.1. Controller Function . 48

4.1.2. Finite State Machine . 48

4.2. Veri�cation . 50

4.2.1. Static Analysis of Matlab Code . 50

4.2.2. Static Analysis in Simulink . 53

4.2.3. Model Checking in Simulink . 61

4.2.4. Testing in Simulink . 65

4.2.5. Code Generation . 72

Contents Contents

4.2.6. Static Analysis of Generated Code 74

4.3. Automation . 84

4.3.1. Code Analyzer . 85

4.3.2. Model Advisor . 86

4.3.3. Simulink Test . 87

4.3.4. Polyspace . 88

5. Results 90

5.1. Matlab Code Analyzer . 90

5.2. Simulink Model Advisor . 93

5.3. Simulink Design Veri�er . 98

5.4. Simulink Test . 98

5.5. Embedded Coder . 100

5.6. Polyspace . 101

6. Discussion 107

7. Conclusion and Outlook 111

A. Appendix 116

A.1. Model Functions . 116

A.2. Veri�cation Functions . 122

A.3. Pipeline Con�guration . 159

A.4. Supplementary Scripts . 163

4

List of Figures

2.1. Basic Control Loop (modi�ed from [9]) . 16

2.2. Basic Git Concepts . 18

2.3. Software Management . 20

2.4. Control Flow Graph for the Example . 25

2.5. Parse Tree for the Exemplary Statement . 28

2.6. Hasse Diagram of the Abstract Domain for (α±, γ±) (after [4]) 30

2.7. Example FSM (modi�ed from [16]) . 35

3.1. Simpli�ed Functional GNC Architecture (modi�ed from [7]) 37

3.2. Spacecraft GNC Development Process (modi�ed from [19], [20]) 38

4.1. Thrust Control (modi�ed from [22]) . 42

4.2. Thrust Control Simulation . 46

4.3. Thrust Controller . 47

4.4. Controller Simulation Results . 47

4.5. Controller State Machine . 48

4.6. Code Analyzer Issue . 50

4.7. Design Veri�er Analysis . 65

4.8. Controller Test Harness . 67

4.9. Baseline Test Case in the Simulink Test Manager 69

4.10. Equivalence Test Case in the Simulink Test Manager 70

4.11. Equivalence Test Results for uo . 71

4.12. Equivalence Test Coverage Results . 71

4.13. The Code Generation Process (modi�ed from [35]) 73

5.1. Code Analyzer Results Displayed in GitLab 93

5.2. Model Advisor Results Displayed in GitLab 97

5.3. Test Results Displayed in GitLab . 100

5.4. Bug Finder Results Displayed in GitLab . 105

5.5. Code Prover Results Displayed in GitLab . 106

List of Tables

2.1. Result Cases in Software Veri�cation . 23

2.2. Evaluation of the Abstraction Function α±(S) for S ⊆ Z 30

4.1. Combustion Values for an Exemplary Propulsion System 44

4.2. Estimate Values for Exemplary Propulsion Valves 46

4.3. Matlab Code Analyzer Checks . 52

4.4. Matlab Code Analyzer Checks (continued) 53

4.5. Model Advisor Checks . 55

4.6. MAB Checks . 57

4.7. HISM Checks . 58

4.8. HISM Checks (continued) . 59

4.9. Polyspace Defect Checks . 81

4.10. Polyspace Run-Time Error Checks . 84

List of Symbols

x state vector

u input vector

y output vector

A state matrix

B input matrix

C output matrix

D direct transmission matrix

G(s) transfer function

U(s) Laplace transform of the input vector

Y (s) Laplace transform of the output vector

KP proportional gain

KI integral gain

KD derivative gain

r(s) reference input signal

e(s) error signal

u(s) controller output signal

v(s) actuator output signal

ym(s) measured plant output signal

y(s) sensor output signal

Z set of all integers

S set of integers

α± abstraction function

γ± concretization function

⊥± bottom element

⊤± top element

Q state space

q initial state

List of Symbols

Σ input alphabet

h transition relation

F set of �nal states

AP set of atomic propositions

a, b atomic propositions

rm mixture ratio

ṁo oxidizer mass �ow

ṁf fuel mass �ow

ṁt total mass �ow

Pc chamber pressure

Vc chamber volume

Tc combustion temperature

R speci�c gas constant

ρc combustion density

At throat area

c∗ characteristic velocity

xv valve opening

τv valve response time

uo oxidizer control command

uf fuel control command

8

Acronyms

API application programming interface

AUTOSAR Automotive Open System Architecture

CALLISTO Cooperative Action Leading to Launcher Innovation in Stage

Toss-back Operations

CD continuous delivery

CERT Computer Emergency Response Team

CI continuous integration

CTL computation tree logic

CWE Common Weakness Enumeration

DLR German Aerospace Center

DOM Document Object Model

EN European Standard

ERT embedded real-time

FSM �nite state machine

GCC Guidance and Control Computer

GNC guidance, navigation and control

GPT generative pre-trained transformer

GRT generic real-time

GUI graphical user interface

HIL hardware-in-the-loop

HIS Hersteller Initiative Software

HISM High Integrity Systems Modeling

HNS Hybrid Navigation System

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ISTQB International Software Testing Quali�cations Board

Acronyms

JMAAB Japan MathWorks Automotive Advisory Board

JSF AV Joint Strike Fighter Air Vehicle

JSON JavaScript Object Notation

LLM large language model

LTI linear, time-invariant

LTL linear temporal logic

MAAB MathWorks Automotive Advisory Board

MAB MathWorks Advisory Board

MIL model-in-the-loop

MISRA Motor Industry Software Reliability Association

MPCV Multi-Purpose Crew Vehicle

NASA National Aeronautics and Space Administration

NESC NASA Engineering & Safety Center

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information

Standards

OBC On-Board Computer

PIL processor-in-the-loop

ReFEx Reusability Flight Experiment

RTCA Radio Technical Commission for Aeronautics

SARIF Static Analysis Results Interchange Format

SEI Software Engineering Institute

SIL software-in-the-loop

VCS version control system

XML Extensible Markup Language

10

1. Introduction

On the morning of June 4th, 1996 the maiden �ight of the newly developed Ariane 5 launch

vehicle ended in catastrophic failure. An independent inquiry determined that an unex-

pectedly high value of an internal alignment function caused an operand error due to an

unprotected data type conversion in the internal software of the inertial reference system.

The on-board computer interpreted the resulting diagnostic data output wrongly as �ight

data and commanded full engine nozzle de�ections, leading to an abnormally high angle of

attack and the subsequent self-destruction of the vehicle after 39 seconds of �ight [1].

The investigation revealed that the missing protection in the software as well as the sub-

sequent behavior of the inertial reference system did not violate the speci�cation. Further,

system testing was conducted insu�ciently based on false assumptions. According to the

report, these decisions were made out of a general philosophy that software can be consid-

ered correct until it is shown to be at fault. In fact, the authors point out that software should

instead be assumed to be faulty until the currently accepted best practices demonstrate that

it is not [1].

Since the 1990s, the development of control systems has changed considerably. Development

philosophies and life cycles have emerged that are more concurrent in nature and embrace

early and consistent veri�cation [2], [3]. Development and veri�cation are more strongly

driven by more diverse and capable tools and their automation capabilities. Advances in

computer science have brought forth more rigorous veri�cation techniques, that have been

successfully adopted and scaled to industrial applications [4], [5].

The MathWorks Inc. is tightly associated with this process. Being founded in 1984, the com-

pany has grown to marketing and supporting more than 130 individual products associated

with the Matlab/Simulink development ecosystem [6]. Spacecraft �ight software develop-

ment by the Institute of Space Systems at the German Aerospace Center (DLR) is just one of

many example applications of this software suite.

1. Introduction

The thesis at hand aims to investigate the use of several MathWorks software veri�cation

products in this context. As preliminaries, fundamentals of GNC systems and the context

for �ight software development are introduced. The term veri�cation for the scope of this

thesis is de�ned in line with its meaning in software development. The associated technical

fundamentals are therefore introduced too. This thesis follows an emphasis on static analy-

sis and formal veri�cation, but aspects of conventional software testing are considered too.

Based on this, the individual tools are described with a focus on how they might be useful in

the given context. In the process, a basic usage and automatization framework around those

tools that integrates with the existing work�ows at the institute is developed. Concluding,

an evaluation of the tools capabilities and recommendations for future use are given.

12

2. Fundamentals

2.1. Guidance, Navigation and Control Modeling

On a spacecraft, the objective of the GNC subsystem is to achieve the desired motion of the

vehicle. This task is divided functionally into guidance, referring to determining the required

trajectory of the spacecraft; navigation, referring to determining the spacecraft position, ve-

locity and attitude; and control, referring to determining the commands needed to achieve

the required trajectory [7]. Some fundamentals in the area of control system engineering are

required to introduce these principles.

Any dynamic systems is characterized by its behavior that changes the system’s condition

over time. This behavior is described by a system of di�erential equations that can oftentimes

be derived from the physical laws governing the system. As laid out in reference [8], these

di�erential equations can be converted into the state space representation. By de�ning state

variables, a higher-order di�erential equation can be reformulated as a system of �rst-order

di�erential equations. Arranging these in a compact and standardized form leads to the state

space representation where

• The state vector x contains the state variables of the system, which represent the sys-

tem’s condition at a given time

• The input vector u contains the system inputs, which represent the external in�uences

on the system

• The output vector y contains the system outputs, which represent observable quanti-

ties derived from the state

• The state equation de�nes how the system’s internal state changes over time

ẋ(t) = f(x, u, t) (2.1)

2.1. Guidance, Navigation and Control Modeling 2. Fundamentals

• The output equation de�nes how the internal state and inputs in�uence the system’s

output

y(t) = g(x, u, t) (2.2)

The state space is the n-dimensional space whose coordinate axes represent the state vari-

ables [8].

A dynamic system exhibits linear behavior when it can be described by linear di�erential

equations: The dependent variable and its derivatives have to appear only in �rst-degree.

Following [8], a linear system satis�es two principles:

• superposition: the response to a sum of inputs equals the sum of the responses to each

input individually

• homogeneity: If the input to a system is scaled by a constant factor, the output must

be scaled by the same factor

Linear systems are generally easier to analyze, control and simulate. If a dynamic system

displays nonlinear behavior, it is usually linearized by approximating it around a useful op-

erating point. There are specialized analysis methods for nonlinear methods which however

fall well beyond the scope of this thesis. For the linear case, the state space representation

is

ẋ(t) = A(t) x(t) + B(t) u(t) (2.3)

y(t) = C(t) x(t) + D(t) u(t) (2.4)

where A(t) is called the state matrix, B(t) the input matrix, C(t) the output matrix, and

D(t) the direct transmission matrix [8].

In the general form of the state space representation above, the system parameters may

change: vector function g in equation 2.1 and vector function g in equation 2.2 are both

a function of time t. If they are not, the system is called a time-invariant system and the state

space representation can be simpli�ed to

ẋ(t) = A x(t) + B u(t) (2.5)

y(t) = C x(t) + D u(t) (2.6)

14

2. Fundamentals 2.1. Guidance, Navigation and Control Modeling

A di�erent system description is the transfer function G(s). It is de�ned as the ratio of the

Laplace transform of the system’s output Y (s) to the Laplace transform of the system’s input

U(s), under the assumption that all initial conditions involved are zero, with the complex

frequency s = δ + jω [9].

G(s) =
Y (s)

U(s)
(2.7)

Performing the Laplace transformation and thereby transferring the system from the time

domain into the frequency domain allows to express system dynamics by algebraic equations

instead of di�erential equations, which is highly useful in system analysis and control design.

As [8] notes, the transfer function includes the units necessary to relate the input to the

output, but does not provide any information concerning the physical structure of the system.

As such, a transfer function can be established experimentally by introducing known inputs

and studying the outputs. In other cases, it is possible to derive it from the physical laws

governing the system, as is demonstrated in chapter 4.

The transfer function methodology is only applicable to linear, time-invariant (LTI) systems

[8]. For such systems, it however allows to describe complex system dynamics with the use

of a limited number of elemental transfer-function forms. Reference [9] names

• the proportional element P with G(s) = KP

• the integral element I with G(s) = KI

s

• the derivative element D with G(s) = KD s

• the proportional–derivative element PD1 with G(s) = KP D1
(T s + 1)

• the �rst-order low-pass element PT1 with G(s) =
KP T1

T s+1

• the second-order oscillatory element PT2 with G(s) =
KP T2

(T 2 s2+2 D T s+1)
.

System and associated control dynamics can be visualized easily in the frequency domain,

with transfer functions represented as blocks in block diagrams. The layout of a basic control

loop is shown in �gure 2.1, which has been adapted from reference [9], where

• r(s) is the reference input

• e(s) is the error signal

• u(s) is the controller output

15

2.1. Guidance, Navigation and Control Modeling 2. Fundamentals

• v(s) is the actuator output

• ym(s) is the measured output from the plant

• y(s) is the feedback signal from the sensor.

The objectives of spacecraft GNC systems are realized with the same underlying structure,

yet have a much higher complexity. The related implications for this thesis are addressed in

chapter 3 and revisited in chapter 4.

Controller Actuator Plant

Sensor

Figure 2.1.: Basic Control Loop (modi�ed from [9])

Matlab/Simulink is the state-of-the-art tool for dynamic system simulation and control de-

sign in a variety of application domains. It allows to hierarchically model system dynamics

and the associated data manipulation to very high levels of complexity and serves as the

basis for the work done within the scope of this thesis.

The conventional way of modeling with Simulink is using the extensive range of blocks that

allow to model virtually any mathematical operation on data represented as signal lines. In

complex applications such as spacecraft GNC it can be bene�cial to perform considerable

parts of the required computation inMatlab functions embedded in Simulink models. This

background is important to note, as the model veri�cation should take this prioritization into

account.

An important aspect of modeling with Simulink is the model con�guration. The con�gura-

tion parameters of a model form a con�guration set and govern how a model is run. Among

others, they contain settings regarding how the simulation is executed, how data is imported

and exported, and what the target hardware for simulation and code generation is [10]. They

are just as important as the correctness of the model itself and thus should also be subject to

veri�cation.

16

2. Fundamentals 2.2. Software Management

Matlab fully supports object-oriented programming. Objects here are structures that contain

data as properties and functions that operate on that data asmethods. They are instances of a

class. When using Matlab/Simulink and its toolboxes programmatically, they usually have

to be interacted with in the same way.

2.2. Software Management

To work e�ectively on a shared set of �les, software developers typically use version con-

trol systems (VCS). VCS provide a systematic way of documenting and managing how �les

change over time. A VCS stores backups of �les and shows who made what changes to what

�le at which point in time. This allows for di�erent developers to safely make changes on a

code base without inadvertently losing work, or to review and understand changes made by

others [3].

2.2.1. Version Control

At the time of writing, Git is the most widely used VCS. As opposed to other VCS, it uses

a distributed architecture, meaning that when working with Git, all team members have all

project-associated �les and metadata on their local machine instead of a central server [3].

In the following, the related basic concepts relevant for this thesis are introduced.

Any set of �les that is put under version control by Git is called a repository. A repository

can be stored locally or remotely. Usually, repositories are used for managing source code in

software projects, but version control can be used on any set of �les [3].

To work safely on a set of �les, developers branch their changes into individual lines of

development. This way, work can be done in parallel while keeping the original line of

development free from unwanted changes. When completing work on a branch, developers

have to merge their changes back into the original branch. This process is governed by the

branching strategy in place. One common example is to work on speci�c feature branches,

that are branched and merged from a development branch, which is regularly merged with

a more stable main or master branch [3].

Adding changes to a repository happens stepwise. First is staging the changes, second is

committing them to the repository. The staging area functions as a middle step between

17

2.2. Software Management 2. Fundamentals

Workspace
Local

Repository

Remote

Repository

add commit push

fetchcheckout
Staging

Area

pull

Figure 2.2.: Basic Git Concepts

working directory and repository. It allows for having control over how changes are grouped

into commits. With a commit, changes are recorded to the repository history. A commit is

the captured state of a set of �les at one point in time, and a branch is a reference to the latest

in a series of commits [3].

Finally, when working with a remote repository, committed changes need to be pushed in

order for all other team members to have access to them. Fetching and pulling inversely is

used to update a local repository to the state of a remote [3]. The basic concepts are visualized

in �gure 2.2.

2.2.2. Repository Management

There are several providers o�ering platforms for remote repositories, with GitLab being

the one used within the context of this thesis. It builds upon the functionality of Git with

collaboration tools such as merge requests and issue tracking as well as automation with

pipelines. Its core principles are introduced in the following.

In GitLab, users are organized in groups. Groups allow for managing settings as well as

reviewing development activity across several projects. A project is a container for a Git

repository in GitLab. Within a project, issues are atomic units that organize the work to be

done. They can be used to track tasks, report bugs, request features and more. They pro-

vide a space for discussion among teammembers and organize responsibility by assignment.

GitLab also introduces merge requests as an additional component available when merging

changes from one branch into another. They display the gathered edits from all commits

in the source branch, making the resulting di�erences in the target branch transparent. Re-

viewers are assigned and suggestions discussed within the context of a merge request. Upon

completion of review, changes are approved before they are merged into the target branch.

When creating a merge request early, it can function as a space that monitors code quality:

18

2. Fundamentals 2.2. Software Management

Results of tests and scans on the committed changes can be displayed to indicate the impact

of merging [3].

2.2.3. Continuous Integration

By today’s standards, collaborative software development is done incrementally, where the

product is developed and veri�ed in small functional units, and iteratively, where the prod-

uct is improved continuously in repeating cycles. Agile software development is a set of

principles formalizing these in comparison to traditional development more “lightweight”

practices. GitLab is geared towards agile development. Much power of GitLab comes from

its so-called CI/CD pipelines and the associated fundamentals are introduced in the following

[3].

Continuous integration (CI) refers to the act of continuously implementing and verifying

changes to a code base. Its purpose is to ensure that changes integrate well with the ex-

isting code base and arising problems are spotted early on. A typical scenario for this would

be to execute a standardized set of tests, checks or scans on the �les a�ected by the committed

changes [3].

Subsequently, continuous delivery (CD) refers to automatically and periodically transferring

code to the right environment. In conventional software development, an environment de-

scribes how amachine storing and executing software is con�gured and what tools are avail-

able to it. Depending on the project, there might be environments for development, testing,

integration, production and more [3].

A pipeline is a series of actions performed automatically on �les in a GitLab project. It is

usually triggered whenever changes are committed to the repository and can be con�gured

to manipulate any �les inside the project. A GitLab project can only have one pipeline, which

can however be con�gured to perform di�erent kinds of actions on di�erent parts of the code

base [3].

Pipelines consist of stages. They are used to group tasks that are related to each other, so

a conventional con�guration would include a build, a test and a deploy stage. The tasks

performed within a stage are called jobs. Just as a user would pass several commands to a

computer in order to perform a task, jobs contain prede�ned commands that are executed

according to the pipeline con�guration. If not speci�ed otherwise, jobs inside a stage are

executed in parallel, while each stage is executed sequentially [3].

19

2.2. Software Management 2. Fundamentals

The processes executing the pipeline commands are called runners. As jobs typically require

a speci�c environment, they are not run by the main GitLab applications. Runners need to

be registered with the GitLab instance using the similarly named GitLab Runner application

that has to be installed on the machine that is intended to run the process. A runner then

receives the commands from the GitLab instance based on the pipeline con�guration in the

GitLab project, executes them and reports the results back to the GitLab instance [11].

Every job is executed in its own working directory on the machine that executes the runner.

Once a runner receives a job, it creates the associated working directory and fetches the

commit that triggered the pipeline, so the relevant �les are available in the correct version

required for the job. The commands are then executed inside the working directory and

artifacts are stored according to the pipeline con�guration. This way, multiple jobs in the

same stage per default have the same basis available to them. The outcomes are isolated,

reproducible without con�ict and comparable among each other [3].

The executor is the environment in which a runner executes a job. It is speci�ed upon reg-

istration. It is possible to register several runners on one machine and assign di�erent ex-

ecutors to them. The simplest form is the shell executor, which runs jobs in a shell session

of the machine it is running on. The job’s commands are interpreted the same as commands

typed in a command line terminal by a user [11]. GitLab o�ers several further executor types

better suited for project scalability, these are however out of the scope of this thesis.

Create branch

and merge request

Feature branch

Development branch

Main branch

Commit

and push

changes

Review

results and

artifacts

Review and

approve merge

request

Merge and delete

feature branch

Monitor

pipeline

executionAssign to

issue

Close

issue

Continuous integration

Figure 2.3.: Software Management

20

2. Fundamentals 2.3. Software Testing

Figure 2.3 presents an attempt to visualize how the introduced concepts relate to each other.

Integration happens continuously and veri�cation, as opposed to more traditional work�ows,

is an iterative aspect of development.

2.3. Software Testing

In software development, veri�cation is intended to evaluate the correctness of a development

artifact by comparison with a reference artifact considered as complete and correct [12].

Alongside validation, which evaluates whether the system is �t and e�ective for its intended

purpose, it is a central activity in any major software project.

There are both static and dynamic veri�cationmethods. Static veri�cation intends to discover

software faults directly. Typically this is done either by code review or by using specialized

tools and referred to as static analysis. Dynamic veri�cation intends to uncover failures in

a piece of software by executing it under controlled conditions and is mostly referred to as

software testing [2].

2.3.1. Terminology

In the context of software testing, certain terminology is commonly used but not in all cases

uniformly de�ned. For the thesis at hand, the foundation syllabus and glossary de�ned by

the International Software Testing Quali�cations Board (ISTQB) are used [2].

The tested piece of software is referred to as test object and a discrepancy between expected

and shown behavior is referred to as defect or failure. Failures in turn are the result of faults

or bugs introduced in the software. Software does not fail in the way that hardware does:

generally speaking, faults are introduced in a system by errors or mistakes made during

development. They are present in a system from the beginning until their removal [2].

The test basis serves as the de�nition of the expected behavior of the the test object. It usually

consists of a speci�cation and related documentation, but the expertise and experience of the

tester can also be counted towards it. A component or subsystem as test object usually needs

to be broken down into separate testable items. These test items can for example be functions

or methods of the test object [2].

21

2.3. Software Testing 2. Fundamentals

A test case is a description of how a test object is tested in terms of prerequisites, required

input, necessary procedure and expected output. A test case usually has one elemental ob-

jective, which typically is the veri�cation against one requirement. Test suites are sets of test

cases [2].

Test Levels

Defects are identi�ed best at the level of abstraction on which they occur. For this reason,

di�erent testing levels have been established. Due to their varying scopes, theymight require

di�erent techniques and tools.

Component tests verify the low level building blocks of a system architecture in isolation from

the rest of the system. A component can itself have lower level building blocks, however the

interaction with other system components is not investigated. Component tests typically

verify the complete and correct implementation of functionality de�ned in the test object’s

speci�cation by checking input/output behavior. The ISTQB syllabus considersmodule, unit

or class tests as types of component tests [2].

Integration testing aims at �nding faults in the interfaces and the interaction between multi-

ple tested components. As test basis now software architecture, system design and especially

interface speci�cations have to be considered. The types of failures addressed by integration

testing relate to for example data consistency, dependency issues or error propagation. Ide-

ally, integration testing is done incrementally and adhering to an integration strategy. This

could be top-down or bottom-up in the system architecture or by the availability of the in-

dividual components [2].

System testing is intended to check that the complete, integrated system ful�lls its require-

ments. Many functions and system attributes result from the interaction of the system’s

components and can only be veri�ed once the system is fully integrated. At this stage, the

system is veri�ed from the customer’s point of view and incompletely or unsuitably imple-

mented requirements revealed. If requirements are vague or missing, system testing can

show where clari�cation is required [2].

22

2. Fundamentals 2.3. Software Testing

Result Cases

Test results are categorized depending on whether a reported deviation actually constitutes

a defect. With a true positive or true negative result, the test case correctly identi�ed a

deviation or its absence. False positive or negative results imply that the test case falsely

interprets intended behavior as undesirable or vice versa. This relation is shown in table

2.1.

Table 2.1.: Result Cases in Software Veri�cation

Result evaluation Test object correct Test object faulty

“Failed” False negative True positive

“Passed” True negative False positive

2.3.2. Testing Techniques

The techniques applied in dynamic software testing can roughly be broken down in black-

box and white-box techniques. Choosing the appropriate technique depends on the situation

[2].

Black-Box Testing

In black-box testing, the inner attributes of the test object are unknown. Therefore, the

following test techniques focus on observing output behavior with only inputs and precon-

ditions as variables in test case creation.

In equivalence partition testing, equivalence partitions or classes group inputs together that

are expected to produce the same output of a test object. Testing one member of one equiva-

lence class is assumed to be representative in output behavior for the entire class. The entire

input value range is divided into these classes, also accounting for invalid inputs. Representa-

tives of the created classes are then selected and tested. Analyzing the test object’s behavior

at boundary values is important to reveal ambiguities in the speci�cation [2].

Other testing techniques like decision table testing or pair-wise testing are helpful when indi-

vidual combinations of inputs cause di�erent output behavior of the test object. It is the goal

23

2.3. Software Testing 2. Fundamentals

of these techniques to test every possible combination of inputs in a structured way, which

is most useful when the inputs signify logical conditions [2].

White-Box Testing

The goal of white-box testing techniques is the successful execution of every part of the test

object’s code. In contrast to black-box testing, it is required that the internal composition of

the test object is available for test design [2].

In statement testing, the statements in a test object’s code are sought to be executed. A state-

ment is any single operation or instruction inside the tested code, and with every statement

executed without defect the test object is assumed to function as intended. The ratio of exe-

cuted to total statements is called statement coverage [2].

In decision testing, the decisions following conditional statements in the test object’s code are

evaluated. Following such a statement, the control �ow of the test object splits in multiple

outcomes. Testing then attempts to execute each outcome at least once. Decision coverage is

the ratio of executed to total decision outcomes. The technique is more comprehensive than

statement testing but also usually requires more test cases. Full decision coverage guarantees

full statement coverage, but not the other way around [2].

Condition testing addresses decisions that are made based on multiple conditions. In branch

condition testing the outcomes of these atomic conditions are evaluated individually. In

branch condition combination testing, the goal is that the combinations of these logical con-

ditions are tested. As this can become quite comprehensive, modi�ed condition decision

testing addresses only those combinations of conditions that change the result of that deci-

sion [2].

For illustration, consider the following example.

1 function compute(x, y, z):

2 result = 0

3

4 if (x > 0) and (y > 0) then

5 result = x

6 else

7 result = y

8 end if

24

2. Fundamentals 2.3. Software Testing

9

10 if (x > 2) or (z < 0) then

11 result = result + 1

12 end if

13

14 return result

15 end function

To reach full statement coverage of this function, two test cases are required. Test 1 with e.g.

x=3, y=3, z=3 would evaluate both if-statements to true. Test 2 with x=-1, y=2, z=-5

would additionally cover the missing else-case. The test suite with tests 1 and 2 would

however not reach full decision coverage, which is revealed by considering the control �ow

graph of the test object, which is depicted in �gure 2.4. Adding test 3 with e.g. x=1, y=1,

z=5 to the test suite would cover the missing false-evaluation of the second if-statement. To

achieve full condition coverage, yet another test case is needed, as so far not every atomic

condition has been evaluated to both true and false. Test 4 with e.g. x=3, y=0, z=10 would

evaluate the missing condition (y > 0) and allow the test suite to achieve full condition

coverage.

result = 0

(x > 0) and (y > 0)

result = x result = y

(x > 2) or (z < 0)

result = result + 1

return result

Figure 2.4.: Control Flow Graph for the Example

25

2.4. Static Analysis 2. Fundamentals

2.4. Static Analysis

Independent of the testing technique used, dynamic testing is in a realistic scenario not ex-

haustive. Even with extensive testing e�orts, at least some faults in any system must be as-

sumed to remain unrevealed. The goal of static veri�cation is to discover faults in software

directly without executing it. Conventionally this is done by experienced programmers re-

viewing the code in question. Software tools are increasingly capable of performing static

analysis with varying scopes and objectives [2].

2.4.1. Terminology

Static analysis tools derive information from the analyzed code similarly to code compilers

[13]. Code compilers translate a source program into instructions readable by the machine

that needs to execute them. Depending on the scope of the analysis, parts of this process

are also executed by a static analysis tool, which is why it is necessary to understand the

background [14].

Code compilation is divided in at least two phases, the front-end and the back-end. In the

front-end phase, a compiler performs three types of analyses [14].

• Lexical analysis identi�es the individual units the characters of a program constitute.

• Syntax analysis determines whether this provided sequence is a permissible statement

according to the rules of the programming language.

• Semantic analysis determines the meaning of the syntactically correct statement.

In the back-end phase, the program synthesis is performed. This is typically done by trans-

lating the information provided from the front-end into an intermediate language, which is

the basis for code optimization. The intermediate program is subsequently translated into

machine code [14].

The front-end is sensitive to the programming language, the back-end to the processor ar-

chitecture. When compilers perform optimization independent of processor architectures,

this is done in an additional phase referred to as middle-end.

Static analysis tools make use of the same techniques as a compiler front-end does. The gath-

ered information is however not processed into an executable output but directly presented

26

2. Fundamentals 2.4. Static Analysis

to the user. Existing tools vary in their scope frommere syntactic to comprehensive semantic

analysis.

Not every programming language is compiled before execution. Such interpreted languages

are executed command-by-command without an explicit compile step. For these languages,

static analysis does not distinguish run-time errors explicitly and can be performed dynami-

cally during edit-time [14]. The fundamentals of the analysis however remain the same and

are presented in the following.

Lexical Analysis

Lexical analysis provides the basis for all static analysis. The characters of the source program

are read one by one and categorized into tokens. These are strings of characters with an

identi�able meaning, such as the operators, keywords, delimiters or identi�ers speci�ed by

the programming language in use [14].

The following example aims to illustrate this. Consider the following statement.

1 if (x > 10) x = x + 1;

This statement would be labeled by a compiler into a stream of tokens that could look like

the following.

1 operator("if") separator("(") identifier("x") operator(">")

2 integer("10") separator(")") identifier("x") operator("=")

3 identifier("x") operator("+") integer("1") separator(";")

The actual naming of these tokens would di�er depending on the compilation or static anal-

ysis tool used. The result however always is a categorized set of characters for each state-

ment.

Syntax Analysis

Syntax analysis checks if the provided tokens conform to the programming language’s rules

on forming valid expressions, but without considering the language’s meaning and the pro-

gram behavior. This is usually done by building an intermediate representation of the code

called parse tree. The tree represents how a given expression is syntactically composed of

terms and tokens. Syntax analysis is also called hierarchical analysis or parsing [14].

27

2.4. Static Analysis 2. Fundamentals

Considering again the example statement, such a parse tree in a simple form might look like

the following.

if

> then

x 10 =

x +

x 1

Figure 2.5.: Parse Tree for the Exemplary Statement

The example illustrates how syntax analysis recognizes hierarchical information. In order

to execute the statement correctly, the compiler or analyzer needs to understand which part

of the statement is dependent upon which other part of it. The syntax of a programming

language de�nes that an if statement consist of a condition to evaluate and a statement

to execute if that conditions is ful�lled. Similarly, an assignment is de�ned by its operator,

which in turn de�nes the hierarchy of the following operations, and so on.

Semantic Analysis

Semantic analysis concludes the front-end phase of the compilation process. The concrete

semantics of a program are not only determined by the semantic rules of the programming

language in use but also the context of the program itself. With this information, the compiler

determines whether the statement’s execution is permissible [14].

Considering again the example, along the parse tree, a compiler would likely have to deter-

mine whether

• x is a valid integer variable and the operation x + 1 is permissible,

• there is no type mismatch and the assignment x = x + 1 is permissible,

• the evaluation x > 10 conforms to the if operation and produces a boolean result,

• the if operation is permissible and the assignment x = x + 1 conforms to it.

28

2. Fundamentals 2.4. Static Analysis

The scope of semantic analysis di�ers widely and most static analysis tools far exceed these

basic semantic checks. The approach however is the same: precon�gured code patterns are

identi�ed along the parse tree and �agged if they are found. The capability of a static analysis

tools is directly determined by both the quality and the quantity of the checks it includes. The

aim of this thesis is to better illustrate the current possibilities of static analysis in chapter

4.

While most are not, some semantic analysis techniques aremathematically sound. Such tech-

niques employ mathematical logic in order to prove properties of the semantics of a program.

They are able to determine whether a statement is semantically permissible for every possi-

ble execution in the program context [4], [13]. The remaining sections of this chapter provide

an introduction into how this is achieved.

2.4.2. Abstract Interpretation

The use of abstract interpretation in the context of computer program analysis began in 1976

with the �rst publication on the subject by Patrick and Radhia Cousot. Today, it is used as

a general theory to approximate the possible semantics of a computer program. Its goal is

to simplify a problem by abstraction and to infer a more general or partial solution to the

problem from that abstraction. Apart from its use in program language development, its

main application lies in static program analysis for software veri�cation [4].

The concept of abstract interpretation is rather universal. A general mathematical example

is the rule of signs:

“A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero.

When a positive is to be subtracted from a negative or a negative from a positive, then it is to be

added” [4].

Given the set of all integers Z, the sign can be understood as a property of each element of Z.

An abstract interpretation of the sign rule is performed by an abstraction function α± which

provides the abstraction of the sign property for a given set of integers S as follows [4].

