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Abstract

Extreme urban poverty in the Global South remains a persistent challenge, particularly
in slum areas. Despite international initiatives like the Sustainable Development Goals
(SDGs), progress in reducing extreme urban poverty has been slow. Slums continue to face
significant grievances such as inadequate housing, lack of basic services, and vulnerability
to environmental and social risks. While efforts have been made to address these issues
and meaningful change is occurring, the scale of the problem and the complexity of urban
poverty mean that it is not yet fully resolved.

This dissertation aims to help close the data gap by detecting slums using globally avail-
able remote sensing data and modern deep learning techniques. By applying advanced
machine learning models to satellite imagery, the goal is to map slums on a large scale, pro-
viding policymakers and urban planners with the data they need to address extreme urban
poverty. This work aims improve the understanding of slum locations and characteristics
across cities in the Global South, where data is often scarce or outdated.

The methodology involves comparing different types of remote sensing data using semantic
segmentation to determine which is best suited for slum mapping. In the case of Mumbai,
three types of data are evaluated: very high-resolution QuickBird imagery, high-resolution
Sentinel-2 optical data, and high-resolution TerraSAR-X radar data. A Fully Convolu-
tional Network (FCN) is employed to assess the performance of these datasets in detecting
slums. The next phase of the study extends this approach to PlanetScope data, which
offers global coverage. Ten cities across the Global South, each with morphologically dif-
ferent slum structures, are mapped using a custom-designed fully convolutional Xception
network (XFCN).

Capturing the highly variable morphological structures of slums in different regions is a
major challenge. To do justice to this variability, Monte Carlo dropout and a specially
developed convolutional neural network (STnet) are employed to estimate and minimize
uncertainties in the slum mapping process. These uncertainty estimates are crucial for
accurately distinguishing between slum and non-slum areas, particularly in regions with
mixed urban features. Additionally, techniques such as Test Time Dropout and Test Time
Augmentations are introduced to further enhance the model’s performance, enabling large-
scale slum mapping across 55 cities in the Global South. Achieving accurate and reliable
results in such diverse urban environments poses a significant challenge due to the unique
characteristics of each city.
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Zusammenfassung

Trotz globaler Initiativen wie den Sustainable Development Goals (SDG) bleibt extreme
urbane Armut in vielen Städten des Globalen Südens ein drängendes Problem. In den dicht
besiedelten Slums leiden Millionen von Menschen unter schlechten Lebensbedingungen,
fehlender Infrastruktur und mangelnden Chancen. Fortschritte zur Bekämpfung dieser
Missstände sind trotz internationaler Bemühungen oft begrenzt, da viele Regionen nur
unzureichend erfasst und analysiert werden. Es fehlt an Daten, die es ermöglichen, gezielte
Maßnahmen zur Verbesserung der Situation zu ergreifen.

Diese Arbeit zielt darauf ab, eine Lücke in der Datenerfassung zu schließen, indem global
verfügbare Fernerkundungsdaten und moderne Künstliche Intelligenz (KI) Methoden einge-
setzt werden, um Slums zu identifizieren und zu kartieren. Durch den Einsatz von
hochaufgelösten Satellitendaten und tiefen neuronalen Netzwerken wird es möglich, ur-
bane Armut in großem Maßstab zu analysieren und die unterschiedlichen morphologis-
chen Slumstrukturen zu erkennen. Diese Methodik soll auf Städte des Globalen Südens
angewendet werden.

Zunächst werden verschiedene Fernerkundungsdaten mittels semantischer Segmentierung
gegenübergestellt. In Mumbai werden Satellitendaten von QuickBird, Sentinel-2 und
TerraSAR-X verglichen, um zu bestimmen, welche Daten am besten zur Slum-Detektion
geeignet sind. Hierfür wird ein Fully Convolutional Network (FCN) verwendet. Im näch-
sten Schritt wird getestet, ob sich auch in anderen Regionen des Globalen Südens Slums
mit hochaufgelösten PlanetScope-Daten kartieren lassen. In zehn Städten mit morpholo-
gisch unterschiedlichen Slums kommt ein eigens entwickeltes Fully Convolutional Xception
Network (XFCN) zum Einsatz.

Die Erfassung der stark variierenden morphologischen Strukturen von Slums in unter-
schiedlichen Regionen stellt eine große Herausforderung dar. Um dieser Variabilität gerecht
zu werden, werden in der nächsten Phase Monte-Carlo-Dropout und ein speziell entwick-
eltes Convolutional Neural Network (STnet) eingesetzt. Diese Methoden helfen, Unsicher-
heiten im Prozess der Slum-Kartierung zu erkennen und zu reduzieren. Das ist besonders
wichtig, um genau zwischen Slum- und Nicht-Slumgebieten zu unterscheiden, vor allem in
städtischen Regionen mit gemischten Strukturen. Zusätzlich werden Verfahren wie Test
Time Dropout und Test Time Augmentations angewendet, um die Genauigkeit des Modells
weiter zu steigern und eine großflächige Kartierung von Slums in 55 Städten des Glob-
alen Südens zu ermöglichen. Die Herausforderung besteht darin, in so unterschiedlichen
städtischen Umgebungen zuverlässige Ergebnisse zu erzielen, da jede Stadt ihre eigenen
Besonderheiten aufweist.
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1. Introduction

“Spare no effort to free our fellow men, women and children from the abject and dehu-
manizing conditions of extreme poverty”.

These powerful words marked the opening of the 2015 Millennium Development Goals
Report, reflecting the unanimous commitment of 189 countries at the Millennium Summit
in September 2000 to eradicate extreme poverty and uplift humanity (United Nations,
2000).

From the Millennium Development Goals Report evolved the 17 Sustainable Development
Goals (SDGs) (United Nations, 2023b). The first SDG aims to "End poverty in all its
forms everywhere". With multiple ambitious targets, this goal focuses on eradicating
extreme poverty, halving the number of people living in poverty, and establishing robust
social protection systems for all by 2030.

Eradicating poverty is one of the greatest global challenges today, especially for developing
countries. It is a multifaceted issue with roots in both national and international contexts.
No single solution fits all; instead, country-specific programs, international support, and
a conducive global environment are vital. The complexity of poverty threatens social co-
hesion, economic development, and political stability. Despite some progress, inequalities
persist, achievements remain uneven or even regress (United Nations, 2023b).

Poverty has always existed in human history and is present on all continents. It manifests
in various forms and types. Since poverty is present worldwide, its physical manifestations
can be observed everywhere. However, there is a noticeable disparity between the Global
South and the Global North (Walker, 2023).

The global landscape is undergoing a massive urban transformation driven by diverse so-
cietal phenomena. These include a rural-urban migration (Tacoli et al., 2015), housing
shortages (Wang et al., 2017), inequality (Young, 2013), deportation and displacement
(Lipton, 1980). Additionally climate change (Sedova and Kalkuhl, 2020), natural dis-
asters (Hunter, 2005) and wars (Melander and Ãberg, 2007) further contribute to this
transformation.

These factors have significant impacts on cities worldwide, leading to the emergence of
informal, spontaneous occupied settlements, slums and other forms of urban poverty (UN-
Habitat, 2020). The drivers of urbanization are as varied as the manifestations of poverty
in the housing sector. In particular, these urban areas associated with poverty are con-
sidered highly dynamic compared to other parts of urban society (Kuffer et al., 2016;
Taubenböck et al., 2015).
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1.1. Motivation and Objectives

From the Millennium Summit in 2000 (United Nations, 2000) to today’s Global SDGs
Report in 2023 (United Nations, 2023b), progress is being tracked closely. Specifically,
SDG1, which aims to end poverty, shows only moderate progress by 2023. Especially,
the goal to eradicate extreme poverty has only seen limited advancements, with progress
stagnating or even reversing between 2020 and 2023 (United Nations, 2023b).

