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Pollinating insects provide essential ecosystem services, and using time-lapse photography to 
automate their observation could improve monitoring efficiency. Computer vision models, trained 
on clear citizen science photos, can detect insects in similar images with high accuracy, but 
their performance in images taken using time-lapse photography is unknown. We evaluated the 
generalisation of three lightweight YOLO detectors (YOLOv5-nano, YOLOv5-small, YOLOv7-tiny), 
previously trained on citizen science images, for detecting ~ 1,300 flower-visiting arthropod individuals 
in nearly 24,000 time-lapse images captured with a fixed smartphone setup. These field images 
featured unseen backgrounds and smaller arthropods than the training data. YOLOv5-small, the model 
with the highest number of trainable parameters, performed best, localising 91.21% of Hymenoptera 
and 80.69% of Diptera individuals. However, classification recall was lower (80.45% and 66.90%, 
respectively), partly due to Syrphidae mimicking Hymenoptera and the challenge of detecting smaller, 
blurrier flower visitors. This study reveals both the potential and limitations of such models for real-
world automated monitoring, suggesting they work well for larger and sharply visible pollinators but 
need improvement for smaller, less sharp cases.
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 Pollinators play a crucial role in sustaining our ecosystems and ensuring food security. Yet they face an alarming 
decline1,2which has the potential to alter the structure of plant-pollinator interactions and the services that 
these pollinators provide3. Hence, there is a growing focus on understanding trends in pollinator abundance 
and diversity, along with plant-pollinator interaction structures, in order to comprehend the drivers of change 
and guide management strategies (e.g., the EU Pollinators Initiative4. Detecting trends requires standardised 
monitoring efforts over time and space. Traditional methods involve capturing pollinators and identifying them 
using microscopy5,6 or DNA barcoding7. However, these methods are resource-intensive and require killing 
the pollinators. In this context, emerging technologies in machine learning, computer vision and portable 
microcomputers have the potential to automate the monitoring of pollination8 and to do so in a non-lethal way9.

Recent advancements in computer vision, particularly in deep convolutional neural networks (CNNs), have 
seen a surge in popularity. A notable aspect of this trend is the considerable effort developers have invested 
in documenting the use of such architectures, exemplified by code bases like Ultralytics10Detectron211 or 
Pytorch-Wildlife12. This, coupled with ongoing improvements in sensors, camera traps, smartphones and 
programmable microcomputers equipped with graphics processing units (GPUs, e.g., Raspberry Pi 513, Luxonis 
OAK modules14NVIDIA Jetson Nano Developer Kit15Coral Dev Board16Qualcomm Snapdragon17, has expanded 
the application of CNNs in wildlife monitoring18,19. These technologies are also increasingly being utilised in 
pollination monitoring8,20–25.
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CNN performance scales logarithmically with training dataset size26. However, these models typically show 
optimal generalisation primarily with data from imaging techniques similar to those used in training27,28. Their 
performance often drops when training and test data distributions differ29–31. This is less problematic if CNNs are 
applied to images closely resembling training data. For monitoring plant-pollinator interactions, cameras must 
be mounted above diverse flowers, inflorescences, or flower patches in varying field conditions. This presents a 
unique distribution shift challenge for CNNs trained for pollinator localisation and classification using images 
captured by citizen scientists32. Particularly, images from citizen-science platforms can exhibit bias, typically 
being well-lit and well-focused, with the subject usually centred and tightly framed27,33 as contributors are 
encouraged to upload their best images, and to crop around the target organism to aid community identification34. 
While these images can be used for training classifiers, they may pose challenges for developing generalisable 
object detectors that can be used for autonomous cameras mounted above flowers in field conditions, which will 
capture relatively small pollinators against complex floral backgrounds and with little to no user intervention.

CNN studies typically split an available image dataset into training, validation, and test sets, all sampled from 
the same distribution of images. In-distribution testing evaluates model performance on a test set drawn from 
this distribution. In contrast, Out-of-Distribution (OOD) testing evaluates models on unseen images from the 
same domain (e.g., pollinator monitoring) but with a shifted distribution28,35,36. While model performance is 
often assessed using an in-distribution test set, OOD tests better reveal a model’s ability to adapt to a wider range 
of images, providing a tougher, more realistic measure of its learning and generalisation skills.

For pollinating insects, images from citizen science platforms are an abundant source for training CNN 
models. We have shown, using an in-distribution test, that these models perform well in localising and 
classifying arthropods into broad groups, such as taxonomic orders32. We have also shown that a fixed setup 
using affordable smartphones, mounted on tripods above flowers and set to take time-lapse photos, can capture 
images of enough quality for experts to identify pollinators to these same broad groups and sometimes even to 
finer taxonomic levels37 (family, genus, and species). However, it remains unknown how well CNNs trained on 
citizen science images will perform at localising and classifying pollinating insects in field images taken with a 
fixed smartphone setup.

In this study, we evaluated the OOD generalisation capabilities of lightweight YOLO models (YOLOv5-
nano, YOLOv5-small, and YOLOv7-tiny), trained and tested on curated citizen science images of flower-
visiting arthropods32which are typically well focused, cropped and centred on the target organisms. Our OOD 
dataset consists of arthropod flower visitors interacting with the target flowers (which we refer to as pollinators 
even though flower visitors might not always perform pollination38. This focus on visitors that might perform 
pollination is in line with our aim to contribute to advancing pollinator monitoring. Generally, we assessed the 
efficacy of these models in localising and classifying pollinators captured in time-lapse sequences, comprising 
nearly 24,000 field images captured with a fixed smartphone setup. This OOD test set, where relatively smaller 
arthropods appear against unseen, complex floral backgrounds, presents a distribution shift from the training 
set.