29

2.4. Static Analysis 2. Fundamentals

⊤±

≤ 0 ̸= 0 ≥ 0

< 0 = 0 > 0

⊥±

Figure 2.6.: Hasse Diagram of the Abstract Domain for (α±, γ±) (after [4])

Table 2.2.: Evaluation of the Abstraction Function α±(S) for S ⊆ Z

S α±(S)

S = {} = ∅ ⊥±

S ⊆ {..., −3, −2, −1} < 0

S ⊆ {0} = 0

S ⊆ {1, 2, 3, ...} > 0

S ⊆ {..., −2, −1, 0} ≤ 0

S ⊆ {..., −2, −1, 1, 2, ...} ̸= 0

S ⊆ {0, 1, 2, ...} ≥ 0

S ⊆ {..., −2, −1, 0, 1, 2, ...} ⊤±

The concretization function γ± provides themeaning of signs as sets of integers, so γ±(⊥±) =

∅, γ±(< 0) = {..., −3, −2, −1} and so on. Thus, a less precise abstraction of S is obtained,

which allows to keep some information about S without having to retain the precise values

of its members [4].

The pair of functions (α±, γ±) de�nes the abstract domain, which determines what levels of

precision can be achieved and how they are hierarchically ordered. Hasse diagrams can be

helpful in representing these relations, which for the above example is depicted in �gure 2.6

[4].

30

2. Fundamentals 2.4. Static Analysis

In the abstract domain, the element “= 0” for example ismore precise than “≥ 0”: through the

concretization function, the former evaluates to a smaller set than the latter. Likewise, “> 0”

is more precise than “≥ 0” and represented accordingly in the diagram. “= 0” and “> 0” are

incomparable, as there exists no shared subset between the two. “⊤±” can evaluate to every

element of Z and thus is the least informative element. “⊥±” is the contradictory element

and evaluates to the empty set ∅.

Every operation performed in the concrete domain has a representation in the abstract do-

main. A subtraction of two integers n ≥ 0, m < 0 under the rule of signs would according

to [4] be executed in the abstract as

α±({n − m | n ∈ γ±(≥ 0) and m ∈ γ±(< 0)}) (2.8)

= α±({n − m | n ∈ {0, 1, 2, ...} and m ∈ {..., −3, −2, −1}}) (2.9)

= α±({1, 2, 3, ...}) > 0 (2.10)

The relations in the abstract domain allow to retain the best possible abstraction, for each

operation, through entire computer programs. For every operation, an abstraction can be

computed similarly to above. Following the control �ow of a program, an analysis then is

able to associate a level of information for each operation in accordance with �gure 2.6. In

this example it is trivial to see that a single operation n − m where n ≥ 0 and m < 0

always evaluates to > 0. For more complex operations in real computer programs with more

complicated control �ow, this can become more useful. While one operation might evaluate

to > 0 and another to < 0, a later combination of both results is less informative but still

evaluates to ̸= 0 (the shared upper bound of both). Such less precise levels of information

can still be helpful in determining properties of a program, in this case the absence of the

possibility of a division by zero for example. Consider the following example, that arbitrarily

transforms some input. The abstraction is performed statement by statement and noted to

the right.

1 function transform(input) { input ∈ (−∞, +∞)

2 x = input; x ∈ (−∞, +∞)

3 y = 42; y ∈ [42, 42]

4

5 if (x > 10) { x > 10 =⇒ x ∈ [11, +∞)

6 x = x * x; x ∈ [121, +∞)

7 } else { x ≤ 10 =⇒ x ∈ (−∞, 10]

31

2.4. Static Analysis 2. Fundamentals

8 x = x + y; x ∈ (−∞, 52]

9 } x ∈ (−∞, +∞)

10

11 while (x < 100) {

12 x = x + 13; x ≥ 100 =⇒ x ∈ [100, +∞)

13 }

14

15 return x - y; x − 42 ≥ 58 =⇒ return ∈ [58, +∞)

16 }

The initial input has no speci�ed bounds, so here input ∈ (−∞, +∞). The following if

condition results in branching control �ow. If the condition is ful�lled, the abstraction be-

comes x ∈ [121, +∞). If not, it becomes x ∈ (−∞, 52] after the statement. The best possible

abstraction after the control �ow merges thus steps back to x ∈ (−∞, +∞). This illustrates

how the stepwise calculation of the best abstraction with the help of the abstract domain can

still be useful for parts of the control �ow, even though the constraints might later collapse

into a coarser category.

Through the while loop and following operations, the abstraction becomes more informative

with x ≥ 100 so �nally return ∈ [58, +∞). Any additional operations before the return

statement as well as further uses of the function’s returned value could safely be abstracted

to > 0 for every execution of the program.

In general, if an analysis by abstract interpretation concludes a property to hold, it will always

hold in every execution of the program. More concretely, when such a property is the absence

of a speci�c kind of defect, this means that the analysis does not provide false negatives (see

table 2.1), no defect is missed [13].

To remain computable, sound techniques however sacri�ce mathematical completeness: If

the property is true in the abstraction, the analysis won’t be able to always prove it in the

concrete. There will be true properties that the analysis fails to prove [4]. More concretely,

this means that false positives are still possible [13].

How useful abstract interpretation as an analysis method is depends entirely on the abstract

domain. The worst-case scenario is that the analysis can only provide inconclusive abstrac-

tion results (in the example ⊤±) due to an unprecise abstract domain [15].

32

2. Fundamentals 2.4. Static Analysis

Adesirable outcomewould be an abstraction that allows to exclude the type of defect targeted

by the analysis. This re�nement is theoretically always possible, butmight not be computable

by a machine. Finding e�ciently computable and still precise abstractions is very di�cult in

practice [4].

2.4.3. Model Checking

Another formal veri�cation method relevant in this context is model checking. The tech-

nique requires a �nite state transition model that describes the behavior of a control system.

By systematically exploring all possible execution paths, it can be shown that a given system

model satis�es given properties [5].

Finite state machine (FSM) are useful system descriptions in almost any application domain.

They allow to model complex system behavior precisely and without ambiguity, by clearly

describing the relations between system inputs, outputs and conditions. Following [12], a

FSM is de�ned as a tuple M = (Q, q, Σ, h, F) where

• Q ̸= ∅ is the �nite state space, the set of states the FSM can be in,

• q ∈ Q is the initial state, the state in which the FSM always starts,

• Σ ̸= ∅ is the �nite input alphabet, the set of symbols that the FSM is able to read,

• h ⊆ Q × Σ × Q is the transition relation that describes which state follows which

combination of previous state and given input,

• F ∈ Q is the set of �nal states, where the FSM terminates.

Properties in this context are characteristics that a FSM exhibits, usually of qualitative nature.

They must be formulated in an unambiguous syntax, which in the context of model checking

is based on propositional logic, which is introduced in the following based on reference [5].

Propositions can be any factual statement. They are atomic if they are singular and can

not be broken down further. A �nite set of atomic propositions is declared AP , of which

single elements are denoted by latin letters a, b, Conventional logical operators indicate

whether a propositions holds or not. For atomic propositions a, b ∈ AP conjunction would

be expressed as

a ∧ b (2.11)

33

2.4. Static Analysis 2. Fundamentals

which holds if and only if both propositions a and b hold. Negation would be denoted as

¬ a (2.12)

which holds if and only if a does not hold. Other operators are derived: disjunction can be

expressed as

¬(¬ a ∧ b) = a ∨ b (2.13)

and implications as

¬ a ∨ b = a → b (2.14)

just to name the most important relations.

To be useful for the analysis of state transition systems, propositional logic must be extended

by temporal modalities. Two elemental operators are introduced: ♢ indicates “eventually”,

i.e. “eventually in the future”, and □ indicates “always”, i.e. “now and forever in the future”.

Based on propositional logic, two types of semantics exist that allow the speci�cation of

system properties [5].

Linear temporal logic (LTL) is based on the notion that time in a transition system proceeds

linearly, i.e. that at each moment in time there is a single succeeding computation. To ex-

press corresponding properties, two additionalmodalities are introduced: ⃝ indicates “next”,

i.e.

⃝ a (2.15)

holds when at the next computation step a holds; and ∪ indicates “until”, i.e.

a ∪ b (2.16)

holds when at some future moment b holds and a holds until that moment [5].

Computation tree logic (CTL) is based on the notion of branching time, where the time in a

transition system may split into alternative courses. Some properties can only be expressed

in LTL and some others only in CTL. Because with CTL at every moment there may be

several possible future computations, it is possible to formulate properties that only pertain

to some computations originating from a speci�c state and not all. For this, two additional

path quali�ers are introduced: ∃ indicates “exists”, i.e.

∃ ♢ a (2.17)

34

2. Fundamentals 2.4. Static Analysis

holds when there is at least one execution path along which eventually a is ful�lled; while ∀

indicates “for all”, i.e.

∀ ♢ a (2.18)

holds when all execution paths eventually ful�ll a [5].

For illustration, consider the FSM shown in �gure 2.7. It is an example from reference [16]

that checks whether an input contains the sequence 0, 1 or the sequence 1, 0 by traversing

either the state q1 or q2 respectively. The state q3 is an accepting state where the automaton

accepts the input sequence and terminates execution.

q0start

q1

q2

q3

0

1

1

0

0

1

Figure 2.7.: Example FSM (modi�ed from [16])

With appropriate properties an implementation of this FSM could be veri�ed by a model

checking tool. By de�ning the set of atomic propositions for the individual states AP =

q0, q1, q2, q3 these can be formulated. For example, if the required sequence is not provided,

the FSM must loop in�nitely. This could be described by

∃ □ q1 (2.19)

which implies that there exists at least one path along which the current state always is q1

(or q2 respectively). That every state has an outgoing transition could be described by

∀ □ ∃ ⃝ true (2.20)

35

2.4. Static Analysis 2. Fundamentals

which means that on all paths there always exists one path for which a next step exists.

Further, the accepting state must be reachable from every state. This could be described

by

∀ □ ∃ ♢ q3 (2.21)

which means that on all paths there always exists one path that eventually reaches q3. That

this state is in fact accepting could be described by

∀ □ (q3 → ∀ ⃝ q3) (2.22)

which means that for all paths being in state q3 always implies that the next state is also q3.

That the corresponding sequence of states for a correct input actually exists can be described

by

∃ ♢ (q0 ∧ ∃ ⃝ (q1 ∧ ∃ ⃝ q3)) (2.23)

which implies that there exists a path that eventually follows the sequence q0, q1, q3 (or

q0, q2, q3 respectively), which is here speci�ed with nested conjunctions. Extending AP with

propositions for explicit input values would allow to further add properties that more directly

verify the existence or absence of system conditions.

Amodel checking tool typically creates the systemmodel itself after being provided a suitable

speci�cation. The properties have to be provided in a suitable syntax too, against which the

tool then veri�es the model automatically by systematically laying out and exploring all

possible execution paths through the model [5].

The considerations so far should have made clear that model checking allows to verify quite

elaborate characteristics. The technique is however appropriate for logic-intensive applica-

tions and less suited for data-intensive applications, as that data typically ranges over in�nite

domains [5].

Nevertheless, MathWorks’ model checking tool Simulink Design Veri�er attempts to be com-

patible with any control system application. It implements Stalmarck’s proof procedure for

propositional logic, which enables it to perform well in industry-scale scenarios [17], [18].

How exactly the tool converts a Simulink model into a compatible state transition model is

not publicly available. It however has to forgo many of the strengths of model checking in

the process. The tool is introduced in chapter 4 and further discussed in chapter 6.

36

3. Motivation and Goal

At the time of writing, the space industry is experiencing a strong shift towards the devel-

opment of reusable launch vehicles. As such, the DLR is involved in the project Cooperative

Action Leading to Launcher Innovation in Stage Toss-back Operations (CALLISTO) as well

as pursuing the Reusability Flight Experiment (ReFEx) initiative. The Institute of Space Sys-

tems is among other things contributing with the development, veri�cation and validation

of the GNC subsystems for the two spacecraft.

The subsystem components work together conceptually as illustrated in �gure 3.1. This

strongly simpli�ed architectural overview was adapted from [7] to better show the resem-

blance to the standard control loop presented in �gure 2.1. Both the guidance and the control

function are realized within the Guidance and Control Computer (GCC) or On-Board Com-

puter (OBC) respectively while the navigation function is assumed by the Hybrid Navigation

System (HNS). As opposed to highly integrated systems, such a distributed architecture is

more versatile and can be adapted to di�erent projects with less e�ort. By clearly de�ning

the interfaces to other functions, development and veri�cation can be more focused on the

particular function [7].

The GNC algorithms are developed in Matlab/Simulink using the software management

principles outlined in chapter 2. There are similarities in the development processes across

Guidance
Trajectory Updates

Control Command Definition

Control
Control Error Calculation

Control Command Calculation

Actuators Plant

Sensors
Navigation

Navigation Calculation

Feedback

Feedback

Sensor

Data

Reference

Input

Actuating

Signal

System

Input

Controlled

Variables

Figure 3.1.: Simpli�ed Functional GNC Architecture (modi�ed from [7])

3. Motivation and Goal

Initial algorithm

prototyping

Simulink

model design

Modeled

algorithm analysis

Autocoded

algorithm analysis

Flight software

analysis in

software environment

Algorithm integration

into flight software

Flight software

requirements

GNC subsystem requirements

Flight software

design

Flight software

analysis in

hardware environment

Code

generation

Code generation

Design loop Production loop

Algorithm development

Software development

Figure 3.2.: Spacecraft GNC Development Process (modi�ed from [19], [20])

agencies and projects. Authors at theNational Aeronautics and SpaceAdministration (NASA)

NASA Engineering & Safety Center (NESC) note how the automatic generation of code from

models has shifted development processes to be more parallel. For projects such as the space

shuttle, GNC development was linearly proceeding from GNC subsystem requirements to al-

gorithm design and via derived requirements to �ight software development. For the Orion

Multi-Purpose Crew Vehicle (MPCV), the GNC and �ight software development teams are

working side-by-side in the production of the software artifacts that lead to the onboard �ight

code. Matlab/Simulink modeling tools are used to auto-generate the GNC algorithmic �ight

software as C++ code [19], [20]. An overview of this approach is presented in �gure 3.2.

38

3. Motivation and Goal

At the DLR Institute of Space Systems, the development and veri�cation process is similar.

There are di�erent repositories in use depending on the project a�liation, function and stage

in the GNC development process of the software they contain. The individual repositories are

subject to a quality assurance process based on the fundamentals of software management

and testing outlined in chapter 2. Unit testing is done predominantly using the Matlab

unit testing framework and GitLab CI, while system testing is done by running extensive

simulation campaigns.

This veri�cation approach generally resembles conventional functional veri�cation, where

the test objects are veri�ed against their functional requirements. What this thesis aims to

add is an evaluation of veri�cation tools that so far are not integrated with the overall de-

velopment process. The goal is to include techniques originating from theoretical computer

science in the areas of program analysis and formal veri�cation. Among others, these con-

sider the formal term of program correctness: A program is considered to be correct when it

produces a correct output for every acceptable input [21]. This notion succinctly captures

the motivation behind the thesis at hand. Rather than analyzing model performance or sim-

ulation parameters, the considerations that follow are more closely related to systematically

targeting the detection of software faults and increasing con�dence in correct software exe-

cution throughout the development process. This process is strongly in�uenced by the tools

that are used, which requires the compatibility of the proposed veri�cation techniques to be

considered.

The research question for this thesis thus is: “How suitable are MathWorks veri�cation tools

for the automated veri�cation of GNC software with respect to correctness?” This question

delineates the intention behind this thesis explicitly:

• The considerations are limited to veri�cation tools provided byMathWorks. If suitable,

recommendations for alternatives are given in the end.

• The veri�cation techniques shall be suitable for automation. This mainly pertains to

software execution but can also involve automated results evaluation.

• The scope of veri�cation are GNC systems. The speci�cations involved are more data-

intensive than in other application domains.

• The veri�cation goal is software correctness as opposed to system performance.

39

3. Motivation and Goal

By answering this question, the goal is not only to give an initial evaluation, but also to

develop a basic framework andwork�ow around the veri�cation tools that applies the lessons

learned during the investigation.

40

4. Methods and Tools

With a good understanding of their theoretical foundation, the veri�cation tools within the

scope of this thesis can be introduced. In order to better understand practical aspects and

limitations, a model of a more or less arbitrarily chosen example system is introduced. This

model has similar characteristics to the actual models in development at the institute with a

lower complexity. It serves as the basis for evaluating the tools and discussing their recom-

mended use.

4.1. Thrust Controller Simulation

After some preliminary literature research, thrust control of chemical propulsion systems

was selected as the application domain for an exemplary simulation. The associated control

problem is presented in �gure 4.1, which has been adapted from reference [22] and adjusted

to the arrangement of a standard control loop. It corresponds to a conventional pressure-

fed bipropellant propulsion system, where the supply pressure inside their respective tanks

supplies fuel and oxidizer through feedlines, control valves and injector elements into a main

combustion chamber. Without elaborating on the speci�cs of rocket engine design, it is

important here to know that the combustion chamber requires fuel and oxidizer in a speci�c

mixture ratio

rm =
ṁo

ṁf

(4.1)

of oxidizer and fuel mass �ow. It sets the combustion temperature and therefore the engine’s

performance and material temperature, while the total mass �ow corresponds to the desired

thrust of the engine [22].

4.1. Thrust Controller Simulation 4. Methods and Tools

Controller

Controller

Oxidizer

Valve

Fuel

Valve

Combustion

Chamber

Figure 4.1.: Thrust Control (modi�ed from [22])

There are two actuators in such a con�guration, namely the fuel and the oxidizer valve,

which need to be controlled. The thrust of the engine corresponds to the chamber pressure

Pc, which is the primary controlled variable and usually associated with the propellant with

the higher mass �ow. The mixture ratio rm is determined by dividing oxidizer and fuel mass

�ow, which is fed back into the mixture ratio control loop governing the fuel mass �ow

[22].

These two control loops interact dynamically, so keeping both controlled variables near their

set points presents a signi�cant challenge. Experience shows that the mixture ratio control

loop should be tuned to react faster to set point deviations than the chamber pressure control,

which keeps the engine temperatures at the design conditions [22].

Combustion Chamber

With the information from [22] and [23], it is possible to derive a simpli�ed linear time-

invariant description of the combustion chamber dynamics as follows.

For a combustion chamber with volume Vc, the total mass �ow into the chamber equals the

sum of the out�ow through the nozzle plus the rate of change of mass stored in the chamber

[23].

ṁt(t) = ṁout(t) +
d

dt

(

ρc(t) Vc

)

(4.2)

42

4. Methods and Tools 4.1. Thrust Controller Simulation

The combustion is assumed to be isothermal and the combustion temperature Tc to be con-

stant. With the speci�c gas constant R the density ρc(t) becomes

ρc(t) = Pc(t)
R Tc

. (4.3)

Further, the �ow is assumed to be choked, which is a simpli�cation that allows the mass

out�ow ṁout(t) for a given throat area and exhaust velocity to be approximated with

ṁout(t) =
At

c∗

Pc(t). (4.4)

The throat area At is given by the dimensions while the characteristic velocity c∗ is deter-

mined by the characteristics of the combustion itself. Substituting yields

ṁt(t) =
At

c∗

Pc(t) +
d

dt

(

Pc(t)
R Tc

Vc

)

=
At

c∗

Pc(t) +
Vc

R Tc

dPc(t)

dt
. (4.5)

In order to derive the transfer function, a Laplace transformation is performed.

ṁt(s) =
At

c∗

Pc(s) +
Vc

R Tc

sPc(s) = Pc(s)
(

At

c∗

+
Vc

R Tc

s

)

. (4.6)

Rearranging yields

Pc(s)

ṁt(s)
=

1
At

c∗
+ Vc

R Tc

s
=

c∗

At

1 +
(

Vc c∗

R Tc At

)

s
. (4.7)

This represents a transfer function in standard form

G(s) =
Pc(s)

ṁT (s)
=

K

1 + τs
(4.8)

with K =
c∗

At

and τ =
Vc c∗

R Tc At

.

In order to arrive at the state-space representation introduced in section 2.1, �rst a suitable

state variable has to be chosen, which here is the chamber pressure Pc.

x(t) = Pc(t) (4.9)

Rearranging equation 4.5 to

Vc

R Tc

d

dt
Pc(t) = ṁT (t) −

At

c∗

Pc(t) (4.10)

43

4.1. Thrust Controller Simulation 4. Methods and Tools

enables to isolate d
dt

Pc(t) as

d

dt
Pc(t) =

R Tc

Vc

ṁT (t) −
R Tc At

Vc c∗

Pc(t). (4.11)

The input to the system is the total mass �ow ṁt(t):

u(t) = ṁt(t). (4.12)

So the state equation becomes

ẋ(t) = −

(

R Tc At

Vc c∗

)

x(t) +
(

R Tc

Vc

)

u(t) (4.13)

with A =
R Tc At

Vc c∗

and B =
R Tc

Vc

. The output equation simply is

y(t) = x(t) (4.14)

so C = 1 and D = 0. This represents a linear, time-invariant system assuming a combus-

tion at a constant temperature. Suitable values in accordance with [24] for an exemplary

propulsion system with storable propellants are presented in table 4.1.

Table 4.1.: Combustion Values for an Exemplary Propulsion System

Parameter Value

Speci�c gas constant R 300 J kg−1 K−1

Chamber temperature Tc 3200 K

Characteristic velocity c∗ 1700 m s−1

Throat area At 1 · 10−4 m2

Chamber volume Vc 5 · 10−3 m3

Valves

While references [22], [23] do not provide details on the dynamic behavior of the actuators,

reference [25] notes that their dynamics can not be neglected with respect to the combustion

dynamics themselves. The valves are therefore approximated with an assumed �rst-order lag

between the command u(t) they receive and their actual opening xv(t). This is characterized

44

4. Methods and Tools 4.1. Thrust Controller Simulation

by the valve’s response time τv, so the valves dynamic behavior is described by the di�erential

equation

τv

dxv

dt
+ xv(t) = u(t) (4.15)

which corresponds to the already introduced standard form in the frequency domain

xv(s) =
1

τvs + 1
u(s). (4.16)

In order to avoid large di�erences in the orders of magnitude in the simulation, the valve ’s

opening position xv(t) is normalized to the range [0,1] and mapped linearly to the valve’s

actual output mass �ow ṁ(t):

ṁ(t) = ṁmaxxv(t). (4.17)

The valve’s transfer function from command u(t) to mass �ow ṁ(t) then becomes

ṁ(s)

u(s)
=

ṁmax

τvs + 1
. (4.18)

To arrive at the state-space representation for the valves, as state the opening of the valve is

chosen:

x(t) = xv(t). (4.19)

Equation 4.15 representing the valve dynamics can be rearranged to obtain the state equa-

tion

ẋ(t) = −
1

τv

x(t) +
1

τv

u(t) (4.20)

so A = −
1
τv

and B = 1
τv

. The output of the valve is the mass �ow through it, so the output

equation is

y(t) = ṁmaxx(t) (4.21)

so C = ṁmax and D = 0.

Realistic values for the valve’s characteristics can be obtained from suppliers of propulsion

systems and are listed in table 4.2 in accordance with [26].

45

4.1. Thrust Controller Simulation 4. Methods and Tools

Table 4.2.: Estimate Values for Exemplary Propulsion Valves

Parameter Value

Response time τv 0.1 s

Maximum mass �ow ṁmax 0.1 kg s−1

Simulation Model

For the implementation in Simulink, the con�guration presented in �gure 4.1 is rearranged

to allow for one consolidated controller subsystem. The actuator and plant dynamics are

modeled using state-space blocks. The resulting model is depicted in �gure 4.2, the content

of the controller subsystem in �gure 4.3.

Figure 4.2.: Thrust Control Simulation

46

4. Methods and Tools 4.1. Thrust Controller Simulation

Figure 4.3.: Thrust Controller

For simulation, the controller receives the objective of achieving a chamber pressure set point

of Pc,set = 1 MPa while the mass �ows of oxidizer and fuel �ow converge toward a mixture

ratio set point of rm,set = 1.5. Ideally, there should be no overshoot in the chamber pressure

and a moderately fast settling of the process variables. The Control System Toolbox is used

to tune the controller gains for this scenario, which leads to the dynamics shown in �gure

4.4. The desired chamber pressure is achieved in just under 2 seconds, while fuel and oxidizer

mass �ow settle at the corresponding levels and ratio.

Figure 4.4.: Controller Simulation Results

47

4.1. Thrust Controller Simulation 4. Methods and Tools

4.1.1. Controller Function

To develop a more expressive example, the controller functionality is implemented program-

matically inside aMatlab function. In the resulting variant of the simulation model, the new

function thrustControlFunction is called by aMatlab Function block inside the Controller

subsystem. It contains the sample time and controller gains as hard-coded values and uses

persistent variables to store and accumulate the integrator states over the duration of a sim-

ulation.

Inside the function, �rst the control output for the oxidizer valve is calculated for the cham-

ber pressure control loop. Then, the control output for the fuel valve for the mixture ratio

control loop is calculated. An optional guard against division by zero is introduced here for

evaluation purposes later. The function can be found in appendix A.1.

4.1.2. Finite State Machine

In order to obtain an implementation for the evaluation of model checking, an additional

variant of the controller implementing a FSM is required. Figure 4.5 depicts the arbitrary

control logic that is used.

Closedstart

Pressurizing

Running

Pc,set > 0

Pc,set ≤ 0

Pc,set ≤ 0

Pc,set − Pc < 0.1 Pc,set

Pc,set > 0

Pc,set ≤ 0

Figure 4.5.: Controller State Machine

The controller sets the two control outputs uo and uf depending on the actual and set point

chamber pressure Pc and Pc,set. Initially, the control outputs are set to uo = uf = 0 so the

48

4. Methods and Tools 4.1. Thrust Controller Simulation

valves remain closed. As soon as a positive Pc,set is commanded, the valves open to a �xed

position by setting uo and uf to a constant value. After Pc is close to Pc,set, the controller cal-

culates the outputs with the function computeControl, which performs the same calculations

as thrustControlFunction but without initializing the persistent variables.

The states are de�ned as enumerators inside the class ThrustControllerStates. The class

inherits from the Simulink.IntEnumType class. This is required for enumerations that are

used in Simulink and are intended for code generation. The enumerators have an enumerated

name and an underlying integer which is used internally and in the generated code [10].

1 classdef ThrustControllerStates < Simulink.IntEnumType

2 enumeration

3 Closed (0)

4 Pressurizing (1)

5 Running (2)

6 end

7 end

The Matlab Function block inside the Controller subsystem of this new simulation variant

now calls the function thrustControlFSM. This function de�nes a new persistent variable

currentState that holds the enumerator for the current state of the controller. The FSM

itself is then implemented as a switch case statement. The conditions for the transitions are

programmed with nested if statements as shown in the following excerpt.

1 % Switch for current state

2 switch currentState

3 case ThrustControllerStates.Closed

4 if P_c_set > 0

5 % Transition Closed to Pressurizing

6 [u_o, u_f, currentState, intC, intMR] = ...

7 updateClosedToPressurizing(P_c_set, P_c, r_m_set, ...

8 m_d_o, m_d_f, intC, intMR);

9 else

10 % Remain in Closed

11 [u_o, u_f, currentState, intC, intMR] = ...

12 remainClosed(currentState, intC, intMR);

13 end

14 ...

15 end

49

4.2. Veri�cation 4. Methods and Tools

Figure 4.6.: Code Analyzer Issue

The transitions themselves are embedded in dedicated transition functions that increment

the integrators and set the desired control outputs. All associated functions can be found in

appendix A.1.

4.2. Verification

The simulation is a representative example for the actual systems that need to be veri�ed

using the methods that follow. Here, the controller subsystem represents the product that

would be veri�ed and delivered. The goal of this section is to provide a basic example on how

to employ each veri�cation tool within that scope. The focus is to gain a basic understanding

and run the veri�cation programmatically, so it can be automated in section 4.3.

4.2.1. Static Analysis of MATLAB Code

Matlab originally started out as an interpreted language: It didn’t need to be compiled

before execution and was executed command-by-command by its own interpreter. Today,

the language still does not require a dedicated compilation step, but is compiled just-in-time,

i.e. as it is executed, by its execution engine. This increases performance over interpretation

[27].

Static analysis in Matlab is run automatically during edit-time by the Code Analyzer as

shown in �gure 4.6. As soon as one of its checks identi�es an issue in the written code, the

line is �agged in the editor interface with a message describing the issue.

Programmatic access to the Code Analyzer is provided by the checkcode function. It runs the

available static analysis checks on the �les speci�ed when calling the function and returns

50

4. Methods and Tools 4.2. Veri�cation

the results in a structure array, containing the messages and their locations [6]. Structure

arrays are data types subject not only to Matlab that are useful for grouping related data.

The checkcode function provides options to return more information, such as the message

identi�cations as shown in the following listing.

1 % Define file

2 files = 'script.m';

3

4 % Run analysis

5 results = checkcode(files, '-struct');

A Code Analyzer message can be suppressed manually by writing a %#ok directive in the

concerned line of code. The analysis can be con�gured to ignore these suppression. Further

con�guration of the analysis can be done in the Code Analyzer user interface and reused

programmatically with a con�guration �le [6].

As the analysis already is available to a developer during edit-time, it is prudent to simply

employ the checkcode function as a safeguard to verify whether the �les committed to a

repository in fact do not raise any messages. Refer to chapter 5 for the technical details of

how this is implemented.

In newer releases of Matlab, the issues found by the CodeAnalyzer are stored in a codeIssues

object. Notably, this object can be used with a fix function to �x certain issues programmat-

ically and a export function to export the results in a standardized format [6]. This is out of

the scope for this thesis, but should be considered for future applications.

Checks

In order to understand the scope of the Code Analyzer in comparison to the other static

analysis tools investigated in the remainder of this chapter, a review of its checks is performed

based on the product’s documentation [6]. A summary is presented in table 4.3.

Of special interest here are the checks related to code generation compatibility. For them,

the analysis has to be explicitly activated by adding the %#codegen directive to the �le. Other

than that, the checks aim at achieving correct and e�cient Matlab code but do not have

the same scope as a comprehensive coding standard that for example targets robustness or

security of code employed in embedded systems.

51

4.2. Veri�cation 4. Methods and Tools

Table 4.3.:Matlab Code Analyzer Checks

Group Checks Veri�cation objective

Incomplete

analysis

18 Reason why an analysis could not be started or com-

pleted, for example due to too high complexity, too deep

nesting or invalid �les

Syntax errors 50 Valid use of characters, missing characters, valid use of

operators and valid character sequences

Language

speci�cation

errors

155 Valid use of theMatlab language, for example in de�n-

ing attributes, declaring functions, de�ning classes, us-

ing certain language-speci�c constructs

Bugs 36 Various cases of syntactically detectable dead logic, cor-

rect use of operands, availability of variables

Custom checks 19 Various coding constructs that can be con�gured to be

�agged as disallowed

Compatibility

considerations

>200 Usage of functions, methods and properties that have

been or will be removed or replaced in Matlab and its

toolboxes

Good practices 103 Recommendations for coding constructs that can be in-

e�cient, unnecessary, too complicated or can lead to

unwanted or unexpected behavior

Unset variables 7 Missing or not executed variable de�nitions

Unused construc-

tions

21 Flagging of functions, arguments, operations etc. that

might not be used anywhere

Suggested

improvements

>200 Recommendations for using outdated functions, meth-

ods or properties

Readability 35 Possible simpli�cations for the use of certain unneces-

sary or more complicated statements

Formatting 7 Unnecessary or recommended use of commas, paren-

theses, semicolons

Performance 44 Recommendations for the use of certain statements that

unnecessarily decrease execution performance

52

4. Methods and Tools 4.2. Veri�cation

Table 4.4.: Matlab Code Analyzer Checks (continued)

Group Checks Veri�cation objective

Code generation 20 Usage of functions, statements and other constructs

supported for code generation

Deployment 10 Compatibility relating to packaging and deploying

Matlab programs as standalone applications

System objects 9 Valid speci�cation relating to Matlab system objects

used in system blocks within Simulink

Unsupported

features

13 Flagging of functions that are not supported o�cially

Behavior

changes

>200 Flagging of instances where Matlab handles or will

handle statements di�erently in another release

4.2.2. Static Analysis in Simulink

Simulink o�ers a static analysis method for models with the Model Advisor. Its capabilities

fall into the scope of both syntactic and non-sound semantic analysis techniques introduced

in section 2.4. Its functionality is integrated into the user interface and meant to assist during

the modeling process. Just like other static analysis tools, it runs a variety of checks with a

prede�ned objective [10].

Simulink Check extends this functionality with around 300 additional checks with varying

scope. After discussing how they can be run, they are presented based on their classi�cation

in the product.

Matlab creates an instance of a Simulink.ModelAdvisor object for eachmodel that is opened

in the current session. Its getModelAdvisor method returns a handle to the object for the

model or subsystem that was speci�ed. It o�ers object functions to select individual or groups

of checks, run checks, read results and create reports among others [10].

Simulink Check opens up the application programming interface (API) to the Model Advisor,

allowing for the model analysis to be run using the ModelAdvisor.run method. It receives

a cell array of check names and systems as input arguments and returns one ModelAdvisor

53

4.2. Veri�cation 4. Methods and Tools

.SystemResult object per system that was analyzed that in turn contains a ModelAdvisor

.CheckResult object for each check that was run [28]. The following listing already presents

su�cient code to run a Model Advisor analysis programmatically.

1 % Define checks and model

2 checkIDs = 'mathworks.design.UnconnectedLinesPorts';

3 systems = 'Controller';

4

5 % Run analysis

6 results = ModelAdvisor.run(systems,checkIDs);

Design Checks

The checks available just without Simulink Check have the mathworks.design pre�x. They

target common problems with several Simulink features, however also do not represent a

comprehensive standard.