In the United Nations call for better data, the use of geospatial, big data analysis tools
and tapping new data sources like satellite imagery are specifically mentioned in order to
better track the SDGs progress (United Nations, 2024). The challenge to process the big
surge and demand for data has also helped to open up the gap in our understanding of
the world. The 2030 Agenda motivates countries around the world to begin or to improve
monitoring data from air and water quality to the prevalence of discrimination and access
to electricity, sanitation and clean water, as well as census, population, and income data
(United Nations, 2023c).

Another valuable source of data for tracking poverty comes from the research domain.
Research studies, particularly case studies using survey or socio economic data, often
provide accurate and detailed insights into poverty (Tarozzi and Deaton, 2009). These
studies are typically conducted on a small scale, allowing researchers to delve deeply into
specific communities or regions. However, while case studies offer a precise and nuanced
understanding of poverty in the areas they cover, they are geographically limited. This
means their findings might not be easily generalizable to larger populations or different
regions.

How can large-scale data on the current situation of urban poverty be obtained? This is
where geospatial and remote sensing data become invaluable. These technologies enable us
to gather detailed information about urban areas, identifying regions affected by poverty
(Kuffer et al., 2016). By utilizing satellite imagery and other remote sensing tools, the
physical characteristics and infrastructure of cities can be mapped out, highlighting areas
where poverty is most concentrated (Taubenböck et al., 2015). This approach helps to
close the information gap, providing meaningful and reliable data about the location and
extent of urban poverty. With this information, policymakers and researchers can develop
more targeted and effective strategies to address the challenges of urban poverty and
improve living conditions for those affected.

As remote sensing data becomes more accessible and the means of processing this data
become more advanced (Shahtahmassebi et al., 2021; Weng and Quattrochi, 2006; Yin
et al., 2021), this technology can be utilized to gain a comprehensive, bird’s-eye view
of the physical characteristics of urban poverty (Mahabir et al., 2018). This allows us
to analyze urban landscapes with neutral, coherent, and unobstructed precision. Remote
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sensing data is the first pillar needed for large-scale analysis to detect the physical presence
of urban poverty settlements. Equally important is the second pillar: the means to process
this data and derive meaningful information from it. Recent advancements in machine
learning, particularly the increased usage of deep learning methods in remote sensing
applications, play a crucial role (Ma et al., 2019; Zhu et al., 2017). One of the key
advantages of deep learning is its ability to generalize well even in complex settings (Lunga
et al., 2021; Maxwell et al., 2022). This capability is essential for detecting the diverse
physical characteristics of urban poverty across different geographical regions.

In this dissertation, the aim is to apply deep learning methods to detect the physical
presence of urban poverty from remote sensing data and answer multiple questions: Can
deep learning methods effectively map urban poverty, and which types of remote sensing
data are best suited for this task? What challenges arise in varied and complex slum
environments, and how can they be overcome?

The objective is to develop advanced deep learning methods capable of handling diverse
conditions and geographical settings, ensuring a comprehensive and scalable approach to
mapping urban poverty. This dissertation seeks to address these questions and aims to
contribute to the effective identification and analysis of slum areas on a global scale.

1.2. Outline of this Thesis

This cumulative dissertation comprises four journal papers, included in Appendix A.1,
A.2, A.3, A.4 with each paper addressing one of the aforementioned research questions
while progressively building on the findings of the preceding studies.

In chapter 1, the current state of urban poverty, its drivers, and the impact of the SDGs
are presented. The motivations and objectives highlights the need for better, more re-
liable data and how deep learning methods can help for large scale poverty detection
applications.

Chapter 2 presents an overview of the use of remote sensing data for mapping poverty.
It explores the key terminology related to urban poverty manifestations and analyzes the
physical characteristics of slums that can be detected through remote sensing. Addi-
tionally, it provides a comprehensive review of studies that have utilized remote sensing
datasets to map and identify slum settlements, while also addressing the challenges asso-
ciated with accurately detecting slums using remote sensing techniques.

Chapter 3 provides a summary of the four contributed journal publications. The first dis-
cusses the transfer learning capabilities of FCNs for slum mapping across various satellite
images. The second introduces a transfer-learned XFCN model, capable of distinguishing
between formal built-up areas and different categories of slums in high resolution (HR)
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satellite data, using a large sample of slums from globally distributed cities. The third
publication presents efficient methods for slum detection by applying transfer learning
with minimal sample sizes and estimating prediction probabilities. Lastly, the fourth ex-
plores advanced machine learning techniques and uncertainty-aware approaches for map-
ping slum areas across 55 heterogeneous cities, contributing to a deeper understanding of
global slum morphologies.

Chapter 4 critically examines the limitations of the contributions, whether due to method-
ological constraints or the nature of the data sources. It also discusses the broader implica-
tions for the SDGs, non-governmental organizations (NGOs), and the scientific community.
Additionally, the chapter addresses the ethical considerations, not only regarding the use
of deep learning itself but particularly in the context of slum mapping, highlighting the
potential risk of stigmatizing underrepresented social groups.

Chapter 5 presents a conclusion and outlook on the topic of mapping global urban poverty
using deep learning methods.
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2. Mapping Poverty from Space

2.1. Indicators and the Concept of Extreme Poverty

Extreme poverty is a complex concept with varying definitions depending on the per-
spective or context in which it is considered. The United Nations define it as severe
deprivation of basic human needs, including food, safe water, sanitation, health, shelter,
education, and information, not solely based on income but also on access to essential
services (United Nations, 2023a). The World Bank sets the threshold for extreme poverty
at living on less than $1.90 per day, adjusted for purchasing power parity, which serves as
a global benchmark (World Bank, 2023).

The United Nations Development Programme (UNDP) broadens this definition to include
not just low income but also lack of access to basic services, social exclusion, and vul-
nerability to shocks like disease and natural disasters. This perspective is reflected in
the Multidimensional Poverty Index (MPI), which also measures factors like health, ed-
ucation, and living standards (UNDP, 2023). Similarly, the Oxford Poverty and Human
Development Initiative (OPHI) defines extreme poverty as being deprived in one-third or
more of the indicators used in the MPI (OPHI, 2023).

The World Health Organization (WHO) focuses on the health aspect, defining extreme
poverty in terms of lack of access to essential health services (WHO, 2023). In the Eu-
ropean Union, extreme poverty is sometimes understood in relative terms, such as living
on less than 40% of the median income, though this relates more to relative poverty (Eu-
ropean Union, 2023). These definitions highlight that extreme poverty is not just about
income but also about access to essential services and overall well-being.

While the goal is not to revisit the various established definitions of extreme poverty,
inequality, and social segregation or to examine poverty according to a precise definition,
it is important to understand their differences and limitations, as extreme poverty can
manifest in various forms across different countries around the globe.

2.2. The Morphological Slum

All the aforementioned indicators predominantly focus on economic or social metrics, such
as income levels, employment rates, educational attainment, and social integration. The
built environment, however, is mentioned only in a limited number of parameters and
often receives less emphasis in analytical frameworks. In this context, the term "built
environment" refers to the human-made surroundings that provide the setting for human
activity, including buildings, infrastructure, and urban layouts. Despite its minimal di-
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rect consideration, the built environment is indirectly utilized as a means to locate and
identify individuals residing in more impoverished or disadvantaged areas. By analyz-
ing aspects of the built environment, such as housing quality, infrastructure availability,
and spatial organization, it becomes possible to infer the socioeconomic conditions of a
population. Consequently, the physical characteristics of the built environment serve as
valuable proxies for detecting and studying communities affected by poverty. This indirect
utilization underscores the importance of incorporating spatial and environmental factors
into assessments of social and economic well-being.