Specifically, we first evaluated the three models for class-agnostic arthropod localisation across all images 
captured with the fixed smartphone setup. The best-performing model, selected based on F1 score, was then 
analysed further. Given the rarity of flower visitors in time-lapse images (an average of 6 pollinators per hour 
across our dataset), we tested the model’s false positive rate on a sample of floral-only background frames. 
Expecting arthropod bounding box area and image sharpness to affect performance, we compared their 
distributions between successful and unsuccessful localisation and classification outcomes. We assessed the best 
model’s ability to localise and classify individual pollinators across time-lapse sequences, a more relevant setting 
for pollination monitoring than independent frames. Diptera and Hymenoptera pollinators were the most 
common visitors in the dataset. We therefore assessed the model’s ability to distinguish between three groups of 
flower visitors: Diptera, Hymenoptera, and OtherT (other taxa). As hoverflies (Syrphidae, Diptera) mimic bees 
and wasps (Hymenoptera), we tested whether misclassifications between these two orders were more common 
than those with other groups. Such mimicry can cause high-confidence mislabels, where the model confidently 
but incorrectly assigns the pollinator within the bounding box to the wrong group. In contrast, smaller or 
blurrier pollinators tend to lower model confidence. To investigate these dynamics, we compared the model’s 
confidence, bounding box size, and image sharpness between correctly and incorrectly classified cases, focusing 
on Hymenoptera and Diptera taxa most frequently misclassified as each other.

Methods
Dataset
Time-lapse images of flower-visiting arthropods were automatically captured using smartphones from July to 
September 2021 in urban green spaces in and around Leipzig and Halle, Germany. The detailed methodology 
of data collection is provided in Ștefan et al.37. For these observations, smartphones were positioned above 
selected open flowers of 33 plant species. The smartphones captured time-lapse images at an average rate of 
approximately one frame every 1.6 ± 0.4 s (mean ± s.d) for an average session duration of approximately one hour 
(3,553 ± 372 s, mean ± s.d.) on a targeted flower37after which the smartphones were relocated to different flowers.

For stable mounting, smartphones were secured on tripods and continuously powered through USB cables 
connected to power banks (e.g., Fig. 1a).We used the OpenCamera app39 for time-lapse image capture. To ensure 
that the phone’s autofocus does not target the background instead of the flower, each recording session started 
with the focus fixed on the target flower and remained unadjusted until the end of the session. Furthermore, to 
mitigate wind-induced movements, flowers were anchored to wooden sticks with yarn. Smartphones were set 
15–20 cm away from the centre of the target flower. Image acquisition was primarily at a resolution of 1600 × 1200 
pixels (over 94% of images), with automatic exposure adjustment adapting to changing lighting conditions.
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We visually parsed 213 distinct time-lapse sessions, each set against a unique floral background drawn 
from a selection of 33 different plant species, amassing a total of 460,056 time-lapsed images (see appendices in 
Ștefan et al.37. Subsequently, manual inspection of each image determined arthropod presence. When detected, 
a bounding box was drawn around the arthropod, and its taxonomic order was typed in using the VGG Image 
Annotator (VIA) software40. Because our focus was on monitoring pollinators on target flowers, a bounding box 
was placed around the target flower in each image containing an annotated arthropod, specifying the region 
of interest (ROI, Fig. 1b). In total, 33,502 (7.28%) images contained at least one arthropod, which resulted in 
35,192 annotated arthropod bounding boxes. Of the images analysed, 94.85% contained only a single arthropod 
bounding box, and a maximum of four bounding boxes were found in a single image.

We excluded any bounding boxes annotated with the Thysanoptera order (thrips), as well as 11 boxes for 
which the arthropod order could not be identified. While thrips can be pollinators41the individuals in our 
dataset were typically very small (around 1 mm or less) and slender. Given their minute size relative to our 
camera’s field of view, these organisms were considered unlikely to be reliably localised and classified by a CNN 
in our field settings.

To focus on the ROI (i.e., the target flower), the original full-frame images were cropped (e.g., Fig. 1b, c). This 
cropping was guided by the union of the bounding boxes for both the ROI and the visiting arthropod, ensuring 
that target arthropods at the edges of the ROI were not cut off. Following this cropping and filtering process, 
the refined OOD dataset comprised 201 time-lapse sessions on top of flowers from 32 plant species, 23,899 
images, and 24,656 arthropod bounding boxes (Table 1). It should be noted that 182 of these bounding boxes 
contained co-occurring arthropods that, while within or intersecting the ROI, did not interact with the target 
flower and were removed from the model evaluation. The final cropped images had an average size of 851 pixels 
in width and 796 pixels in height, and the original average dimensions were 1571 pixels wide and 1252 pixels 
high. The floral backgrounds in these images exhibited a long-tailed distribution, with 60.10% of arthropod 
bounding boxes (instances) located on flowers of just four plant species: Centaurea jacea (26.62%), Daucus 
carota (19.05%), Clematis vitalba (8.29%), and Carduus acanthoides (6.14%).