The analyzed aspects mostly go beyond the complexity of the demonstration example. They

however also do not allow for a comprehensive review with a speci�c goal but rather rep-

resent a selection of common issues and good practices in speci�c cases. These checks in

general are expected not to fail when run and are therefore incorporated as another safe-

guard that ensures there are no fundamentals �aws introduced in a Simulink model.

54

4. Methods and Tools 4.2. Veri�cation

Table 4.5.: Model Advisor Checks

Group Veri�cation objective

Modeling elements Identify common issues with standard Simulinkmodeling elements

such as merge, outport or integrator blocks as well as unconnected

lines and ports

Model referencing Identify incorrect con�guration settings with respect to including

a Simulink model inside another as a model block

Model �le integrity Identify problems with character encoding and nondefault model

properties

Unit inconsistencies Identify disallowed, unde�ned, mismatching or ambiguous unit

speci�cations and conversions

Library links Identify common problems with the usage of blocks that are spec-

i�ed in a library model

Simpli�ed initializa-

tion

Identify incorrect con�guration settings with respect to simpli�ed

initialization, which aims to make model initialization more pre-

dictable and consistent

Model upgrades Access to the Upgrade Advisor feature to identify the applicability

of features introduced in newer releases of Simulink

Bus usage Identify common problems with buses, which are commonly used

to group signals and parameters

Code generation ef-

�ciency

Identify model con�guration settings that can result in a lower ef-

�ciency of code generated from the model

Data transfer e�-

ciency

Identify settings and modeling techniques that can result in low

data transfer e�ciency

Advisory Checks

The MathWorks Advisory Board (MAB) provides an extensive set of guidelines for the de-

velopment of control algorithms withMatlab/Simulink and their use in embedded systems.

They originate from theMathWorks Automotive Advisory Board (MAAB) established in 1998

55

4.2. Veri�cation 4. Methods and Tools

by Ford, Daimler Benz, and Toyota. Later, both the MAAB and Japan MathWorks Automo-

tive Advisory Board (JMAAB) developed their own standards, which are now incorporated

into one global MAB standard [28].

The standard has a much wider scope than the default Model Advisor checks discussed be-

fore. It appears suitable as a general guideline for modeling with a variety of rather basic

rules. The MAB structures the guidelines as shown in table 4.6.

High Integrity System Modeling Checks

High Integrity Systems Modeling (HISM) is a concept with which MathWorks refers to set of

standards that apply to software engineering in di�erent domains. Internally, the associated

checks have the pre�x mathworks.hism. They incorporate rules from the following standards

and domains [28].

• Radio Technical Commission for Aeronautics (RTCA) documents DO-178C and DO-

331 for the aerospace and defense domain

• International Organization for Standardization (ISO) standard 26262 for the automotive

domain

• European Standard (EN) 50128 and 50657 for the rail and transportation domain

• International Electrotechnical Commission (IEC) standard 61508 for the industrial au-

tomation and robotics domain

• ISO 13485 and IEC 62304 for medical devices

Each HISM check is referenced to a rule in one or several of these standards. Vice versa, the

individual standards have rules with overlapping rationales, which apparently is the subset

of rules covered by the HISM checks. The common goal of these checks is the robustness

of code generated from the model that the checks are run against. Table 4.7 contains an

overview of how the checks are organized and what their objectives are.

The Motor Industry Software Reliability Association (MISRA) standards take up a special po-

sition in this context. These are sets of rules developed speci�cally with safety, security, and

reliability of embedded system software in mind [29]. While some HISM checks additionally

refer to MISRA standards, further secure coding and MISRA compliance checks are available

with Embedded Coder and covered separately further below.

56

4. Methods and Tools 4.2. Veri�cation

T
ab
le
4.
6.
:M

A
B
C
h
ec
k
s

Sc
o
p
e

G
ro
u
p

C
h
ec
k
s

V
er
i�
ca
ti
o
n
o
b
je
ct
iv
e

N
am

in
g

co
n
v
en
ti
o
n
s

–
20

C
h
ar
ac
te
r
u
sa
g
e,
le
n
g
th
s,
an
d
n
am

in
g
ru
le
s
fo
r
fo
ld
er
s,
�
le
s,
su
b
sy
st
em

s,
b
lo
ck
s,
si
g
-

n
al
s,
p
ar
am

et
er
s
an
d
b
u
s
n
am

es

Si
m
u
li
n
k

g
u
id
el
in
es

C
o
n
�
g
u
ra
ti
o
n

p
ar
am

et
er
s

4
C
o
rr
ec
t
se
tt
in
g
o
f
co
n
�
g
u
ra
ti
o
n
p
ar
am

et
er
s
w
it
h
re
sp
ec
t
to

B
o
o
le
an

d
at
a,

in
te
g
er

ro
u
n
d
in
g
,i
n
co
rr
ec
t
ca
lc
u
la
ti
o
n
s
an
d
m
o
d
el
d
ia
g
n
o
st
ic
s

D
ia
g
ra
m

ap
p
ea
ra
n
ce

19
R
ec
o
m
m
en
d
ed

ap
p
ea
ra
n
ce

o
f
th
e
m
o
d
el
in
cl
u
d
in
g
la
y
o
u
t
se
tt
in
g
s,
fo
n
ts
,e
le
m
en
t
si
ze
s,

p
o
si
ti
o
n
in
g
,d
es
cr
ip
ti
o
n
s,
si
g
n
al
co
n
n
ec
ti
o
n
s,
si
g
n
al
�
o
w
,n
am

in
g
co
n
si
st
en
cy
,s
u
b
sy
s-

te
m

st
ru
ct
u
re

an
d
th
e
u
se

o
f
p
ro
h
ib
it
ed

b
lo
ck
s

Si
g
n
al
s

12
R
ec
o
m
m
en
d
ed

u
sa
g
e
o
f
b
u
se
s,
si
g
n
al
n
am

es
,l
ab
el
s
an
d
b
lo
ck

p
ar
am

et
er
s
w
it
h
re
sp
ec
t

to
si
g
n
al
s
as

w
el
l
as

ty
p
e
an
d
sa
m
p
le
ti
m
e
se
tt
in
g
s

C
o
n
d
it
io
n
al

su
b
sy
st
em

s
6

R
ec
o
m
m
en
d
ed

b
lo
ck

la
y
o
u
t
an
d
u
sa
g
e
w
it
h
re
sp
ec
t
to

co
n
d
it
io
n
al

su
b
sy
st
em

s
an
d

th
ei
r
re
la
ti
o
n
s
an
d
se
tt
in
g
s

O
p
er
at
io
n

b
lo
ck
s

16
C
o
rr
ec
t
u
sa
g
e
o
f
lo
g
ic
al
,
re
la
ti
o
n
al
an
d
n
u
m
er
ic
al
o
p
er
at
io
n
b
lo
ck
s
as

w
el
l
as

lo
o
k
u
p

ta
b
le
s,
sa
tu
ra
ti
o
n
,i
n
te
g
ra
to
r,
d
el
ay

an
d
ty
p
e
co
n
v
er
si
o
n
b
lo
ck

O
th
er

b
lo
ck
s

16
C
o
rr
ec
t
se
tt
in
g
an
d
p
o
si
ti
o
n
in
g
o
f
in
p
o
rt
s
an
d
o
u
tp
o
rt
s,
co
rr
ec
t
u
sa
g
e
o
f
sw

it
ch
,d
at
a

st
o
re

m
em

o
ry

an
d
v
ar
ia
n
t
su
b
sy
st
em

b
lo
ck
s

M
a
t
l
a
b

g
u
id
el
in
es

A
p
p
ea
ra
n
ce

2
Id
en
ti
fy

n
u
m
b
er

o
f
n
es
te
d
st
at
em

en
ts

an
d
p
re
se
n
ce

o
f
a
fu
n
ct
io
n
h
ea
d
er

in
M
a
t
l
a
b

fu
n
ct
io
n
b
lo
ck
s

D
at
a

an
d

o
p
-

er
at
io
n
s

3
R
ec
o
m
m
en
d
ed

u
sa
g
e
o
f
sh
ar
ed

d
at
a,
en
u
m
er
at
io
n
s
an
d
in
p
u
ts
/o
u
tp
u
ts
w
it
h
re
sp
ec
t
to

M
a
t
l
a
b
fu
n
ct
io
n
b
lo
ck
s

U
sa
g
e

5
Id
en
ti
fy

li
m
it
s
o
n
li
n
es

o
f
co
d
e
an
d
le
v
el
s
o
f
ca
ll
ed

fu
n
ct
io
n
s,
re
co
m
m
en
d
ed

u
sa
g
e
o
f

st
ri
n
g
s,
sw

it
ch
-c
as
e-
st
at
em

en
ts
an
d
co
m
m
en
ts
in

M
a
t
l
a
b
fu
n
ct
io
n
b
lo
ck
s

57

4.2. Veri�cation 4. Methods and Tools

T
ab
le
4.7.:H

ISM
C
h
eck

s

Sco
p
e

G
ro
u
p

C
h
eck

s
V
eri�

catio
n
o
b
jectiv

e

Sim
u
lin

k
b
lo
ck

co
n
sid

eratio
n
s

N
am

in
g

co
n
-

v
en
tio

n
s

2
C
h
aracter

u
sag

e
in

m
o
d
el
�
le
an
d
elem

en
t
n
am

es

M
ath

o
p
era-

tio
n
s

9
R
eco

m
m
en
d
ed

u
sag

e
o
f
ab
so
lu
te,

rem
ain

d
er,

recip
ro
cal,

sq
u
are

ro
o
t,
lo
g
arith

m
,

p
ro
d
u
ct,assig

n
m
en
t
an
d
g
ain

b
lo
ck
s

P
o
rts

an
d
su
b
-

sy
stem

s
11

R
eco

m
m
en
d
ed

settin
g
s
fo
r
w
h
ile

iterato
r,
fo
r
iterato

r,
if
an
d
sw

itch
case

b
lo
ck
s
as

w
ell

as
in
p
o
rt
an
d
o
u
tp
o
rt
sp
eci�

catio
n
s

Sig
n
al
ro
u
tin

g
5

C
o
rrect

u
sag

e
o
f
d
ata

sto
re

m
em

o
ry,

m
erg

e
an
d
sig

n
al

ro
u
tin

g
b
lo
ck
s
as

w
ell

as
co
n
sisten

t
v
ecto

r
an
d
sig

n
al
in
d
ex
in
g

L
o
g
ic

an
d

b
it

o
p
eratio

n
s

4
U
n
am

b
ig
u
o
u
s
u
sag

e
o
f
relatio

n
al
o
p
erato

r,lo
g
ical

o
p
erato

r
an
d
b
it-w

ise
o
p
eratio

n
b
lo
ck
s

L
o
o
k
u
p

tab
le

b
lo
ck
s

3
R
eco

m
m
en
d
ed

settin
g
s
reg

ard
in
g
lo
o
k
u
p
tab

le
b
lo
ck
s,tu

n
ab
le
p
aram

eters
an
d
b
it-

sh
ift

o
p
eratio

n
s

State�
o
w

ch
art

co
n
sid

eratio
n
s

–
O
u
t
of

scop
e
for

th
is
th
esis

M
a
t
l
a
b
co
n
sid

-
eratio

n
s

M
a
t
l
a
b
fu
n
c-

tio
n
s

3
C
o
m
p
lex

ity
an
d
len

g
th

o
f
M
a
t
l
a
b
fu
n
ctio

n
s
u
sed

in
m
o
d
els

as
w
ell

as
th
e
u
se

o
f

stro
n
g
ty
p
in
g
at

fu
n
ctio

n
in
terfaces

M
a
t
l
a
b
co
d
e

8
C
o
d
e
A
n
aly

zer
ch
eck

s
as

w
ell

as
d
etectio

n
o
f
sev

eral
u
n
d
esirab

le
co
d
e
p
attern

s

58

4. Methods and Tools 4.2. Veri�cation

T
ab
le
4.
8.
:H

IS
M

C
h
ec
k
s
(c
o
n
ti
n
u
ed
)

Sc
o
p
e

G
ro
u
p

C
h
ec
k
s

V
er
i�
ca
ti
o
n
o
b
je
ct
iv
e

C
o
n
�
g
u
ra
ti
o
n

p
ar
am

et
er

co
n
-

si
d
er
at
io
n
s

So
lv
er

3
Si
m
u
la
ti
o
n
ti
m
e,
so
lv
er

an
d
ta
sk
in
g
o
p
ti
o
n
s
re
q
u
ir
ed

fo
r
p
ro
d
u
ct
io
n
co
d
e
g
en
er
a-

ti
o
n

M
at
h
an
d
d
at
a

ty
p
es

2
L
o
g
ic
si
g
n
al
an
d
li
fe
sp
an

se
tt
in
g
s
fo
r
p
ro
d
u
ct
io
n
co
d
e
g
en
er
at
io
n

D
ia
g
n
o
st
ic
s

16
E
n
ab
li
n
g
er
ro
r
m
es
sa
g
es

fo
r
o
r
d
is
ab
li
n
g
o
fc
o
n
�
g
u
ra
ti
o
n
p
ar
am

et
er
s
re
la
te
d
to
co
d
e

ro
b
u
st
n
es
s

H
ar
d
w
ar
e
im

-
p
le
m
en
ta
ti
o
n

1
M
at
ch
in
g
ta
rg
et

co
n
�
g
u
ra
ti
o
n
p
ar
am

et
er
s
b
et
w
ee
n
p
ro
d
u
ct
io
n
h
ar
d
w
ar
e
an
d
te
st

h
ar
d
w
ar
e

M
o
d
el

re
fe
r-

en
ci
n
g

1
Se
tt
in
g
s
re
la
te
d
to

co
n
si
st
en
cy

o
f
m
o
d
el
an
d
it
s
re
fe
re
n
ce
s

C
o
d
e

g
en
er
a-

ti
o
n

9
C
o
d
e
g
en
er
at
io
n
se
tt
in
g
s
th
at

in
cr
ea
se

ro
b
u
st
n
es
s
an
d
v
er
i�
ab
il
it
y
o
f
g
en
er
at
ed

co
d
e

R
eq
u
ir
em

en
ts

co
n
si
d
er
at
io
n
s

O
u
t
of

sc
op
e
fo
r
th
is
th
es
is

M
IS
R
A

C
co
m
-

p
li
an
ce

co
n
si
d
-

er
at
io
n
s

M
o
d
el
in
g

st
y
le

4
N
am

in
g
ru
le
s
co
m
p
li
an
t
w
it
h
th
e
M
IS
R
A
C
st
an
d
ar
d

B
lo
ck

u
sa
g
e

3
E
x
cl
u
si
o
n
o
f
b
lo
ck
s
n
o
t
re
co
m
m
en
d
ed

fo
r
M
IS
R
A
C
co
m
p
li
an
ce

C
o
n
�
g
u
ra
ti
o
n

se
tt
in
g
s

1
V
ar
io
u
s
co
n
�
g
u
ra
ti
o
n
p
ar
am

et
er
s
th
at

ar
e
re
q
u
ir
ed

fo
r
M
IS
R
A
C
co
m
p
li
an
ce

59

4.2. Veri�cation 4. Methods and Tools

Code Generation Checks

MathWorks provides a set of modeling guidelines for models that are intended for code gen-

eration for embedded systems with the Embedded Coder toolbox [29]. These guidelines are

structured in four categories.

• Blocks: Use of certain �xed-point operations, precalculation of signals and absence of

redundant blocks with the goal of higher code e�ciency

• Modeling patterns: Use of certain signal elements and block placements with respect

to subsystem for more e�cient memory usage

• Con�guration parameters: Prioritization of code generation objectives for higher code

e�ciency

• Component deployment: Identify settings and modeling techniques that can result in

low data transfer e�ciency

These guidelines have a rather speci�c and limited scope in comparison to the standards in-

troduce before. They appear to target code e�ciency but do not seem to cover robustness

of the generated code. In the Model Advisor, these guidelines are implemented as checks

with a mathworks.codegen pre�x. These are 29 checks that identify ine�cient or potentially

ambiguous operations, verify hardware settings, identify non-recommended blocks and con-

�guration parameters, identify correct compilation settings, and verify various settings in

model elements that are required or recommended for production code generation [29].

The scope of these checks suggests to employ them in conjunction with, but before any stan-

dards compliance checks. The rationale would be, that a model needs to be suited and mod-

eled e�ciently for code generation, before the compliance with a much more comprehensive

standard is veri�ed, even if only partial. Reviewing the associated check results should take

this prioritization into consideration.

Secure Coding Checks

For embedded systems, there are several coding guidelines addressing security concerns

speci�cally. They aim at reducing coding constructs that are vulnerable to exploitation in

embedded software. Model Advisor checks for the following guidelines are available for

Embedded Coder [29].

60

4. Methods and Tools 4.2. Veri�cation

• The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT)

C standard is a set of guidelines for secure coding practices for the C languages. They

“are a work in progress and re�ect the current thinking of the secure coding commu-

nity” [30].

• The Common Weakness Enumeration (CWE) is an extensive, community-developed

list of software and hardware weakness types that under certain circumstances can

become security vulnerabilities in embedded software and hardware [31].

• ISO/IEC TS 19761 is the formal ISO standard for secure coding in C [29].

Additionally, the MISRA standards de�ne a “safe subset” of the C languages that also pro-

tects against safety and security vulnerabilities, but also further increases robustness and

reliability of embedded systems software [32]. The Model Advisor checks associated with

the secure coding standards are grouped with the pre�x mathworks.security and overlap

with the MISRA compliance checks with the pre�x mathworks.misra.

While code security is not the goal of this thesis, the associated standards generally have

the robustness and reliability of embedded software in mind and as such should be part of a

veri�cation process with respect to correctness.

It is important to note that compliance with a standard can not be fully evaluated with the

model as test object. Running the introduced checks rather “increases the likelihood” of

generating code compliant with the standards [28]. For better results, the use of additional

veri�cation tools is necessary.

4.2.3. Model Checking in Simulink

Simulink Design Veri�er is a model checker that is integrated into theMatlab/Simulink user

interface. It uses a proof system that is based on Stålmarck’s proof procedure for proposi-

tional logic [17]. Understanding the theoretical details of this procedure is not required in

order to operate the tool, but it is helpful in understanding its limitations.

There are three distinct modes that the tool o�ers. They all represent di�erent aspects of

model checking in general.

61

4.2. Veri�cation 4. Methods and Tools

• Design error detection: In thismode, the analysis can be con�gured to �nd one or several

prede�ned error types in a model or prove their absence. If the analysis is able to �nd

a design error, it provides a counterexample, an exemplary signal trace that causes the

error [33].

• Test generation: Here, the model checker’s ability to �nd counterexamples is used sys-

tematically to de�ne new test cases for simulation-based testing that achieve missing

coverage. The coverage objective has to be de�ned and the coverage data recorded

prior to the analysis [33].

• Property proving: In Simulink, properties are modeled as requirements in the model.

For this purpose, the tool o�ers proof objective and assumption blocks and functions.

The properties are then proven or falsi�ed by the analysis [33].

For this thesis, design error detection shall be the focus of evaluation. The central issue

with Simulink Design Veri�er is the compatibility of the model with the analysis technique.

Due to the nature of model checking, a model that is simulated correctly in Simulink is not

necessarily suitable for an analysis. For this reason, the other two modes that require more

upfront e�ort are not further pursued here.

The compatibility check is the �rst step in a Design Veri�er analysis. There is a subset of

Simulink blocks that is supported, and it is checked whether the analyzed model contains un-

supported blocks. Blocks in Simulink’s Discrete, Math Operations, Logic Operations, Sinks,

and Sources Libraries are supported for the most part. Notable exclusions are the State-space,

Sine Wave, Square Root and Signal Editor blocks. Blocks from the Continuous Library are

not supported. Limitations exist when using enabled, triggered and variant subsystems as

well as for user-de�ned functions. ForMatlab function blocks, certain operations like calls

to external C functions as well as most toolbox functions are not supported. S-Functions or

C/C++ code containing for example continuous states, zero-crossing functions and in�nite

or not representable objects are also not supported [33].

Incompatibilities are handled automatically by the analysis with a technique called stubbing.

Unsupported blocks are ignored by the analysis and the block output is assumed to be able

to take on any value. In some cases, this might lead to an analysis that is still conclusive.

Another way to approach incompatibilities is by de�ning replacement rules for the analysis.

These are written in custom Matlab-�les using special syntax. For example, arithmetic

operations on a signal with an expected signal range could be replaced with a precalculated

lookup table of the results [33].

62

4. Methods and Tools 4.2. Veri�cation

If a model is compatible, the analysis proceeds to generate a model representation with sev-

eral approximations. Floating-point values in signals or parameters are converted to rational

numbers in some cases. This prevents numerical errors from a�ecting the result of the anal-

ysis. In lookup tables, the interpolation is set to linear to increase analysis performance.

Further, while-loop iterations are reduced if no constant bound can be found, so they always

exit [33].

Simulink Design Veri�er is run programmatically with the sldvrun function. It accepts a

model or subsystem name and a design veri�cation options object that speci�es the analy-

sis. As shown in the following listing, this options object is returned by the sldvoptions

function and contains all analysis settings as parameters with their default values. These are

subsequently modi�ed for the individual analysis. Here, also the replacement rules or cover-

age objective and data �les mentioned earlier would be passed to the respective parameter.

The sldvrun function returns a status code status of the analysis result, the report and data

�le names files created by the analysis and an error or warning informationmessage msg.

1 % Define model and create options object

2 system = 'Controller';

3 options = sldvoptions;

4

5 % Configure analysis

6 options.Mode = 'DesignErrorDetection';

7 options.DetectDivisionByZero = 'on';

8 options.SaveReport = 'on';

9

10 % Run analysis

11 [status, files, msg] = sldvrun(system, options);

The following are the detectable design errors explained in more detail, based on the tool’s

documentation [33].

• Dead logic: Model elements remain inactive for an entire simulation.

• Out of bound array access: The model tries to access an array element with an invalid

index.

• Division by zero: The denominator of a division operation becomes zero during a sim-

ulation.

63

4.2. Veri�cation 4. Methods and Tools

• Integer over�ow: An operation on an integer signal exceeds its representable range.

• Non-�nite and NaN �oating-point values: A �oating-point signal becomes in�nite or not

representable during a simulation.

• Subnormal �oating point values: A �oating-point signal becomes too small to be accu-

rately represented.

• Speci�edminimum andmaximum value violations: Theminimum andmaximum values

on signals and outports throughout a model are exceeded during a simulation.

• Data store access violations: A data store memory block receives an unintended se-

quence of read and write operations during a simulation.

• Speci�ed block input range violations: The minimum and maximum values on block

input signals in a model are exceeded during a simulation.

Both the plain function implementation as well as the controller FSM are as expected com-

patible with the analysis. Exemplary cases of dead logic or division by zero are correctly

identi�ed as shown in �gure 4.7. The associated signal trace is provided too. Both the analy-

sis output as well as the analysis report point to the location of the error, but only at the top

level. It appears as though the analysis does not fully consider nestedMatlab functions and

as such is not able to point to the precise location of an error.

It should further be noted that in spite of the existing approximations, inconclusive analyses

are already produced in the context of the small-scale demonstration example. As noted in

section 2.4, model checking is not suited for data-intensive applications, which here results

in frequent analysis timeouts. For use in a project context, it should prior be evaluated if it

is feasible to specify minimum and maximum values at every root-level inport block of the

analyzed model.

64

4. Methods and Tools 4.2. Veri�cation

Figure 4.7.: Design Veri�er Analysis

4.2.4. Testing in Simulink

Simulink Test is MathWorks’ toolset for simulation-based testing. It is of interest here be-

cause it conveniently allows to isolate and test any part of a Simulink model with a test

harness. A clear graphical and a comprehensive programmatic interface help with test au-

thoring, test execution and test management in alignment with the fundamentals of software

testing discussed in chapter 2 [34].

65

4.2. Veri�cation 4. Methods and Tools

Simulink Test exists next to theMatlab unit testing framework (“Matlab Unit Test”), from

which it can use several features but should be distinguished. When large parts of a model’s

functionality are implemented in Matlab code, it is prudent to develop tests in the related

testing framework. It provides several tools to author, execute, evaluate and automate tests

of Matlab code. Tests can be written as simple scripts, as functions or as classes that inherit

from the matlab.unittest.TestCase superclass to leverage the full capabilities of the frame-

work. Tests are executed by test runners, the fundamental API of Matlab Unit Test, which

is supplemented by plugins that enable individual evaluation and reporting features [6].

A good testing strategy should de�ne exactly when which testing tool shall be used. A clear

use case with added value for Simulink Test would be integration testing – in conjunction

with unit testing implemented with Matlab Unit Test. Two testing methods are of interest

here and are demonstrated further below.

Preparation

Independent of the used testing method, there are two prerequisites to be taken care of. First

is creating a test harness, which is realized in Simulink via the subsystem context menu. As

subsystem blocks can contain arbitrary levels of further subsystems, this essentially means

that tests can be authored at any level in the model with little e�ort. The use of test harnesses

is not unique to Simulink, but can refer to any part of a program that links a testing frame-

work to a component under test and enables the execution and evaluation of a test suite.

Simulink Test however reduces the e�ort in creating and maintaining them when compared

to conventional programming languages. The test harness for the Thrust Controller subsys-

tem is shown in �gure 4.8.

Test harnesses are per default saved in the same �le as the associated Simulink model with

changes in themodel being updated to the harness when opening. It should be noted that this

proved unreliable in cases where changes in signal names needed to be updated in harnesses

of model �les that were copied before. A harness can alternatively be saved externally as an

own model �le and linked with a xml �le that is created by Simulink Test. This approach

worked more reliably in the context of the demonstration example and could be adopted in

larger projects for better traceability.

Next, the inputs to the component under test have to be de�ned. Using Simulink’s Signal

Editor block, inputs can be authored manually. Additionally, Simulink Test’s Test Sequence

66

4. Methods and Tools 4.2. Veri�cation

Figure 4.8.: Controller Test Harness

block allows to author sequential tests that react to a simulation with steps or transitions

written with Matlab. For external inputs, there are three additional options [34].

• Matlab scripts: Input parameters are de�ned in scripts using the Matlab language.

At the time of writing, this is the least documented approach and therefore not further

pursued here.

• Excel spreadsheets: Input parameter values are de�ned for each simulation time step

in an Excel spreadsheet. At the time of writing, this is the most comprehensively docu-

mented approach. Templates with the required layout can be generated when author-

ing a test case. As logged simulation data can be exported to Excel spreadsheets with

a similar layout, this approach promises to be the most versatile.

• Matlab data �les: Input parameters are stored in Matlab’s binary mat �le format.

Manual editing of parameter values is possible with the Signal Editor but less con-

venient than in a conventional spreadsheet format. As .mat is the default export �le

format for logged simulation data, this approach however promises to be best suited

for data-driven simulation models such as those investigated here.

The following demonstration makes use of Matlab data �les, which contain the logged data

from the already developed simulations. As signal logging via the Simulink user interface

proved to be unreliable when mapping to a test harness, logging is done with a short script.

67

4.2. Veri�cation 4. Methods and Tools

The sim function runs a simulation and returns a Simulink.SimulationOutput object, which

contains all data associated to the simulation. Logged data is stored in the logsout property

and can be saved to a mat �le from there.

1 % Run the simulation and log the signals enabled for logging

2 simOut = sim('DiscreteThrustControl');

3

4 % Retrieve logged data from simulation output

5 logs = simOut.get('logsout');

6

7 % Save dataset to MAT file

8 save('inputData.mat', 'logs');

Baseline Testing

In baseline testing, simulation output data is compared to baseline data. This data is obtained

by simulating a component with prior created test harness and input data. The test itself

then veri�es whether the component under test produces the same output within a de�ned

margin [34].

The Test Manager is the user interface for Simulink Test. As graphical interface its test

case templates guide through the test authoring phase, but it o�ers all required functionality

programmatically too. The baseline test case is shown in �gure 4.9. After setting the Simulink

model, the associated harness model, the input data as well as its mapping, the baseline data

can be captured from here. If baseline data is already present, it is set here. Either way,

the output tolerance in absolute and/or relative values as well as the leading and lagging

tolerance with respect to time must be de�ned here for a functioning test case. Coverage

settings are set at the test �le level but can be changed here for the individual test case.

This concludes the required settings for a simple baseline test case. It can now be executed

after new changes to the Controller subsystem. If not speci�ed to overwrite, model con�g-

uration parameters such as the simulation time should be carried over from the simulation

the test harness is associated to. This however was found to work unreliably too, so in doubt

the applicable overrides should be used.

68

4. Methods and Tools 4.2. Veri�cation

Figure 4.9.: Baseline Test Case in the Simulink Test Manager

The programmatic execution of the test �le is demonstrated in the following listing. The

sltest.testmanager namespace contains all functions related to test execution and report-

ing, where this is just a minimal example. Apart from that, there are more functions related

to test authoring, test harnesses, test sequences and assessments [34]. Such comprehensive

programmatic support might be helpful in scaling a testing strategy over many components,

di�erent variants, versions etc.

1 % Open the test file

2 testFile = 'TestFile.mldatx';

3 sltest.testmanager.load(testFile);

4

5 % Run all tests

6 results = sltest.testmanager.run;

7

8 % Generate report from results data

9 sltest.testmanager.report(results, 'TestReport.pdf');

10

11 % View simulation output data

12 sltest.testmanager.view;

69

4.2. Veri�cation 4. Methods and Tools

Equivalence Testing

Equivalence or back-to-back testing veri�es whether two simulations produce the same out-

put within a de�ned tolerance [34]. The associated test case is shown in �gure 4.10. The

same input data is now used on two harnesses of two di�erent simulations. Here, the FSM

implementation of the controller subsystem is tested for equivalence against the plain func-

tion implementation. Instead of baseline data, now equivalence criteria and the associated

tolerances must be de�ned.

Figure 4.10.: Equivalence Test Case in the Simulink Test Manager

The test execution is identical to before. For either test case, the results are displayed in

the test Manager with a visualization of the speci�ed tolerances. The results for uo in the

equivalence test case are shown as an example in �gure 4.11. The tolerance was de�ned

to account for the fact that the FSM implementation commands a �xed output from the

beginnig of the test case. The transition to the state “Running” however is triggered too late

for the tolerance and as such the test fails. Notable is the associated detailed coverage results

collection shown in �gure 4.12.

70

4. Methods and Tools 4.2. Veri�cation

Figure 4.11.: Equivalence Test Results for uo

Figure 4.12.: Equivalence Test Coverage Results

71

4.2. Veri�cation 4. Methods and Tools

SIL Testing

Apart frommodel-in-the-loop (MIL) testing, equivalence testing with Simulink Test also sup-

ports software-in-the-loop (SIL) and processor-in-the-loop (PIL) testing. In SIL testing, the

output of code generated from the component under test is veri�ed. In PIL testing, this

code is run on the target processor after a previous connectivity con�guration. These tests

are authored by specifying the associated veri�cation mode in the test harness properties.

This essentially presents an extension of the SIL and hardware-in-the-loop (HIL) simulation

modes that are already part of Embedded Coders functionality. Lastly, also HIL testing is sup-

ported. Here the code is executed on the standalone hardware including its own input/output

connectivity, for which the product Simulink Real-Time is required [34].

4.2.5. Code Generation

While the details of automated code generation are beyond the scope of this thesis, it must

nevertheless be part of the veri�cation process in a basic form. There are three related

code generation products of interest here. Matlab Coder provides the ability to generate

C and C++ code from Matlab code, while Simulink Coder provides the same capability for

Simulink models. Apart from code optimization and targeting capabilities, Embedded Coder

also contains additional veri�cation functionality [29].

Code generation from a Simulink model can be understood as a process of four to �ve steps,

of which not all require interaction with the user. A visualization of the process with infor-

mation from references [35] is shown in �gure 4.13.

1. The model is con�gured for code generation through its con�guration parameters.

Parameters for example relating to the language speci�cation, compilation toolchain

and optimization can be set here.

2. The coder software is invoked using its slbuild function to generate C++ code. This

concludes the interaction with the user and internally triggers the next step.

3. The coder software generates a model description �le. This �le contains a description

of the model’s execution semantics in a high-level language.

72

4. Methods and Tools 4.2. Veri�cation

4. The software’s Target Language Compiler converts this intermediate description into

the target-speci�c code. For this it uses its own function library as well as di�erent tar-

get �les. The system target �le for example de�nes the required compilation toolchain

and software settings associated with the intended execution environment.

The last step would be the basis for generating an actual executable if that were required.

The Target Language Compiler creates a Make�le based on the target �les and an already

existing template. Make�les contain instructions for the build process of software, i.e. how

source code has to be compiled and linked to form a correct executable (cf. section 2.4). The

coder software can be con�gured to automatically execute this �le after the Target Language

Compiler has �nished its tasks [35].

Simulink Model

Simulink Coder

Target Language

Compiler

C/C++

Compiler

model.rtw

model.cpp model.mktarget.tlc

model.exe

config.m

Figure 4.13.: The Code Generation Process (modi�ed from [35])

The con�guration parameters of a model can be saved to and restored from a Matlab data

�le. This allows for �exibility and portability in the con�guration, but makes traceability of

individual parameter settings cumbersome. Therefore, for this thesis, a provided con�gura-

tion set is translated into instructions to set the con�guration parameters programmatically.

This is done witMatlab’s set_param and get_param functions, that set and obtain the con-

�guration parameters of a model. To obtain only the parameters of interest, the con�gura-

tion set is compared to a default set. It is important to set the system target �le from generic

real-time (GRT) ro embedded real-time (ERT), as this changes the availability of certain pa-

rameters.

