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PHASES OF CONTRAIL EVOLUTION




Recap of contrail formation (see Feijia‘s lecture) ‘#7
DLR

= Contrall formation proceeds in approx. 1/3 s

= Condensation on emitted soot particles when
water saturation is reached and exceeded

= The number of ice particles formed depends
on the number of soot particles emitted

= New results indicate a larger role of nvPM in
contrail formation even under soot rich
conditions.

» If no soot is emitted (e.g. LH2), condensation
proceeds on ambient particles and co-
emitted nvPM.
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Phases (regimes) of contrail evolution ‘#7
DLR
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Contrail evolution
1. Jet phase

= Jet phase (0-20 s)

» The exhaust leaves an engine with quite high
speed relative to the ambient air, forming a jet.
At the boundary between the jet and the
ambient air the large speed gradient causes
friction, hence turbulent mixing leads to an
iIncrease of the jet plume cross section and
decelerates the jet.

= The plume cross section increases nearly
linearly with time.

= The mixing with ambient air causes temperature
to decrease within the plume until the jet phase
ends.

= The jet phase ends when the plume evolution
starts to become controlled by the wing vortices.
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Contrail evolution ‘#7
2. Vortex phase — formation of a vortex pair DLR

lateral flow speed

air flow above and
below wing
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Contrall evolution

2. Dynamics during the vortex phase

Vortex phase (20 — 150 s)

Interaction of the vortex tubes leads to a
descent of approx. 2 m/s, up to 300-500 m;

Exhaust gases and ice crystals are captured
and confined inside the vortex tubes;

Descent leads to adiabatic compression and
this leads to partial evaporation of the ice
crystals;

Descent and counter-rotation of the vortex
tubes leads to the formation of secondary
vortices above the primary vortices;

Inhomogeneity of the air leads to instability
and ultimately to vortex decay, with
Interesting dynamic effects.
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Contrail evolution
3. Vortex decay - examples

Fotos von Anonymous, Klatt, und Gao
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Contrail evolution
4. Dispersion phase

Dispersion phase (minutes to hours)

Aircraft-induced dynamics ends, the
dynamics of the atmosphere and its
thermodynamic properties determines the
further development;

Wind shear spreads the contrail horizontally
(typical value: pedestrian speed);

Contralils are advected with the wind:;

Ice crystals grow In ice-supersaturated
conditions until they get heavy enough to
sediment and sublimate in drier air

or large-scale subsidence or decoupling of
contrail and ISSR lead to contrall
termination.

K. Gierens, ECATS-BeCoM Contrail workshop, Leiden, 12 Aug. 2025
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ICE SUPERSATURATION
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Ice supersaturated regions (ISSRs)

Only persistent contrails impact climate;

Persistence requires ice supersaturation (RHi > 100%);

Ilce supersaturation is frequent at 0-200 hPa beneath the tropopause;
About 10-15% of flight distances in ISSRs
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Climatology of ISS ‘#7
DLR
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» Horizontally

« The horizontal distribution of ISSRs varies
with the pressure altitude (tropopause) and
saisonally.

 Particularity over Antarctica

(Spichtinger et al., 2003, MLS data)
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Properties of ISSRs

* The degree of ice supersaturation Is
exponentially distributed (mean ~ 15%)

= |[SSRs are a few K colder than their environment
» |[SSRs are moister than their environment (~x 2)

= A typical pathlength through ISSRs is 150 km,
but with very wide variability

» |ISSRs are on the order of 500 m thick, but again
with wide variability

» |[SSRs are inhomogeneous objects, thus
estimations of horizontal and vertical extension
depend on the spatio-temporal resolution of the
humidity sensor

K. Gierens, ECATS-BeCoM Contrail workshop, Leiden, 12 Aug. 2025
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CONTRAIL LIFETIMES
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Contrail termination mechanisms 4#7
DLR

Contrall lifetime is constrained by

\
 the sedimentation of ice crystals sedimentation
Into lower, subsaturated levels time-scale
N Tsed
* the blowing out of the ice crystals combined
from the parent ISSRs by the wind > time-scale
¢ s_ynoptic Teom
* the reduction of supersaturation time-scale
down to subsaturation due to large- Tovn
scale subsidence ) y )
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Time-scale for sedimentation (t..4) Of iCce crystals 4#7
In cirrus and contraills DLR
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Kinematics of ISSRs 4#7
DLR

Contrails Ice supersaturation
 consist of (material) ice crystals * |s an immaterial feature
move with the wind does not generally move with the wind
 contrails may be driven out of the * lifetime is limited by the dynamics of
ISSR - terminates their existence the atmosphere

differences between the wind and

the motion of ISSRs

K. Gierens, ECATS-BeCoM Contrail workshop, Leiden, 12 Aug. 2025




ldentification of ISSRs in weather model data ‘#7
DLR
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2D-histograms of speeds and directions of motion 4#7

DLR
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Time-scale for contrails to leave an ISSR with the 4#7
DLR
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Time-scale for contrails to leave an ISSR with the 4#7
DLR

wind (tsy,)
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Time-scale for contrails to leave an ISSR with the 4#7
DLR
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The combined time-scale (t.,mp) 4#7
DLR
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Contrail tracking

= Automatic Contrail Tracking

Algorithm (ACTA) by M. Vazquez-
Navarro

= Example case 10.04.2014 0900-
1405 UTC
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Statistical determination of contrail lifetimes

= Survival function ACTA — Weibull-d.

» Add unobserved age at appearance
In the sat. Image and

* make a statistical extrapolation to
unobservable spreading at the end:

S(t+9)
S(1)

» = |ifetime statistics (Gierens &
Vazquez-Navarro, 2015)

P{T >1t+6|T >1}=
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Extremely longlived contrail examples
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Haywood et al., 2009
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SUMMARY AND CONCLUSIONS




Summary and conclusions 4#7
DLR

= Contrail evolution undergoes various phases: Jet phase, Vortex Phase,
Dissipation and Dispersion regimes. Persistent contrails survive into the
Dispersion regime. Only persistent contrails are relevant for climate.

» 10-15% of contrails are persistent.

= Main contrail termination processes are crystal sedimentation (z,.,),

subsidence and decoupling of contrails from their parent ISSR (z,,,).
» Both timescales are a couple of hours.
= For SAF to be an option for contrall effect mitigation, 7,4 < 7 ,, must result.

= Mean contrall lifetimes are 2-3 hours, but 20% have lifetimes > 5h.

K. Gierens, ECATS-BeCoM Contrail workshop, Leiden, 12 Aug. 2025
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