Fig. 1.  (a) Setup for time-lapse image capture featuring a smartphone (1) on a tripod (2) above the target 
flower (3), supported by a stick (4) to reduce wind motion and connected to a power bank (5) for continuous 
operation. (b) An original, full-frame image from the smartphone showing a pollinator and the target flower. 
(c) A cropped image highlighting the region of interest (ROI) used for analysis.
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A total of 1,281 unique arthropod individuals (each annotated as a series of bounding boxes across a time-
lapse sequence of images) were identified in the OOD dataset, spanning six taxonomic groups: Hymenoptera 
(bees and wasps), Diptera (true flies), Coleoptera (beetles), Hymenoptera-Formicidae (ants), Araneae (spiders), 
and Hemiptera (true bugs), as detailed in Table 1 and shown in Fig. 2. Pollinators from Hymenoptera (except 
ants) and Diptera orders were identified to the lowest taxonomic level possible during a previous study37. Given 
the time-lapse methodology of our image collection, an individual arthropod might be present in a solitary 
image or persist across multiple images (e.g., Fig.  5). In our OOD dataset, instances ranged from a single 
bounding box to a case where an individual arthropod remained on a flower long enough to be captured in 
1,710 time-lapse images, thus resulting in a series of 1,710 bounding boxes. The median number of bounding 
boxes per arthropod individual was seven, indicating a typical visit duration of approximately 11.2 s captured in 
our dataset. Each arthropod visible across consecutive time-lapse frames received a unique identifier, and small 

Fig. 2.  Example of cropped smartphone-captured images representing the six groups of flower visitors in our 
out-of-distribution (OOD) test dataset (a to f) vs. the in-distribution training dataset used in Stark et al.32 
(g to n). Taxonomic orders in OOD test and train datasets: Arenae (a, g42, Coleoptera (b, h43, Diptera (c, i44, 
Hemiptera (d, j45, Hymenoptera (e, k46, Hymenoptera-Formicidae (f, l47. Lepidoptera (m48 and Orthoptera 
(n49 are exclusive to the training dataset. The average bounding box area in the OOD test set is approximately 
4.5 times less than in the training dataset. The image backgrounds in the training dataset are more diverse, 
whereas the OOD test dataset features exclusively floral backgrounds.

 

Pollination Arthropod category N. box Mean rel. box area N. img. N. img. % N. ids. N. ids. % Cumul. sum %

Common pollinators
Hymenoptera 13,254 0.107 13,084 54.75 1,013 79.08 79.08

Diptera 5,018 0.071 4,998 20.91 145 11.32 90.40

Other flower visitors (OtherT); usually not pollinating

Coleoptera 2,778 0.010 2,770 11.59 20 1.56 91.96

Formicidae 1,967 0.013 1,962 8.21 82 6.41 98.36

Araneae 1,036 0.014 994 4.16 10 0.78 99.14

Hemiptera 603 0.011 603 2.52 11 0.86 100

Total 24,656 23,899 100 1,281 100

Table 1.  Summary statistics for 1,281 arthropods in the OOD test set. The table enumerates counts of 
bounding Boxes (N. Box), their mean relative bounding Box area (Mean rel. Box area, proportions), counts 
and percentages of images (N. Img., N. Img. %), and individual arthropods (N. Ids.), alongside their respective 
percentages (N. Ids. %) and the cumulative Sum of these percentages (Cumul. Sum %). Note that the Sum of N. 
Img. Exceeds the total number of images in the OOD dataset due to the presence of multiple individuals from 
different categories in some images.
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individuals traversing a target flower’s complex structure, if temporarily occluded by flower parts, retained the 
same identifier upon reappearance.

While the training dataset had an average relative bounding box area of 0.337, the average in the OOD test 
set is 4.5 times smaller, at 0.075. Furthermore, the disparity in medians is more pronounced with the median for 
the OOD dataset at 0.028, which is over ten times smaller than that of the training dataset at 0.288.

Model evaluation
In our previous work32we trained three YOLO object detection models, YOLOv5n (nano), YOLOv5s (small), 
and YOLOv7t (tiny), on a dataset of arthropod images primarily sourced from citizen science platforms, where 
photographers prioritise high-quality, carefully framed, detailed images (sometimes using telephoto lenses, 
favouring close-ups shots to ensure clear community identification34. These models were evaluated using a 
traditional data split approach, where the test images were in-distribution, meaning they originated from the 
same source as the training images and shared similar characteristics. In contrast, the current study evaluates 
these pre-trained models on a novel OOD dataset, with time-lapse images captured passively using a fixed 
smartphone setup, without real-time human selection, modified only by cropping to the ROI.

As a first step, we selected the model with the highest F1 score (harmonic mean of precision and recall) for the 
task of arthropod localization in single images, treating all predictions as a single “arthropod” class, irrespective 
of their time-lapse sequence. Model selection involved a grid search across non-maximum suppression (NMS) 
intersection-over-union (IoU) from 0.1 to 0.9 in increments of 0.1. For each configuration we computed 
precision, recall, F1 scores across prediction confidence thresholds (F1-confidence curves), and the area under 
the precision-recall curve (AUC). Further implementation details, including the definitions of True Positives 
(box-TP), False Positives (box-FP), and False Negatives (box-FN), are presented in the Supplementary Methods 
and Supplementary Fig. S2. Additionally, non-maximum suppression (NMS) specifics are further elaborated 
in Supplementary Fig. S1. Inference on the OOD dataset was conducted at an image size of 640 × 640 pixels, 
consistent with the training image dimensions from our previous study32.

Subsequently, we employed the optimised detector with the highest F1 score for inference on the OOD 
dataset, now evaluating predictions across all classes. At this step, we assessed the model’s ability to both 
localise and classify the 1,281 individual arthropods. In this context, an individual arthropod was defined as 
a series of bounding boxes marked in successive images throughout the time-lapse sequence, which captured 
the arthropod’s presence across multiple frames (e.g., Fig.  5). Consequently, in these cases, we will refer to 
the process as individual arthropod localisation or classification in subsequent discussions. Conversely, when 
discussing arthropod box localisation or classification, we are referring specifically to the best model’s ability to 
localise or classify an arthropod instance within a given image, regardless of the time-lapse sequence (that is, 
consecutive time-lapse images are considered independent from each other).