73

4.2. Veri�cation 4. Methods and Tools

1 % Load the specified configuration set

2 data = load('CodeGen.mat');

3 configSet = data.('CodeGen_cfg');

4

5 % Create default configuration set for comparison

6 defaultConfigSet = Simulink.ConfigSet;

7 set_param(defaultConfigSet, 'SystemTargetFile', 'ert.tlc');

8

9 % Retrieve all parameter names from loaded configuration set

10 loadedParameters = get_param(configSet, 'ObjectParameters');

11 paramNames = fieldnames(loadedParameters);

12

13 % Retrieve parameters from default configuration set

14 defaultParameters = get_param(defaultConfigSet, 'ObjectParameters');

15 nonDefaultParams = {};

The obtained parameters can then be written explicitly in a con�guration script or function.

Even if already set in the model, this step ensures traceability in the code generation process.

The code generation itself is triggered with the slbuild function.

1 % Load model

2 load_system('Controller');

3

4 % Set parameters for C++ code generation

5 set_param(model, 'SystemTargetFile', 'ert.tlc'); % System target file

6 set_param(model, 'TargetLang', 'C++'); % Code generation

language

7 set_param(model, 'GenCodeOnly', 'on'); % Do not execute makefile

8

9 % Generate code

10 slbuild(model);

4.2.6. Static Analysis of Generated Code

The Polyspace product family serves as the static analysis toolset for this thesis. It is mar-

keted by MathWorks but technically remains separate from the Matlab/Simulink product

environment. There are two products of interest here. Polyspace Bug Finder performs the

74

4. Methods and Tools 4.2. Veri�cation

bulk of both syntactic and semantic static analysis with hundreds of checks for a wide scope

of issues. Additionally, compliance of the analyzed code to industry coding standards can be

checked [36]. Polyspace Code Prover complements this with sound semantic analysis using

abstract interpretation. The analysis thus has a less wide scope but achieves a higher degree

of certainty [37]. Both products can analyze code written in C, C++ and Ada, while C++

shall be the focus here. Other products like Polyspace Access are out of scope for this thesis.

Overall, Polyspace is found to o�er the following options to be run.

• Graphical user interface: Polyspace analyses and results are organized in projects. These

can be con�gured from the graphical user interface. Scope of the analysis, �les to be

included and any customizations can be de�ned here. Analysis results are stored in

a proprietary �le format per default. For this thesis, the graphical user interface is

mainly useful in reviewing results for con�rmation.

• Integration: To simplify the work�ow for veri�cation of code generated from models,

Polyspace can be integrated withMatlab/Simulink. There, an API allows to con�gure

and run analyses programmatically. As this represents the use case investigated here,

this approach is further investigated below.

• Command line: Polyspace can also be fully con�gured and run programmatically from

the command line. This approach should be considered in case of issues with the afore-

mentioned approach.

The integration is performed with a dedicated setup function. This function accepts instal-

lation directories di�ering from the default and further options. Integration across release

versions is possible but results in limited functionality [36].

1 % Integrate Polyspace with Matlab/Simulink

2 polyspacesetup('install');

After successful integration, there appear to be three approaches to run a Polyspace analysis

from Matlab programmatically that exist independently of each other. The syntactically

easiest is using the dedicated pslinkrun function. It accepts a model or system name and a

con�guration object created by the pslinkoptions function. This function in turn accepts

one of three Simulink object types, which de�nes the con�guration options of the analysis.

This way, a default con�guration for either a generic code generator, a Simulinkmodel or a S-

function can be obtained. The options object has around 20 properties relating to the analysis

itself, results export, additional �les, data ranges and speci�cs to the code generator [36].

75

4.2. Veri�cation 4. Methods and Tools

These represent only a simpli�ed subset of the full con�guration potential of a Polyspace

analysis. An analysis is run as shown below assuming that code has been generated prior to

the analysis.

1 % Load Simulink model

2 model = 'Controller';

3 load_system(model);

4

5 % Create configuration object

6 options = pslinkoptions(model);

7

8 % Configure analysis

9 options.VerificationMode = 'BugFinder';

10 options.VerificationSettings = 'PrjConfig';

11

12 % Run analysis

13 [polyspaceFolder, resultsFolder] = pslinkrun(model,options);

Note that the VerificationSettings property for example does not allow for the inclusion

of C++ speci�c standards in the analysis. Apart from the default ’PrjConfig’ option, there

are only options to include standards speci�c to C. This approach therefore is insu�cient for

the veri�cation purposes of this thesis.

Amore �exible approach is using the dedicated polyspaceBugFinder and polyspaceCodeProver

functions. These are more versatile: With the proprietary .psprj project �le as input argu-

ment they open the project, and with the analysis results �les .psbf and .pscp respectively

they open the results in Polyspace. With an options object as an input argument they run the

respective analysis. This options object is an instance of the polyspace.BugFinderOptions

class and can be con�gured similarly to the approach before [36]. In the following example,

the sources, include folders and results directory are set manually.

1 % Create options object

2 options = polyspace.BugFinderOptions;

3

4 % Set source file, include folders and results directory manually

5 options.Sources = {fullfile(pwd, 'sources', 'source.cpp')};

6 options.EnvironmentSettings.IncludeFolders = {fullfile(pwd, 'sources')};

7 options.ResultsDir = fullfile(pwd, 'results');

8

76

4. Methods and Tools 4.2. Veri�cation

9 % Run specified analysis

10 polyspaceBugFinder(options);

11

12 % Open analysis results

13 polyspaceBugFinder('-results-dir', options.ResultsDir);

At the time ofwriting there is insu�cient documentation on the polyspace.BugFinderOptions

class to fully understand its use. A better documented approach is using the polyspace.Project

class. Instances of this class have a Configuration property to customize the analysis, a

run method to execute the analysis and a Results property that contains the results as a

polyspace.BugFinderResults or polyspace.CodeProverResults object respectively [36].

The polyspace.Project.Configuration property itself has 133 properties that in part ap-

ply to both or either of the analysis types. Reviewing the documentation, they seem to be

structured using intermediate properties to group settings that are related [36].

• The general con�guration properties contain settings related to the analysis environ-

ment, constraints on variables, report generation, multitasking and target compiler

information. They are grouped in the intermediate properties EnvironmentSettings,

Multitasking, TargetCompiler etc.

• The con�guration properties for a Bug Finder analysis mainly relate to the scope of

checks, coding standards to be included and metrics to collect. They are grouped in

the intermediate properties BugFinderAnalysis and CodingRulesCodeMetrics.

• The con�guration properties for a Code Prover analysis specify various veri�cation

assumptions and precision aspects of the analysis and are grouped in intermediate

properties such as ChecksAssumption, CodeProverVerification, Precision etc.

When the analyzed code was generated from a Simulink model, it is possible to automate

the con�guration using the polyspace.ModelLinkOptions class. An instance of this class

can be associated with the model that the code is generated from. Thereby, the Simulink

model con�guration parameters are used to determine a subset of the Polyspace con�guration

object properties [36]. This for example sets the target compiler, source and include �les or

whether a main function is included in the code. Remaining con�guration properties take

their default values and can be modi�ed afterwards. The model must be loaded in Simulink

and code must have been generated from it. The association command then uses Embedded

Coder and enables the generation of a linksData.xml �le. The presence of this �le in the

77

4.2. Veri�cation 4. Methods and Tools

result directory allows to trace locations of issues in the code back to the corresponding

location in the model via hyperlinks in the Polyspace user interface.

Alternatively, the paths to the code can be de�ned manually analogous to the last listing

above. This results in missing code-to-model traceability when the code was generated from

a model and no linksData.xml �le is present in the result directory. This way however the

same programmatic approach can be extended to the analysis of handwritten code.

The correct con�guration can and should be validated using the .log �le that is created

with every analysis, where every analysis setting is listed explicitly. This is important as in

some cases Code Prover analyses were found to produce inconsistent results, which could be

traced to incorrect manual con�gurations. The automated con�guration promises to be less

error-prone and is therefore preferred. The following listing includes a Polyspace analysis

run with the polyspace.Project class.

1 % Create Polyspace project

2 project = polyspace.Project;

3

4 % Create configuration object associated with model

5 configuration = polyspace.ModelLinkOptions(model);

6

7 % Associate project Configuration property with this configuration object

8 project.Configuration = configuration;

9

10 % Specify some additional settings

11 project.Configuration.BugFinderAnalysis.ChecksUsingSystemInputValues = true

12 project.Configuration.BugFinderAnalysis.SystemInputsFrom = 'all';

13

14 % Run analysis

15 status = run(project, 'bugFinder');

16

17 % Obtain results and summary

18 results = project.Results;

19 summary = getSummary(results, 'defects');

A full Polyspace analysis covers four veri�cation aspects, which are explained in more detail

below.

78

4. Methods and Tools 4.2. Veri�cation

Defects

What MathWorks refers to as defect checking is executed by Polyspace Bug Finder and repre-

sents the part of the analysis with the widest scope. In the terminology introduced in chapter

2, it includes both syntactic and non-sound semantic static analysis of C/C++/Ada code. As

such, the checks are not able to track the control �ow of a program as well as sound seman-

tic analysis methods might be. Due to several assumptions, the analysis is still surprisingly

expressive.

Depending on how global variables are de�ned, the analysis can conservatively assume an

initialization according to standards and language de�nitions. For volatile variables, i.e. vari-

ables that might change at any time without an explicit write operation, similar assumptions

are made. A priori, there are also no assumptions for the values of inputs to functions. Er-

rors caused by operations with unbounded variables per default can not be caught by a Bug

Finder analysis. To be �agged as a defect, a variable used in an faulty operation needs to be

bound by an assertion or if statement in the program [36].

These assumptions are intended to lower the rate of false positive defect �ndings but con-

versely might lead to some false negatives. For several checks, Bug Finder therefore o�ers

the option to run a more exhaustive analysis where all values of variables or function inputs

are considered. The listing above includes the necessary commands for this as an example.

MathWorks makes no claim about the reliability of these extended analyses other than that

they are still not as exhaustive as a sound formal analysis [36].

The precon�gured defect checks can be divided in 15 groups with di�erent veri�cation ob-

jectives. A review of those has been documented in table 4.9. Even given the limitations, it

becomes apparent how just the defect analysis alone can already provide a substantial degree

of con�dence in software quality.

The aforementioned Configuration property of the polyspace.Project class has an in-

termediate BugFinderAnalysis property that applies to running Bug Finder analyses. Its

CheckersPreset property accepts a ’default’ setting that applies a prede�ned set of checks,

while ’all’ applies all available defect checks and ’custom’ enables to con�gure the checks

to be run. In that case, a defect options object needs to be passed to the the CheckersList

property. This object is instantiated with the polyspace.DefectsOptions class, in which all

defects are listed as Boolean properties and need to be set to true to be enabled [36]. For an

79

4.2. Veri�cation 4. Methods and Tools

analysis with custom checks, the following code would need to be added to the analysis run

with the polyspace.Project class.

1 % Create defects options object

2 defects = polyspace.DefectsOptions;

3

4 % Enable some arbitrary checks

5 defects.INT_ZERO_DIV = true;

6 defects.INT_OVFL = true;

7 defects.BITWISE_NEG = true;

8

9 % Extend configuration

10 project.Configuration.BugFinderAnalysis.CheckersPreset = 'custom';

11 project.Configuration.BugFinderAnalysis.CheckersList = defects;

Coding Standards

The second veri�cation aspect of Polyspace is the compliance of the analyzed code with

internationally recognized coding standards, which is also covered by Polyspace Bug Finder.

While the software includes checks for a variety of standards, the remarks here focus on

those applicable to C++.

C++ was created in 1979 as “C with Classes” by Bjarne Stroustrup to provide improved pro-

gram organization capabilities yet keep the e�ciency and �exibility of the language C. Af-

ter its �rst commercial release in 1985 it was o�cially standardized in 1998 with ISO/IEC

14882:1998. It received a minor revision with ISO/IEC 14882:2003. The thus speci�ed lan-

guage is referred to as C++03 [38].

In 2005, the MISRA C++Working Group was established after MISRA C had become the pre-

dominant coding standard for safety-critical system programming with C. Its objective was

to formulate a single, generic set of guidelines for the use of C++ in safety-critical systems

that are understandable to the majority of programmers. Various existing guidelines were

gathered, reviewed and extended to produce a subset of the programming language that is

safe to use in critical applications. The resulting standard MISRA C++:2008 is applicable

speci�cally to C++03 [39].

In 2011, C++ received a major modernization, followed by another minor revision in 2014.

Facing these substantial changes as well as a need to use them in safety-critical systems,

80

4. Methods and Tools 4.2. Veri�cation

Table 4.9.: Polyspace Defect Checks

Group Checks Veri�cation objective

Numerical de-
fects

21 Find faults in numerical operations on integer and �oating
point data types such as over�ow, division by zero, precision
loss or negative shift operations

Static memory 17 Find faults relating to memory allocation at compile-time, such
as out of bound access, null pointer or bu�er over�ow

Dynamic
memory

8 Find faults relating to memory allocation at run-time, such as
invalid or mismatched allocations, deallocations and deletions

Data �ow 14 Find faults relating to the �ow of information, such as dead
code, in�nite loops, uncalled functions and other unused code
constructs

Resource
management

5 Find faults related to �le handling, such as mismatched read
and write or open and close operations

Programming
errors

75 Find errors resulting from wrong syntax. They contain logical
errors, incorrect assertion and error handling, type and declara-
tion mismatches, string and character handling errors and data
handling issues. Defects are classi�ed in high, medium and low
impact categories.

Object-
oriented
defects

17 Find errors and unsafe operations resulting from incorrect class
usage, inheritance, encapsulation and related assignments

Exceptions 6 Find issues and errors in exception handling

Concurrency 24 Find faults related to multitasking, such as missing or incorrect
usage of data access synchronization

Security 38 Find security weaknesses in �le access, privilege handling,
standard function usage, database queries and more

Cryptography 39 Find weaknesses in the use of cryptographic routines

Tainted data 17 Find instances of unvalidated data usage from unsecure sources
such as external inputs and volatile objects

Good practice 37 Find issues and faults that might indicate logical errors, vulner-
ability or maintainability issues. These issues relate to read-
ability, hard-coding, duplications, macros, bad memory man-
agement or the use of forbidden constructs

Performance 46 Find issues that negatively impact performance such as inad-
vertent operations or ine�cient function or variable usage

81

4.2. Veri�cation 4. Methods and Tools

Automotive Open System Architecture (AUTOSAR) updated the MISRA C++:2008 standard.

AUTOSAR C++14 speci�es obsolete rules, minor improvents on existing rules as well as

additional rules. It applies to both C++11 and C++14 by detailing which features introduced

in either version may be used or shall not be used [40].

Polyspace Bug Finder includes checks for the majority of rules speci�ed by these standards.

They are activated and con�gured via the intermediate CodingRulesCodeMetrics property of

the polyspace.Project.Configuration property. For the example of MISRA C++:2008, the

property EnableMisraCpp activates the checks while the property MisraCppSubset speci�es

the scope. Apart from the default ’required-rules’, ’all-rules’ as well as other standard-

speci�c subsets can be activated. Alternatively, the property accepts a coding rules options

object instantiated with the polyspace.CodingRulesOptions class, which allows to create a

custom list of coding rules [36]. To customize coding standard checks, the following code

would need to be included in an analysis run with the polyspace.Project class. Note that

EnableCheckersSelectionByFile has to be enabled, since the analysis internally uses an

XML �le to enable the coding rule checkers.

1 % Create coding rules options object

2 rules = polyspace.CodingRulesOptions('misraCpp');

3

4 % Disable some arbitrary check

5 rules.Section_1_General.rule_1_0_1 = false;

6

7 % Extend configuration

8 project.Configuration.CodingRulesCodeMetrics.EnableMisraCpp = true;

9 project.Configuration.CodingRulesCodeMetrics.MisraCppSubset = rules

10 project.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile =

true;

Apart from the two introduced standards, Bug Finder also includes the Joint Strike Fighter

Air Vehicle (JSF AV) C++ as well as the SEI CERT C++ standards. With respect to C, there

are several further standards included, which however all fall beyond the scope of this thesis

[36].

It should be noted that C++17 received further re�nements and simpli�cations with ISO/IEC

14882:2017. To account for these changes as well as the increased use of automatic tools in

development and veri�cation, MISRA has released the MISRA C++:2023 standard. It incor-

porates the AUTOSAR guidelines and provides better decidability for its rules, speci�cally so

82

4. Methods and Tools 4.2. Veri�cation

that static analysis can achieve greater coverage [41]. The guideline is included in Polyspace

releases 2024a and later [36].

Code Metrics

Lastly, Polyspace Bug Finder is able to collect statistical data about the analyzed program

[36]. These are trifold:

• Project metrics relate to size and number of function calls in a project.

• File metrics relate to comment density and interdependency of functions in a �le.

• Function metrics relate to comment density, complexity and used variables.

These metrics alone do not present decidable criteria for the evaluation of software qual-

ity. However, the Hersteller Initiative Software (HIS) has developed recommended upper

levels for these metrics which can be used as criteria for analysis checks. Metrics collec-

tion is activated with the CodeMetrics and threshold checking with the Guidelines prop-

erties within the Configuration.CodingRulesCodeMetrics property. Alternatively, custom

thresholds are provided via an XML �le [36].

Run-Time Errors

What MathWorks refers to as run-time error detection corresponds to sound semantic anal-

ysis executed by Polyspace Code Prover using abstract interpretation. In principle, the tool

is operated similar to Bug Finder, with a number of prede�ned checks that are evaluated

autonomously. However, as the analysis method generates a much more elaborate represen-

tation of the semantics of the analyzed program, it is not surprising that there are di�erences

in the details of con�guration.

Generally, the analysis is set up within the CodeProverVerification intermediate property

of the polyspace.Project.Configuration property. For example, the classes and meth-

ods that are of interest for the analysis can be speci�ed and characterized more closely.

Also, the tool needs to be instructed whether it shall use a main function within the an-

alyzed program, ignore it, or generate one if none is provided. In case of the latter, fur-

ther customization with respect to variable initialization and function calls is possible. The

checks and associated assumptions are controlled individually via the ChecksAssumption

83

4.3. Automation 4. Methods and Tools

Table 4.10.: Polyspace Run-Time Error Checks

Group Checks Veri�cation objective

Data �ow 8 Find errors relating to the �ow of information such as un-
called or unreachable functions and code or uninitialized
pointers or variables

Numerical errors 5 Find errors in arithmetic operations such as division by zero,
over�ow, subnormal results and invalid shift operations

Static memory 3 Find errors relating to memory allocation at compile-time
such as out of bounds array access

Control �ow 2 Find control �ow errors such as non-terminating loops

C++ speci�c er-
rors

5 Find errors related to invalid C++ speci�c operations, incor-
rect object oriented programming or uncaught exceptions

Further checks 8 Find errors speci�c to C/C++ standard libraries and AU-
TOSAR libraries

property. The Code Prover analysis can be further customized using the Precision, Scaling

and VerificationAssumption properties [37].

While these properties all have default values, they are just as important as the general analy-

sis settings with respect to environment, target compiler etc. Setting up the analysis requires

good knowledge about the program that is analyzed. Other properties are only described

vaguely by MathWorks as e.g. “certain veri�cation approximations” or generic “precision

level” [37]. Their impact would rather need to be evaluated experimentally. Within the

scope of this thesis, it is therefore preferred to obtain the analysis settings from the model

con�guration parameters using the polyspace.ModelLinkOptions class introduced above.

An overview of the available checks in Polyspace Code Prover is presented in table 4.10.

They have a more narrow scope than the sets of checks introduced so far, but as described

in section 2.4 correspond to a much more rigorous analysis.

4.3. Automation

It has been shown so far that there already exists extensive support for the programmatic use

of MathWorks veri�cation software. This is a main prerequisite for e�ectively automating

the introduced tools. Another cornerstone is setting up the remote repository to support the

84

4. Methods and Tools 4.3. Automation

automated execution of tasks. Here, this is done by �rst setting up a GitLab runner that is

available to the example project and then con�guring a CI/CD pipeline for this project that

contains the desired veri�cation steps.

For the evaluation purposes here, it is su�cient to set up a local computer as runner using

the shell executor, by which Matlab is executed in batch mode. The general idea of �le-

based results exporting and evaluation for CI that is used hereafter has been taken from an

example on Simulink integration with the CI/CD software Jenkins [42].

4.3.1. Code Analyzer

Instead of solely relying on the command line output returned by the checkcode function,

a better evaluation of Code Analyzer results in the context of a GitLab pipeline would be

preferable. GitLab natively supports the processing of static analysis results with its Code

Quality feature. For that, the results must be provided in a JavaScript Object Notation (JSON)

�le formatted according to a variation of the standardized Code Climate report format. The

�le format JSON is typically used for the transfer of structured data, and Code Climate re-

quires a single JSON array in which every object corresponds to an issue found in the code

[11]. The general structure is shown in the listing below.

1 {

2 "description": "This is a description of a check.",

3 "check_name": "Name of check",

4 "severity": "minor",

5 "location": {

6 "path": "directory/file.m",

7 "lines": {

8 "begin": 42

9 }

10 }

11 }

The Code Analyzer does not provide exporting capabilities, but the creation of a �le in this

format can be accomplished fully withinMatlab. A structure array that represents this for-

mat can be created inMatlab and populatedwith the analysis results provided by checkcode.

Matlab’s jsonencode can be used to write the structure array to a JSON �le, which is then

made available to GitLab as an artifact.

85

4.3. Automation 4. Methods and Tools

After writing the �le, the pipeline could terminate as failed in case Code Analyzer issues

have been found. This is easily implemented, as GitLab automatically evaluates exit codes

returned by applications run in a pipeline. For exit codes other than 0, the job in which it

was returned per default terminates as failed [11]. Matlab can deliberately be terminated

with an exit code using the quit or exit functions. This terminates the session, which then

is evaluated by GitLab and terminates the associated job as failed.

4.3.2. Model Advisor

Better capabilities to evaluate the Model Advisor check results would be desirable too. To

that end, the display of check results in the GitLab graphical user interface (GUI) and the

deliberate termination of a pipeline job in case of a failed check are introduced.

GitLab natively has the ability to process test results that are speci�ed in Extensible Markup

Language (XML) �les following the JUnit format speci�cation. JUnit is the testing framework

for the programming language Java, but its speci�cations meanwhile have been adopted

more broadly [43]. As the Model Advisor check results are already obtained as checkResults

object inside Matlab, it is convenient to further process them there. Matlab provides an

interface for operating on xml �les with the com.mathworks.xml.XMLUtils class. It grants

access to the programming language Java’s API for xml processing [6]. Part of this in turn

is the Document Object Model (DOM) API, which provides the basis for all document oper-

ations in this context. A document is represented as a tree structure, where the document

object itself is the root and associated objects are nodes. Foundational objects are elements,

which in turn might have attributes. The API provides the required methods to manipulate

all of those objects [44].

In practice, this means that a Java XML document object is created with the createDocument

method. The root element of this document is referenced to a variable, which allows to

create and append further elements using the createElement and appendChild methods.

With further operations and associated methods such as the setting of attributes, stepwise

the document is created. The document object is then written to an actual XML �le with

Matlab’s xmlwrite function. The following listing contains a simple example.

1 document = com.mathworks.xml.XMLUtils.createDocument('root');

2 root = document.getDocumentElement;

3 child = document.createElement('child');

4 child.appendChild(document.createTextNode('text'));

86

4. Methods and Tools 4.3. Automation

5 root.appendChild(child);

6 xmlwrite(document)

Using this class, the challenge now is to write the content of the checkResult object obtained

from a Model Advisor run into the JUnit XML structure [43]. It is shown in its very basic

form in the following listing.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <testsuite name="TestSuite" tests="2" failures="1" errors="0">

3 <testcase name="Test Case 1"/>

4 <testcase name="Test Case 2">

5 <failure message="Test failed"/>

6 </testcase>

7 </testsuite>

After writing the �le, the pipeline should also terminate as failed if a Model Advisor check

fails. This can be implemented with the same approach as discussed in section 4.3.1.

4.3.3. Simulink Test

To make Simulink Test result output compatible with CI systems, test �les can be run with

Matlab Unit Test. The implementation therefore resembles the approach described in sec-

tion 4.2: From a Simulink Test test �le, a test suite and a test runner are created, which is then

customized with the required plugins. These can originate from either Simulink Test with

the sltest.plugins or Matlab Unit Test with the matlab.unittest namespace. The fol-

lowing listing is a minimal example and includes and adds the TestManagerResultsPlugin

which is required to make Test Manager results available toMatlab Unit Test.

1 % Import necessary classes

2 import matlab.unittest.TestRunner

3 import matlab.unittest.TestSuite

4 import sltest.plugins.TestManagerResultsPlugin

5

6 % Create test suite and test runner

7 suite = testsuite('SimulinkTest.mldatx');

8 runner = TestRunner.withNoPlugins;

9

87

4.3. Automation 4. Methods and Tools

10 % Add Test Manager Results plugin

11 tmrPlugin = TestManagerResultsPlugin;

12 runner.addPlugin(tmrPlugin);

13

14 % Run test suite

15 results = runner.run(suite);

The goal then is to �nd a way that provides meaningful results in CI systems. This should

entail test reports that can be processed by GitLab such as JUnit XML �les as well as human-

readable formats. Further, the achieved test coverage should at least be collected and ideally

also be exported and displayed as a result.

4.3.4. Polyspace

Due to limitations mainly in the reporting features of Matlab’s polyspace.Project class,

it was decided to execute Polyspace in the pipeline using shell commands. At the cost of

having to �nd a solution for interfacing with the Matlab/Simulink environment, access to

the full con�guration and reporting capabilites of Polyspace is provided this way. For code

generated from a Simulink model, Matlab’s polyspacePackNGo function mostly automates

this process. The function receives a model name as input argument and automatically ex-

tracts a Polyspace analysis con�guration from it [10]. This requires the model con�guration

parameters to be set accordingly, which however already was a prerequisite for using the

slbuild function. If slbuild was con�gured to pack the generated code in an archive �le,

polyspacePackNGo adds the analysis con�guration to that same archive. When further con-

�guration e.g. related to the analysis assumptions is required, polyspacePackNGo accepts the

Polyspace options object introduced in section 4.2.6 as a second input argument [36].

Due to the many con�guration options, Polyspace accepts an options �le, a text �le that

substitutes providing the same information in an otherwise possibly very lengthy shell com-

mand. polyspacePackNGo saves the con�guration in such an options �le, which means that a

Polyspace analysis can be executed without further adjustment in the environment that the

generated code is deployed to. In practical terms, this requires to append the code generation

commands from section 4.2.5 as shown in the following listing.

1 % Load Simulink model

2 model = 'Controller';

88

4. Methods and Tools 4.3. Automation

3 load_system(model);

4

5 % Set parameter for code generation

6 set_param(model, 'GenCodeOnly', 'on');

7 set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on');

8

9 % Generate code and Polyspace options file

10 slbuild(model)

11 zipFile = polyspacePackNGo(model)

Afterwards, the generated archive can be deployed and unpacked. Then Polyspace can be

executed in the pipeline using shell commands. The operation is completed with a few lines

as shown in the following listing. The generated options �le in the polyspace subdirec-

tory of the archive contains all information so that Polyspace can be called from there. In

the example, Polyspace Bug Finder is executed with additional checks for MISRA C++:2008

compliance and metrics collection.

1 7z x Controller.zip

2 cd Controller\polyspace

3 polyspace-bug-finder -options-file optionsFile.txt -misra-cpp -code-metrics

4 polyspace-results-export -format json-sarif

Last is a a command to export the analysis results in a JSON �le in the standardized Static

Analysis Results Interchange Format (SARIF) de�ned by the Organization for the Advance-

ment of Structured Information Standards (OASIS). Unfortunately, GitLab does not recognize

the SARIF standard yet. As discussed in section 4.3.1, GitLab however supports the process-

ing of static analysis results with its Code Quality feature. The conversion to this format

can also be accomplished within Matlab. Its jsondecode function is able to parse the �le

exported by Polyspace. Then, a structure array can be created and populated just like before.

Matlab’s jsonencode writes the �le, which is then again made available to GitLab as an

artifact for display in the GUI.

Lastly, the pipeline should also terminate deliberately if any undesirable check results are

raised. This can be achieved in a similar fashion to before, by terminating Matlab with an

exit code using the quit or exit functions if issues with certain characteristics are found in

the decoded JSON �le.

89

5. Results

The thesis at hand yields results of two kinds. First is the basic framework around the ver-

i�cation tools that makes them immediately usable. It mostly consists of various wrapper

functions that con�gure a tool and then execute it via its API. They have been written by

making use of the respective documentation and the o�cialMatlab generative pre-trained

transformer (GPT) large language model (LLM) [45]. They are concrete, measurable results

and as such described in the remainder of this chapter. Second is the evaluation of strengths

and limitations of the tools that result in a series of recommendations. These are separately

discussed in chapter 6.

In order to make these remarks suitable as independent documentation, some repetition

could not be avoided. Automation is based on a pipeline con�guration that runs every tool in

sequence and uploads corresponding artifacts for use in GitLab. It can be found in appendix

A.3. All model functions and supplementary scripts are documented in appendices A.1 and

A.4.

5.1. MATLAB Code Analyzer

The Code Analyzer analysis is implemented in the function runCodeAnalyzer. It looks for

any Matlab �les in the directory usingMatlab’s dir function and wildcard characters.

22 % Find all MATLAB files

23 mFiles = dir('**/*.m');

It runs static analysis with the Code Analyzer using its checkcode function and subsequently

displays a message for each �le with issues as well as for each issue within those �les.

5. Results 5.1. Matlab Code Analyzer

33 % Run Code Analyzer analysis on files and display message

34 issuesFound = false;

35 for k = 1:numel(mFiles)

36 filePath = fullfile(mFiles(k).folder, mFiles(k).name);

37 messages = checkcode(filePath, '-id', '-struct');

38 if ~isempty(messages)

39 % Display issues

40 disp(['Code Analyzer: Issues found in: ', filePath]);

41 for i = 1:numel(messages)

42 lineNum = messages(i).line;

43 colRange = messages(i).column;

44 msgText = messages(i).message;

45 msgID = messages(i).id;

46 fprintf(' Line %d (Columns %d-%d): %s\n', lineNum, colRange(1),

colRange(end), msgText);

The function writes each issue into a structure array, which is required to later pass the found

issues to the function writeToCodeQuality. To ful�ll the required Code Quality formatting,

each issue receives a unique �ngerprint which is realized with a counter. A Boolean �ag is

used to mark that issues were found.

48 % Create unique fingerprint

49 fingerprint = sprintf('%s_%d', msgID, resultCounter);

50 resultCounter = resultCounter + 1;

51

52 % Append issue details to issues array

53 issue = struct(...

54 'description', msgText, ...

55 'check_name', msgID, ...

56 'fingerprint', fingerprint, ...

57 'severity', 'minor', ...

58 'location', struct(...

59 'path', filePath, ...

60 'lines', struct('begin', lineNum) ...

61) ...

62);

63 issues = [issues; issue];

64 end

91

5.1. Matlab Code Analyzer 5. Results

65 issuesFound = true;

66 end

67 end

If no issues were found, the function displays an according message. If it did, it passes the

found issues to the function writeToCodeQuality. Finally, it includes an option to exit with

exit code 1 if any issues are found, or code 0 if none are found.

As the issues structure array already has the required formatting, writeToCodeQuality sim-

ply has to encode and write it to a JSON �le.

15 % Convert the structure array to JSON text

16 jsonText = jsonencode(issues, 'PrettyPrint', true);

17

18 % Write JSON text to the specified file

19 fid = fopen(filename, 'w');

20 if fid == -1

21 error('Cannot open file %s for writing.', filename);

22 end

23 fwrite(fid, jsonText, 'char');

24 fclose(fid);

The full functions can be found in appendix A.2. Declaring the created JSON �le as Code

Quality report artifact in the pipeline con�guration lets GitLab display the results after run-

ning the associated job as shown in �gure 5.1.

92

5. Results 5.2. Simulink Model Advisor

Figure 5.1.: Code Analyzer Results Displayed in GitLab

5.2. Simulink Model Advisor

TheModel Advisor analysis is realizedwith three dependent functions. The function getCheckIDs

returns check IDs for a Model Advisor analysis as a cell array. The cell arrays of all check IDs

are de�ned with the name of the check as a comment, as shown in the following example.

30 % Define Simulink checks

31 designIDs = {

93

5.2. Simulink Model Advisor 5. Results

32 'mathworks.design.UnconnectedLinesPorts', ... % Identify unconnected

lines, input ports, and output ports

33 ...

34 'mathworks.design.AmbiguousUnits', ... % Identify ambiguous

units in the model

35 };

This is repeated for the individual check ID groups that have been introduced in chapter 4.

The cell arrays are returned based on what option keyword is passed to the function with a

simple switch case statement.

300 % Determine which cell arrays to concatenate and return

301 switch lower(option)

302 case 'all'

303 checkIDs = [designIDs, maabIDs, hismIDs, codegenIDs, misraIDs];

304 case 'design'

305 checkIDs = designIDs;

306 case 'advisory'

307 checkIDs = maabIDs;

308 case 'integrity'

309 checkIDs = hismIDs;

310 case 'codegen'

311 checkIDs = codegenIDs;

312 case 'misra'

313 checkIDs = misraIDs;

314 otherwise

315 error('Invalid option.');

316 end

The function runModelAdvisor runs the given list ofModel Advisor checks programmatically

and generates a HTML report. It requires the name of the Simulink model to analyze and the

cell array of Model Advisor check IDs to run provided by the function getCheckIDs. The

analysis is run using the ModelAdvisor.run method.