It should be emphasized that the aim of this approach is to systematize the morphological
characteristics of housing types within slum settlements rather than focus on their sta-
tistical aspects of extreme urban poverty from the previous section. The methodological
concept, is based on morphological features of slum settlements.

2.2.1. The Physical Appearance of Slum Settlements
Slum settlements and formal built-up areas are characterized by distinctly different mor-
phological features, as extensively documented in various studies (Baud et al., 2010; Kuffer
et al., 2014, 2016; Taubenböck et al., 2018). In slum areas, buildings are typically small,
substandard, and densely packed, lacking the spatial organization and infrastructure found
in formal settlements. These areas often consists of very high roof coverage densities, with
minimal or no public or green spaces, contrasting sharply with the lower density and well-
planned layouts of formal neighborhoods that include provisions for parks and recreational
areas (Debray et al., 2023).

The layout of slum settlements is often chaotic, with organic, irregular patterns that lack
orderly road arrangements and fail to comply with setback standards. This disordered
structure is a far cry from the regular, systematic layouts of formal areas, where roads
are well-organized and setback rules are strictly followed (Taubenböck et al., 2020). Fur-
thermore, slums are frequently located in hazardous environments, such as flood-prone
zones, near industrial sites, or on steep slopes (Kühnl et al., 2023; Müller et al., 2020).
These locations, while sometimes offering proximity to infrastructure and economic oppor-
tunities, pose significant risks to the residents’ safety and well-being. In contrast, formal
settlements are typically established on land that is suitable for construction, equipped
with basic infrastructure, and free from significant environmental hazards.

The physical appearance of slum settlements is presented in Table 1 in a comparative
analysis of the morphological features between slum settlements and formal settlements
(Baud et al., 2010; Kuffer et al., 2014, 2016; Taubenböck et al., 2018). While this char-
acterization applies to most cases, there are exceptions where slum settlements may not
exhibit all these features (Debray et al., 2023). Slum settlements are characterized by
smaller, substandard building sizes, high building density, and a lack of public or green
spaces. Their organic layout results in irregular road patterns that do not conform to stan-
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dard setback regulations. Furthermore, slums are often located in hazardous areas such
as flood-prone zones or steep slopes, though they are in close proximity to infrastructure
and livelihood opportunities. In contrast, formal settlements exhibit larger building sizes,
lower to moderate density, and provision of public or green spaces. The pattern layout in
formal areas follows a planned, regular structure with compliance to setback rules, and the
land is suitable for construction with access to basic infrastructure. This table highlights
the distinct morphological differences between these two settlement types.

Table 1 Comparison of morphological features between slum settlements and formal settlements (adapted from
Baud et al. (2010); Kuffer et al. (2014, 2016); Taubenböck et al. (2018))

Features Slum Settlements Formal Settlements

Building Size Small, substandard building
sizes

Generally larger building sizes

Building Den-
sity

Very high roof coverage, with
a lack of public or green spaces
within or near slum areas

Low to moderate density with
provision of public or green
spaces within or near planned
areas

Pattern Layout Organic layout with irregular
road arrangements and non-
compliance with setback stan-
dards

Regular layout with planned
roads and adherence to set-
back rules

Site Character-
istics

Often located in hazardous ar-
eas (e.g., flood-prone zones,
near industrial sites, or on
steep slopes) with proxim-
ity to infrastructure lines and
livelihood opportunities

Land is suitable for construc-
tion, with basic infrastructure
provided

2.2.2. Slum Categories
Based on the detailed analysis presented in Table 1, slum settlements can be categorized
into several distinct groups, each defined by specific morphological characteristics that
influence the spatial and structural dynamics of these areas (Taubenböck et al., 2018).
These categories reveal the varying degrees of organization, density, and development
found within slum settlements, reflecting the diverse ways in which these communities are
established and evolve across different regions.

Category 1 (C1) Morphologic Slums: This category includes neighborhoods that align most
closely with the extreme characteristics of slum morphologies. These areas are character-
ized by small, makeshift shelters that are densely packed and arranged in complex, often
chaotic patterns. The disorganized nature of these settlements is a defining feature, with
little to no formal planning. The dense and often haphazard arrangement of buildings
results in very high population densities, with limited access to basic services or infras-
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tructure. Examples of areas that fall into this category include some of the most notorious
slums in the world, which are often depicted as epitomes of urban poverty and informality.
C1 is characterized by exhibiting all four features outlined in Table 1.

Category 2 (C2) Mixed Structured Slums: These neighborhoods exhibit significant devia-
tions from the typical slum morphology in more than one physical aspect but still retain
a closer resemblance to slum characteristics than to formalized urban areas. These mixed
forms might include areas that have undergone some degree of development or improve-
ment. Alternatively, they may consist of older, deteriorating urban blocks that have begun
to resemble slum conditions due to neglect or economic decline. The structures in these ar-
eas are often a blend of informal and formal elements, resulting in a patchwork of building
types and layouts. Despite the deviations from the typical slum morphology, the overall
appearance and functionality of these neighborhoods still align more closely with slum-like
conditions than with those of structured, planned neighborhoods. C2 displays many of
the features, specifically three out of four, as described in Table 1.

Category 3 (C3) Untypical Slums: This category encompasses neighborhoods that range
from areas exhibiting a mix of structured and unstructured forms to fully structured,
formalized urban areas. These neighborhoods often represent transitional spaces where
slum-like conditions are gradually integrated into more formal urban planning schemes.
In some cases, these areas have undergone significant redevelopment, leading to the incor-
poration of formal, planned elements such as geometric street layouts and lower building
densities. However, they may still retain some characteristics of informal structured slums.
C3 encompasses only a subset of the features, meeting two out of the four criteria listed
in Table 1.

Overall, these categories underscore the complexity and diversity of slum settlements and
highlight the varying degrees of formality, development, and planning that can exist within
them. Each category represents a different stage or type of urban evolution and cultural
background, reflecting the dynamic nature of urban poverty and the ongoing challenges
in addressing it through urban planning and policy (Taubenböck and Kraff, 2014). These
distinctions are essential for understanding the spatial and structural characteristics of
slum areas and for developing targeted methods capable of effectively distinguishing the
sometimes blurred feature space between slums and formal settlements.

2.3. Methods Using Remote Sensing Data to Map Slums

Slum mapping has evolved from local and labor-intensive surveys (Baud et al., 2009;
Weeks et al., 2007) to more advanced and large scale analysis using remote sensing data
(Kuffer et al., 2016). Remote sensing is a powerful tool for detecting and analyzing the
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physical features of urban areas, including those associated with poverty, as outlined in
Table 1 (Esch et al., 2010a). By providing a bird’s-eye view of the Earth’s surface, remote
sensing allows for monitoring local scale to large-scale views of the urban environments.
This technology utilizes various sensing methods, including active and passive systems,
which capture data through different means such as reflected sunlight or emitted energy.
Additionally, remote sensing can be configured with varying geometric and radiometric
resolutions, enabling detailed analysis of spatial patterns and material properties. A wide
variety of sensors, from optical systems to radar systems at different geometric resolutions,
can be employed to identify and map indicators of urban poverty, such as building density,
layout patterns, and infrastructure conditions (Kuffer et al., 2016). These capabilities
make remote sensing an invaluable asset in urban studies, particularly in the context of
understanding and addressing poverty in urban areas.