The possible prediction labels for arthropod classification given by the pre-trained YOLO weights32 were 
Araneae (spiders), Coleoptera (beetles), Diptera (true flies), Hemiptera (true bugs), Hymenoptera (bees and 
wasps), Hymenoptera Formicidae (ants), Lepidoptera (moths and butterflies), and Orthoptera (crickets and 
grasshoppers). Despite being potential prediction labels, Lepidoptera and Orthoptera do not appear in the OOD 
dataset. For analysis at the individual arthropod level, we used three groups: Hymenoptera, Diptera, and OtherT, 
comprising the remaining taxa groups.

Successful localisation of an individual arthropod across sequences (arthropod-TP) was achieved if at least 
one box-TP was encountered across the time-lapse sequence, regardless of the predicted labels (e.g., Fig. 5), 
indicating a successful floral visit.

To evaluate the individual arthropod classification performance of the best detector, we employed a maximum 
confidence rule for label assignment across an entire time-lapse sequence. Specifically, when multiple predicted 
box-TPs across the sequence correspond to the same arthropod, the label with the highest YOLO confidence 
score was selected. Subsequently, performance metrics including precision, recall, F1-score and accuracy were 
computed for each arthropod category and overall, weighted by the number of individuals.

Additionally, we employed the best detector to assess false positives per image (FPPI) on the OOD images 
that only contained floral backgrounds. This detection test utilised 212 background images selected from the 
213 distinct time-lapse sessions, with one session excluded because all images contained a beetle. FPPI was then 
defined as the total number of FPs divided by the total number of images in the test set.

We applied a one-tailed exact binomial test using the “binom.test()” function in R50 to assess whether cross-
order Hymenoptera-Diptera misclassifications occurred at a frequency significantly higher than expected by 
chance, specifically testing for an excess over chance levels. For the independent frames analysis, where the YOLO 
model classified arthropod instances into eight groups (Araneae, Coleoptera, Diptera, Hemiptera, Hymenoptera, 
Hymenoptera-Formicidae, Lepidoptera, Orthoptera), each class had seven possible misclassifications, giving an 
expected probability of 1/7, 14.29%. For the individual arthropod analysis, where arthropods were observed 
across frames and grouped into Hymenoptera, Diptera, and OtherT, misclassifications had two possible outcomes 
(expected probability: 1/2, 50%). The test determined whether these misclassifications occurred significantly 
more often than expected (p < 0.05).

To quantify image sharpness within bounding boxes, we applied the Sobel-Tenengrad operator as a 
proxy51implementing it using the “cv2.Sobel()” function from the OpenCV library52 within Python 353. Higher 
values indicate more edges, signifying increased sharpness. Due to the large absolute values, we normalised them 
to a 0–1 range (blur to sharp) by dividing each by the maximum observed value.

To assess differences in relative bounding box area and normalised image sharpness for localisation and 
classification tasks, we implemented a nonparametric permutation test. The custom R code for this analysis is 
available on our GitHub repository. This test examines whether the means and medians of two distributions 
differ, assuming under the null hypothesis that the distributions are identical, with expected differences in these 
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metrics being zero. We compared two groups: (1) ground truth arthropod boxes that were either localised or 
not, and (2) among localised instances, those correctly classified versus misclassified. We selected this test due 
to the long-tailed distributions, which deviate from normality. For each comparison, we reported the observed 
difference (Δ, absolute value) and the p-value relative to the 0.05 significance threshold. The p-value was 
computed as the proportion of permuted differences at least as extreme as the observed difference, with 1,000 
permutations.

Results
In the initial class-agnostic test assessing arthropod box localisation within independent frames, YOLOv5-small 
outperformed YOLOv7-tiny and YOLOv5-nano (Fig. 3, Supplementary Table S1). Grid search optimisation of 
YOLOv5-small estimated a maximum F1 score of 0.7019 and an AUC of 0.6497 at optimal NMS hyperparameters 
IoU = 0.3 (Fig. 3a, c) and confidence score = 0.2019 (Fig. 3b). This F1 optimisation also maximised AUC (Fig. 3c, 
d). Performance remained stable until NMS-IoU exceeded 0.6, then declined (Fig. 3a, c). In our prior study32 
with citizen science test images (similar to the training set), optimal NMS-IoU was 0.6 and confidence was 0.3. 
There, YOLOv5-small achieved a higher F1 score of 0.8886, followed by YOLOv7-tiny (0.8672) and YOLOv5-
nano (0.8366), mirroring the current ranking.

At the standard evaluation IoU (eval-IoU) threshold of 0.5, the model produced 2,265 false positive boxes 
(box-FPs) across the 23,899 OOD arthropod images, yielding a FPPI of 9.48%. At eval-IoU 0.1, box-FPs 
decreased to 1,799 (FPPI = 7.53%). In the control test on 212 floral background images (without arthropods), 
the model generated 16 box-FPs (FPPI = 7.55%), each occurring in a separate image.