32 % Define the report format and path

33 reportFormat = 'html';

34 reportName = 'ModelAdvisorReport';

35 xmlReportName = 'ModelAdvisorReport.xml';

36 xmlReportPath = fullfile(artifactDir, xmlReportName);

94

5. Results 5.2. Simulink Model Advisor

37

38 % Run Model Advisor checks

39 checkResult = ModelAdvisor.run(model, checkIDs , ...

40 'DisplayResults', 'Details', ...

41 'ReportFormat', reportFormat, ...

42 'ReportPath', artifactDir, ...

43 'ReportName', reportName);

The function calls the function convertToXML to generate a JUnit-compatible XML results

�le. It then also optionally exits with a non-zero code if any checks have failed via a fail �ag

array. This way, the function safely performs the evaluation after the results export.

48 % Determine exit code based on check results if activated

49 if autEval

50 % Extract SystemResult object

51 systemResult = checkResult{1};

52

53 % Retrieve array of individual check results and preallocate

54 checkObjs = systemResult.CheckResultObjs;

55 failFlags = false(1, length(checkObjs));

56

57 % Populate failFlags array

58 for i = 1:length(checkObjs)

59 failFlags(i) = strcmp(checkObjs(i).status, 'Fail');

60 end

61

62 % Display a message indicating completion

63 if any(failFlags)

64 disp('Model Advisor: Some checks failed. Exiting with error code

1.');

65 exit(1);

66 else

67 disp('Model Advisor: All checks passed or warnings only. Exiting

with error code 0.');

68 exit(0);

69 end

70 end

95

5.2. Simulink Model Advisor 5. Results

The function convertToXML converts theModel Advisor check results into a JUnit-compatible

XML report. First, it obtains the results and initializes the data structure for the later ex-

port.

15 % Extract SystemResult object from check results cell array

16 systemResult = checkResult{1};

17

18 % Get array of individual check results from SystemResult

19 checkObjs = systemResult.CheckResultObjs;

20

21 % Initialize XML document

22 docNode = com.mathworks.xml.XMLUtils.createDocument('testsuites');

23 testsuites = docNode.getDocumentElement;

24

25 % Create a testsuite element with appropriate attributes

26 testsuite = docNode.createElement('testsuite');

27 testsuite.setAttribute('name', 'ModelAdvisorChecks');

28 testsuite.setAttribute('tests', num2str(length(checkObjs)));

29 testsuites.appendChild(testsuite);

It thenwrites the check results in this structure. The test case name is set using the checkName

property. If a check has a warning or failure status a generic message is added, pointing to

the Model Advisor report for details. This is done as the check results object does not contain

this information in the release of Matlab used for this thesis.

31 % Iterate over each check result

32 for i = 1:length(checkObjs)

33 % Create a test case element for each check result

34 testCase = docNode.createElement('testcase');

35 % Use checkName for test case name

36 testCase.setAttribute('name', checkObjs(i).checkName);

37

38 % Define a generic message to be used for warnings and failures

39 message = 'See Model Advisor report for details.';

40

41 % If check failed, add a failure element with message

42 if strcmp(checkObjs(i).status, 'Fail')

43 failure = docNode.createElement('failure');

44 failure.setAttribute('message', ['Check failed. ' message]);

96

5. Results 5.2. Simulink Model Advisor

45 testCase.appendChild(failure);

46 % If check returned a warning, add a systemOut element with message

47 elseif strcmp(checkObjs(i).status, 'Warn')

48 systemOut = docNode.createElement('system-out');

49 systemOut.appendChild(docNode.createTextNode(['Check returned a

warning. ' message]));

50 testCase.appendChild(systemOut);

51 end

52

53 % Append test case element to testsuite

54 testsuite.appendChild(testCase);

55 end

The XML �le itself is �nally written usingMatlab’s xmlwrite function. Again, the complete

functions can be found in appendix A.2. Declaring the written �le as JUnit report artifact in

the pipeline con�guration enables the results to be displayed like test cases in GitLab as

shown in �gure 5.2.

Figure 5.2.: Model Advisor Results Displayed in GitLab

97

5.3. Simulink Design Veri�er 5. Results

5.3. Simulink Design Verifier

The function runDesignVerifier con�gures Simulink Design Veri�er for design error de-

tection, runs the analysis on the speci�ed model and saves a report with data �le. The con-

�guration is done with the design veri�cation options object sldvOptions and if required

could be adjusted here.

27 % Configure Simulink Design Verifier for design error detection

28 sldvOptions = sldvoptions;

29 sldvOptions.Mode = 'DesignErrorDetection';

30 sldvOptions.DetectBlockInputRangeViolations = 'off';

31 sldvOptions.DetectDeadLogic = 'off';

32 sldvOptions.DetectDivisionByZero = 'on';

33 sldvOptions.DetectInfNaN = 'off';

34 sldvOptions.DetectIntegerOverflow = 'off';

35 sldvOptions.DetectOutOfBounds = 'off';

36 sldvOptions.DetectSubnormal = 'off';

37 sldvOptions.SaveReport = 'on';

The analysis is run with these options using the sldvrun function.

39 % Run Design Verifier analysis

40 [status, files, ~] = sldvrun(model, sldvOptions);

The returned character status is used to discern between suitable messages addressing the

analysis results. Apart from the conventional error exit code, there is a case for an analysis

timeout. The function displays an appropriate message for each case. Finally, a HTML report

as well as an analysis data �le is saved. The latter contains the raw model checking traces

that the Design Veri�er used.

5.4. Simulink Test

Testing with Simulink Test is implemented in the function runTests. In its �nal implemen-

tation, the function runs the de�ned tests using the Matlab Unit Test framework. The test

�les are loaded with the Simulink Test Manager, from whichMatlab Unit Test creates a test

suite and a test runner.

98

5. Results 5.4. Simulink Test

23 % Open the test file

24 fileName = 'ControllerTests.mldatx';

25 filePath = fullfile(pwd, 'tests', fileName);

26 sltest.testmanager.load(filePath);

27

28 % Create test suite from test file

29 import matlab.unittest.TestSuite

30 suite = testsuite(filePath);

31

32 % Create test runner

33 import matlab.unittest.TestRunner

34 runner = TestRunner.withNoPlugins;

As with any Matlab Unit Test script or function, plugin classes are added that provide the

required reporting capabilities. Here, a PDF and a XML report in JUnit format are created.

36 % Add plugin to produce MATLAB Test Report

37 import matlab.unittest.plugins.TestReportPlugin

38 pdfFile = fullfile(artifactDir, 'TestReport.pdf');

39 trp = TestReportPlugin.producingPDF(pdfFile);

40 addPlugin(runner,trp)

41

42 % Add plugin to add Test Manager results to Test Report

43 import sltest.plugins.TestManagerResultsPlugin

44 tmr = TestManagerResultsPlugin;

45 addPlugin(runner,tmr)

46

47 % Add plugin to create XML results file

48 import matlab.unittest.plugins.XMLPlugin

49 resfile = fullfile(artifactDir, 'TestResults.xml');

50 plugin = XMLPlugin.producingJUnitFormat(resfile);

51 addPlugin(runner,plugin)

Simulink Test plugins provide additional coverage collection and reporting capabilities. In

this case, decision coverage is collected and exported to a report in the standardized Cober-

tura format.

53 % Set coverage metrics to collect

54 import sltest.plugins.coverage.CoverageMetrics

99

5.5. Embedded Coder 5. Results

55 cmet = CoverageMetrics('Decision',true);

56

57 % Set coverage report properties

58 import sltest.plugins.coverage.ModelCoverageReport

59 import matlab.unittest.plugins.codecoverage.CoberturaFormat

60 rptfile = fullfile(artifactDir, 'TestCoverage.xml');

61 rpt = CoberturaFormat(rptfile);

62

63 % Create model coverage plugin

64 import sltest.plugins.ModelCoveragePlugin

65 mcp = ModelCoveragePlugin('Collecting',cmet,'Producing',rpt);

66 addPlugin(runner,mcp)

Finally, the test are run using the runmethod of the matlab.unittest.TestRunner class. The

created artifacts are declared in the pipeline con�guration and are accordingly displayed by

GitLab as shown in �gure 5.3.

Figure 5.3.: Test Results Displayed in GitLab

5.5. Embedded Coder

The code generation process is encapsulated in two functions. The function setConfiguration

sets the desired model con�guration parameters. The con�guration was obtained by running

the script getConfiguration. For clarity, the parameter settings are commented as shown in

the following excerpt.

100

5. Results 5.6. Polyspace

18 % Set parameters for C++ code generation

19 set_param(model, 'SystemTargetFile', 'ert.tlc'); % System target

file

20 set_param(model, 'TargetLang', 'C++'); % Select code

generation language

21 set_param(model, 'GenCodeOnly', 'on'); % Do not execute

makefile when generating code

22 set_param(model, 'TargetLangStandard', 'C++03 (ISO)'); % Language

standard

23 set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on'); % Automatically

run packNGo after the build is complete

24 set_param(model, 'BuildConfiguration', 'Faster Runs'); % Choose a build

configuration defined by the toolchain

After calling setConfiguration, the function generateCode invokes Embedded Coder and

subsequently creates the Polyspace options �le.

15 % Set configuration parameters

16 setConfiguration(model);

17

18 % Generate the code

19 slbuild(model);

20

21 % Generate and package Polyspace options files

22 polyspacePackNGo(model);

5.6. Polyspace

The dedicated functions runPolyspaceBugFinder and runPolyspaceCodeProver execute a

Polyspace analysis from within Matlab and can be found in appendix A.2. The aforemen-

tioned and more favorable execution with shell commands is described in the pipeline con-

�guration.

For Polyspace Bug Finder, the following pipeline script applies. The generated code archive

is unpacked, where the Polyspace con�guration is found in the automatically created op-

tions �le. From there, the analysis is started, which in this case includes all Bug Finder

101

5.6. Polyspace 5. Results

checks and the required part of the MISRA C++:2008 rules. The options �le contains rela-

tive paths pointing to all required functions. Afterwards, the results are exported to a SARIF

formatted JSON �le, which must be converted to the Code Quality format by the function

convertToCodeQuality.

10 script:

11 - 7z x ThrustController.zip

12 - cd thrust-controller\polyspace

13 - polyspace-bug-finder -options-file optionsFile.txt -checkers all

-misra-cpp required-rules

14 - polyspace-results-export -format json-sarif -output-name

bugFinderResults.json

15 - cd ..\..

16 - matlab -wait -batch

"convertToCodeQuality(’thrust-controller\polyspace\bugFinderResults.json’,

’bugFinderCodeQuality.json’)"

17 artifacts:

18 reports:

19 codequality:

20 - bugFinderCodeQuality.json

The OASIS SARIF format is more complex than the Code Quality format. Additionally, the

output �les di�er slightly in structure between Bug Finder and Code Prover, which leads

to the function convertToCodeQuality being quite comprehensive. The general approach

is however similar to before, where an appropriately formatted structure array is populated

with the found issues and then written to a JSON �le. Only this time, the results have to be

decoded from another JSON �le beforehand.

26 % Read and decode the input SARIF file

27 fid = fopen(inSarifFile, 'r');

28 raw = fread(fid, '*char')';

29 fclose(fid);

30 sarifData = jsondecode(raw);

31

32 % Initialize an empty struct array for the output

33 gitlabFindings = struct('description', {}, 'check_name', {}, 'fingerprint',

{}, 'severity', {}, 'location', {});

102

5. Results 5.6. Polyspace

In the SARIF format, results are structured in individual runs, which needs to be considered

with an additional for loop. Further, the source JSON �le contains a dedicated section listing

the full names associated with the IDs of check rules. As this list is di�erent depending on the

results found in an analysis, it is dynamically stored in a Matlab Map object to later obtain

the rule names.

43 % Build a mapping from rule IDs to rule names

44 ruleMap = containers.Map;

45 if isfield(runData, 'tool') && isfield(runData.tool, 'driver') && ...

46 isfield(runData.tool.driver, 'rules')

47 for iRule = 1:numel(runData.tool.driver.rules)

48 thisRule = runData.tool.driver.rules(iRule);

49 if isfield(thisRule, 'id') && isfield(thisRule, 'name')

50 ruleKey = strtrim(char(thisRule.id));

51 ruleMap(ruleKey) = thisRule.name;

52 end

53 end

54 end

After obtaining the paths of the �les with issues from the artifacts section in the source �le,

the actual results can be processed. It was found that decoding a Bug Finder JSON �le yields

a cell array, while a Code Prover JSON �le does not. To be able to read results from both

tools, this is checked withMatlab’s iscell function.

67 % Process results

68 for iRes = 1:numel(runData.results)

69 if iscell(runData.results) % Bug Finder JSON

70 res = runData.results{iRes};

71 else % Code Prover JSON

72 res = runData.results(iRes);

73 end

74

75 % Extract description message

76 if isfield(res, 'message') && isfield(res.message, 'text')

77 descriptionText = strtrim(char(res.message.text));

78 else

79 descriptionText = '(No message provided)';

80 end

81

103

5.6. Polyspace 5. Results

82 % Extract rule ID and look up rule name

83 if isfield(res, 'ruleId')

84 ruleId = strtrim(char(res.ruleId));

85 if isKey(ruleMap, ruleId)

86 checkName = ruleMap(ruleId);

87 else

88 checkName = ruleId;

89 end

90 else

91 ruleId = 'unknown_rule';

92 checkName = 'unknown_rule';

93 end

The same has to be considered for determining the �le paths. With these prerequisites, the

�elds description, check_name and location for the target Code Quality JSON �le can be

populated. The �eld fingerprint is again realized with a counter, and for severity the

helper function mapSeverity is used.

The function mapSeverity per default returns the severity ’info’. For Bug Finder, the type

of defect is used for the severity classi�cation, which is stored in the metaFamily property.

For Code Prover, the color of the issue is used instead.

31 % Use metaFamily mapping for Bug Finder

32 if ~isempty(metaFamily)

33 switch metaFamily

34 case 'Defect'

35 severity = 'major';

36 case 'Coding Rule'

37 severity = 'minor';

38 end

39

40 % Use color mapping for Code Prover

41 elseif ~isempty(color)

42 switch color

43 case 'RED'

44 severity = 'critical';

45 case 'GRAY'

46 severity = 'major';

104

5. Results 5.6. Polyspace

47 case 'ORANGE'

48 severity = 'minor';

49 end

With the returned severity string, convertToCodeQuality can write the JSON output.

136 % Encode results to JSON

137 jsonOut = jsonencode(gitlabFindings, 'PrettyPrint', true);

138

139 % Write JSON output

140 fid = fopen(outGitlabFile, 'w');

141 fwrite(fid, jsonOut, 'char');

142 fclose(fid);

Optionally, the function can also quit with exit code 1 and terminate the job as failed if

any found result has ’critical’ severity. Declaring the created �le as Code Quality report

artifact in the pipeline con�guration lets GitLab process and display the �ndings as shown

in �gure 5.4.

Figure 5.4.: Bug Finder Results Displayed in GitLab

For Polyspace Code Prover, the entire approach is similar. The results are displayed in GitLab

as shown in �gure 5.5.

105

5.6. Polyspace 5. Results

Figure 5.5.: Code Prover Results Displayed in GitLab

106

6. Discussion

Any attempt to automate software veri�cation is only as good as the processes themselves are

de�ned, accepted and run. To cite Fewster and Graham, “automating chaos just gives faster

chaos” [2]. While it is beyond the scope of this thesis to consider an entire development and

veri�cation process, several contributions in that regard can however be noted.

In their online presence, MathWorks emphasize what can theoretically be achieved with

their software veri�cation products. It is however di�cult to get an overview of the applica-

ble prerequisites and constraints. The impression arises that an admirable level of software

quality can be achieved swiftly and user-friendly. Throughout chapter 5, it has been shown

that in fact, automation of every tool under consideration is possible without di�culty just

by following the documentation. The addition of functionality as here in the context of re-

sults evaluation is possible due to Matlab’s wide scripting possibilities. It should be noted

that, while comprehensive, MathWorks documentation oftentimes does not have the char-

acter of a cohesive user guide. This thesis aims to provide just that with chapters 4 and 5.

With regard to the research question, the answer is di�erent for each tool. More �ne-grained

critique depends on the technical details and must be given individually.

In chapter 2 it was shown that the expressiveness of static analysis completely depends on

the precon�gured checks a tool o�ers. The Code Analyzer is the only option with respect to

static analysis of Matlab code. As was shown in table 4.3, the tool provides a basic level of

software quality for generalMatlab applications but falls short when it comes to production

code generation. The tool alone is generally not su�cient for software veri�cation with

respect to correctness. As it is easy to integrate in a development and veri�cation process, the

recommendation here is to apply it nevertheless as an additional early layer that improves

code quality. Apart from the justi�cation of individual issues, global con�guration of the

analysis can be done programmatically if needed, which promises to make the tool �exible

and unobtrusive in its use [6].

6. Discussion

With the Model Advisor, MathWorks provides static model analysis capabilities at a deep

semantic level. Simulink Check is an inevitable addition to use the Model Advisor consis-

tently in a veri�cation process, both because of the programmatic access and the compliance

checks the product provides. These checks serve as a benchmark for a basic level of model

quality and the Model Advisor in that regard is again without any alternative. With respect

to software correctness, the tool must inevitably be complemented by additional measures

further downstream in the development and veri�cation process. As can be seen in tables 4.5

to 4.8, the checks encompass breadth over depth. Various industry standards are included

but not fully covered. Achieving full compliance to one of the standards would be associ-

ated with considerable manual work either way. Additionally, none of the standards pertain

to spacecraft systems directly. NASA published a set of guidelines for modeling with Mat-

lab/Simulink that was developed and applied during the development of the Orion GNC

algorithms and �ight software [20]. The starting point were the MAB guidelines, additional

rules and custom checks were added over time from learnings of the development process.

The recommendation here is to follow the same procedure and to �rst apply the MAB guide-

lines and then to customize them with the Orion GNC Matlab/Simulink Standards as tem-

plate.

With respect to model checking, a general advantage is that the accurate modeling of a sys-

tem can already lead to the discovery of ambiguities and inconsistencies in a speci�cation.

A veri�cation with model checking on the other hand is only as good as the model of the

system [5]. Simulink Design Veri�er adds to that limitation in its attempt to make model

checking compatible with any Simulink model. Compared to how versatile a veri�cation

with model checking theoretically can be, the precon�gured checks of the Design Veri�er

are rather limited. While custom properties can be modeled as assertions, the degree of elab-

oration that LTL and CTL formulae o�er are superior. A case study conducted at the Univer-

sity of Konstanz demonstrated that this restriction considerably limits the tools usefulness

in real-world scenarios. For the properties that could be modeled as assertions, the stan-

dalone model checker SPIN concluded the analysis orders of magnitude faster than Simulink

Design Veri�er. Scaling the analyzed model further ampli�ed this discrepancy [46]. When

applied to feedback control systems, compatibility issues with Simulink were found to make

the analysis unpredictable which might lead to low acceptance of the tool among developers.

This is only reinforced by the fact that static analysis tools provide the same error detection

capabilities at source code level with much more detailed context. At this time, the tool can

therefore not be regarded suitable for the veri�cation of GNC systems. The recommenda-

tion here is to investigate if an applicable scenario can be found where root level signals of a

108

6. Discussion

model can be consistently limited to a �nite range and a Design Veri�er analysis can be run

robustly without timeout and compatibility issues. Based on the results of this thesis, it has

to be expected that this might not be possible.

Simulink Test was �rst and foremost found to be an interface for functionality that is already

provided by Simulink and Embedded Coder. In that regard, a main bene�t of the tool is the

TestManager whichmakes structured test authoring andmanagement easy. The added value

of the tool towards veri�cation however depends mostly on the quality of the tests written

for it, which can be facilitated but not substituted by the tool. Nevertheless, Simulink Test

can be considered a valuable supplement to Matlab Unit Test mainly due to its aptness for

integration in a CI work�ow. In particular, the intuitive de�nition of tolerance bands, the

ease of SIL testing and the coverage metrics collection were found to be promising features –

with especially the latter being of importance in the veri�cation for correctness. With respect

to the research question, the Simulink Test can be regarded as suitable, however under the

condition that it is used adequately. The recommendations here is to use it for automated

integration and SIL testing in conjunction with unit testing with Matlab Unit Test.

At the time of writing, there are more than 300 reported bugs related to incorrect code gen-

eration with Embedded Coder in the Matlab/Simulink release used for this thesis [29]. In

the development and veri�cation process, these are added to the bugs inherent to the source

code compiler (cf. �gure 4.13). This fact undermines any veri�cation results that was pro-

vided prior to code generation and emphasizes the importance of static analysis later in the

process. As table 4.9 shows, a Polyspace Bug Finder analysis is rather comprehensive. In com-

parison, the Clang static analyzer for example features around 100 non-experimental checks

and can check compliance with one coding standards (SEI CERT Cwith experimental checks)

[47]. With around 190 checks, the static analysis tool cppcheck is more comprehensive but

does not consider coding standards [48]. This comparison of course does not consider the

quality of the checks, but semantic con�guration options like the Polyspace tools o�er are

at the time of writing not documented for both. As the added value of a consistently applied

Polyspace analysis stands out among all tools considered for this thesis, the recommenda-

tion here is to prioritize the integration of Polyspace Bug Finder into the development and

veri�cation process. With the methods presented in chapter 4 the con�guration of the anal-

ysis can be created largely automated and reused for Polyspace Code Prover. In order not to

obstruct the existing continuous integration work�ows, it is recommended to run the default

set of Polyspace Bug Finder defect checks automated in a pipeline, while coding guideline

compliance checks are run asynchronously.

109

6. Discussion

A static analysis tool is expected to ideally �nd all defects present in the analyzed code (i.e.

minimize the amount of false negatives) without reporting issue that do not constitute actual

errors (i.e. minimize the amount of false positives). While in this small-scale demonstration,

the reproduction of either in the generated code was not possible, it is di�cult to guarantee

the same in industry-scale applications. Static analysis by abstract interpretation provides

the added bene�t of a mathematically sound analysis without any false negatives. It was

shown that this is achieved for the sake of completeness and entirely depends on the expres-

siveness of the abstract domain (cf. chapter 2). With this in mind, sound static analysis tools

like Polyspace Code Prover can be regarded as instrumental for software veri�cation with

respect to correctness in any safety-critical application. The recommendation here is to run

Polyspace Code Prover asynchronously and complementary to Polyspace Bug Finder. The

results of these less frequent but more rigorous analyses should then inform the justi�cation

of potential issues reported by Bug Finder’s defect checks.

Evaluation in this context is non-trivial, which is why dedicated benchmark test suites for

static analysis tools exist. The National Institute of Standards and Technology (NIST) Juliet

Test Suite for C/C++ for example contains more than 60 000 test cases that cover around 1

600 types of defects. With these, tool providers can obtain evaluation metrics such as the

rate of true positives – the ratio of true defects recognized by the tool to true defects in the

code – and the rate of false positives – the ratio of false positives to defect-free statements

and expressions in the code. Generally, a low false positive rate in conjunction with a high

true positive rate is desirable. For sound analysis tools, a true positive rate of 1 is a functional

requirement and the false positive rate is the primary metric [13]. It should be noted that

MathWorks does not report these metrics for the Polyspace analysis tools, which is why a

quali�ed answer regarding their evaluation with respect to other tools can not be given at

this time. The recommendation here is to consider a detailed comparison with competing

tools at a future point in time. The static analysis tool Astrée for example was evaluated to

satisfy the rigorous Ockham Sound Analysis Criteria and is even used for the veri�cation of

the aforementioned Juliet Test Suite for C/C++ [49].

110

7. Conclusion and Outlook

In conclusion, it can be stated that the presented suite of tools is overall well suited for the

veri�cation of �ight software in the context of GNC systems with respect to correctness. It

was discussed in detail that this suite is neither complete nor that tools ful�ll this statement

individually. But re�ecting on the introductory statement that software should be assumed

to be faulty until demonstrated otherwise, MathWorks provides the means to do just that.

Comprehensive semantic analysis of source code in conjunction with abstract interpretation

is the cornerstone of this veri�cation approach. The tool suite does not substitute testing,

but complement it. Only model checking was found to be unsuitable, all other tools employ

techniques that directly or indirectly raise software quality. This comes at a signi�cant pric-

ing, so the investigation should not be seen as concluded here. In fact, comparable theses

consider one tool in isolation and conduct appropriate case studies [46], [50].

Looking forward, Code Analyzer and Polyspace Bug Finder can already be implemented

in project context. In parallel, use cases for Simulink Test can be identi�ed and �rst test

cases written. In the mid-term, a tailored con�guration of static analysis checks should have

been created, which can then be used to include an automated evaluation of analysis results.

Polyspace Code Prover would be run asynchronously but regularly by designated developers.

More test cases for Simulink Test would have been created by then and can be implemented

in pipelines, possibly extending to SIL testing. In the long term, a more profound evaluation

of all tools in project context should exist. These could for example be detailed case studies,

should be more distinct and quantitative than this thesis and take into consideration that

some of the tools have alternatives. Several examples that merit further investigation have

been named in this thesis. In general, the fact that lowering the dependence on MathWorks

products creates new possibilities can also have a positive impact on software quality.

Bibliography

[1] J.-L. Lions, Ariane 501 Inquiry Board Report, Jul. 1996.

[2] A. Spillner and T. Linz, Software Testing Foundations, A Study Guide for the Certi�ed Tester Exam.

Rocky Nook, 2021, isbn: 9781681988535.

[3] C. Cowell, Automating DevOps with GitLab CI/CD Pipelines, N. Lotz and C. Timberlake, Eds.

Packt Publishing, 2023, isbn: 9781803242934.

[4] P. Cousot, “Abstract Interpretation: From 0, 1, to ∞,” in Challenges of Software Veri�cation.

Springer Nature Singapore, 2023, pp. 1–18, isbn: 9789811996016. doi: 10.1007/978-981-19-

9601-6_1.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, Massachusetts: The MIT

Press, 2008, isbn: 9781435643277.

[6] The MathWorks Inc., Matlab Documentation, Natick, Massachusetts, United States, 2025. [On-

line]. Available: https://www.mathworks.com/help/simulink/index.html (Last ac-

cessed 04/18/2025).

[7] R. Schwarz, D. Kiehn, G. F. Trigo, et al., “Overview of Flight Guidance, Navigation, and Control

for the DLR Reusability Flight Experiment (ReFEx),” 2019. doi: 10.13009/EUCASS2019-739.

[8] K. Ogata, Modern Control Engineering. Prentice-Hall, 2010, isbn: 9780136156734.

[9] R. C. Dorf, Moderne Regelungssysteme, 10th ed., R. H. Bishop, Ed. München: Pearson Studium,

2007, isbn: 9783863266233.

[10] TheMathWorks Inc., Simulink Documentation, Natick, Massachusetts, United States, 2025. [On-

line]. Available: https://www.mathworks.com/help/simulink/index.html (Last ac-

cessed 04/25/2025).

[11] GitLab Inc., GitLab Documentation, 2025. [Online]. Available: https://docs.gitlab.com/

(Last accessed 05/08/2025).

[12] J. Peleska and W.-l. Huang, Test Automation: Foundations and Applications of Model-Based Test-

ing, Lecture Notes, Nov. 2021.

https://doi.org/10.1007/978-981-19-9601-6_1
https://doi.org/10.1007/978-981-19-9601-6_1
https://www.mathworks.com/help/simulink/index.html
https://doi.org/10.13009/EUCASS2019-739
https://www.mathworks.com/help/simulink/index.html
https://docs.gitlab.com/

Bibliography Bibliography

[13] J. Herter, D. Kästner, C. Mallon, and R. Wilhelm, “Benchmarking Static Code Analyzers,” Reli-

ability Engineering & System Safety, vol. 188, pp. 336–346, Aug. 2019. doi: 10.1016/j.ress.

2019.03.031.

[14] H. Herold, Grundlagen der Informatik, 4th ed., B. Lurz, M. Lurz, and J. Wohlrab, Eds. München:

Pearson, 2023, isbn: 9783863263515.

[15] R. Giacobazzi, I. Mastroeni, and E. Perantoni, “HowFitting is YourAbstract Domain?” In Springer

Nature Switzerland, 2023, pp. 286–309, isbn: 9783031442452. doi: 10.1007/978- 3- 031-

44245-2_14.

[16] T. Tantau, The TikZ and PGF Packages, 2025. [Online]. Available: https://pgf-tikz.github.

io/pgf/pgfmanual.pdf (Last accessed 04/17/2025).

[17] W. A. Storm, “A Model Checking Example: Solving Sudoku Using Simulink Design Veri�er,”

Lockheed Martin Corporation, 2009.

[18] M. Sheeran and G. Stålmarck, “A Tutorial on Stålmarck’s Proof Procedure for Propositional

Logic,” in Formal Methods in Computer-Aided Design. Springer Berlin Heidelberg, 1998, pp. 82–

99, isbn: 9783540495192. doi: 10.1007/3-540-49519-3_7.

[19] NASA Engineering & Safety Center, Technical Update 2015, 2015. [Online]. Available: https:

//www.nasa.gov/nesc/knowledge- products/technical- updates/ (Last accessed

04/28/2025).

[20] M. Jackson and J. Henry, “Orion GN&C Model Based Development: Experience and Lessons

Learned,” in AIAA Guidance, Navigation, and Control Conference, American Institute of Aero-

nautics and Astronautics, Aug. 2012. doi: 10.2514/6.2012-5036.

[21] V. Hadzilacos, Introduction to the Theory of Computation, Lecture notes, 2007.

[22] C. F. Lorenzo and J. L. Musgrave, “Overview of Rocket Engine Control,” in AIP Conference

Proceedings, vol. 246, AIP, 1992, pp. 446–455. doi: 10.1063/1.41807.

[23] Y. C. Lee,M. R. Gore, andC. C. Ross, “Stability andControl of Liquid Propellant Rocket Systems,”

Journal of the American Rocket Society, vol. 23, no. 2, pp. 75–81, Mar. 1953, issn: 1936-9964. doi:

10.2514/8.4544.

[24] G. P. Sutton, Rocket Propulsion Elements, 9th ed., O. Biblarz, Ed. Hoboken, New Jersey: John

Wiley & Sons Inc., 2017, 1 p., isbn: 9781118753651.

[25] H. Coxinho, T. Raposo, and E.Moreno, “Mixture Ratio and Thrust Control of a Liquid-Propellant

Rocket Engine,” 2016.

[26] ArianeGroup GmbH, Orbital Propulsion Fluidic Equipment.

113

https://doi.org/10.1016/j.ress.2019.03.031
https://doi.org/10.1016/j.ress.2019.03.031
https://doi.org/10.1007/978-3-031-44245-2_14
https://doi.org/10.1007/978-3-031-44245-2_14
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://doi.org/10.1007/3-540-49519-3_7
https://www.nasa.gov/nesc/knowledge-products/technical-updates/
https://www.nasa.gov/nesc/knowledge-products/technical-updates/
https://doi.org/10.2514/6.2012-5036
https://doi.org/10.1063/1.41807
https://doi.org/10.2514/8.4544

Bibliography Bibliography

[27] L. Shure and D. Bergstein, Run Code Faster With the New MATLAB Execution Engine, Blog post,

Feb. 2016. [Online]. Available: https://blogs.mathworks.com/loren/2016/02/12/run-

code-faster-with-the-new-matlab-execution-engine/ (Last accessed 04/22/2025).

[28] The MathWorks Inc., Simulink Check Documentation, Natick, Massachusetts, United States,

2025. [Online]. Available: https://www.mathworks.com/help/slcheck/index.html

(Last accessed 05/06/2025).

[29] The MathWorks Inc., Embedded Coder Documentation, Natick, Massachusetts, United States,

2025. [Online]. Available: https://www.mathworks.com/help/ecoder/ (Last accessed

05/01/2025).

[30] Software Engineering Institute, SEI CERT C Coding Standard: Rules for Developing Safe, Reliable,

and Secure Systems, 2016.

[31] The MITRE Corporation, Common Weakness Enumeration, 2024.

[32] Motor Industry Software Reliability Association, MISRA C:2012 Guidelines for the Use of the C

Language in Critical Systems, Nuneaton, UK, 2013.

[33] The MathWorks Inc., Simulink Design Veri�er Documentation, Natick, Massachusetts, United

States, 2025. [Online]. Available: https://www.mathworks.com/help/sldv/ (Last accessed

04/29/2025).

[34] The MathWorks Inc., Simulink Test Documentation, Natick, Massachusetts, United States, 2025.

[Online]. Available: https://www.mathworks.com/help/sltest/ (Last accessed 04/20/2025).

[35] The MathWorks Inc., Simulink Coder Documentation, Natick, Massachusetts, United States,

2025. [Online]. Available: https : / / www . mathworks . com / help / rtw/ (Last accessed

04/21/2025).

[36] TheMathWorks Inc., Polyspace Bug Finder Documentation, Natick,Massachusetts, United States,

2025. [Online]. Available: https://www.mathworks.com/help/bugfinder/index.html

(Last accessed 05/10/2025).

[37] TheMathWorks Inc., Polyspace Code Prover Documentation, Natick,Massachusetts, United States,

2025. [Online]. Available: https://www.mathworks.com/help/codeprover/index.html

(Last accessed 04/30/2025).

[38] B. Stroustrup, A Tour of C++ (C++ In-Depth Series), Third edition. Boston: Addison-Wesley,

2023, 299 pp., isbn: 0136816487.

[39] Motor Industry Software Reliability Association, MISRA C++:2008 Guidelines for the Use of the

C++ Language in Critical Systems, Nuneaton, UK, 2008.

[40] Automotive Open System Architecture, Guidelines for the Use of the C++14 Language in Critical

and Safety-Related Systems, 2018.