2.3.1. Object Based Methods
In object-based image analysis (OBIA), images are treated as compositions of distinct
objects characterized by attributes such as size, shape, texture, and relationships with
neighboring objects (Giada et al., 2003). One of the earliest studies applying OBIA to
slum detection was conducted by Hofmann et al. (2001), where multi-resolution analysis
was employed to segment Ikonos satellite imagery at various spatial scales in Cape Town,
South Africa. Objects identified at different scales were linked using a class hierarchy,
with larger super objects such as informal settlements, encompassing smaller descriptors
like physical characteristics (e.g., dwelling size) and contextual elements (e.g., texture).
The classification process utilized a set of fuzzy logic rules to describe these object-based
characteristics.

Subsequent studies following the approach introduced by Hofmann et al. (2001) have
applied OBIA for slum identification, albeit with some modifications in segmentation
parameters to account for the varying physical characteristics of slums (Escalante, 2012;
Kit et al., 2012; Rhinane et al., 2011). The primary difference across these studies lies in
the parameterization of the segmentation process, which reflects the physical diversity of
slum environments. While many studies have employed OBIA for slum detection, only
a few, such as Novack and Kux (2010), have attempted to automate the selection of
segmentation parameters.

Despite its advantages, OBIA, like other techniques used to extract information on slums,
presents several challenges. One common issue is the presence of vegetation and shad-
ows, which can obscure dwellings and reduce the accuracy of slum detection (Novack and
Kux, 2010). Another challenge stems from the materials used in slum construction, which
often generate high spectral noise. For instance, unpaved roads may exhibit similar spec-
tral reflectance as slum rooftops, complicating the differentiation of individual dwellings.
Moreover, the rules developed to extract slum features tend to be image-specific, limiting
their transferability to other geographic regions (Duque et al., 2015; Owen and Wong,
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2013). As a result, automated OBIA methods often yield suboptimal results in dense
urban areas due to the significant intra- and inter-slum variability (Kit et al., 2012).

2.3.2. Mutli Scale Approaches
Multi-scale approaches analyze slums by examining features that emerge across different
spatial scales, with common methods including fractal and lacunarity measures. Fractal
geometry assesses the geometrical complexity of slum shapes, while lacunarity evaluates
the internal heterogeneity by analyzing the distribution of open spaces between features
(Filho and Sobreira, 2005; Kohli et al., 2013). Studies in Quezon City, Philippines, and
in Recife, Brazil, have applied these methods to distinguish between different types of
settlements (Barros Filho and Sobreira, 2008; Galeon, 2011).

Most studies on multi-scale approaches for slum detection have focused on large cities,
where slums can be more easily distinguished from other settlement types. However,
this distinction may not be as apparent in smaller cities in developing countries, where
urbanization challenges are expected to be particularly severe (Leao and Leao, 2011).
Given these limitations, further research is needed to assess the effectiveness of multi-
fractal approaches for slum analysis, especially since not all features in an image exhibit
self-similarity (Barros Filho and Sobreira, 2008).

In terms of monitoring slum growth, multi-scale methods are particularly effective for
tracking slum development during the consolidation and maturity phases. However, these
approaches tend to lose their effectiveness when feature density decreases at the local
level, limiting their ability to capture early-stage slum formation (Thomas et al., 2008).
Therefore, while multi-scale techniques offer some advantages, they may require refinement
and further investigation to ensure their broader applicability, particularly in smaller urban
contexts and at different stages of slum development.

2.3.3. Image Texture Analysis
Image texture analysis, which examines the repeated variations in intensity and color
within images, is a key method for inferring structural and spatial patterns in slum areas.
This process, however, is inherently complex due to the scale-dependent nature of image
features (Su and Hu, 2004; Valous et al., 2010). One approach, known as mathematical
morphology (MM), is often employed to refine outputs from binary images. In the context
of slum detection, MM is commonly used to eliminate unwanted artifacts such as trees,
fences, or other features that could interfere with the analysis (Rhinane et al., 2011; Sulik
and Edwards, 2010).

In contrast to structural methods, statistical approaches analyze the spatial relationships
and pixel intensities to detect patterns within groups of pixels. One widely used tech-
nique is based on the Grey Level Co-occurrence Matrix (GLCM), which evaluates texture
by measuring statistical relationships between pixel values (Haralick et al., 1973). For
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instance, Kohli et al. (2013) employed GLCM texture measures, such as entropy, con-
trast, variance, and mean, to extract slums at the settlement level, as these metrics are
well-suited to identifying the high density of dwellings typical of slum areas. Similarly,
studies by Kuffer et al. (2015); Wurm et al. (2017) found that slums in Mumbai, India,
exhibited significantly lower variance in texture values compared to formal settlements.
Alternatively, Stasolla and Gamba (2008) proposed the use of autocorrelation texture mea-
sures to distinguish between slums and formal settlements using radar data, highlighting
a different statistical approach to texture analysis.

Despite its utility, image texture analysis faces several limitations when applied to slum
detection and mapping. One challenge is the variability of texture measures across dif-
ferent slum areas, influenced by factors such as building materials and spatial resolution,
which can complicate the interpretation of results (Schmitt et al., 2018). Structural ap-
proaches, such as those using MM operations like dilation, may struggle to differentiate
between individual dwellings in densely packed slum areas, where buildings are located
close together. Additionally, these structural methods often rely on scene-specific rules to
extract certain features, which limits the generalizability of the techniques across different
geographic regions or datasets (Soille and Pesaresi, 2002).

In summary, while both structural and statistical texture analysis methods provide valu-
able tools for slum detection, they are constrained by scale dependencies, local conditions,
and the need for scene-specific adaptations. Further research is needed to improve their
accuracy and applicability in diverse urban contexts.

2.3.4. Landscape Analysis
Landscape analysis uses quantitative metrics to describe the spatial patterns of land cover,
focusing on the composition and configuration of patches, adjacent pixel regions with uni-
form land cover. This approach has been applied to study slums by creating indices like
the Unplanned Settlement Index (USI), which evaluates metrics such as patch density,
contagion, and aggregation (Kuffer et al., 2014). Studies in New Delhi, India, and Dar
es Salaam, Tanzania, have shown that different landscape metrics are more effective in
different contexts (Kuffer et al., 2014). However, the use of landscape metrics also presents
challenges, including dependency on initial spectral characterization and potential corre-
lations between metrics, which complicate their selection and application (Huang et al.,
2007). Furthermore, the accuracy of landscape metrics depends on the homogeneity of the
input data, and their effectiveness may vary with changes in scale and spatial resolution
(Liu et al., 2006).

2.3.5. Single Building Detection
Building feature extraction, often utilizing digital surface models (DSMs), focuses on iden-
tifying individual dwellings in slum areas by analyzing height data. This approach assumes
that the vertical dimension can help distinguish slum dwellings from other features, re-
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sulting in 3D models of slums (Temba et al., 2015). Techniques like stereo image matching
and active contour models (snakes) have been used to derive DSMs and extract building
features (Rüther et al., 2002).

However, this approach may face challenges in areas where slum settlements are multiple
stories high, such as in Medellín (Kühnl et al., 2023), or in high-rise poverty settlements
as seen in Shenzhen (Pan and Du, 2021). In such cases, the vertical complexity of the
structures can make it difficult to distinguish between slum and formal housing using DSM
data alone.