Smaller bounding boxes tended to contain blurrier arthropods (Spearman’s rank correlation ρ = 0.79, 
p < 0.05). Distributions of both box area and sharpness were long-tailed, with most arthropods appearing small 

Fig. 3.  Grid search results for the optimal NMS confidence and NMS-IoU hyperparameters for YOLO 
detectors (localisation task, independent frames), with a focus on the maximum F1 score (panels a and b) 
and area under the precision-recall curve (AUC, panels c and d). The YOLOv5-small model demonstrates 
superior performance (highest F1 and AUC), achieving optimal detection at an NMS confidence estimate of 
0.2019 (panel b) and a NMS-IoU of 0.3 (panels a and c), marked with grey dotted vertical lines. The presented 
F1-confidence curve (panel b) and the precision-recall curve (panel d) correspond to the optimal NMS-IoU for 
each model. The evaluation was performed using an eval-IoU of 0.5.
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and less sharp (Fig. 4a-d). Of 24,656 ground truth boxes, 14,654 (59.4%) were localised (eval-IoU = 0.5), while 
10,002 (40.6%) remained undetected. Correctly localised arthropods had significantly larger bounding boxes 
(Δmeans = 0.0781, p < 0.05; Δmedians = 0.0672, p < 0.05) and higher image sharpness (Δmeans = 0.0916, p < 0.05; 
Δmedians = 0.0729, p < 0.05) compared to those not localised (Fig. 4a, b). Among localised arthropods, correctly 
classified instances also showed greater size (Δmeans = 0.0304, p < 0.05; Δmedians = 0.0219, p < 0.05) and sharpness 
(Δmeans = 0.0230, p < 0.05; Δmedians = 0.0133, p < 0.05) than misclassified ones (Fig. 4c, d).

For individual arthropod localisation within sequences, the optimised YOLOv5-small model achieved 
rates of 91.21% for Hymenoptera, 80.69% for Diptera, and 56.10% for OtherT flower visitors at eval-IoU 0.5. 
(Table 2). While this 0.5 threshold is commonly used, lowering it to 0.1 resulted in a marginal performance 
improvement (Supplementary Table S2). A localisation example in sequential time-lapse images is shown in 
Fig. 5. Classification recall was highest for Hymenoptera (R = 80.45%), followed by Diptera (R = 66.90%) and 
OtherT flower visitors (R = 47.97%), but accuracy ranked these groups in the opposite order (Table 2).

The model correctly classified 815/1,013 (80.45%) Hymenoptera and 97/145 (66.90%) Diptera individual 
arthropods. Notably 86 (8.49%) Hymenoptera were identified as Diptera and 11 (7.59%) Diptera as Hymenoptera 
(Table 2). This bidirectional Hymenoptera-Diptera misclassification was evident in independent frames, with 
76.96% of all misclassified Hymenoptera instances (boxes) labelled as Diptera and 64.88% of misclassified 
Diptera as Hymenoptera, significantly exceeding chance (p < 0.05, exact binomial test, expected probability 
1/7 = 14.29%, Supplementary Table S3).

Of the 86 Hymenoptera individuals misclassified as Diptera, 43 were Apis mellifera (50.00%), 23 were red-
tailed Bombus (26.74%), 8 were Halictidae (9.30%), and 8 were other Hymenopteran taxa (9.30%). The latter 
two groups (referred to as “non-mimicked”) are not targeted by Syrphidae mimicry. Apis mellifera, red-tailed 
Bombus, and Halictidae were common in the OOD dataset, collectively accounting for 56.47% (572/1,013) 
of Hymenoptera individuals, and thus we expected higher total misclassifications due to their higher total 
abundance in the dataset. However, from all misclassified Hymenoptera individuals (to Diptera or OtherT), 
the ones to Diptera exceeded chance (p < 0.05; exact binomial test; expected: 50% Diptera, 50% OtherT) for 
Apis mellifera (43/46, 93.48%) and red-tailed Bombus (23/26, 88.46%), but not for Halictidae (8/12, 66.67%) or 
Halictidae plus other non-mimicked taxa (“Non-mimicked”, 16/24, 66.67%; p > 0.05, see also Supplementary 
Table S4).

Fig. 4.  Boxplots displaying the distributions and interquartile ranges for relative bounding box area and 
normalised image sharpness (within the bounding box), categorised by successful localisation (eval-IoU = 0.5) 
and classification status (‘no’ vs. ‘yes’), across all arthropod categories in independent frames.
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For Apis mellifera, cases misclassified as Diptera showed no significant differences in means or medians for 
bounding box area, sharpness, or model confidence from correctly classified ones (p > 0.05). Red-tailed Bombus 
misclassifications had significantly smaller mean bounding box areas (p < 0.05), but similar medians, sharpness, 
and model confidence (p > 0.05). In contrast, non-mimicked Hymenoptera misclassified as Diptera showed 
significantly higher confidence in correct classifications (p < 0.05). Misclassifications did not show significant 
differences in area or sharpness (p > 0.05; Fig. 6, Supplementary Table S4).

Among the 11 Diptera that were misclassified as Hymenoptera, six were Syrphidae and five were individuals 
that could not be identified by experts to the family level from the image (referred to hereafter as coarsely 
identified Diptera). The proportion of misclassifications as Hymenoptera did not differ from chance for either 
Syrphidae (66.67%) or coarsely identified (45.45%) Diptera (p > 0.05). Syrphidae misclassified as Hymenoptera 
showed no significant differences in bounding box area or sharpness from correctly classified cases (p > 0.05). 
Conversely, the misclassifications for coarsely identified Diptera were significantly smaller and blurrier than the 

Fig. 5.  Example of arthropod presence across sequential time-lapse images, demonstrating overall sequence 
localisation even when partially obscured by flower parts (e.g., panels c–e). Localisation is considered 
successful when at least one ground truth box (orange) in the sequence achieves an IoU ≥ eval-IoU (0.5) with 
a predicted box (cyan), regardless of classification. Panels a, b, and f show correctly labelled Hymenoptera 
predictions, YOLO confidence scores (Conf.), and IoU values between ground truth and predictions. At eval-
IoU 0.5, the predicted box in panel b is a false positive, but at eval-IoU 0.1, it is a true positive. The time stamp 
(bottom right corner of each panel) is provided in hh: mm: ss format.