114

https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
https://www.mathworks.com/help/slcheck/index.html
https://www.mathworks.com/help/ecoder/
https://www.mathworks.com/help/sldv/
https://www.mathworks.com/help/sltest/
https://www.mathworks.com/help/rtw/
https://www.mathworks.com/help/bugfinder/index.html
https://www.mathworks.com/help/codeprover/index.html

Bibliography Bibliography

[41] Motor Industry Software Reliability Association, MISRA C++:2023: Guidelines for the Use of

C++17 in Critical Systems, Nuneaton, UK, 2023.

[42] J. Frey, Jenkins Simulink Model Advisor, GitHub Repository, 2017. [Online]. Available: https:

//github.com/dapperfu/Jenkins-Simulink-Model-Advisor (Last accessed 04/23/2025).

[43] S. Bechtold, S. Brannen, J. Link, et al., JUnit 5 User Guide, 2025. [Online]. Available: https:

//junit.org/junit5/docs/current/user-guide/ (Last accessed 05/11/2025).

[44] Oracle, Java Document Object Model Interface Documentation, 2020. [Online]. Available: https:

//docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html (Last

accessed 04/16/2025).

[45] TheMathWorks Inc., TheO�cialMATLABGPT byMathWorks, 2025. [Online]. Available: https:

//chatgpt.com/g/g-QFTjbeK3U-matlab (Last accessed 05/05/2025).

[46] F. Leitner-Fischer and S. Leue, “Simulink Design Veri�er vs. SPIN - A Comparative Case Study,”

in Participant’s Proceedings of FMICS 2008, ERCIM Working Group on Formal Methods for Indus-

trial Critical Systems, 2008.

[47] LLVMContributors,Clang Compiler User’sManual, 2025. [Online]. Available: https://clang.

llvm.org/docs/UsersManual.html (Last accessed 05/05/2025).

[48] D. Marjamäki, Cppcheck - A Tool for Static C/C++ Code Analysis, 2025. [Online]. Available:

https://sourceforge.net/p/cppcheck/wiki/Home/ (Last accessed 05/04/2025).

[49] P. E. Black and K. S. Walia, SATE VI Ockham Sound Analysis Criteria. May 2020. doi: 10.6028/

nist.ir.8304.

[50] M. Liliegard and V. Nilsson, “Model-Based Testing with Simulink Design Veri�er,” M.S. thesis,

Chalmers University Of Technology, Göteborg, Sweden, 2014.

115

https://github.com/dapperfu/Jenkins-Simulink-Model-Advisor
https://github.com/dapperfu/Jenkins-Simulink-Model-Advisor
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://chatgpt.com/g/g-QFTjbeK3U-matlab
https://chatgpt.com/g/g-QFTjbeK3U-matlab
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://sourceforge.net/p/cppcheck/wiki/Home/
https://doi.org/10.6028/nist.ir.8304
https://doi.org/10.6028/nist.ir.8304

A. Appendix

A.1. Model Functions

1 function [u_o, u_f] = thrustControlFunction(P_c_set, P_c, r_m_set, m_d_o, m_d_f)

%#codegen

2 % Thrust controller function

3 %

4 % DESCRIPTION:

5 % This function is an implementation of the thrust controller as a MATLAB

6 % function. It is designed to be called at each simulation step. The

7 % integral terms are stored in persistent variables so that they

8 % accumulate across time steps.

9 %

10 % INPUTS:

11 % P_c_set - Desired chamber pressure

12 % P_c - Measured chamber pressure

13 % r_m_set - Desired mixture ratio

14 % m_d_o - Current oxidizer mass flow

15 % m_d_f - Current fuel mass flow

16 %

17 % OUTPUTS:

18 % u_o - Control output for oxidizer valve (chamber pressure loop)

19 % u_f - Control output for fuel valve (mixture ratio loop)

20

21 % Sample time

22 Ts = 0.001;

23

24 % Controller gains

25 KpC = 1e-7; % Proportional gain for chamber pressure

26 KiC = 1e-6; % Integral gain for chamber pressure

27

28 KpMR = -0.3; % Proportional gain for mixture ratio

29 KiMR = -3; % Integral gain for mixture ratio

A. Appendix A.1. Model Functions

30

31 % Persistent states for the integrators

32 persistent intC intMR

33

34 % Initialize the integrators on the first call

35 if isempty(intC)

36 intC = 0;

37 intMR = 0;

38 end

39

40 %% Chamber Pressure Controller

41

42 % Error

43 eC = P_c_set - P_c;

44

45 % Integrator update

46 intC = intC + eC * Ts;

47

48 % PI output

49 u_o = KpC * eC + KiC * intC;

50

51 %% Mixture Ratio Controller

52

53 % Compute mixture ratio

54 if m_d_f == 0

55 r_m = 0;

56 else

57 r_m = m_d_o / m_d_f;

58 end

59

60 % Error

61 eMR = r_m_set - r_m;

62

63 % Integrator update

64 intMR = intMR + eMR * Ts;

65

66 % PI output

67 u_f = KpMR * eMR + KiMR * intMR;

68

69 end

1 classdef ThrustControllerStates < Simulink.IntEnumType

2 % Enumeration of controller states

117

A.1. Model Functions A. Appendix

3 enumeration

4 Closed (0) % Valves fully closed, no control

5 Pressurizing (1) % Bringing chamber pressure up to desired level

6 Running (2) % Normal operation, both loops active

7 end

8 end

1 function [u_o, u_f] = thrustControlFSM(P_c_set, P_c, r_m_set, m_d_o, m_d_f) %#codegen

2 % Thrust controller state machine implementation

3 %

4 % DESCRIPTION:

5 % This function represents a state machine implementation for a thrust

6 % controller with persistent variables. Each transition is encapsulated

7 % in a helper function.

8 %

9 % INPUTS:

10 % P_c_set - Desired chamber pressure

11 % P_c - Measured chamber pressure

12 % r_m_set - Desired mixture ratio

13 % m_d_o - Current oxidizer mass flow

14 % m_d_f - Current fuel mass flow

15 %

16 % OUTPUTS:

17 % u_o - Control output for oxidizer valve (chamber pressure loop)

18 % u_f - Control output for fuel valve (mixture ratio loop)

19

20 % Persistent variables for the FSM

21 persistent currentState intC intMR

22 if isempty(currentState)

23 currentState = ThrustControllerStates.Closed;

24 intC = 0;

25 intMR = 0;

26 end

27

28 % Initialize outputs

29 u_o = 0;

30 u_f = 0;

31

32 % Switch for current state

33 switch currentState

34

35 case ThrustControllerStates.Closed

36 if P_c_set > 0

118

A. Appendix A.1. Model Functions

37 % Transition Closed to Pressurizing

38 [u_o, u_f, currentState, intC, intMR] = ...

39 updateClosedToPressurizing(P_c_set, P_c, r_m_set, ...

40 m_d_o, m_d_f, intC, intMR);

41 else

42 % Remain in Closed

43 [u_o, u_f, currentState, intC, intMR] = ...

44 remainClosed(currentState, intC, intMR);

45 end

46

47 case ThrustControllerStates.Pressurizing

48 if P_c_set <= 0

49 % Transition Pressurizing to Closed

50 [u_o, u_f, currentState, intC, intMR] = ...

51 updatePressurizingToClosed(P_c_set, P_c, r_m_set, ...

52 m_d_o, m_d_f, intC, intMR);

53 elseif abs(P_c_set - P_c) < 0.1 * P_c_set

54 % Transition Pressurizing to Running

55 [u_o, u_f, currentState, intC, intMR] = ...

56 updatePressurizingToRunning(P_c_set, P_c, r_m_set, ...

57 m_d_o, m_d_f, intC, intMR);

58 else

59 % Remain in Pressurizing

60 [u_o, u_f, currentState, intC, intMR] = ...

61 remainPressurizing(P_c_set, P_c, r_m_set, m_d_o, ...

62 m_d_f, currentState, intC, intMR);

63 end

64

65 case ThrustControllerStates.Running

66 if P_c_set <= 0

67 % Transition Running to Closed

68 [u_o, u_f, currentState, intC, intMR] = ...

69 updateRunningToClosed(P_c_set, P_c, r_m_set, m_d_o, ...

70 m_d_f, intC, intMR);

71 else

72 % Remain in Running

73 [u_o, u_f, currentState, intC, intMR] = ...

74 remainRunning(P_c_set, P_c, r_m_set, m_d_o, m_d_f, ...

75 currentState, intC, intMR);

76 end

77 end

78 end

119

A.1. Model Functions A. Appendix

1 function [u_o, u_f, newState, intC, intMR] = remainClosed(oldState, intC, intMR)

%#codegen

2 % Controller transition function from Closed to Closed

3

4 % Set new state

5 newState = oldState;

6

7 % Set output

8 u_o = 0;

9 u_f = 0;

10 end

1 function [u_o, u_f, newState, intC, intMR] = updateClosedToPressurizing(P_c_set,

P_c, r_m_set, m_d_o, m_d_f, intC, intMR) %#codegen

2 % Controller transition function from Closed to Pressurizing

3

4 % Set new state

5 newState = ThrustControllerStates.Pressurizing;

6

7 % Set output

8 [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,

intC, intMR);

9 u_o = 0.3;

10 u_f = 0.2;

11 end

1 function [u_o, u_f, newState, intC, intMR] = updatePressurizingToClosed(P_c_set,

P_c, r_m_set, m_d_o, m_d_f, intC, intMR) %#codegen

2 % Controller transition function from Pressurizing to Closed

3

4 % Set new state

5 newState = ThrustControllerStates.Closed;

6

7 % Reset integrators

8 % intC = 0; intMR = 0;

9

10 % Set output

11 u_o = 0;

12 u_f = 0;

13 end

1 function [u_o, u_f, newState, intC, intMR] = remainPressurizing(P_c_set, P_c,

r_m_set, m_d_o, m_d_f, oldState, intC, intMR) %#codegen

120

A. Appendix A.1. Model Functions

2 % Controller transition function from Pressurizing to Pressurizing

3

4 % Set new state

5 newState = oldState;

6

7 % Set output

8 [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,

intC, intMR);

9 u_o = 0.3;

10 u_f = 0.2;

11 end

1 function [u_o, u_f, newState, intC, intMR] = updatePressurizingToRunning(P_c_set,

P_c, r_m_set, m_d_o, m_d_f, intC, intMR) %#codegen

2 % Controller transition function from Pressurizing to Running

3

4 % Set new state

5 newState = ThrustControllerStates.Running;

6

7 % Set output

8 [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,

intC, intMR);

9 end

1 function [u_o, u_f, newState, intC, intMR] = remainRunning(P_c_set, P_c, r_m_set,

m_d_o, m_d_f, oldState, intC, intMR) %#codegen

2 % Controller transition function from Running to Running

3

4 % Set new state

5 newState = oldState;

6

7 % Set output

8 [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o, m_d_f,

intC, intMR);

9 end

1 function [u_o, u_f, newState, intC, intMR] = updateRunningToClosed(P_c_set, P_c,

r_m_set, m_d_o, m_d_f, intC, intMR) %#codegen

2 % Controller transition function from Running to Closed

3

4 % Set new state

5 newState = ThrustControllerStates.Closed;

6

121

A.2. Veri�cation Functions A. Appendix

7 % Set output

8 u_o = 0;

9 u_f = 0;

10 end

1 function [u_o, u_f, intC, intMR] = computeControl(P_c_set, P_c, r_m_set, m_d_o,

m_d_f, intC, intMR) %#codegen

2 % Control computation function

3

4 % Gains and sample time

5 Ts = 0.001;

6 KpC = 1e-7; KiC = 1e-6;

7 KpMR = -0.3; KiMR = -3;

8

9 % Chamber pressure

10 eC = P_c_set - P_c;

11 intC = intC + eC * Ts;

12 u_o = KpC * eC + KiC * intC;

13

14 % Mixture ratio

15 if m_d_f == 0

16 r_m = 0;

17 else

18 r_m = m_d_o / m_d_f;

19 end

20 eMR = r_m_set - r_m;

21 intMR = intMR + eMR * Ts;

22 u_f = KpMR * eMR + KiMR * intMR;

23 end

A.2. Verification Functions

1 function runCodeAnalyzer(autoEval)

2 % Run Code Analyzer on MATLAB files in the directory

3 %

4 % DESCRIPTION

5 % This function looks for any MATLAB files in the directory and

6 % checks each for Code Analyzer issues. For each file with issues, it

7 % displays a message and passes the found issues to the function

8 % writeToCodeQuality. Optionally, it exits with exit code 1 if any

9 % issues were found.

10 %

122

A. Appendix A.2. Veri�cation Functions

11 % INPUTS

12 % autoEval - Option to activate automatic evaluation

13 %

14 % OUTPUTS

15 % none

16

17 % Define function arguments and defaults

18 arguments

19 autoEval (1,1) logical = false

20 end

21

22 % Find all MATLAB files

23 mFiles = dir('**/*.m');

24 if isempty(mFiles)

25 disp('Code Analyzer: No MATLAB files found.');

26 exit(0);

27 end

28

29 % Initialize array to collect all issues

30 issues = [];

31 resultCounter = 1;

32

33 % Run Code Analyzer analysis on files and display message

34 issuesFound = false;

35 for k = 1:numel(mFiles)

36 filePath = fullfile(mFiles(k).folder, mFiles(k).name);

37 messages = checkcode(filePath, '-id', '-struct');

38 if ~isempty(messages)

39 % Display issues

40 disp(['Code Analyzer: Issues found in: ', filePath]);

41 for i = 1:numel(messages)

42 lineNum = messages(i).line;

43 colRange = messages(i).column;

44 msgText = messages(i).message;

45 msgID = messages(i).id;

46 fprintf(' Line %d (Columns %d-%d): %s\n', lineNum, colRange(1),

colRange(end), msgText);

47

48 % Create unique fingerprint

49 fingerprint = sprintf('%s_%d', msgID, resultCounter);

50 resultCounter = resultCounter + 1;

51

123

A.2. Veri�cation Functions A. Appendix

52 % Append issue details to issues array

53 issue = struct(...

54 'description', msgText, ...

55 'check_name', msgID, ...

56 'fingerprint', fingerprint, ...

57 'severity', 'minor', ...

58 'location', struct(...

59 'path', filePath, ...

60 'lines', struct('begin', lineNum) ...

61) ...

62);

63 issues = [issues; issue];

64 end

65 issuesFound = true;

66 end

67 end

68

69 if ~issuesFound

70 disp('Code Analyzer: No issues found.');

71 else

72 writeToCodeQuality(issues, 'codeAnalyzerCodeQuality.json');

73 end

74

75 % Exit with non-zero exit code if issues were found

76 if autoEval

77 if issuesFound

78 exit(1);

79 else

80 exit(0);

81 end

82 end

83 end

1 function writeToCodeQuality(issues, filename)

2 % Write Code Analyzer results to Code Quality JSON file

3 %

4 % DESCRIPTION

5 % This function accepts a structure array of Code Analyzer issues

6 % and writes it to a JSON file.

7 %

8 % INPUTS

9 % issues - structure array of Code Analyzer issues

10 % filename - name of the created results file

124

A. Appendix A.2. Veri�cation Functions

11 %

12 % OUTPUTS

13 % none

14

15 % Convert the structure array to JSON text

16 jsonText = jsonencode(issues, 'PrettyPrint', true);

17

18 % Write JSON text to the specified file

19 fid = fopen(filename, 'w');

20 if fid == -1

21 error('Cannot open file %s for writing.', filename);

22 end

23 fwrite(fid, jsonText, 'char');

24 fclose(fid);

25 end

1 function loadModel(model)

2 % Load model

3 %

4 % DESCRIPTION

5 % This helper function adds the model directory to the MATLAB path

6 % and loads the specified model.

7 %

8 % INPUTS

9 % model - name of the model to load

10 %

11 % OUTPUTS

12 % none

13

14 % Add path

15 addpath('models')

16

17 % Load model

18 load_system(model);

19 end

1 function checkIDs = getCheckIDs(option)

2 % Get Model Advisor check IDs

3 %

4 % DESCRIPTION

5 % This function returns check IDs for a Model Advisor analysis as a

6 % cell array based on the option provided.

7 %

125

A.2. Veri�cation Functions A. Appendix

8 % INPUTS

9 % option - one of the following:

10 % all - returns all available check IDs concatenated into one cell

array

11 % design - returns the base Simulink checks

12 % advisory - returns the MathWorks Advisory Board guideline checks

13 % integrity - returns the High Integrity Systems Modeling guidelines

checks

14 % codegen - returns the code generation checks

15 % misra - returns the MISRA compliance checks

16 %

17 % OUTPUTS

18 % checkIDs - cell array of check IDs

19 %

20 % NOTES

21 % To get all check IDs see doc Simulink.ModelAdvisor:

22 % ma = Simulink.ModelAdvisor.getModelAdvisor(model)

23 % checks = ma.getCheckAll

24

25 % Define function arguments

26 arguments

27 option (1,1) string

28 end

29

30 % Define Simulink checks

31 designIDs = {

32 'mathworks.design.UnconnectedLinesPorts', ... % Identify

unconnected lines, input ports, and output ports

33 'mathworks.design.RootInportSpec', ... % Check root

model Inport block specifications

34 'mathworks.design.ModelRefSIMConfigCompliance', ... % Check

diagnostic settings ignored during accelerated model reference simulation

35 'mathworks.design.ParamTunabilityIgnored', ... % Check for

parameter tunability information ignored for referenced models

36 'mathworks.design.ImplicitSignalResolution', ... % Check for

implicit signal resolution

37 'mathworks.design.OptBusVirtuality', ... % Check for

optimal bus virtuality

38 'mathworks.design.CallslDataTypeAndScale', ... % Check for

calls to slDataTypeAndScale()

39 'mathworks.design.DiscreteTimeIntegratorInitCondition', ... % Check for

Discrete-Time Integrator blocks with initial condition uncertainty

126

A. Appendix A.2. Veri�cation Functions

40 'mathworks.design.DisabledLibLinks', ... % Identify

disabled library links

41 'mathworks.design.ParameterizedLibLinks', ... % Identify

parameterized library links

42 'mathworks.design.UnresolvedLibLinks', ... % Identify

unresolved library links

43 'mathworks.design.CSStoVSSConvert', ... % Identify

configurable subsystem blocks in the model for converting to variant subsystem

blocks.

44 'mathworks.design.CheckForProperFcnCallUsage', ... % Check

usage of function-call connections

45 'mathworks.design.CheckMaskDisplayImageFormat', ... % Check and

update mask image display commands with unnecessary imread() function calls

46 'mathworks.design.CheckMaskRunInitFlag', ... % Check and

update mask to affirm icon drawing commands dependency on mask workspace

47 'mathworks.design.DiagnosticSFcn', ... % Runtime

diagnostics for S-functions

48 'mathworks.design.DiagnosticDataStoreBlk', ... % Check if

Read/Write diagnostics are enabled for Data Store blocks

49 'mathworks.design.DataStoreMemoryBlkIssue', ... % Check Data

Store Memory blocks for multitasking, strong typing, and shadowing issues

50 'mathworks.design.SLXModelProperties', ... % Check

Model History properties

51 'mathworks.design.SFuncAnalyzer', ... % Check

S-functions in the model

52 'mathworks.design.CheckVirtualBusAcrossModelReferenceArgs', ... % Check for

large number of function arguments from virtual bus across model reference

boundary

53 'mathworks.design.ReplaceZOHDelayByRTB', ... % Check

Delay, Unit Delay and Zero-Order Hold blocks for rate transition

54 'mathworks.design.BusTreatedAsVector', ... % Check bus

signals treated as vectors

55 'mathworks.design.DelayedFcnCallSubsys', ... % Check for

potentially delayed function-call block return values

56 'mathworks.design.OutputSignalSampleTime', ... % Identify

block output signals with continuous sample time and non-floating point data type

57 'mathworks.design.MergeBlkUsage', ... % Check

usage of Merge blocks

58 'mathworks.design.InitParamOutportMergeBlk', ... % Check

usage of Outport blocks

59 'mathworks.design.DiscreteBlock', ... % Check

usage of Discrete-Time Integrator blocks

127

A.2. Veri�cation Functions A. Appendix

60 'mathworks.design.ModelLevelMessages', ... % Check

model settings for migration to simplified initialization mode

61 'mathworks.design.NonContSigDerivPort', ... % Check for

non-continuous signals driving derivative ports

62 'mathworks.design.DataStoreBlkSampleTime', ... % Check data

store block sample times for modeling errors

63 'mathworks.design.OrderingDataStoreAccess', ... % Check for

potential ordering issues involving data store access

64 'mathworks.design.UnitMismatches', ... % Identify

unit mismatches in the model

65 'mathworks.design.AutoUnitConversions', ... % Identify

automatic unit conversions in the model

66 'mathworks.design.DisallowedUnitSystems', ... % Identify

disallowed unit systems in the model

67 'mathworks.design.UndefinedUnits', ... % Identify

undefined units in the model

68 'mathworks.design.AmbiguousUnits', ... % Identify

ambiguous units in the model

69 };

70

71 % Excluded checks

72 % 'mathworks.design.StowawayDoubles', ... % Identify

questionable operations for strict single-precision design (requires Coder

license)

73 % 'mathworks.design.OptimizationSettings', ... % Check

optimization settings (requires Coder license)

74 % 'mathworks.design.MismatchedBusParams', ... % Check

structure parameter usage with bus signals (requires Coder license)

75 % 'mathworks.design.ReplaceEnvironmentControllerBlk', ... % Identify

Environment Controller blocks to be replaced with Variant Source blocks

(relevant since R2021b)

76

77 % Define MAB compliance checks

78 mabIDs = {

79 'mathworks.maab.hd_0001', ... % Check for prohibited sink blocks

80 'mathworks.maab.db_0142', ... % Check whether block names appear below

blocks

81 'mathworks.maab.db_0143', ... % Check for mixing basic blocks and

subsystems

82 'mathworks.maab.db_0110', ... % Check usage of tunable parameters in

blocks

128

A. Appendix A.2. Veri�cation Functions

83 'mathworks.maab.jc_0061', ... % Check the display attributes of block

names

84 'mathworks.maab.jc_0081', ... % Check display for port blocks

85 'mathworks.maab.jc_0131', ... % Check usage of Relational Operator

blocks

86 'mathworks.maab.db_0140', ... % Check for nondefault block attributes

87 'mathworks.maab.na_0008', ... % Check signal line labels

88 'mathworks.maab.na_0009', ... % Check for propagated signal labels

89 'mathworks.maab.na_0003', ... % Check logical expressions in If blocks

90 'mathworks.maab.na_0004', ... % Check for Simulink diagrams using

nonstandard display attributes

91 'mathworks.maab.na_0034', ... % Check input and output settings of

MATLAB Functions

92 'mathworks.maab.na_0024', ... % Check MATLAB code for global variables

93 'mathworks.maab.na_0039', ... % Check use of Simulink in Stateflow

charts

94 'mathworks.maab.na_0036', ... % Check use of default variants

95 'mathworks.maab.na_0037', ... % Check use of single variable variant

conditionals

96 'mathworks.maab.na_0019', ... % Check usage of restricted variable

names

97 'mathworks.maab.na_0021', ... % Check usage of character vector inside

MATLAB Function block

98 'mathworks.maab.na_0022', ... % Check usage of recommended patterns

for Switch/Case statements

99 'mathworks.maab.na_0017', ... % Check the number of function calls in

MATLAB Function blocks

100 'mathworks.maab.himl_0003', ... % Check MATLAB Function metrics (the two

individual checks don't work in R2020a)

101 'mathworks.maab.jc_0011', ... % Check Implement logic signals as

Boolean data (vs. double)

102 'mathworks.maab.jc_0021', ... % Check model diagnostic parameters

103 'mathworks.maab.na_0011', ... % Check scope of From and Goto blocks

104 'mathworks.maab.jc_0141', ... % Check usage of Switch blocks

105 'mathworks.maab.na_0031', ... % Check usage of enumerated values

106 'mathworks.jmaab.jc_0627', ... % Check usage of Discrete-Time

Integrator block

107 'mathworks.jmaab.jc_0653', ... % Check for avoiding algebraic loops

between subsystems

108 'mathworks.jmaab.na_0020', ... % Check for missing ports in Variant

Subsystems

109 'mathworks.jmaab.jc_0624', ... % Check for cascaded Unit Delay blocks

129

A.2. Veri�cation Functions A. Appendix

110 'mathworks.jmaab.ar_0001', ... % Check file names

111 'mathworks.jmaab.ar_0002', ... % Check folder names

112 'mathworks.jmaab.jc_0211', ... % Check port block names

113 'mathworks.jmaab.jc_0201', ... % Check subsystem names

114 'mathworks.jmaab.jc_0231', ... % Check character usage in block names

115 'mathworks.jmaab.jc_0008', ... % Check definition of signal labels

116 'mathworks.jmaab.jc_0009', ... % Check Signal name propagation

117 'mathworks.jmaab.jc_0642', ... % Check Signed Integer Division Rounding

mode

118 'mathworks.jmaab.jc_0659', ... % Check usage of Merge block

119 'mathworks.jmaab.jc_0110', ... % Check block orientation

120 'mathworks.jmaab.jc_0222', ... % Check character usage in signal names

and bus names

121 'mathworks.jmaab.jc_0241', ... % Check length of model file name

122 'mathworks.jmaab.jc_0242', ... % Check length of folder name at every

level of model path

123 'mathworks.jmaab.jc_0243', ... % Check length of subsystem names

124 'mathworks.jmaab.jc_0244', ... % Check length of Inport and Outport

names

125 'mathworks.jmaab.jc_0245', ... % Check length of signal and bus names

126 'mathworks.jmaab.jc_0247', ... % Check length of block names

127 'mathworks.jmaab.jc_0604', ... % Check if blocks are shaded in the model

128 'mathworks.jmaab.jc_0610', ... % Check operator order of Product blocks

129 'mathworks.jmaab.jc_0621', ... % Check icon shape of Logical Operator

blocks

130 'mathworks.jmaab.jc_0645', ... % Check if tunable block parameters are

defined as named constants

131 'mathworks.jmaab.jc_0656', ... % Check default/else case in Switch Case

blocks and If blocks

132 'mathworks.jmaab.jc_0626', ... % Check usage of Lookup Tables

133 'mathworks.jmaab.jc_0622', ... % Check for parentheses in Fcn block

expressions

134 'mathworks.jmaab.jc_0791', ... % Check duplication of Simulink Data

names

135 'mathworks.jmaab.jc_0603', ... % Check Model Description

136 'mathworks.jmaab.jc_0806', ... % Check diagnostic settings for

incorrect calculation results

137 'mathworks.jmaab.jc_0651', ... % Check output data type of operation

blocks

138 'mathworks.jmaab.jc_0602', ... % Check for consistency in model element

names

139 'mathworks.jmaab.jc_0641', ... % Check for sample time setting

130

A. Appendix A.2. Veri�cation Functions

140 'mathworks.jmaab.jc_0121', ... % Check usage of Sum blocks

141 'mathworks.jmaab.db_0112', ... % Check Indexing Mode

142 'mathworks.jmaab.db_0097', ... % Check position of signal labels

143 'mathworks.jmaab.db_0042', ... % Check position of Inport and Outport

blocks

144 'mathworks.jmaab.jc_0161', ... % Check for usage of Data Store Memory

blocks

145 'mathworks.maab.db_0141', ... % Check signal flow in model

146 'mathworks.jmaab.db_0146', ... % Check position of conditional blocks

and iterator blocks

147 'mathworks.jmaab.db_0032', ... % Check signal line connections

148 'mathworks.maab.db_0081', ... % Check for unconnected signal lines and

blocks

149 'mathworks.jmaab.jc_0630', ... % Check settings for data ports in

Multiport Switch blocks

150 'mathworks.jmaab.jc_0650', ... % Check input and output datatype for

Switch blocks

151 'mathworks.jmaab.jc_0643', ... % Check usage of fixed-point data type

with non-zero bias

152 'mathworks.jmaab.jc_0611', ... % Check signs of input signals in

product blocks

153 'mathworks.jmaab.jc_0644', ... % Check type setting by data objects

154 'mathworks.jmaab.jc_0628', ... % Check usage of the Saturation blocks

155 'mathworks.jmaab.jc_0232', ... % Check character usage in parameter

names

156 'mathworks.jmaab.jc_0246', ... % Check length of parameter names

157 'mathworks.jmaab.jc_0640', ... % Check undefined initial output for

conditional subsystems

158 'mathworks.jmaab.jc_0800', ... % Check comparison of floating point

types in Simulink

159 'mathworks.jmaab.jc_0792', ... % Check unused data in Simulink Model

160 'mathworks.jmaab.na_0002', ... % Check fundamental logical and

numerical operations

161 'mathworks.jmaab.na_0010', ... % Check usage of vector and bus signals

162 'mathworks.jmaab.jc_0171', ... % Check connections between structural

subsystems

163 };

164

165 % Excluded checks

166 % 'mathworks.maab.na_0016', ... % Check lines of code in MATLAB Functions

(might be replaced by 'mathworks.maab.himl_0003')

131

A.2. Veri�cation Functions A. Appendix

167 % 'mathworks.maab.na_0018', ... % Check nested conditions in MATLAB Functions

(might be replaced by 'mathworks.maab.himl_0003')

168 % 'mathworks.jmaab.jc_0623', ... % Check usage of Memory and Unit Delay blocks

(might cause issue)

169 % 'mathworks.jmaab.jc_0801', ... % Check for use of C-style comment symbols

(might cause issue)

170

171 % Define High Integrity System Modeling checks

172 hismIDs = {

173 'mathworks.hism.himl_0001', ... % Check usage of standardized MATLAB

function headers (might cause issue)

174 'mathworks.hism.himl_0002', ... % Check for MATLAB Function interfaces

with inherited properties (might cause issue)

175 'mathworks.hism.himl_0003', ... % Check MATLAB Function metrics (might

cause issue)

176 'mathworks.hism.himl_0004', ... % Check MATLAB Code Analyzer messages

(might cause issue)

177 'mathworks.hism.himl_0006', ... % Check if/elseif/else patterns in

MATLAB Function blocks (might cause issue)

178 'mathworks.hism.himl_0007', ... % Check switch statements in MATLAB

Function blocks (might cause issue)

179 'mathworks.hism.himl_0012', ... % Check MATLAB functions not supported

for code generation (might cause issue)

180 'mathworks.hism.hisl_0006', ... % Check usage of While Iterator blocks

181 'mathworks.hism.hisl_0007', ... % Check usage of For and While Iterator

subsystems

182 'mathworks.hism.hisl_0020', ... % Check for blocks not recommended for

C/C++ production code deployment

183 'mathworks.hism.hisl_0021', ... % Check for inconsistent vector indexing

methods

184 'mathworks.hism.hisl_0023', ... % Check usage of variant blocks

185 'mathworks.hism.hisl_0024', ... % Check for root Inports with missing

properties

186 'mathworks.hism.hisl_0031', ... % Check model file name

187 'mathworks.hism.hisl_0033', ... % Check usage of lookup table blocks

188 'mathworks.hism.hisl_0040', ... % Check safety-related solver settings

for simulation time

189 'mathworks.hism.hisl_0066', ... % Check usage of Gain blocks

190 'mathworks.hism.hisl_0071', ... % Check safety-related settings for

hardware implementation

191 'mathworks.hism.hisl_0072', ... % Check for parameter tunability ignored

for referenced models

132

A. Appendix A.2. Veri�cation Functions

192 'mathworks.hism.hisl_0013', ... % Check safety-related diagnostic

settings for data store memory

193 'mathworks.hism.hisl_0036', ... % Check safety-related diagnostic

settings for saving

194 'mathworks.hism.hisl_0037', ... % Check safety-related model referencing

settings

195 'mathworks.hism.hisl_0041', ... % Check safety-related solver settings

for solver options

196 'mathworks.hism.hisl_0042', ... % Check safety-related solver settings

for tasking and sample-time

197 'mathworks.hism.hisl_0043', ... % Check safety-related diagnostic

settings for solvers

198 'mathworks.hism.hisl_0044', ... % Check safety-related diagnostic

settings for sample time

199 'mathworks.hism.hisl_0045', ... % Check safety-related optimization

settings for logic signals

200 'mathworks.hism.hisl_0046', ... % Check safety-related block reduction

optimization settings

201 'mathworks.hism.hisl_0048', ... % Check safety-related optimization

settings for application lifespan

202 'mathworks.hism.hisl_0052', ... % Check safety-related optimization

settings for data initialization

203 'mathworks.hism.hisl_0053', ... % Check safety-related optimization

settings for data type conversions

204 'mathworks.hism.hisl_0054', ... % Check safety-related optimization

settings for division arithmetic exceptions

205 'mathworks.hism.hisl_0056', ... % Check safety-related optimization

settings for specified minimum and maximum values

206 'mathworks.hism.hisl_0038', ... % Check safety-related code generation

settings for comments

207 'mathworks.hism.hisl_0039', ... % Check safety-related code generation

interface settings

208 'mathworks.hism.hisl_0047', ... % Check safety-related code generation

settings for code style

209 'mathworks.hism.hisl_0049', ... % Check safety-related code generation

identifier settings

210 'mathworks.hism.hisl_0301', ... % Check safety-related diagnostic

settings for compatibility

211 'mathworks.hism.hisl_0302', ... % Check safety-related diagnostic

settings for parameters

212 'mathworks.hism.hisl_0303', ... % Check safety-related diagnostic

settings for Merge blocks

133

A.2. Veri�cation Functions A. Appendix

213 'mathworks.hism.hisl_0304', ... % Check safety-related diagnostic

settings for model initialization

214 'mathworks.hism.hisl_0305', ... % Check safety-related diagnostic

settings for data used for debugging

215 'mathworks.hism.hisl_0306', ... % Check safety-related diagnostic

settings for signal connectivity

216 'mathworks.hism.hisl_0307', ... % Check safety-related diagnostic

settings for bus connectivity

217 'mathworks.hism.hisl_0308', ... % Check safety-related diagnostic

settings that apply to function-call connectivity

218 'mathworks.hism.hisl_0309', ... % Check safety-related diagnostic

settings for type conversions

219 'mathworks.hism.hisl_0310', ... % Check safety-related diagnostic

settings for model referencing

220 'mathworks.hism.hisl_0314', ... % Check safety-related diagnostic

settings for signal data

221 'mathworks.hism.hisl_0074', ... % Check safety-related diagnostic

settings for variants

222 'mathworks.hism.himl_0011', ... % Check type and size of condition

expressions

223 'mathworks.hism.himl_0008', ... % Check usage of relational operators in

MATLAB Function blocks (might cause issue)