2.3.6. Deep Learning Techniques
Since the release of AlexNet in 2012 from Krizhevsky et al. (2012), the field of machine
learning has experienced a profound shift from traditional methods to the widespread
adoption of neural networks, particularly CNNs. AlexNet’s revolutionary performance
in the ImageNet competition demonstrated the immense power of deep learning, partic-
ularly in complex tasks such as image classification. Its ability to automatically learn
hierarchical features directly from raw data, combined with its scalability, allowed it to
far surpass traditional methods, reshaping the landscape of machine learning. The field
of deep learning is constantly evolving, with new architectures, incremental improvements
in layers, and novel learning approaches emerging regularly. Since AlexNet, significant
advancements have been made in the field of urban remote sensing task, such as scene
classification tasks (Aravena Pelizari et al., 2023; Mou et al., 2017; Qiu et al., 2019), pop-
ulation regression estimation (Doda et al., 2024), semantic segmentation of land-use and
land-cover classes (Chen et al., 2020; Mou et al., 2020; Wurm et al., 2021), object detec-
tion methods (Li et al., 2020), and instance segmentation of single buildings (Schuegraf
et al., 2024). Even small modifications in architecture or training methods can lead to
substantial improvements in performance, further demonstrating the dynamic nature of
this field.

With the rise of deep learning across various scientific disciplines, its application in slum
detection has also gained momentum. Different approaches using various deep learning
methods enhance the accuracy and efficiency of identifying informal settlements.

In Jean et al. (2016), survey data combined with satellite imagery from five African coun-
tries, Nigeria, Tanzania, Uganda, Malawi, and Rwanda was used to demonstrate how a
CNN can be trained to identify image features that explain up to 75% of the variation in
local economic outcomes. The study addresses data scarcity through a multi-step transfer
learning approach, where a readily available but noisy proxy for poverty, nighttime lights,
is leveraged to train a deep learning model. This trained model is then applied to estimate
either average household expenditures or average household wealth at the neighborhood
level, providing valuable insights into economic conditions in data-limited regions.
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Very high resolution (VHR) remote sensing data has demonstrated significant success in
classification tasks, as illustrated by Mboga et al. (2017), where a patch-based CNN ap-
proach achieved high accuracy using QuickBird imagery from Dar es Salaam, Tanzania.
Similarly, Verma et al. (2019) applied transfer learning with CNNs to both VHR and
HR satellite imagery, yielding overall higher accuracies for VHR data than when using
HR data, when validated against manually delineated slum boundaries in Mumbai. Fur-
thermore, Prabhu et al. (2021) proposed a dilated kernel-based deep CNN (DK-DCNN)
for slum detection in South India, incorporating post-processing through morphological
spatial pattern analysis to enhance accuracy. Additionally, Persello and Kuffer (2020)
explored CNNs for identifying socio-economic variability within poor neighborhoods in
Bangalore, India. Their model, pretrained on a slum classification dataset, was fine-tuned
to predict a continuous socio-economic index, effectively capturing multiple levels of de-
privation.

These studies highlight the growing potential of deep learning techniques in leveraging
satellite imagery to address urban challenges, particularly in resource-constrained environ-
ments. Similarly Ajami et al. (2019) addresses the challenge of identifying slum variations
in Bangalore, India, with an integrated approach that combines VHR satellite images with
socio-economic data. By applying multiple correspondence analysis (MCA) and a data-
driven index of multiple deprivation (DIMD), the study predicts slum deprivation levels.
A two-step transfer learning approach was used and best results were achieved using an
ensemble model.

Semantic segmentation techniques are increasingly employed to map and analyze informal
settlements, with many methods utilizing variants of the U-Net architecture (Ronneberger
et al., 2015). For instance, Dufitimana and Niyonzima (2023) applied a MobileNetV2 U-
Net for mapping informal settlements in Kigali, Rwanda, using VHR satellite data. By
incorporating dilated convolutional operations, the model effectively distinguished infor-
mal settlements from other urban areas, enhancing spatial accuracy. Similarly, Dabra and
Kumar (2023) explored the detection of green and open spaces within informal settlements
in Mumbai. Their approach involved training three modified CNNs, VGG16 U-Net, Mo-
bileNetV2 U-Net, and DeepLabV3+, on HR imagery, achieving high precision in urban
slum mapping.

Gram-Hansen et al. (2019) demonstrated the successful use of HR data and DeepLabV3+
to detect informal settlements across diverse geographic contexts, including Kenya, South
Africa, Nigeria, Sudan, Colombia, and Mumbai. Likewise, Fisher et al. (2022) utilized
HR Sentinel-2 multispectral data to map slums in Mumbai using a U-Net architecture
combined with Monte Carlo Dropout for uncertainty estimation. This method not only
provided accurate slum delineations but also incorporated uncertainty estimates to im-
prove the robustness of the results.
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The question of optimal architecture and backbone combinations for slum mapping was
investigated by Lumban-Gaol et al. (2023), who found that a Feature Pyramid Network
(FPN) with a VGG16 backbone yielded the best performance for this task. Despite
promising results, the variation in slum characteristics across different regions continues
to hinder generalization of these methods in diverse urban areas.

Additionally, Persello and Stein (2017) introduced a custom FCN for detecting informal
settlements in Dar es Salaam, Tanzania, using VHR imagery. This approach outper-
formed standard patch-based architectures, such as the one used by Mboga et al. (2017),
both in processing efficiency and accuracy. These studies illustrate the growing potential
of deep learning models, particularly those based on semantic segmentation, to enhance
the mapping and analysis of informal settlements in urban environments, though chal-
lenges remain in achieving consistent performance across varied slum characteristics and
geographic contexts.

2.4. Remote Sensing Data and Reference Data

2.4.1. Relevant Remote Sensing Data for This Work
QuickBird is a VHR Earth observation satellite that offers a pansharpened geometric
resolution of 0.5 meters. This high level of detail makes QuickBird particularly useful for
urban mapping, allowing for the identification of small-scale features such as individual
buildings, road networks, and even vegetation within urban environments. Due to its fine
spatial resolution, QuickBird is widely used in applications requiring detailed imagery, such
as land cover classification (Lu et al., 2010), forest tree species (Abdollahnejad et al., 2017),
and disaster management (Pradhan et al., 2016). The VHR imagery helps in detecting
subtle changes in urban morphology, which is critical for analyzing urban poverty and
other socio-economic conditions.

PlanetScope is a constellation of small satellites operated by Planet Labs, providing daily
imagery with a geometric resolution of 4.77 meters. While not as detailed as QuickBird,
PlanetScope offers frequent coverage, making it ideal for monitoring dynamic urban areas
where changes occur rapidly (Gosteva et al., 2019; Wang et al., 2022a). Its HR imagery
is suitable for identifying broader urban patterns, such as land use changes, and overall
urban sprawl (Frazier and Hemingway, 2021).

Sentinel-2 is part of the European Space Agency’s Copernicus program, offering multispec-
tral imagery with a geometric resolution ranging from 10 to 60 meters, depending on the
spectral band. Sentinel-2’s wide coverage and multi-spectral capabilities make it useful for
a variety of applications, including vegetation monitoring (Rußwurm and Körner, 2018),
land cover classification (Zhu et al., 2019), and large-scale urban analysis(Qiu et al., 2020).
While its resolution is lower than QuickBird and PlanetScope, Sentinel-2’s ability to cap-
ture data across multiple spectral bands allows for the detection of broader environmental
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and urban characteristics.

TerraSAR-X is an active remote sensing satellite that uses synthetic aperture radar (SAR)
technology to capture HR imagery with a geometric resolution of 6 meters. It operates
with multiple polarization modes, which enhance its ability to detect and analyze surface
features under various conditions, including during the night and through cloud cover.
TerraSAR-X is particularly effective for mapping urban areas, identifying structural de-
tails, and monitoring changes in built environments (Esch et al., 2010b). Its ability to
penetrate through weather and lighting conditions makes it a reliable tool for consis-
tent urban monitoring, especially in assessing infrastructure and detecting signs of urban
poverty, such as the expansion of informal settlements (Wurm et al., 2017).