 

Arthropod category N. ind. Rel. b.box area Norm. sharp.

Localisation Classification Predictions - % and (counts)

N R P R F1 Acc. Hym. Dip. OtherT Bg./FN

Hymenoptera 1,013 0.1073 0.1020 924 0.9121 0.9772 0.8045 0.8825 0.8306 80.45%
(815)

8.49%
(86)

2.27%
(23)

8.79%
(89)

Diptera 145 0.0708 0.1178 117 0.8069 0.5243 0.6690 0.5879 0.8938 7.59%
(11)

66.90%
(97)

6.21%
(9)

19.31%
(28)

OtherT 123 0.0115 0.0321 69 0.5610 0.6484 0.4797 0.5514 0.9251 6.50%
(8)

1.63%
(2)

47.97%
(59)

43.90%
(54)

Overall 1,281 0.0751 0.0871 1,110 0.8665 0.8944 0.7580 0.8205 0.8468 - - - -

Table 2.  Performance metrics of the optimised YOLOv5-small model for individual arthropod localisation 
and classification at eval-IoU 0.5. An arthropod represents a sequence of bounding boxes in time-lapse 
images. Columns report total individuals (N. ind.), mean relative bounding box area (Rel. B.box area), mean 
normalised sharpness (Norm. sharp.), localised arthropods (N), localisation recall or rate (R), classification 
precision (P), recall (R), F1 score and accuracy (Acc.). Confusion matrix results in “Predictions” show 
percentages (from N. ind.) and counts for Hymenoptera (Hym.), Diptera (Dip.), other arthropods (OtherT), 
and background/false negatives (Bg./FN).
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correct classifications (p < 0.05). In both Diptera groups, model confidence was significantly higher for correct 
classifications (p < 0.05; Fig. 6, Supplementary Table S5).

Discussion
Our results show that the optimised YOLOv5-small model, trained on citizen science images, correctly localised 
91.21% and classified 80.45% of Hymenoptera individuals, as well as localized 80.69% and classified 66.90% of 
Diptera individuals. Detection performance was weaker for other flower visitors (OtherT), which were typically 
smaller and blurrier. However, their higher accuracy (92.51%) shows the model mislabels Hymenoptera or 
Diptera as OtherT less frequently.

To meet the demands of real-world pollinator monitoring, we chose lightweight models, as they promise 
energy-efficient deployment in field settings. Among those tested, YOLOv5-small, with the highest parameter 
count, outperformed others in F1 score, aligning with prior findings that greater model capacity (i.e., more 
trainable parameters) enhances performance26,54a trend also observed in our previous study32. Future work could 
explore higher-capacity architectures compatible with in situ hardware constraints. A critical consideration for 
on-device deployment is inference (prediction) time, particularly rapid inference being indispensable for real-
time tracking to accurately estimate visitor numbers per target flower. For example, Sittinger et al.55 reported a 
maximum attainable inference time of 49 frames per second (approximately 0.02 sec. per image) for a single-
class YOLOv5-nano detector (“blob” format) running at a 320 × 320 image resolution on an autonomous camera 
with a dedicated GPU, specifically for tracking insects landing on a platform. Since image resolution impacts 
inference time, our models, though trained for a 640 × 640 resolution, could be retrained and converted to run 
inference at 320 × 320, potentially achieving similar performance on such custom camera hardware. For devices 
without a dedicated GPU, such as those equipped solely with CPUs, inference times are longer. Our previous 
work32 reported estimates for inference times (localisation and classification in one step) on a single core of a 
AMD EPYC 7551P 2.0 GHz CPU (within a server) for a 640 × 640 input resolution: YOLOv5-nano processed 
an image in 0.1893 sec., while YOLOv5-small took 0.4833 sec. per image (“PyTorch” format). Although a field 
device’s CPU would be less powerful and it would also handle essential tasks like image capture and operating 
system functions, reducing effective inference speed, future studies could test if these models can be adapted 
(e.g., via pruning and quantization56 to run in the background or overnight on CPU-based systems to filter out 
images devoid of arthropods, exploring viable solutions for large-scale data pre-processing.

Fig. 6.  Boxplots showing distributions of relative bounding-box area, normalised image sharpness (within the 
bounding box), and model confidence score (YOLOv5-small) for pollinator taxa in Hymenoptera and Diptera 
orders, grouped by classification outcome (‘yes’ = correctly classified, ‘no’ = misclassified as the other order). 
Means are indicated by large diamond symbols. Syrphidae (Diptera) are known to mimic Hymenoptera such 
as Apis mellifera and red-tailed Bombus. For a detailed list of taxa in “Non-mimicked” and “Coarsely identified” 
(no family level ID) groups, see Supplementary Tables S4 and S5.
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The grid search NMS optimisation, maximising the F1 score of arthropod detectors on the unseen OOD 
image dataset under complex field conditions, has practical implications for camera system design. For 
instance, adapting Sittinger et al.’s55 setup for monitoring flower visitors could enhance on-device detection 
performance beyond default NMS values. This optimisation reflects dataset-specific tuning, as evidenced by 
comparing prior and current studies. In our earlier work with citizen science test images32a higher NMS-IoU 
suited dense, overlapping bounding boxes of ants and bugs (e.g., images near ant colonies). Conversely, the 
OOD flower-visit dataset, dominated by images containing single arthropods, favoured a lower NMS-IoU, with 
performance declining at higher values (Fig. 3a, c). A higher NMS-IoU threshold permits overlapping boxes, 
aiding detection of closely spaced arthropods, whereas a lower threshold enhances precision by minimising 
redundant predictions for solitary arthropods.