224 'mathworks.hism.himl_0010', ... % Check usage of logical operators and

functions in MATLAB Function blocks (might cause issue)

225 'mathworks.hism.himl_0013', ... % Metrics for generated code complexity

(might cause issue)

226 'mathworks.hism.hisl_0001', ... % Check usage of Abs blocks

227 'mathworks.hism.hisl_0008', ... % Check usage of For Iterator blocks

228 'mathworks.hism.hisl_0010', ... % Check usage of If blocks and If Action

Subsystem blocks

229 'mathworks.hism.hisl_0011', ... % Check usage of Switch Case blocks and

Switch Case Action Subsystem blocks

230 'mathworks.hism.hisl_0012', ... % Check usage of conditionally executed

subsystems

231 'mathworks.hism.hisl_0016', ... % Check relational comparisons on

floating-point signals

232 'mathworks.hism.hisl_0017', ... % Check usage of Relational Operator

blocks

233 'mathworks.hism.hisl_0018', ... % Check usage of Logical Operator blocks

234 'mathworks.hism.hisl_0019', ... % Check usage of bitwise operations

235 'mathworks.hism.hisl_0015', ... % Check usage of Merge blocks

134

A. Appendix A.2. Veri�cation Functions

236 'mathworks.hism.hisl_0022', ... % Check data types for blocks with index

signals

237 'mathworks.hism.hisl_0025', ... % Check for root Inports with missing

range definitions

238 'mathworks.hism.hisl_0026', ... % Check for root Outports with missing

range definitions

239 'mathworks.hism.hisl_0029', ... % Check usage of Assignment blocks

240 'mathworks.hism.hisl_0032', ... % Check model object names

241 'mathworks.hism.hisl_0034', ... % Check usage of Signal Routing blocks

242 'mathworks.hism.hisl_0063', ... % Check for length of user-defined

object names

243 'mathworks.hism.hisl_0102', ... % Check data type of loop control

variables

244 'mathworks.hism.hisl_0073', ... % Check usage of bit-shift operations

245 'mathworks.hism.hisl_0028', ... % Check usage of Reciprocal Sqrt blocks

(might cause issue)

246 'mathworks.hism.hisl_0067' ... % Check for divide-by-zero calculations

(might cause issue)

247 };

248

249 % Define code generation checks

250 codegenIDs = {

251 'mathworks.codegen.PCGSupport', ... % Check

for blocks not recommended for C/C++ production code deployment

252 'mathworks.codegen.EfficientTunableParamExpr', ... % Check

configuration parameters for generation of inefficient saturation code

253 'mathworks.codegen.LUTRangeCheckCode', ... %

Identify lookup table blocks that generate expensive out-of-range checking code

254 'mathworks.codegen.LogicBlockUseNonBooleanOutput', ... % Check

output types of logic blocks

255 'mathworks.codegen.HWImplementation', ... % Check

the hardware implementation

256 'mathworks.codegen.SWEnvironmentSpec', ... %

Identify questionable software environment specifications

257 'mathworks.codegen.CodeInstrumentation', ... %

Identify questionable code instrumentation (data I/O)

258 'mathworks.codegen.UseRowMajorAlgorithm', ... %

Identify blocks generating inefficient algorithms

259 'mathworks.codegen.QuestionableSubsysSetting', ... %

Identify questionable subsystem settings

260 'mathworks.codegen.RowMajorCodeGenSupport', ... % Check

for blocks not supported for row-major code generation

135

A.2. Veri�cation Functions A. Appendix

261 'mathworks.codegen.RowMajorUnsetSFunction', ... %

Identify TLC S-Functions with unset array layout

262 'mathworks.codegen.BlockSpecificQuestionableFxptOperations', ... %

Identify blocks that generate expensive fixed-point and saturation code

263 'mathworks.codegen.QuestionableFxptOperations', ... %

Identify questionable fixed-point operations

264 'mathworks.codegen.ExpensiveSaturationRoundingCode', ... %

Identify blocks that generate expensive rounding code

265 'mathworks.codegen.BlockNames', ... % Check

block names

266 'mathworks.codegen.cgsl_0101', ... %

Identify blocks using one-based indexing

267 'mathworks.codegen.SolverCodeGen', ... % Check

solver for code generation

268 'mathworks.codegen.codeGenSupport', ... % Check

for blocks not supported by code generation

269 'mathworks.codegen.MdlrefConfigMismatch', ... % Check

for model reference configuration mismatch

270 'mathworks.codegen.ModelRefRTWConfigCompliance', ... % Check

for code generation identifier formats used for model reference

271 'mathworks.codegen.SubsysCodeReuse', ... % Check

reuse of subsystem code

272 'mathworks.codegen.SampleTimesTaskingMode', ... % Check

sample times and tasking mode

273 'mathworks.codegen.ConstraintsTunableParam', ... % Check

for blocks that have constraints on tunable parameters

274 'mathworks.codegen.QuestionableBlks', ...

275 'mathworks.codegen.CodeGenSanity', ...

276 'mathworks.codegen.checkEnableMemcpy', ...

277 'mathworks.codegen.toolchainInfoUpgradeAdvisor.check', ... % Check

and update model to use toolchain approach to build generated code

278 'mathworks.codegen.codertarget.check', ... % Check

and update embedded target model to use ert.tlc system target file

279 'mathworks.design.datastoresimrtwcmp', ... % Check

for relative execution order change for Data Store Read and Data Store Write

blocks

280 };

281

282 % Define MISRA compliance checks

283 misraIDs = {

284 'mathworks.misra.CodeGenSettings', ... % Check

configuration parameters for MISRA C:2012

136

A. Appendix A.2. Veri�cation Functions

285 'mathworks.misra.BlkSupport', ... % Check for

blocks not recommended for MISRA C:2012

286 'mathworks.misra.BlockNames', ... % Check for

unsupported block names

287 'mathworks.misra.AssignmentBlocks', ... % Check usage of

Assignment blocks

288 'mathworks.misra.SwitchDefault', ... % Check for

switch case expressions without a default case

289 'mathworks.misra.AutosarReceiverInterface', ... % Check for

missing error ports for AUTOSAR receiver interfaces

290 'mathworks.misra.BusElementNames', ... % Check bus

object names that are used as bus element names

291 'mathworks.misra.ModelFunctionInterface', ... % Check for

missing const qualifiers in model functions

292 'mathworks.misra.CompliantCGIRConstructions', ... % Check for

bitwise operations on signed integers

293 'mathworks.misra.RecursionCompliance', ... % Check for

recursive function calls

294 'mathworks.misra.CompareFloatEquality', ... % Check for

equality and inequality operations on floating-point values

295 'mathworks.misra.IntegerWordLengths', ... % Check integer

word length

296 'mathworks.security.CodeGenSettings', ... % Check

configuration parameters for secure coding standards

297 'mathworks.security.BlockSupport', ... % Check for

blocks not recommended for secure coding standards

298 };

299

300 % Determine which cell arrays to concatenate and return

301 switch lower(option)

302 case 'all'

303 checkIDs = [designIDs, maabIDs, hismIDs, codegenIDs, misraIDs];

304 case 'design'

305 checkIDs = designIDs;

306 case 'advisory'

307 checkIDs = mabIDs;

308 case 'integrity'

309 checkIDs = hismIDs;

310 case 'codegen'

311 checkIDs = codegenIDs;

312 case 'misra'

313 checkIDs = misraIDs;

137

A.2. Veri�cation Functions A. Appendix

314 otherwise

315 error('Invalid option.');

316 end

317 end

1 function runModelAdvisor(model, checkIDs, autoEval, artifactDir)

2 % Run Model Advisor checks on the specified model

3 %

4 % DESCRIPTION

5 % This function runs a specified list of Model Advisor checks

6 % programmatically. It generates an HTML report and a JUnit-compatible

7 % XML results file. It exits with a non-zero code if any checks have

8 % failed and automatic evaluation has been activated.

9 %

10 % INPUTS

11 % model - Name of the Simulink model to analyze

12 % checkIDs - Cell array of Model Advisor check IDs to run

13 % artifactDir - Directory to save the generated report

14 % autoEval - Option to activate automatic evaluation

15 %

16 % OUTPUTS

17 % none

18

19 % Define function arguments and defaults

20 arguments

21 model

22 checkIDs

23 autoEval (1,1) logical = false

24 artifactDir (1,1) string = fullfile(pwd, 'artifacts')

25 end

26

27 % Create artifact directory if necessary

28 if ~exist(artifactDir, 'dir')

29 mkdir(artifactDir);

30 end

31

32 % Define the report format and path

33 reportFormat = 'html';

34 reportName = 'ModelAdvisorReport';

35 xmlReportName = 'ModelAdvisorReport.xml';

36 xmlReportPath = fullfile(artifactDir, xmlReportName);

37

38 % Run Model Advisor checks

138

A. Appendix A.2. Veri�cation Functions

39 checkResult = ModelAdvisor.run(model, checkIDs, ...

40 'DisplayResults', 'Details', ...

41 'ReportFormat', reportFormat, ...

42 'ReportPath', artifactDir, ...

43 'ReportName', reportName);

44

45 % Convert results to JUnit XML format

46 convertToXML(checkResult, xmlReportPath);

47

48 % Determine exit code based on check results if activated

49 if autoEval

50 % Extract SystemResult object

51 systemResult = checkResult{1};

52

53 % Retrieve array of individual check results and preallocate

54 checkObjs = systemResult.CheckResultObjs;

55 failFlags = false(1, length(checkObjs));

56

57 % Populate failFlags array

58 for i = 1:length(checkObjs)

59 failFlags(i) = strcmp(checkObjs(i).status, 'Fail');

60 end

61

62 % Display a message indicating completion

63 if any(failFlags)

64 disp('Model Advisor: Some checks failed. Exiting with error code.');

65 exit(1);

66 else

67 disp('Model Advisor: All checks passed or warnings only.');

68 exit(0);

69 end

70 end

71 end

1 function convertToXML(checkResult, xmlReportPath)

2 % Convert check results to JUnit formatted XML file

3 %

4 % DESCRIPTION:

5 % This function converts the Model Advisor check results into a

6 % JUnit-compatible XML report.

7 %

8 % INPUTS:

9 % checkResult - Cell array containing one SystemResult object

139

A.2. Veri�cation Functions A. Appendix

10 % xmlReportPath - Full path where the XML report is to be saved

11 %

12 % OUTPUTS:

13 % none

14

15 % Extract SystemResult object from check results cell array

16 systemResult = checkResult{1};

17

18 % Get array of individual check results from SystemResult

19 checkObjs = systemResult.CheckResultObjs;

20

21 % Initialize XML document

22 docNode = com.mathworks.xml.XMLUtils.createDocument('testsuites');

23 testsuites = docNode.getDocumentElement;

24

25 % Create a testsuite element with appropriate attributes

26 testsuite = docNode.createElement('testsuite');

27 testsuite.setAttribute('name', 'Model Advisor Checks');

28 testsuite.setAttribute('tests', num2str(length(checkObjs)));

29 testsuites.appendChild(testsuite);

30

31 % Iterate over each check result

32 for i = 1:length(checkObjs)

33

34 % Create test case element and set attributes

35 testCase = docNode.createElement('testcase');

36 testCase.setAttribute('classname', 'Model Advisor Checks');

37 testCase.setAttribute('name', checkObjs(i).checkName);

38 message = 'See Model Advisor report for details.';

39

40 % If check failed, add a failure element with message

41 if strcmp(checkObjs(i).status, 'Fail')

42 failure = docNode.createElement('failure');

43 failure.setAttribute('message', ['Check failed. ' message]);

44 testCase.appendChild(failure);

45

46 % If check returned a warning, add a systemOut element with message

47 elseif strcmp(checkObjs(i).status, 'Warn')

48 systemOut = docNode.createElement('system-out');

49 systemOut.appendChild(docNode.createTextNode(['Check returned a warning.

' message]));

50 testCase.appendChild(systemOut);

140

A. Appendix A.2. Veri�cation Functions

51 end

52

53 % Append test case element to testsuite

54 testsuite.appendChild(testCase);

55 end

56

57 % Write XML document to file

58 xmlwrite(xmlReportPath, docNode);

59 end

1 function metricIDs = getMetricIDs(option)

2 % Get metric IDs

3 %

4 % DESCRIPTION

5 % This function returns metric IDs as a cell array based on the

6 % option provided.

7 %

8 % INPUTS

9 % option - one of the following:

10 % all - returns all available metric IDs

11 % size - returns only size metrics

12 % architecture - returns only architecture metrics

13 % compliance - returns only compliance metrics

14 % readability - returns only readability metrics

15 %

16 % OUTPUTS

17 % metricsList - cell array of metric IDs

18

19 % Define function arguments

20 arguments

21 option (1,1) string

22 end

23

24 % Define size metrics

25 sizeMetrics = {'mathworks.metrics.SimulinkBlockCount',... % Calculates the

number of blocks in the model

26 'mathworks.metrics.SubSystemCount',... % Calculates the

number of subsystems in the model

27 'mathworks.metrics.LibraryLinkCount',... % Calculates the

number of library-linked blocks in the model

28 'mathworks.metrics.MatlabLOCCount',... % Calculates the

number of effective lines of MATLAB code

141

A.2. Veri�cation Functions A. Appendix

29 'mathworks.metrics.SubSystemDepth',... % Calculates the

subsystem depth of the model

30 'mathworks.metrics.IOCount',... % Calculates the

number of inputs and outputs in your model

31 'mathworks.metrics.ExplicitIOCount',... % Calculates the

number of inputs and outputs in your model

32 'mathworks.metrics.FileCount',... % Calculates the

number of model and library files

33 'mathworks.metrics.MatlabFunctionCount',... % Calculates the

number of MATLAB Function blocks in your model

34 'mathworks.metrics.ModelFileCount',... % Calculates the

number of model files

35 'mathworks.metrics.ParameterCount'}; % Calculates the

number of instances of data objects that parameterize the behavior of a model

36

37 % Define architecture metrics

38 architectureMetrics = {'mathworks.metrics.CyclomaticComplexity',... %

Calculates the cyclomatic complexity of the model

39 'mathworks.metrics.CloneContent',... %

Calculates the fraction of total number of subcomponents that are clones

40 'mathworks.metrics.CloneDetection',... %

Calculates the number of clones in components across the model hierarchy

41 'mathworks.metrics.LibraryContent'}; %

Calculates the fraction of total number of components that are linked library

blocks

42

43 % Define compliance metrics

44 complianceMetrics = {'mathworks.metrics.MatlabCodeAnalyzerWarnings',... %

Determines warnings for MATLAB code blocks in your model

45 'mathworks.metrics.DiagnosticWarningsCount',... %

Calculates the number of diagnostic warnings reported

46 'mathworks.metrics.ModelAdvisorCheckCompliance.hisl_do178',... %

Returns the fraction of checks the model passes from Model Advisor

DO-178C/DO-331 Standards

47 'mathworks.metrics.ModelAdvisorCheckCompliance.maab'}; %

Returns the fraction of checks the model passes from Model Advisor MAB Standard

48

49 % Define readability metrics

50 readabilityMetrics = {'mathworks.metrics.DescriptiveBlockNames',... %

Determines nondescriptive Inport, Outport, and Subsystem block names

51 'mathworks.metrics.LayerSeparation'}; %

Calculates the data and structure layer separation

142

A. Appendix A.2. Veri�cation Functions

52

53 % Determine which cell arrays to concatenate

54 switch lower(option)

55 case 'all'

56 metricIDs = [sizeMetrics, architectureMetrics, complianceMetrics,

readabilityMetrics];

57 case 'size'

58 metricIDs = sizeMetrics;

59 case 'architecture'

60 metricIDs = architectureMetrics;

61 case 'compliance'

62 metricIDs = complianceMetrics;

63 case 'readability'

64 metricIDs = readabilityMetrics;

65 otherwise

66 error('Invalid option.');

67 end

68 end

1 function collectModelMetrics(model, metricIDs, artifactDir)

2 % Collect model metrics of the the specified model

3 %

4 % DESCRIPTION

5 % This function collects metrics of a model specified in a list of

6 % metric IDs.

7 %

8 % INPUTS

9 % model - Name of the Simulink model to analyze

10 % metricsList - Cell array of model metrics to calculate

11 % artifactDir - Directory to save the generated report

12 %

13 % OUTPUTS

14 % none

15

16 % Define function arguments and defaults

17 arguments

18 model

19 metricIDs

20 artifactDir (1,1) string = fullfile(pwd, 'artifacts')

21 end

22

23 % Create artifact directory if necessary

24 if ~exist(artifactDir, 'dir')

143

A.2. Veri�cation Functions A. Appendix

25 mkdir(artifactDir);

26 end

27

28 % Initialize the metric engine

29 metricEngine = slmetric.Engine();

30 setAnalysisRoot(metricEngine, 'Root', model);

31

32 % Execute the metrics collection

33 execute(metricEngine, metricIDs);

34

35 % Retrieve and display model metrics

36 res = getMetrics(metricEngine, metricIDs);

37 metricData = {'MetricID', 'ComponentPath', 'Value'};

38

39 % Loop through each metric and display the results

40 cnt = 1;

41 for n = 1:length(res)

42 if res(n).Status == 0

43 results = res(n).Results;

44 for m = 1:length(results)

45 disp(['MetricID: ', results(m).MetricID]);

46 disp([' ComponentPath: ', results(m).ComponentPath]);

47 disp([' Value: ', num2str(results(m).Value)]);

48 metricData{cnt+1, 1} = results(m).MetricID;

49 metricData{cnt+1, 2} = results(m).ComponentPath;

50 metricData{cnt+1, 3} = results(m).Value;

51 cnt = cnt + 1;

52 end

53 else

54 disp(['No results for: ', res(n).MetricID]);

55 end

56 disp(' ');

57 end

58

59 % Export the metrics to an XML file

60 filename = 'MetricResults.xml';

61 exportMetrics(metricEngine, filename, artifactDir);

62

63 disp('Simulink Check: Model Metrics collection completed.');

64 end

1 function runDesignVerifier(model, artifactDir)

2 % Run Simulink Design Verifier in Design Error Detection mode

144

A. Appendix A.2. Veri�cation Functions

3 %

4 % DESCRIPTION

5 % This function configures Simulink Design Verifier for design error

6 % detection, runs the analysis on the specified model and saves a report

7 % with data file.

8 %

9 % INPUTS

10 % model - Name of the Simulink model to analyze

11 % artifactDir - Directory to save the generated report

12 %

13 % OUTPUTS

14 % none

15

16 % Define function arguments and defaults

17 arguments

18 model

19 artifactDir (1,1) string = fullfile(pwd, 'artifacts')

20 end

21

22 % Create artifact directory if necessary

23 if ~exist(artifactDir, 'dir')

24 mkdir(artifactDir);

25 end

26

27 % Configure Simulink Design Verifier for design error detection

28 sldvOptions = sldvoptions;

29 sldvOptions.Mode = 'DesignErrorDetection';

30 sldvOptions.DetectBlockInputRangeViolations = 'off';

31 sldvOptions.DetectDeadLogic = 'off';

32 sldvOptions.DetectDivisionByZero = 'on';

33 sldvOptions.DetectInfNaN = 'off';

34 sldvOptions.DetectIntegerOverflow = 'off';

35 sldvOptions.DetectOutOfBounds = 'off';

36 sldvOptions.DetectSubnormal = 'off';

37 sldvOptions.SaveReport = 'on';

38

39 % Run Design Verifier analysis

40 [status, files, ~] = sldvrun(model, sldvOptions);

41

42 % Handle the status of the analysis and save results

43 switch status

44 case -1

145

A.2. Veri�cation Functions A. Appendix

45 disp('Design Verifier: Analysis exceeded the maximum processing time.');

46 case 0

47 disp('Design Verifier: Error occurred during design error detection.');

48 case 1

49 disp('Design Verifier: Design error detection completed successfully.');

50 % Save the generated report

51 copyfile(files.Report, fullfile(artifactDir,

'DesignVerifierReport.html'));

52 % Save the data file

53 copyfile(files.DataFile, fullfile(artifactDir,

'DesignVerifierData.sldv'));

54 end

55 end

1 function runTests(artifactDir)

2 % Run tests with Simulink Test

3 %

4 % DESCRIPTION

5 % This function runs predefined test cases with Simulink Test.

6 %

7 % INPUTS

8 % artifactDir - Directory to save the generated report

9 %

10 % OUTPUTS

11 % none

12

13 % Define function arguments and defaults

14 arguments

15 artifactDir (1,1) string = fullfile(pwd, 'artifacts')

16 end

17

18 % Create artifact directory if necessary

19 if ~exist(artifactDir, 'dir')

20 mkdir(artifactDir);

21 end

22

23 % Open the test file

24 fileName = 'ControllerTests.mldatx';

25 filePath = fullfile(pwd, 'tests', fileName);

26 sltest.testmanager.load(filePath);

27

28 % Create test suite from test file

29 import matlab.unittest.TestSuite

146

A. Appendix A.2. Veri�cation Functions

30 suite = testsuite(filePath);

31

32 % Create test runner

33 import matlab.unittest.TestRunner

34 runner = TestRunner.withNoPlugins;

35

36 % Add plugin to produce MATLAB Test Report

37 import matlab.unittest.plugins.TestReportPlugin

38 pdfFile = fullfile(artifactDir, 'TestReport.pdf');

39 trp = TestReportPlugin.producingPDF(pdfFile);

40 addPlugin(runner,trp)

41

42 % Add plugin to add Test Manager results to Test Report

43 import sltest.plugins.TestManagerResultsPlugin

44 tmr = TestManagerResultsPlugin;

45 addPlugin(runner,tmr)

46

47 % Add plugin to create XML results file

48 import matlab.unittest.plugins.XMLPlugin

49 resfile = fullfile(artifactDir, 'TestResults.xml');

50 plugin = XMLPlugin.producingJUnitFormat(resfile);

51 addPlugin(runner,plugin)

52

53 % Set coverage metrics to collect

54 import sltest.plugins.coverage.CoverageMetrics

55 cmet = CoverageMetrics('Decision',true);

56

57 % Set coverage report properties

58 import sltest.plugins.coverage.ModelCoverageReport

59 import matlab.unittest.plugins.codecoverage.CoberturaFormat

60 rptfile = fullfile(artifactDir, 'TestCoverage.xml');

61 rpt = CoberturaFormat(rptfile);

62

63 % Create model coverage plugin

64 import sltest.plugins.ModelCoveragePlugin

65 mcp = ModelCoveragePlugin('Collecting',cmet,'Producing',rpt);

66 addPlugin(runner,mcp)

67

68 % Run the test

69 result = run(runner,suite);

70

71 end

147

A.2. Veri�cation Functions A. Appendix

1 function setConfiguration(model)

2 % Set configuration for C++ code generation

3 %

4 % DESCRIPTION

5 % This function configures a specified Simulink model for C++ code

6 % generation with Embedded Coder.

7 %

8 % INPUTS

9 % model - Name of the Simulink model to configure

10 %

11 % OUTPUTS

12 % none

13 %

14 % NOTE

15 % The configuration is taken from the configuration parameters obtained

16 % from the file 'CodeGen.mat' using the script 'getParameters.m'.

17

18 % Set parameters for C++ code generation

19 set_param(model, 'SystemTargetFile', 'ert.tlc'); % System target file

20 set_param(model, 'TargetLang', 'C++'); % Select code

generation language

21 set_param(model, 'GenCodeOnly', 'on'); % Do not execute

makefile when generating code

22 set_param(model, 'TargetLangStandard', 'C++03 (ISO)'); % Language standard

23 set_param(model, 'PackageGeneratedCodeAndArtifacts', 'on'); % Automatically run

packNGo after the build is complete

24 set_param(model, 'BuildConfiguration', 'Faster Runs'); % Choose a build

configuration defined by the toolchain

25

26 % Optimization

27 set_param(model, 'InstructionSetExtensions', 'None'); % Leverage target

hardware instruction set extensions

28 set_param(model, 'InlineInvariantSignals', 'on'); % Precompute and

inline the values of invariant signals

29 set_param(model, 'EfficientFloat2IntCast', 'on'); % Remove code from

floating-point to integer conversions that wraps out-of-range values

30

31 % Report

32 set_param(model, 'GenerateReport', 'on'); % Create code

generation report

33 set_param(model, 'LaunchReport', 'on'); % Open report

automatically

148

A. Appendix A.2. Veri�cation Functions

34

35 % Comments

36 set_param(model, 'ReqsInCode', 'on'); % Insert entered

requirements into the generated code as a comment

37 set_param(model, 'MATLABFcnDesc', 'on'); % Insert MATLAB user

comments into the generated code as comments

38

39 % Identifiers

40 set_param(model, 'MangleLength', 4); % Minimum mangle

length

41

42 % Interface

43 set_param(model, 'SupportComplex', 'off'); % Do not support

complex numbers

44 set_param(model, 'SupportAbsoluteTime', 'off'); % Do not support

absolute time

45 set_param(model, 'SupportContinuousTime', 'off'); % Do not support

continuous time

46

47 % Code Style

48 set_param(model, 'ParenthesesLevel', 'Maximum'); % Specify the level

of parenthesization in the code

49 set_param(model, 'PreserveExpressionOrder', 'on'); % Preserve operand

order in expression

50 set_param(model, 'EnableSignedLeftShifts', 'off'); % Replace

multiplications by powers of two with signed bitwise shifts

51 set_param(model, 'EnableSignedRightShifts', 'off'); % Allow right shifts

on signed integers

52 set_param(model, 'CastingMode', 'Standards'); % Set casting mode

53 end

1 function generateCode(model)

2 % Generate C++ Code from Simulink model

3 %

4 % DESCRIPTION

5 % This function configures a specified Simulink model for C++ code

6 % generation with Embedded Coder, generates code from that model and

7 % extends the archive with a Polyspace options file.

8 %

9 % INPUTS

10 % model - Name of the Simulink model to configure and generate code from

11 %

12 % OUTPUTS

149

A.2. Veri�cation Functions A. Appendix

13 % none

14

15 % Set configuration parameters

16 setConfiguration(model);

17

18 % Generate the code

19 slbuild(model);

20

21 % Generate and package Polyspace options files

22 polyspacePackNGo(model);

23

24 % Display a message confirming code generation completion

25 disp('Embedded Coder: C++ code generation completed.');

26 end

1 function integrated = isPolyspaceIntegrated()

2 % Check if Polyspace is integrated with MATLAB

3 %

4 % DESCRIPTION

5 % This helper function checks for Polyspace integration by verifying

6 % the existence of Polyspace functions within MATLAB.

7 %

8 % INPUTS

9 % none

10 %

11 % OUTPUTS

12 % integrated - true if integrated, otherwise false

13

14 integrated = exist('pslinkoptions', 'file') && exist('pslinkrun', 'file');

15 if integrated

16 disp('Polyspace is integrated with MATLAB.');

17 else

18 disp('Polyspace is not integrated with MATLAB.');

19 end

20 end

1 function runPolyspaceBugFinder(model, artifactDir)

2 % Configure and run Polyspace Bug Finder analysis

3 %

4 % DESCRIPTION

5 % This function configures Polyspace to run a Bug Finder analysis on

6 % a specified model. It uses a polyspace.Project object for

7 % configuration. There are different options available for defect and

150

A. Appendix A.2. Veri�cation Functions

8 % compliance checking.

9 %

10 % INPUTS

11 % model - Name of the Simulink model to analyze

12 % artifactDir - Directory to save the generated report

13 %

14 % OUTPUTS

15 % none

16

17 % Define function arguments and defaults

18 arguments

19 model

20 artifactDir (1,1) string = fullfile(pwd, 'artifacts', 'bugFinder')

21 end

22

23 % Create artifact directory if necessary

24 if ~exist(artifactDir, 'dir')

25 mkdir(artifactDir);

26 end

27

28 % Create Polyspace Project object

29 proj = polyspace.Project;

30

31 % Associate project configuration with model specific information

32 proj.Configuration = polyspace.ModelLinkOptions(model);

33

34 % Configure the analysis

35 proj.Configuration.ResultsDir = artifactDir;

36

37 % Extend defect checking

38 proj.Configuration.BugFinderAnalysis.CheckersPreset = 'all';

39

40 % Enable code metric calculation

41 proj.Configuration.CodingRulesCodeMetrics.CodeMetrics = true;

42

43 % Enable Guideline checkers

44 proj.Configuration.CodingRulesCodeMetrics.EnableGuidelines = true;

45 proj.Configuration.CodingRulesCodeMetrics.Guidelines = 'all';

46

47 % Enable and extend MISRA C++:2008 checking

48 proj.Configuration.CodingRulesCodeMetrics.EnableMisraCpp = true;

49 proj.Configuration.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules';

151

A.2. Veri�cation Functions A. Appendix

50

51 % Configure report generation

52 proj.Configuration.MergedReporting.EnableReportGeneration = true;

53 proj.Configuration.MergedReporting.ReportOutputFormat = 'HTML';

54 proj.Configuration.MergedReporting.BugFinderReportTemplate = 'BugFinder';

55

56 % Run analysis

57 bfStatus = run(proj, 'bugFinder');

58

59 % Open results

60 resultsFile = fullfile(artifactDir,'ps_results.psbf');

61 polyspaceBugFinder(resultsFile)

62 end

1 function runPolyspaceCodeProver(model, artifactDir)

2 % Configure and run Polyspace Code Prover analysis

3 %

4 % DESCRIPTION

5 % This function configures Polyspace to run a Code Prover analysis on

6 % a specified model. It uses a polyspace.Project object for

7 % configuration.

8 %

9 % INPUTS

10 % model - Name of the Simulink model to analyze

11 % artifactDir - Directory to save the generated report

12 %

13 % OUTPUTS

14 % none

15

16 % Define function arguments and defaults

17 arguments

18 model

19 artifactDir (1,1) string = fullfile(pwd, 'artifacts', 'codeProver')

20 end

21

22 % Create artifact directory if necessary

23 if ~exist(artifactDir, 'dir')

24 mkdir(artifactDir);

25 end

26

27 % Create Polyspace Project object

28 proj = polyspace.Project;

29

152

A. Appendix A.2. Veri�cation Functions

30 % Associate project configuration with model specific information

31 proj.Configuration = polyspace.ModelLinkOptions(model);

32

33 % Configure the analysis

34 proj.Configuration.ResultsDir = artifactDir;

35

36 % Configure report generation

37 proj.Configuration.MergedReporting.EnableReportGeneration = true;

38 proj.Configuration.MergedReporting.ReportOutputFormat = 'HTML';

39 proj.Configuration.MergedReporting.CodeProverReportTemplate = 'Developer';

40

41 % Run analysis

42 cpStatus = run(proj, 'codeProver');

43

44 % Open results

45 resultsFile = fullfile(artifactDir,'ps_results.pscp');

46 polyspaceCodeProver(resultsFile)

47 end

1 function generatePolyspaceReport(artifactDir)

2 % Generate report from Polyspace analysis results

3 %

4 % DESCRIPTION

5 % This function uses the more customizable system command to generate

6 % a Polyspace report from a Polyspace results file. A Polyspace

7 % analysis has to be run beforehand to obtain that results file.

8 %

9 % INPUTS

10 % artifactDir - Directory to save the analysis report

11 %

12 % OUTPUTS

13 % none

14

15 % Define parts of the command

16 templatePath = 'C:\Program

Files\Polyspace\R2021b\toolbox\polyspace\psrptgen\templates\bug_finder\BugFinder.rpt';

17 outputName =

'C:\Users\kays_ph\Documents\MATLAB\ThrustController\artifacts\PolyspaceReport.html';

18 format = 'html';

19

20 % Concatenate the full command

21 command = ['polyspace-report-generator -template "', templatePath, ...

22 '" -output-name "', outputName, ...

153

A.2. Veri�cation Functions A. Appendix

23 '" -results-dir "', artifactDir, ...

24 '" -format ', format];

25

26 % Execute the command

27 [status, cmdout] = system(command);

28

29 % Check the status and display appropriate message

30 if status == 0

31 fprintf('Polyspace report generated successfully.\n');

32 else

33 fprintf('Error generating Polyspace report.\n');

34 fprintf('Command output:\n%s\n', cmdout);

35 end

36 end

1 function convertToCodeQuality(inSarifFile, outGitlabFile, autoEval)

2 % Convert a Polyspace SARIF JSON file to a GitLab Code Quality

3 % compliant JSON file.

4 %

5 % DESCRIPTION

6 % This function reads a Polyspace SARIF JSON file and writes out a

7 % JSON file compliant with GitLab Code Quality.