2.4.2. Reference Data Related to Slum Mapping
Ground truth labels and masks are critical for deep learning methods, serving as reference
data for training and evaluating models. Several studies have utilized manual annotation
of satellite images, involving human experts to identify and delineate urban villages, slum
regions, and areas of deprivation (Friesen et al., 2024; Huang et al., 2023; Owusu et al.,
2024; Wahbi et al., 2023). This manual process ensures high accuracy and reliability of
reference data, which is essential for robust model development.

In addition, multiple studies have integrated various data sources, including remote sensing
imagery, street view data, and social sensing information, to create comprehensive labels
(Ajami et al., 2019; Chen et al., 2022; Najmi et al., 2022). Combining these diverse
datasets enhances the richness and precision of the labels, providing more detailed insights
into urban environments. Expert knowledge plays a crucial role in this process, offering
valuable perspectives on the distinct characteristics of urban areas, thus improving the
reliability and accuracy of the generated labels.

The quality of reference data is crucial for deep learning model performance because it
directly impacts the accuracy of training, validation, and testing phases, guiding the model
to learn relevant patterns. Poor or noisy reference data can introduce biases or errors,
reducing the model’s ability to generalize and produce reliable predictions (Mishkin et al.,
2017; Zhang et al., 2021). When developing deep learning approaches, especially for
urban applications, it is essential to account for the potential noise or coarseness in the
resolution of the data. Addressing these challenges ensures more reliable model outcomes,
particularly when dealing with complex and heterogeneous urban environments (Zhu et al.,
2017).

2.5. Challenges in Slum Mapping

With the continuous advancements in slum mapping, particularly with the advent of
deep learning techniques, significant improvements in accuracy and scalability have been
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achieved. The integration of deep learning has enhanced the generalizability of urban
remote sensing tasks, making large-scale applications more feasible (Ma et al., 2019; Qiu
et al., 2019; Zhu et al., 2017). Moreover, the increasing availability and accessibility of
remote sensing data have further supported these developments. However, the application
of remote sensing data for slum mapping still presents numerous challenges. These chal-
lenges stem from the complexity and heterogeneity of slum environments, the variability in
data quality and resolution, and the need for more sophisticated algorithms to effectively
capture the unique characteristics of slum areas (Kuffer et al., 2014; Taubenböck et al.,
2018). In the following, some of the major challenges associated with slum mapping using
remote sensing data are addressed.

Slum morphology is typically characterized by high population density and the prevalence
of small, often irregularly shaped buildings (Friesen et al., 2018; Kraff et al., 2020). These
physical features shown in Table 1 present unique challenges for detection and mapping,
necessitating the use of remote sensing data capable of accurately capturing such fine
details. VHR satellite data is generally preferred for this purpose, as it can detect small
and densely packed structures effectively (Verma et al., 2019). However, HR data can also
be utilized, especially for mapping larger slum areas where the spatial patterns are more
discernible even at a slightly lower resolution. The choice between VHR and HR data
largely depends on the size and complexity of the slum being studied; while VHR data is
ideal for small, intricate slum environments, HR data may suffice for larger slums where
the general patterns are more apparent (Kuffer et al., 2016).

The reliance on remote sensing data introduces another significant challenge: the avail-
ability and quality of labeled data for training deep learning models in slum mapping.
Although deep learning techniques have substantially improved accuracy compared to tra-
ditional machine learning methods, they are inherently data-intensive. To achieve robust
generalization across diverse slum environments, large amounts of high-quality, accurately
labeled data are required (Stark et al., 2023). However, acquiring such data is challenging
due to the heterogeneous nature of slums and the variability in their geographic locations.
Effective training datasets must encompass a wide range of geographical contexts to ensure
that models do not overfit to specific regions but instead generalize well across different
urban landscapes (Zhu et al., 2017).

One of the primary difficulties in compiling these datasets is the small physical footprint
of many slums, which, despite housing large populations, occupy relatively small land
areas (Friesen et al., 2018). Notable exceptions exist, such as Kibera in Nairobi or the
slums of Mumbai, which are expansive enough to be well-documented (Kraff et al., 2019;
Taubenböck and Kraff, 2014). However, for many smaller, less prominent slums, data is
exceedingly scarce and difficult to obtain. Additionally, slums are dynamic entities; they
frequently undergo significant changes in structure and appearance over time, or they
may be subject to eviction and redevelopment (Liu et al., 2019). Therefore, the temporal
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alignment between the remote sensing data and the labeled ground truth data is crucial
to ensure accuracy in mapping and monitoring these areas. Figure 1 illustrates a compar-
ative analysis of settlement structures in Delhi using QuickBird VHR data, pansharpened
to 0.5 m, and PlanetScope HR data at 4.77 m. Three areas of interest are highlighted
with corresponding Google Street View imagery. While VHR data enables discernment of
these settlement structures, distinguishing them remains challenging due to their compact
and irregular layout. The difficulty significantly increases with HR data, where the spatial
resolution is insufficient to accurately separate individual structures. This comparison un-
derscores the limitations of lower-resolution imagery for detailed urban structure analysis
and highlights the need for VHR data when addressing complex settlement differentiation
tasks in dense urban environments.

Acquiring high-quality ground truth data in smaller or more unknown urban areas, poses
yet another challenge. While prominent slums in cities like Mumbai, Nairobi, Lagos, and
Caracas are relatively well-documented, many smaller slums in less prominent cities re-
main underrepresented in available datasets (Kuffer et al., 2016). These overlooked areas
could account for a significant portion of global slum populations, as the lack of compre-
hensive statistics from smaller cities conceals their true scale and impact. The scarcity of
accurate and up-to-date ground truth data could hamper the ability to effectively apply
deep learning models in smaller urban centers (Whang et al., 2023).

A further challenge lies in the diversity of slum categories and their spatial relationship
with formal settlements. Slums are not homogeneous; their morphology can vary signif-
icantly not only between different cities (inter-urban variability) but also within a single
city (intra-urban variability) (Taubenböck et al., 2018). While many urban forms can be
clearly classified into well-defined categories, such as those outlined in the Local Climate
Zone (LCZ) classification scheme (Stewart and Oke, 2012), slums are highly dynamic and
often defy easy categorization (Liu et al., 2019). The LCZ scheme divides urban areas
into ten distinct settlement types, considering factors such as building height (high, mid,
and low-rise buildings), building density, and the presence of green cover within these set-
tlement types. However, slums frequently fall outside these clear-cut classifications due to
their fluid and evolving nature, making them difficult to categorize within this framework.
Within the LCZ classification schema, only class 7, characterized by a dense mix of single
story buildings constructed from lightweight materials, can be considered comparable to
some slum morphologies.

Two specific issues arise in this context: First, formal settlements can sometimes exhibit
physical characteristics similar to slums, such as high density and irregular building pat-
terns (e.g. LCZ class 7), as seen in Figure 1 in Delhi in the area of interest highlighted
in (2) and (3). Here This similarity can lead to misclassification, as the algorithms may
struggle to distinguish between densely packed formal settlements and slum areas. Con-
versely, some slum areas may adopt characteristics of formal settlements, as observed in
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Figure 1 Comparison of three areas of interest in Delhi using VHR QuickBird and HR PlanetScope scenes. All
areas exhibit dense and irregular layouts; however, only the first area qualifies as a slum, while the other two
display more formal settlement structures.

certain South American favelas, where improved housing and infrastructure blur the lines
between informal and formal settlement types (Kühnl et al., 2023; Wurm and Taubenböck,
2018).