Our pollinator localisation tests have practical implications, demonstrating the potential of object detection 
models trained on citizen science images to assist in annotating time-lapse field datasets, where most frames lack 
arthropods (e.g., over 90%375758). Even by enabling a single prediction per sequence, these models could allow 
annotators to target relevant frames, bypassing manual review of arthropod-free images. Manual annotation of 
a 460,056-image time-lapse dataset previously required approximately 1,000 hours37whereas the YOLOv5-small 
model, performing both localization and classification, processed 23,899 OOD images in 419 sec. (~ 0.0175 sec. 
per image) on an NVIDIA RTX A6000 GPU, a desktop-grade component, suggesting around 2.24-hours 
runtime for the larger dataset, assuming fast image access. However, we noted that false positive (FP) rates 
on OOD images, including floral-only backgrounds, surpassed those on citizen science images, which more 
closely resemble the training set32. Our primary evaluation utilised an eval-IoU threshold of 0.5, consistent with 
standard practice59 and our previous work32as this threshold emphasizes the precise localisation of arthropods. 
Nevertheless, we observed that allowing larger predicted bounding boxes with using sub-0.5 IoU (e.g., Fig. 5) 
could enhance overall localisation and reduce FPs (e.g., results at eval-IoU 0.1 in Supplementary Table S2). 
This suggests that a lower eval-IoU may be beneficial when prioritizing the localisation of arthropods over 
highly accurate bounding box alignment. To further reduce FP rates and improve precision, including floral 
backgrounds without pollinators in training may prove beneficial. Another challenge is that smaller, less sharp 
arthropods are more likely to be missed. While the model effectively localised larger, common Hymenoptera 
and Diptera pollinators, it struggled with other flower visitors in the OOD dataset, which tended to be smaller 
and blurrier.

After localisation, classifying flower visitors challenged the model more, with significant bidirectional 
Hymenoptera and Diptera misclassifications outnumbering those to other categories, alongside reduced 
performance for other arthropods. While it distinguished these categories effectively on in-distribution 
images32this proficiency declined on the OOD dataset, where arthropods were on average 4.5 times smaller 
than in-distribution counterparts and sometimes occluded by flower parts (e.g., Fig. 5). This aligns with studies 
reporting reduced generalisation on organisms across new locations, time-frames, and sensors27,31,57,60–62alongside 
pollinator-specific occlusion challenges63–65. Moreover, the pretrained models were not trained with more 
images of either Hymenoptera or Diptera than other categories, ruling out dataset bias as a cause of cross-
order misclassifications. This is further supported by the fact that, despite Lepidoptera being the majority class 
(nearly twice as abundant) in the training data32the model was robust against this class imbalance and rarely 
mislabelled Hymenoptera (the majority class in the OOD test set) or Diptera (the second most abundant class) 
as Lepidoptera (e.g., Supplementary Table S3). Likewise, the higher accuracy for OtherT flower visitors shows 
the model less often mislabels Hymenoptera or Diptera as OtherT.

Given these, Syrphidae mimicry most likely exacerbates the significant Hymenoptera-Diptera confusion, 
with syrphids like Eristalis spp. and Volucella bombylans resembling bees (e.g., Apis mellifera66 and red-tailed 
Bombus (e.g., B. lapidarius, B. pratorum67, respectively, mimicking their warning signals to deter predators. 
In the OOD dataset, larger or sharper arthropod instances exhibited significantly distinct distributions from 
smaller or blurrier counterparts for both localisation and classification. However, Apis mellifera and red-tailed 
Bombus, misclassified as Diptera, were as large and sharp as correctly classified cases, and the model was equally 
confident in these misclassifications most likely due to mimicry. In contrast, cross-order misclassified taxa 
not mimicked by Syrphidae (e.g., Halictidae, Cynipidae in Hymenoptera) and a few small, coarsely identified 
Diptera, had significantly higher model confidence in correct classifications. Their misclassified cases tended to 
be smaller and blurrier than correctly classified ones, likely explaining the mislabelling. Syrphidae misclassified 
as Hymenoptera were as large and sharp as correctly classified cases, but the model was significantly less 
confident in misclassifications. While these results might suggest that mimicry confuses the model more in one 
direction, with mimicked Hymenoptera more likely to be misclassified as Diptera than mimicking Syrphidae as 
Hymenoptera, we cannot say this conclusively due to the smaller sample size of Syrphidae individuals that were 
misclassified as Hymenoptera.

To improve localisation and classification, we consider several steps for future research. First, integrating 
citizen-science and field images, as in recent studies68,69would enhance model generalisation for real-world 
pollinator monitoring using time-lapse photography. Given that multiple studies have highlighted the scarcity 
of annotated field datasets for small arthropods, including pollinators23,25,70,71our study addresses this gap by 
providing the OOD dataset (cropped and full-frame images) for training arthropod detectors for custom field 
cameras. Our OOD dataset provides complex floral backgrounds, reflecting the variability inherent in automated 
pollinator monitoring, where images are captured passively with a fixed smartphone setup, without real-time 
human selection, curation or framing. The OOD dataset is however characterised by a natural class imbalance, 
with the majority class represented by Hymenoptera, followed by Diptera. Therefore, models trained with 
this dataset should be deployed at locations where similar arthropod distributions are expected. Fortunately, 
Hymenoptera and Diptera are common orders of pollinators in Europe, often dominating sampled plant-
pollinator networks72. Class imbalance is nevertheless a source of bias and this could be mitigated by sampling 
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underrepresented classes from available citizen science sources and/or applying more data augmentation on those 
classes. At the same time, maintaining a clear separation between training and test sets is essential because time-
lapse image sequences can introduce a risk of data leakage73,74 if highly similar frames are split between these sets, 
potentially inflating model performance. In such cases, the network may rely on shortcut learning28recognising 
near-identical images based on superficial visual similarities (e.g., background patterns, nearly identical insect 
poses) rather than developing a truly generalisable understanding of arthropod features. To mitigate this, careful 
dataset partitioning is needed to prevent the model from exploiting temporal redundancies (e.g., highly similar 
consecutive frames depicting the same individual arthropod should be kept within a single set, either training, 
validation, or test, rather than split across them).