8 %

9 % INPUTS

10 % inSarifFile - Directory and file name of a OASIS SARIF JSON

11 % file exported by Polyspace Bug Finder or Code Prover

12 % outGitlabFile - Intended directory and file name of the created

13 % Code Quality JSON file

14 % autoEval - Option to activate automatic evaluation

15 %

16 % OUTPUTS

17 % none

18

19 % Define function arguments and defaults

20 arguments

21 inSarifFile

22 outGitlabFile

23 autoEval (1,1) logical = false

24 end

25

26 % Read and decode the input SARIF file

27 fid = fopen(inSarifFile, 'r');

28 raw = fread(fid, '*char')';

154

A. Appendix A.2. Veri�cation Functions

29 fclose(fid);

30 sarifData = jsondecode(raw);

31

32 % Initialize an empty struct array for the output

33 gitlabFindings = struct('description', {}, 'check_name', {}, 'fingerprint', {},

...

34 'severity', {}, 'location', {});

35

36 % Counter for unique fingerprint generation

37 resultCounter = 1;

38

39 % Process each run in the SARIF file

40 for iRun = 1:numel(sarifData.runs)

41 runData = sarifData.runs(iRun);

42

43 % Build a mapping from rule IDs to rule names

44 ruleMap = containers.Map;

45 if isfield(runData, 'tool') && isfield(runData.tool, 'driver') && ...

46 isfield(runData.tool.driver, 'rules')

47 for iRule = 1:numel(runData.tool.driver.rules)

48 thisRule = runData.tool.driver.rules(iRule);

49 if isfield(thisRule, 'id') && isfield(thisRule, 'name')

50 ruleKey = strtrim(char(thisRule.id));

51 ruleMap(ruleKey) = thisRule.name;

52 end

53 end

54 end

55

56 % Get the artifact list for file paths

57 artifacts = [];

58 if isfield(runData, 'artifacts')

59 artifacts = runData.artifacts;

60 end

61

62 % If no results, skip this run

63 if ~isfield(runData, 'results')

64 continue;

65 end

66

67 % Process results

68 for iRes = 1:numel(runData.results)

69 if iscell(runData.results) % Bug Finder JSON

155

A.2. Veri�cation Functions A. Appendix

70 res = runData.results{iRes};

71 else % Code Prover JSON

72 res = runData.results(iRes);

73 end

74

75 % Extract description message

76 if isfield(res, 'message') && isfield(res.message, 'text')

77 descriptionText = strtrim(char(res.message.text));

78 else

79 descriptionText = '(No message provided)';

80 end

81

82 % Extract rule ID and look up rule name

83 if isfield(res, 'ruleId')

84 ruleId = strtrim(char(res.ruleId));

85 if isKey(ruleMap, ruleId)

86 checkName = ruleMap(ruleId);

87 else

88 checkName = ruleId;

89 end

90 else

91 ruleId = 'unknown_rule';

92 checkName = 'unknown_rule';

93 end

94

95 % Map severity of analysis results

96 severity = mapSeverity(res);

97

98 % Determine file path from first location

99 filePath = '(no file)';

100 if isfield(res, 'locations') && ~isempty(res.locations)

101 if iscell(res.locations)

102 loc = res.locations{1};

103 else

104 loc = res.locations(1);

105 end

106 if isfield(loc, 'physicalLocation') && ...

107 isfield(loc.physicalLocation, 'artifactLocation') && ...

108 isfield(loc.physicalLocation.artifactLocation, 'index')

109 artIndex = loc.physicalLocation.artifactLocation.index + 1;

110 if ~isempty(artifacts) && artIndex <= numel(artifacts)

111 artifactUri = artifacts(artIndex).location.uri;

156

A. Appendix A.2. Veri�cation Functions

112 % Remove any leading "file:/" or similar prefix

113 filePath = regexprep(artifactUri, '^file:/+', '');

114 end

115 end

116 end

117

118 % Create unique fingerprint

119 fingerprint = sprintf('%s_%d', ruleId, resultCounter);

120 resultCounter = resultCounter + 1;

121

122 % Build GitLab Code Quality finding

123 newFinding = struct(...

124 'description', descriptionText, ...

125 'check_name', checkName, ...

126 'fingerprint', fingerprint, ...

127 'severity', severity, ...

128 'location', struct('path', filePath, 'lines', struct('begin', 1)) ...

129);

130

131 % Append new finding to output struct array

132 gitlabFindings(end+1) = newFinding;

133 end

134 end

135

136 % Encode results to JSON

137 jsonOut = jsonencode(gitlabFindings, 'PrettyPrint', true);

138

139 % Write JSON output

140 fid = fopen(outGitlabFile, 'w');

141 fwrite(fid, jsonOut, 'char');

142 fclose(fid);

143

144 fprintf('Wrote GitLab Code Quality results to: %s\n', outGitlabFile);

145

146 % Quit with exit code 1 if any result has critical severity

147 if autoEval

148 anyCritical = any(strcmp({gitlabFindings.severity}, 'critical'));

149 if anyCritical

150 exit(1);

151 end

152 end

153 end

157

A.2. Veri�cation Functions A. Appendix

1 function severity = mapSeverity(res)

2 % Map the severity of an analysis result

3 %

4 % DESCRIPTION

5 % This function maps the severity of a static analysis result

6 % depending on the analysis performed.

7 %

8 % INPUTS

9 % res - Result

10 %

11 % OUTPUTS

12 % severity - Severity

13

14 % Default severity

15 severity = 'info';

16

17 % Initialize empty strings

18 metaFamily = '';

19 color = '';

20

21 % Obtain properties

22 if isfield(res, 'properties')

23 if isfield(res.properties, 'metaFamily')

24 metaFamily = strtrim(char(res.properties.metaFamily));

25 end

26 if isfield(res.properties, 'color')

27 color = strtrim(char(res.properties.color));

28 end

29 end

30

31 % Use metaFamily mapping for Bug Finder

32 if ~isempty(metaFamily)

33 switch metaFamily

34 case 'Defect'

35 severity = 'major';

36 case 'Coding Rule'

37 severity = 'minor';

38 end

39

40 % Use color mapping for Code Prover

41 elseif ~isempty(color)

42 switch color

158

A. Appendix A.3. Pipeline Con�guration

43 case 'RED'

44 severity = 'critical';

45 case 'GRAY'

46 severity = 'major';

47 case 'ORANGE'

48 severity = 'minor';

49 end

50

51 % Otherwise fallback to level mapping

52 elseif isfield(res, 'level')

53 switch lower(res.level)

54 case 'error'

55 severity = 'major';

56 case 'warning'

57 severity = 'minor';

58 end

59 end

60 end

A.3. Pipeline Configuration

1 # This pipeline includes all verification jobs for the Thrust Controller example

repository.

2 # It defines seven stages and runs seven jobs using the defined templates.

3

4 include:

5 - local: 'jobs/code-analyzer.yml'

6 - local: 'jobs/model-advisor.yml'

7 - local: 'jobs/design-verifier.yml'

8 - local: 'jobs/test.yml'

9 - local: 'jobs/code.yml'

10 - local: 'jobs/bug-finder.yml'

11 - local: 'jobs/code-prover.yml'

12

13 default:

14 tags:

15 - matlab

16 - windows

17

18 stages:

19 - code-analyzer

20 - model-advisor

159

A.3. Pipeline Con�guration A. Appendix

21 - design-verifier

22 - test

23 - code

24 - bug-finder

25 - code-prover

26

27 variables:

28 MODEL: "ThrustController"

29

30 run-code-analyzer:

31 extends: .run-code-analyzer

32 stage: code-analyzer

33

34 run-model-advisor:

35 extends: .run-model-advisor

36 stage: model-advisor

37

38 run-design-verifier:

39 extends: .run-design-verifier

40 stage: design-verifier

41

42 run-tests:

43 extends: .run-tests

44 stage: test

45

46 run-coder:

47 extends: .run-coder

48 stage: code

49

50 run-bug-finder:

51 extends: .run-bug-finder

52 stage: bug-finder

53

54 run-code-prover:

55 extends: .run-code-prover

56 stage: code-prover

1 # This job runs static analysis of MATLAB files with the dedicated function

runCodeAnalyzer,

2 # which calls writeToCodeQuality to display the findings in the GitLab UI.

3

4 .run-code-analyzer:

5 script:

160

A. Appendix A.3. Pipeline Con�guration

6 - echo "Executing Code Analyzer function ..."

7 - matlab -wait -batch "runCodeAnalyzer();"

8 artifacts:

9 reports:

10 codequality:

11 - codeAnalyzerCodeQuality.json

1 # This job runs static analysis of Simulink models with the Model Advisor with a

dedicated function.

2 #

3 # The job expects the following variables to be defined:

4 # - $MODEL

5

6 .run-model-advisor:

7 script:

8 - matlab -wait -batch "loadModel('models/$MODEL'); checkIDs =

getCheckIDs('design'); runModelAdvisor('$MODEL', checkIDs);"

9 artifacts:

10 when: always

11 paths:

12 - artifacts

13 reports:

14 junit: artifacts/ModelAdvisorReport.xml

1 # This job performs model checking in Simulink with a dedicated function.

2 #

3 # The job expects the following variables to be defined:

4 # - $MODEL

5

6 .run-design-verifier:

7 script:

8 - matlab -wait -batch "loadModel('models/$MODEL'); runDesignVerifier('$MODEL');"

9 artifacts:

10 when: always

11 paths:

12 - artifacts

1 # This job executes tests with Simulink Test with a dedicated function.

2 #

3 # The job expects the following variables to be defined:

4 # - $MODEL

5

6 .run-tests:

161

A.3. Pipeline Con�guration A. Appendix

7 script:

8 - matlab -wait -batch "loadModel('models/$MODEL'); runTests();"

9 artifacts:

10 when: always

11 paths:

12 - artifacts

13 reports:

14 junit: artifacts\TestResults.xml

15 coverage_report:

16 coverage_format: cobertura

17 path: artifacts\TestCoverage.xml

1 # This job executes code generation for a specified model with a dedicated function.

2 # It saves the generated archive as artifact to be available for following stages.

3 #

4 # The job expects the following variable to be defined:

5 # - $MODEL

6

7 .run-coder:

8 script:

9 - matlab -wait -batch "loadModel('models/$MODEL'); generateCode('$MODEL');"

10 artifacts:

11 paths:

12 - ThrustControllerWithFunction.zip

1 # This job executes a Polyspace Bug Finder analysis with a generated code archive

that has a Polyspace options file.

2 # It exports and converts the results to be available in GitLab with a dedicated

function.

3 #

4 # Environmental variables:

5 # - $CI_PROJECT_NAME

6 #

7 # File names have to be adjusted manually.

8

9 .run-bug-finder:

10 script:

11 - 7z x ThrustController.zip

12 - cd $CI_PROJECT_NAME\polyspace

13 - polyspace-bug-finder -options-file optionsFile.txt -misra-cpp required-rules

14 - polyspace-results-export -format json-sarif -output-name bugFinderResults.json

15 - cd ..\..

162

A. Appendix A.4. Supplementary Scripts

16 - matlab -wait -batch

"convertToCodeQuality('$CI_PROJECT_NAME\polyspace\bugFinderResults.json',

'bugFinderCodeQuality.json')"

17 artifacts:

18 reports:

19 codequality:

20 - bugFinderCodeQuality.json

1 # This job executes a Polyspace Bug Finder analysis with a generated code archive

that has a Polyspace options file.

2 # It exports and converts the results to be available in GitLab with a dedicated

function.

3 #

4 # Environmental variables:

5 # - $CI_PROJECT_NAME

6 #

7 # File names have to be adjusted manually.

8

9 .run-code-prover:

10 script:

11 - 7z x ThrustController.zip

12 - cd $CI_PROJECT_NAME\polyspace

13 - polyspace-code-prover -options-file optionsFile.txt

14 - polyspace-results-export -format json-sarif -output-name codeProverResults.json

15 - cd ..\..

16 - matlab -wait -batch

"convertToCodeQuality('$CI_PROJECT_NAME\polyspace\codeProverResults.json',

'codeProverCodeQuality.json')"

17 artifacts:

18 reports:

19 codequality:

20 - codeProverCodeQuality.json

A.4. Supplementary Scripts

1 % runVerification.m

2 %

3 % DESCRIPTION

4 % This script defines model and directories and subsequently runs all

5 % functions defined for the automated verification and code generation

6 % for the Thrust Control simulation.

7

163

A.4. Supplementary Scripts A. Appendix

8 close all

9 clear

10 clc

11

12 %% Load model

13 model = 'DiscreteThrustControl';

14 loadModel(model);

15

16 %% Check Model Compliance with Model Advisor and Simulink Check

17 checkIDs = getCheckIDs('design');

18 runModelAdvisor(model, checkIDs);

19

20 %% Collect Model metrics with Simulink Check

21 metricIDs = getMetricIDs('all');

22 collectModelMetrics(model, metricIDs);

23

24 %% Run Design Error Detection with Simulink Design Verifier

25 runDesignVerifier(model);

26

27 %% Run Tests with Simulink Test

28 runTests();

29

30 %% Generate C++ Code with Embedded Coder

31 generateCode(model);

32

33 %% Run Polyspace Bug Finder Analysis

34 if isPolyspaceIntegrated()

35 runPolyspaceBugFinder(model);

36 end

37

38 %% Run Polyspace Code Prover Analysis

39 if isPolyspaceIntegrated()

40 runPolyspaceCodeProver(model);

41 end

42

43 %% Close the model

44 close_system(model, 0);

45 disp('Script completed all tasks.');

1 % getParameters.m

2 %

3 % DESCRIPTION

4 % This script obtains the simulation parameters for the Thrust Control

164

A. Appendix A.4. Supplementary Scripts

5 % simulation using functionality of the Control Systems Toolbox.

6

7 close all

8 clear

9 clc

10

11 %% Define Thrust Chamber as Plant

12

13 % Define parameters

14 R = 300; % Specific gas constant in J/kg-K

15 T_c = 3200; % Chamber temperature in K

16 c_s = 1700; % Characteristic velocity in m/s

17 A_t = 1.0e-4; % Nozzle throat area in m^2

18 V_c = 5.0e-3; % Chamber volume in m^3

19

20 % Compute transfer function variables

21 K_p = c_s / A_t;

22 tau_p = (V_c * c_s) / (R * T_c * A_t);

23

24 % Create transfer function object

25 G_p = tf(K_p, [tau_p, 1]);

26

27 % Create stace-space model object

28 S_p = ss(G_p);

29

30 % Convert to discrete time and compare

31 S_pd = c2d(S_p,0.001,'foh');

32 step(S_p,'-',S_pd,'--');

33

34 %% Define Valve as Actuator

35

36 % Define parameters

37 m_d_max = 0.1; % Maximum mass flow in kg/s

38 tau_v = 0.1; % Valve response time in s

39

40 % Create transfer function object

41 G_a = tf(m_d_max, [tau_v, 1]);

42

43 % Create space-space model object

44 S_a = ss(G_a);

45

46 % Convert to discrete time and compare

165

A.4. Supplementary Scripts A. Appendix

47 S_ad = c2d(S_a,0.001,'foh');

48 step(S_a,'-',S_ad,'--');

49

50 %% Define Kalman Filter for Plant

51

52 % Provide a model sys that has an input for the noise w.

53 % sys is not the same as Plant, because Plant takes the input un = u + w.

54 sys = S_pd*[1 1];

55

56 % Specify the noise covariances. Assume both noise sources have unit

57 % covariance and are not correlated (N = 0)

58 Q = 1;

59 R = 1;

60 N = 0;

61

62 % Design the filter

63 [kalmf,L,P] = kalman(sys,Q,R,N);

64

65 %% Define parameters explicitly

66

67 % Simulation parameters

68 P_c_set = 1e6; % Chamber pressure set point

69 r_m_set = 1.5; % Mixture ratio set point

70 m_d_0 = 1e-3; % Nonzero initial actuator state

71

72 % Plant parameters

73 S_pd.A = 0.9888; % Plant state transition matrix

74 S_pd.B = 16.2002; % Plant control input matrix

75 S_pd.C = 1.1719e+04; % Plant measurement matrix

76 S_pd.D = 9.5640e+04; % Plant feedthrough matrix

77

78 % Actuator parameters

79 S_ad.A = 0.9900; % Actuator state transition matrix

80 S_ad.B = 9.9006e-04; % Actuator control input matrix

81 S_ad.C = 1; % Plant measurement matrix

82 S_ad.D = 4.9834e-04; % Plant feedthrough matrix

1 % getConfiguration.m

2 %

3 % DESCRIPTION

4 % This script obtains and lists all configuration parameters of a model

5 % that are not set to their default values.

6

166

A. Appendix A.4. Supplementary Scripts

7 % Clear workspace

8 clear

9 clc

10

11 % Load the specified configuration set

12 data = load('CodeGen.mat');

13 configSet = data.('CodeGen_cfg');

14

15 % Create default configuration set for comparison

16 defaultConfigSet = Simulink.ConfigSet;

17 set_param(defaultConfigSet, 'SystemTargetFile', 'ert.tlc');

18

19 % Retrieve all parameter names from loaded configuration set

20 loadedParameters = get_param(configSet, 'ObjectParameters');

21 paramNames = fieldnames(loadedParameters);

22

23 % Retrieve parameters from default configuration set

24 defaultParameters = get_param(defaultConfigSet, 'ObjectParameters');

25 nonDefaultParams = {};

26

27 % Compare parameters between loaded and default configuration set

28 for n = 1:length(paramNames)

29 paramName = paramNames{n};

30

31 % Check if parameter exists in both configurations

32 if isfield(defaultParameters, paramName)

33 currentValue = get_param(configSet, paramName);

34 defaultValue = get_param(defaultConfigSet, paramName);

35

36 % Compare values

37 if ~isequal(currentValue, defaultValue)

38 nonDefaultParams{end+1, 1} = paramName; %#ok

39 nonDefaultParams{end, 2} = currentValue;

40 nonDefaultParams{end, 3} = defaultValue;

41 end

42 else

43 warning('Parameter "%s" not found in default configuration set.', paramName);

44 end

45 end

46

47 % Display non-default parameters

48 disp('Configuration parameters not set to their default values:');

167

A.4. Supplementary Scripts A. Appendix

49 disp(table(nonDefaultParams(:,1), nonDefaultParams(:,2), nonDefaultParams(:,3), ...

50 'VariableNames', {'ParameterName', 'CurrentValue', 'DefaultValue'}));

1 % getInputs.m

2 %

3 % DESCRIPTION

4 % This script obtains input data from a simulation in a MAT file for

5 % the signals that have been enabled for logging.

6

7 % Run the simulation and log the signals enabled for logging

8 simOut = sim('DiscreteThrustControl');

9

10 % Retrieve logged data from simulation output

11 logs = simOut.get('logsout');

12

13 % Save dataset to MAT file

14 save('inputData.mat', 'logs');

15

16 % Visualize the logged input signal for confirmation

17 inputSignal = logs.getElement('P_c').Values;

18 figure;

19 plot(inputSignal.Time, inputSignal.Data);

20 xlabel('Time (s)');

21 ylabel('Signal Value');

22 title('Logged Input Signal');

23

24 disp('Script completed all tasks.');

1 % createTests.m

2 %

3 % DESCRIPTION

4 % This script creates arbitrary test cases for testing with Simulink Test.

5

6 % Create the test file, test suite, and test case structure

7 tf = sltest.testmanager.TestFile('controllerBaselineTest');

8 ts = createTestSuite(tf,'Baseline Test Suite');

9 tc = createTestCase(ts,'baseline','Baseline Test Case');

10

11 % Remove the default test suite

12 tsDel = getTestSuiteByName(tf,'New Test Suite 1');

13 remove(tsDel);

14

15 % Assign the system under test to the test case

168

A. Appendix A.4. Supplementary Scripts

16 setProperty(tc,'Model','DiscreteThrustControlWithFunction');

17

18 % Capture the baseline criteria

19 baseline = captureBaselineCriteria(tc,'baselineData.mat',true);

20

21 % Set the baseline criteria tolerance for one signal

22 sc = getSignalCriteria(baseline);

23 sc(1).AbsTol = 0.1;

24

25 % Turn on coverage settings at test-file level

26 cov = getCoverageSettings(tf);

27 cov.RecordCoverage = true;

28

29 % Enable MCDC and signal range coverage metrics

30 cov.MetricSettings = 'mr';

169

Declaration of Authorship

I hereby a�rm that I have written the present work independently and have used no sources

or aids other than those indicated. All parts of my work that have been taken from other

works, either verbatim or in terms of meaning, have been marked as such, indicating the

source. The same applies to drawings, sketches, pictorial representations and sources from

the internet, including AI-based applications or tools. The work has not yet been submitted

in the same or a similar form as a �nal examination paper.

I have used AI-based applications and/or tools and documented them in the appendix "Use

of AI-Based Applications".

Date Signature

Declaration of Publication

I agree that my thesis may be viewed by third parties in the university archive for academic

purposes.

I agree that my thesis may be viewed by third parties for academic purposes in the university

archive after 30 years (in accordance with §7 para. 2 BremArchivG).

Date Signature

Declaration of Consent

Submitted papers can be checked for plagiarism using quali�ed software in accordance with

§ 18 of the General Section of the Bachelor’s or Master’s Degree Examination Regulations

of the University of Bremen. For the purpose of checking for plagiarism, the upload to the

server is done using the plagiarism software currently used by the University of Bremen.

I agree that the work I have submitted and written will be stored permanently on the ex-

ternal server of the plagiarism software currently used by the University of Bremen, in a

library belonging to the institution (accessed only by the University of Bremen), for the

above-mentioned purpose.

Consent to the permanent storage of the text is voluntary. Consent can be withdrawn at any

time by making a declaration to this e�ect to the University of Bremen, with e�ect for the

future. Further information on the checking of written work using plagiarism software can

be found in the data protection and usage concept. This can be found on the University of

Bremen website.

With my signature, I con�rm that I have read and understood the above explanations and

con�rm the accuracy of the information provided.

Date Signature

Use of AI-Based Applications

All prompts were submitted to the o�cial Matlab GPT by MathWorks. Where suitable,

follow-up queries were submitted after the listed prompts.

Number Prompt Comment

1 Explain the basics of Git and GitLab. Good �rst overview. More help-

ful for Git as GitLab’s own doc-

umentation is very comprehen-

sive.

2 Explain to me how I can perform static analy-

sis of Matlab code.

Good introduction into the

legacy MLint and more recent

Code Analyzer and codeIssues

capabiltites.

3 Explain to me what Simulink Check is and

how to use it.

Overview of product. Read-

ing the documentation was then

found to be more helpful.

4 Explain the following message: The model

includes �oating-point arithmetic. Simulink

Design Veri�er approximates �oating-point

arithmetic with rational number arithmetic.

initial understanding of

Simulink Design Veri�er.

5 Brainstorm ideas for a system to be mod-

eled in Simulink. The model shall be used

to demonstrate the Simulink model-based

veri�cation work�ow using Simulink Design

Veri�er, Simulink Check, Simulink Test and

Simulink Coverage in an illustrative way.

Initial ideas for the example

project. After that, further liter-

ature research was required re-

garding the suitability.

6 Explain to me how model checking can be ap-

plied to control systems. I know that model

checking can be done for models that employ

logical conditions, switching (e.g. as state ma-

chine), but I don’t understand how that can be

applied to a feedback control system.

Generic answer with a lot of un-

certainty. In the end not in-

cluded in thesis as there is no

certainty here.

7 Walk me through the process of discretizing

and building the model outlined in the �gure

in the attachment in Simulink.

GPTs are currently still not very

helpful in modeling.

8 Explain to me how to model a rocket engine

fuel valve, that has pressure and area as an in-

put and mass �ow as an output in Simulink as

a discrete transfer function.

Another more concrete attempt.

9 Explain to me how i can a) enforce custom

coding guidelines and b) trace back errors

from code to model in a model-based software

engineering work�ow using Matlab Embed-

ded Coder and Polyspace products.

Initial understanding of these

products. Again, reading the

documentation was more help-

ful.

10 Explain the attached paper to me. Explanation of Stålmarck’s

proof method for propositional

logic. Was decided to be out of

scope for this thesis.

11 Show me how to implement the transfer func-

tion (�rst equation on page 2) from this paper

in Simulink.

Modeling the contents of the pa-

per Overview of Rocket Engine

Control.

12 Generate a Matlab script, that for a model �le

performs veri�cation with the attached Mat-

lab/Simulink veri�cation products.

Initial draft of

runVerification.m.

13 Encapsulate the functionality of the attached

scripts in functions.

Initial draft of veri�cation func-

tions.

14 Write a Matlab script that opens a con�gSet

�le stored in a .mat �le and lists all con�gura-

tion parameters that are not set to their default

value.

Initial draft of

getConfiguration.m.

15 Describe how to model this closed loop rocket

engine control in open loop. Most important

tome is what would be the required inputs and

outputs.

Better understanding but in the

end discarded.

16 Walk me through the di�erences between

MISRA C++ 2008 and 2023.

Very detailed and comprehen-

sive but cumbersome to verify.

17 Name all changes from C++03 to C++11. Again very detailed but not eas-

ily veri�able.

18 Change the following function so that instead

of the valve area, it accepts the “opening” as a

value from 0 to 1.

Normalization after unfavorable

numeric results.

19 Describe how Git �ow, GitHub �ow and Git-

Lab �ow work.

Overview of branching strate-

gies.

20 What steps are necessary in order to create a

GitLab runner.

Again, documentation was

more helpful after getting an

overview.

21 Explain to me how the results of a Polyspace

analysis are typically processed in an auto-

mated way.

GPT was not aware of export

functionality, but remarks about

other tools were helpful.

22 Compare the CodeClimate report format to

the SARIF format.

Information from the GitLab

documentation.

23 How can I verify the toolbox requirements of

a Matlab command?

Not always trivial.

24 Can a GitLab CI/CD pipeline be con�gured to

pass or fail depending on speci�c command

line output?

Helpful explanation about exit

codes.

25 In a GitLab CI/CD pipeline, how can I save and

reuse artifacts from one job to another?

Pointer to documentation and

artifact default behavior.

26 Look into the following repository:

https://github.com/dapperfu/Jenkins-

Simulink-Model-Advisor and explain what it

does.

Initial idea of results reporting

in GitLab.

27 The attached �le contains a list of Model Ad-

visor checks. Group the individual check IDs

into cell arrays in a useful way.

GPTwas not able to reliably per-

form this task.

28 Provide an example function for programmat-

ically running Model Advisor checks and ex-

porting them as XML.

Initial draft of Model Advisor

automation.

29 Explain statement, decision and condition

coverage with a simple control �ow graph.

Helpful explanation but exam-

ple was not very suitable.

30 Consider the attached papers and everything

else you know about chemical rocket engine

control. Is it possible to describe an atti-

tude thruster for a spacecraft as a linear time-

invariant system?

Helpful to some degree.

31 Brainstorm ways to combine a basic PID con-

troller and a simple state machine in a control

loop.

Initial idea of gain scheduling

with a FSM.

32 How are pressure-fed spacecraft propulsion

systems throttled? What is controlled and

how?

Not entirely accurate summary.

33 Verify that both example �les are indeed struc-

tured the same. List di�erences that might af-

fect analysis of the �les with Matlab.

Troubleshooting the JSON �le

conversion for Polyspace re-

sults.

34 Develop a Matlab function that converts re-

sults �les provided by Polyspace analyses in

the OASIS SARIF JSON format to a GitLab

Code Quality compliant JSON �le.

Initial draft that had to be trou-

bleshooted extensively.

35 The attached image tries to illustrate what

happens during the analysis phase of compi-

lation, i.e. lexical analysis and syntax analysis.

Find amore illustrative example with a shorter

statement.

Shorter example provided.

36 The attached image is an excerpt of an expla-

nation of abstract interpretation. I am not sure

what the bene�t of using such aHasse diagram

is. Try to �nd a way to explain abstract in-

terpretation how it is done by static analysis

tools.

Helpful in addition to Cousot’s

literature.

37 Append the main function so that Matlab is

quit with an exit code 1 when there is at least

one result with severity ’critical’.

Inclusion of autoEval function-

ality.

38 Simulink Design Veri�er to the my best

knowledge is a Model Checker integrated into

Simulink. As far as I know, model checking

is only applicable to �nite automata, however

the Toolbox in principle seems to be compati-

ble also with, say, a standard closed-loop con-

trol loop with a PID controller. Explain to me

in detail how this is possible from a theoretical

point of view.

Another attempt that resulted in

vague information.

39 The following excerpt is from an introduction

in abstract interpretation for static analysis.

Explain what it means.

Better explanation of the back-

ground of soundness in proof

theory.

40 Assume a standard control loop including the

conventional Controller, Actuator and Plant

blocks. When I want to implement a very ba-

sic Kalman �lter, how do I have to connect it

correctly?

Overview of Kalman �lter inte-

gration, in the end excluded.

41 Transform the attached in SI units. Processing of values from Rocket

Propulsion Elements.

42 WhenK is the nominator in a transfer function

of a LTI system, is then always C=K in its state

space representation?

Con�rmation after the derived

state-space representation

seemed quite simple.

43 Compare cppcheck, Polyspace and Astrée. A rather generic overview, with

more details found in the docu-

mentation.

44 The following is a list of Simulink checks re-

lating to compliance. Try to group and sum-

marize them according to their meaning.

Another unsuccessful attempt.

45 Write Matlab code that performs the exact

same task as the depicted subsystem.

Initial function implementation.

46 In the Kalman Filter Simulink block, what

needs to be speci�ed in the System Model sec-

tion of its properties?

Understanding of Kalman �lter

in Simulink, later excluded.

47 Explain what MathWorks means with HISM.

Is HISM itself a standard?

Understanding of Simulink

modeling guidelines.

48 I want to use equivalence testing in Simulink

Test to verify the performance/accuracy of a

Kalman Filter in a conventional feedback con-

trol loop. What signals would I need to com-

pare?

Understanding of Kalman �lter

in Simulink, later excluded.

49 Matlab code does not need to be compiled to be

run, right? So, from knowing that static anal-

ysis is somewhat similar to compilation, what

are the di�erences in Matlab?

Not quite accurate overview of

static analysis for interpreted

languages.

50 Explain in detail the Simulink model con�gu-

ration and con�guration parameters.

Good overview of model con�g-

uration behavior.

51 Explain OOP in Matlab. Good overview of how Mat-

lab handles object-oriented pro-

gramming.

52 Summarize chapter 2 of this paper. Another summary of A Tutorial

on Stålmarck’s Proof Procedure

for Propositional Logic.

53 What is a level-2 Matlab S-function? Overview of S-functions.

54 What exactly is a Design Veri�er model repre-

sentation?

Another vague answer.

55 Explain static and dynamic memory allocation

in C/C++.

Good explanation of the ques-

tion.

56 How exactly are numeric data types handled

in Matlab?

Overview of typing in Matlab.

57 Consider the following Matlab function. In-

stead of using one control function, I want to

implement this control behavior as a state ma-

chine with the attached logic.

Initial version of the FSM imple-

mentation.

58 What are the phases in the testing process ac-

cording to ISTQB?

Reminder of the testing process.

59 Give an overview of C++ versions and their in-

dividual features/changes. Add some historic

context where suitable.

Good overview of the question.

60 Show me how to declare optional input ar-

guments to a Matlab function with a default

value.

Overview of argument handling

functionality in Matlab.

61 With the goal of code generation, is it possible

to implement a controller in a Simulink sim-

ulation model and then generate code for the

subsystem, or do I have to save it as individual

model and reference it in the simulation?

Understanding the relation of

model referencing and code

generation.

62 I have two version of Matlab installed. When

starting in batch mode, how do i specify the

version?

Help in handling automated ex-

ecution.

63 I have my machine set up as a GitLab runner.

When I run Matlab from the command line, it

works as expected, but when I run the exact

same command in the corresponding GitLab

pipeline, there is a license error. Is this to be

expected?

Fruther help in handling auto-

mated execution.

64 How can I set variables from within a Matlab

function to be available from the Workspace?

Use of the function assignin

that is not advisable.

65 Is there an equivalent to Clang-format for

Matlab code?

Reference to third-party open

source tools.

66 I have a GitLab pipeline comprised of several

stages. Show me how to encapsulate each of

its job in a separate yml �le.

Explanation of CI/CD compo-

nents.

67 What options do I have for queuing GitLab

pipeline executions (based on the availability

of a license that software run in the pipeline

needs)?

68 Suppose my repository is located at

something/my-repo and called “My Repo”,

what GitLab CI variable will output “my-repo”

instead of “My Repo”?

Understanding GitLab variables.

69 In software development, what is an integra-

tion or an release build?

Better understanding of conven-

tional software development.

70 Explain the context of

com.mathworks.xml.XMLUtils.

Overview of the Matlab Java

XML processing API.

71 Is there something similar to the classes

plugins.codecoverage.CoverageResult and

coverage.result.CoverageSummary in earlier

releases of Matlab?

Explanation when which func-

tionality was added.

72 How can I programmatically access the cover-

age results for display in merge requests using

Matlab/Simulink R2021b?

Explanation of missing func-

tionality.

	Introduction
	Fundamentals
	Guidance, Navigation and Control Modeling
	Software Management
	Version Control
	Repository Management
	Continuous Integration

	Software Testing
	Terminology
	Testing Techniques

	Static Analysis
	Terminology
	Abstract Interpretation
	Model Checking

	Motivation and Goal
	Methods and Tools
	Thrust Controller Simulation
	Controller Function
	Finite State Machine

	Verification
	Static Analysis of Matlab Code
	Static Analysis in Simulink
	Model Checking in Simulink
	Testing in Simulink
	Code Generation
	Static Analysis of Generated Code

	Automation
	Code Analyzer
	Model Advisor
	Simulink Test
	Polyspace

	Results
	Matlab Code Analyzer
	Simulink Model Advisor
	Simulink Design Verifier
	Simulink Test
	Embedded Coder
	Polyspace

	Discussion
	Conclusion and Outlook
	Appendix
	Model Functions
	Verification Functions
	Pipeline Configuration
	Supplementary Scripts