Moreover, the boundaries between slums and formal settlements are rarely distinct, often
blending gradually from one to the other. This gradual transition presents a significant
challenge for accurate classification and mapping (Dovey and Kamalipour, 2017). The
intermingling of slum and formal settlement characteristics can result in ambiguous zones
that are difficult to categorize using standard classification methods. The spatial and
morphological overlap between these areas complicates the development of automated
detection and classification algorithms, requiring more sophisticated techniques capable
of handling such nuanced and dynamic urban landscapes (Chen et al., 2021).
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3. Summary of the Contributions

This chapter highlights the key contributions of this dissertation, which are based on four
journal articles, including three first authorships and one second authorship.

Section 3.1 focuses on the transfer learning capabilities of FCNs for slum mapping across
different satellite sensors. A model initially trained on QuickBird optical satellite imagery
was adapted to lower-resolution Sentinel-2 and TerraSAR-X data. While TerraSAR-X
did not show significant improvement due to its unique image characteristics, the transfer
from VHR to high resolution achieved high accuracy.

In Section 3.2 a XFCN for distinguishing between formal built-up areas and various slum
categories using HR PlanetScope data is presented. The XFCN, trained on a diverse global
sample of slums, effectively managed to distinguish between heterogeneous morphological
features of slums and formal settlements.

Section 3.3 covers learning with minimal samples and estimating probabilities for slum
prediction. By incorporating Monte Carlo dropout, the study improved classification
performance in noisy datasets while also assessing prediction uncertainty. The custom
CNN STnet model developed here matched the performance of well-known models like
ResNet50 and Xception, offering greater efficiency in training and inference, particularly
with limited data.

Finally, Section 3.4 discusses advanced machine learning techniques and uncertainty-aware
methodologies to map slum areas across 55 diverse cities. This approach effectively man-
aged the challenges posed by limited labeled data, producing robust slum probability maps
that offer a nuanced understanding of slum distributions. The study also incorporated
test-time dropout and augmentation to estimate uncertainty in slum predictions.
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3.1. Slum Mapping in Mumbai Using Transfer Learning Within Different
Remote Sensing Datasets

3.1.1. The Feasibility of Slum Mapping Using Remote Sensing Data
The primary objective of this study is to explore the feasibility of accurately mapping slums
using semantic segmentation techniques under ideal conditions, such as those found in the
slums of Mumbai. Mumbai’s slums present the typical morphological structure charac-
terized by extremely dense settlements, small non-concrete houses made from lightweight
materials, heterogeneous building alignments, and irregular road networks that are ei-
ther inaccessible by vehicles or nonexistent (Dabra and Kumar, 2023; Kuffer et al., 2015;
Taubenböck and Kraff, 2014). These unique features make Mumbai an ideal case study for
testing the capabilities of semantic segmentation in detecting and mapping slum areas.

The secondary research question aims to determine the most suitable remote sensing data
for slum mapping, with a particular emphasis on efficiency and the dataset size required
for training deep learning models from scratch. Given the scarcity of labeled data and
the challenges in acquiring such data for slum areas, transfer learning becomes a crucial
strategy. Transfer learning allows the adaptation of pre-trained models on similar tasks,
which can significantly reduce the amount of data and computational resources required
for effective training (Gopalakrishnan et al., 2017; Zhu et al., 2017).

In this context, three different remote sensing data sources are available for Mumbai:
VHR QuickBird imagery, HR Sentinel-2 data, and HR TerraSAR-X data. Each of these
data sources offers distinct advantages and limitations. QuickBird imagery, with its very
high spatial resolution, can capture fine details of slum morphology (Mboga et al., 2017).
Sentinel-2 offers the potential for global coverage and easily accessible data acquisition,
while TerraSAR-X radar data can penetrate through cloud cover and provide complemen-
tary information on surface roughness (Verma et al., 2019; Wurm et al., 2017). The study
will assess the performance of semantic segmentation models using these data sources indi-
vidually and in combination transfer learning between image sensors, aiming to determine
the optimal approach for efficient and accurate slum mapping in urban environments like
Mumbai.

3.1.2. Transfer Learning Between Different Remote Sensing Datasets
For the experiments, three different sensors, QuickBird, Sentinel-2, and TerraSAR-X, are
used, with their distinct specifications presented in Table 2 and example imagery in Figure
2. The primary dataset is derived from QuickBird, providing pansharpened images at a
0.5-meter resolution. A false color composite of green, red, and near-infrared bands is
utilized. Sentinel-2 offers high-resolution optical imagery across 12 spectral and thermal
bands; here, a false color composite of green, red, and near-infrared at 10-meter resolution
is employed. TerraSAR-X images have a ground sampling distance of 6 meters in its
commonly used stripmap mode, offering dual and cross-polarized images. To compose the
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Table 2 Specifications of satellite sensors used in the experiments

GSD Source Size
Bands \

Polarization
Date

Incidence

Angle

Image

Tiles

QuickBird 0.5m 103km2
blue, green,

red, nir
17.11.2008 16.6 7487

Sentinel-2 10m 781km2
blue, green,

red, nir
19.11.2017 4.8 219

TerraSAR-X

6m 242km2 HH\VV 29.09.2013 33.7

2113
6m 242km2 VV\VH 11.12.2013 33.7

6m 308km2 HH\VV 10.10.2013 34.7

6m 308km2 VV\VH 04.12.2013 34.7

available polarizations into three channels, a principal component analysis (PCA) method
is applied, as shown in Table 2.

The satellite images were divided into 224 × 224 pixel tiles with a 28-pixel overlap to
increase data volume and address segmentation issues near edges. The images were classi-
fied into four semantic classes: urban, vegetation, water, and slums. Fully labeled images
were created for training and evaluation using a multi-step process involving hierarchical,
knowledge-based, and object-based classification, combined with machine learning and
visual interpretation. Initial land cover classes formal built-up, water and vegetation were
classified using a random forest classifier. Slum areas were identified through visual inter-
pretation. Figure 2 shows the remote sensing data and the corresponding reference data
used for the experiments.

FCNs, introduced by Long et al. (2015), enable end-to-end and pixel-to-pixel training for
semantic segmentation tasks, predicting dense outputs from its input images. FCNs per-
form learning and inference on entire images using dense feedforward computations and
backpropagation. A key feature of FCNs is the use of upsampling layers, which facilitate
pixelwise predictions and enable learning from subsampled pooling layers. The backbone
CNN for the FCN is based on the VGG19 classification architecture (Simonyan and Zis-
serman, 2015). VGG19 is characterized by small receptive fields of 3 × 3 pixels, where
convolutions are applied at every pixel. To adapt VGG19 for an FCN , several modi-
fications are made. The final classification layer is replaced with a 1 × 1 convolutional
layer, matching the number of output channels to the number of target classes. Addition-
ally, deconvolutional layers are introduced for bilinear upsampling, transforming coarse
outputs into dense predictions. This process involves transpose convolutions, where the
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Figure 2 Composites and reference labels for all datasets: QuickBird and Sentinel-2 in false color and
TerraSAR-X as PCA composite for a subset of central Mumbai.

Figure 3 Architecture of the FCN VGG19 adapted from (Long et al., 2015). Prediction is performed using
upsampling layers with four channels for the all classes [ncl] in the reference data. Upsampling layers are fused
with 1 × 1 convolutions of the third and fourth pooling layers with the same channel dimension [x,y,n cl].

convolution’s forward and backward passes are reversed.

The FCN seen in Figure 3 also implements skip connections, which combine predictions
from lower-level layers with higher-level outputs. This fusion of fine and coarse layers
helps the model generate local predictions while preserving global structural information.
Specifically, the model fuses the upsampled output from VGG19 with predictions from the
third and fourth pooling layers, enhancing its overall performance in semantic segmenta-
tion tasks.
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As shown in Table 2, each data source covers a different area and produces a varying
number of image tiles due to differences in geometric resolution. The Sentinel-2 dataset,
despite covering the largest area with its 10-meter resolution, contains the smallest number
of image tiles, with only 219. In contrast, the TerraSAR-X dataset contains 2,113 image
tiles, and the QuickBird dataset, despite covering the smallest area, has the largest number
of image tiles, totaling 7,487.