Second, model performance could improve through a two-steps approach, as suggested in other 
studies55,57,62,68,75. For example, an initial single-class object detector, such as YOLO76could localise arthropods 
(e.g., arthropod vs. background), followed by a classifier to identify their cropped images at finer taxonomic 
levels. In this study, the predicted labels were disregarded for the purpose of the arthropod localisation task, 
in line with our objective to develop a generic single-class arthropod detector. This two-steps approach also 
allows the community to choose object detectors suited to their field hardware while leveraging diverse 
classification methods in post-processing, such as region-specific classifiers trained on continuously expanding 
datasets77taxon-specific classifiers78 (that can be applied at specific locations or time frames to accommodate 
class imbalance due to natural variation), large multimodal models79or hierarchical classification via custom 
classifier68,80,81 and vision foundation models capable of learning hierarchical representations82. Furthermore, 
integrating object detection with segmentation has been shown to improve bumblebee species identification 
by removing noisy backgrounds and focusing classifiers on the most relevant features83. Additionally, citizen 
science platforms encourage users to upload cropped images of organisms34providing a rich source of training 
data for such classifiers. Another advantage is the potential for multi-view classification84leveraging sequential 
images of the same arthropod. Similar to how taxonomists examine multiple frames (e.g., Fig. 5) to improve 
identification despite occlusions or lower-quality frames, a multi-view CNN could refine predictions. In our 
study, we simplified this by assigning the label with the highest confidence score across a sequence, but a 
dedicated multi-view CNN could further enhance performance.

Third, preprocessing time-lapse images to highlight arthropod features against the background63 could 
enhance localisation if compatible with low-energy field cameras, or, if too energy-intensive, applied later on 
stored images rather than in real-time.

Fourth, our results confirm arthropod size and image sharpness as important factors to localisation and 
classification, aligning with Nguyen et al.’s70,85 findings on small-object detection challenges. The correlation 
between size and sharpness indicates also that arthropods further from the camera, or small arthropods in 
general, are most likely to be out of focus. Optimising image capture thus involves defining a region of interest 
and focusing on the target flower or inflorescence segment within, to maximise arthropod size in the frame. The 
region of interest can be defined via flower detection, segmentation, or pre-defined at the start of the recording 
session. This also aligns with future research where we aim to develop custom cameras based on the technology 
proposed by Sittinger et al.55that focus solely on target flowers, discarding noisy backgrounds that may contain 
out-of-focus flowers or cluttered patches of vegetation, which could confuse the models. Fixed focus is also 
crucial, and we adopted it when collecting the OOD dataset to prevent autofocus from shifting to background 
and blurring arthropods, as observed by Bjerge et al.63. Additionally, including blurred images in training 
datasets could further improve generalisation, as shown in larval fish detection86.

Lastly, tiling full-frame images for detection could improve small-object localisation87,88 by preserving details 
without downscaling to detector’s resolution. However, sliced inference like SAHI87 increases computational 
demands on low-power field devices. While not our primary focus, our preliminary SAHI test with YOLOv5-small 
on the OOD dataset showed slight F1 gains, but increased false positives and processing time (Supplementary 
Table S6). Still, fine-tuning SAHI could aid annotation of high-resolution time-lapse datasets when real-time 
processing is not required.

Implementing these proposed steps could enhance the detection of flower visitors, thereby facilitating the 
tracking of individual pollinators and enabling estimates of floral visit abundance, a key goal for automated 
pollinator monitoring. Examples of insect tracking can be found in recent studies55,64,89.

Conclusion
Our findings highlight the potential and limitations of lightweight YOLO detector models, trained on citizen 
science images, for localising and classifying flower visitors in out-of-distribution (OOD) time-lapse field images 
captured with a fixed smartphone setup. Localisation was generally effective for common Hymenoptera and 
Diptera pollinators, defined as cases where at least one bounding box in a time-lapse sequence was correctly 
placed. However, classification proved more challenging, impacted by arthropod size, image sharpness, and 
mimicry between Syrphidae (Diptera) and Hymenoptera. Smaller, blurrier arthropods, including less common 
flower visitors, were harder to detect, and the increase in false positives compared to in-distribution data revealed 
limitations when generalising to complex field conditions.

These results have practical value for pollinator monitoring, showing potential for automating annotation 
of common Hymenoptera and Diptera pollinators in large time-lapse datasets, likely easing manual workloads. 
Future work could enhance performance by combining field and citizen science images in training, using a two-
step detection-classification approach, optimising image capture to enhance arthropod size and sharpness, or 
adjusting NMS-IoU for specific ecological contexts. By providing an OOD dataset and identifying key challenges, 
this work contributes to the development of more robust machine learning tools for pollinator monitoring in 
natural environments.
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Data availability
The image dataset related to this research is available at https://doi.org/10.5281/zenodo.15096609. The ​o​p​e​n​-​s​o​
u​r​c​e code for the experiments is hosted on GitHub at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​v​a​l​e​​n​t​i​n​i​t​n​e​l​a​v​/​s​m​a​r​t​p​h​o​n​e​-​i​n​s​e​c​t​-​d​
e​t​e​c​t​.​​
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