The FCNs were trained using the Adam optimizer, with a batch size of two image tiles,
a fixed learning rate of 10−5, and a dropout value of 15%. Two sets of experiments were
conducted. The first experiment involved training the model for 100 epochs on each of
the three remote sensing datasets (FCN-QB, FCN-S2, FCN-TX). The second experiment
included transfer learning model trained on the QuickBird dataset two times. First the
FCN-QB was transfer learned towards the to Sentinel-2 data (FCN-TL-S2) and secondly
to the TerraSAR-X dataset (FCN-TL-TX).

Performance was evaluated using 4-fold cross-validation, where each scene was split into
four strips, with three used for training and one for testing. This process was repeated
four times to cover the entire scene. Accuracy was assessed using the kappa value, overall
accuracy (OA), and Intersection over Union (IoU). These metrics provided insights into
the general and class-specific performance of the segmentation results.

3.1.3. Evaluation of Results and Conclusions
Quantitative results in terms of overall performance for the semantic segmentation are
presented in Table 3 for all five experiments. With regards to overall measures, all five
experiments obtained considerable accuracies with Kappa values between 0.72 and 0.85.
The best performing set-up is reported for the QuickBird model (FCN-QB). The Kappa
value (0.85) and the Overall Accuracy (90.62%) show a very high agreement. This is
followed by the transfer learned Sentinel-2 experiment (FCN-TL-S2) with the same Kappa
value (0.85) and marginally lower OA (89.64%). Interestingly the highest IoU (87.43%) is
reported for the Sentinel-2 model (FCN–TL-S2) which can be considered as being mostly
related to the substantially larger area of interest for Sentinel-2 seen in Figure 2.

The baseline results presented in Table 3 show that the FCN trained on QuickBird data
achieves an overall accuracy of 90.92%. In comparison, the accuracy drops to 86.71% when
trained on Sentinel-2 data and further decreases to 80.68% for TerraSAR-X data. When
applying transfer learning, where the FCN initially trained on QuickBird data is adapted
to Sentinel-2 and TerraSAR-X data, notable changes in overall accuracy are observed.
Specifically, the transfer from QuickBird to Sentinel-2 results in an overall accuracy of
89.64%, representing a slight decrease from the baseline QuickBird performance but an
improvement over the Sentinel-2 baseline. For TerraSAR-X, transfer learning yields an
overall accuracy of 80.03%, a marginal decline from the baseline accuracy for this dataset,
indicating challenges in transferring knowledge from optical to radar data.
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Table 3 Comparison of different approaches based on Kappa, Overall Accuracy (OA), and IoU.

Approach Kappa OA (%) IoU (%)

FCN-QB 0.85 90.62 84.12

FCN-S2 0.81 86.71 83.94

FCN-TL-S2 0.85 89.64 87.43

FCN-TX 0.73 80.68 73.96

FCN-TL-TX 0.72 80.03 73.02

Table 4 Performance evaluation of the FCN for all classes. IoU: Intersection over Union; PPV: Positive
Prediction Value; Sens: Sensitivity; A: area (percentage of scene coverage).

Urban Vegetation Water Slum

Sens
(%)

PPV
(%)

IoU
(%)

A
(%)

Sens
(%)

PPV
(%)

IoU
(%)

A
(%)

Sens
(%)

PPV
(%)

IoU
(%)

A
(%)

Sens
(%)

PPV
(%)

IoU
(%)

A
(%)

FCN-
QB

91.37 90.34 83.24 47.57 92.90 95.35 88.88 36.96 90.78 90.97 83.28 4.98 85.70 88.39 77.02 10.48

FCN-
S2

87.47 75.87 68.43 36.36 96.42 98.44 94.97 35.20 85.35 89.72 77.75 26.12 38.21 78.82 35.51 2.32

FCN-
TL-
S2

87.62 82.00 73.49 33.70 97.47 98.57 96.12 36.81 90.14 90.61 82.44 26.37 55.47 85.25 51.23 3.12

FCN-
TX

84.29 83.13 71.99 36.14 93.86 94.03 88.59 39.84 78.46 75.65 62.63 19.54 51.64 72.50 46.27 4.47

FCN-
TL-
TX

85.78 80.21 70.80 34.93 93.49 93.58 87.85 42.02 75.82 75.64 60.94 19.56 43.64 78.43 38.42 3.49

While overall performance measures provide a general assessment, class-specific evalua-
tions offer deeper insights into the segmentation results. Table 4 presents these class-
specific performance measures. The highest accuracies for the urban and slum classes
are achieved by QuickBird (FCN-QB). For the vegetation class, Sentinel-2 (FCN-TL-S2)
performs best, likely due to its broader aggregation of information. Water class accuracies
are similar between QuickBird (FCN-QB) and Sentinel-2 (FCN-TL-S2), with only minor
differences.

QuickBird (FCN-QB) significantly outperforms Sentinel-2 (FCN-TL-S2) in the urban
class. The most striking result is for the slum class, where the high geometric resolution
of QuickBird allows for accurate segmentation of small-scale buildings. High accuracies
in positive prediction value (88.4%) and sensitivity (85.7%) are achieved, with an IoU of
77%, indicating reliable detection of slum areas and minimal false positives.

Using transfer learning, Sentinel-2 shows a significant accuracy improvement in all classes,
particularly in slums, highlighting the value of transfer learning. However, no positive
effect is observed for TerraSAR-X data, where most classes are better represented by
training directly of the source dataset (FCN-TX), except for an increase in PPV of slums.
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Figure 4 Comparative alignment of a slum patch showing differences in segmentation results. Slum patches in
the reference map are depicted in yellow.

Figure 4 presents the visual outcomes for all conducted experiments, illustrating the per-
formance of semantic segmentation across the entire study area. The visual analysis high-
lights the effectiveness of the FCN when applied to QuickBird data, where the segmenta-
tion results closely resemble the fine-grained structure observed in the reference dataset.
For Sentinel-2 data, the impact of transfer learning is distinctly noticeable. While the orig-
inal FCN-S2 results depict broader patches, the transfer learning approach (FCN-TL-S2)
significantly enhances granularity, allowing for the detection of small vegetation patches
and slum areas even at a 10-meter resolution. This improvement underscores the value
of transfer learning in refining segmentation results, especially in complex urban land-
scapes. In contrast, the results for TerraSAR-X (FCN-TX) show minimal changes with
the application of transfer learning.

Previous studies emphasize the considerable variability in slum patch sizes within cities
(Friesen et al., 2018; Wurm et al., 2017). Most slums cover areas smaller than 5 hectares
(ha), with only a few exceeding 25 ha. Based on these observations, a patch size-based
accuracy assessment was conducted specifically for the slum class to evaluate the impact
of slum patch size on classification performance.

A quantitative sensitivity assessment was performed in Table 5. For small slum patches
(< 5 ha), QuickBird imagery demonstrated excellent mapping capabilities (FCN-QB:
78.57%). Sentinel-2 showed a significant sensitivity increase between pretrained and
transfer-learned models (9.32% vs. 24.67%). However, for TerraSAR-X, sensitivity de-
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creased in the smallest patches (31.26% vs. 20.78%).

For medium-sized patches, a similar trend was observed: QuickBird achieved the high-
est sensitivity (FCN-QB: 83.63%), and transfer learning improved Sentinel-2 performance
(28.19% vs. 50.64%). TerraSAR-X again showed a performance drop (47.36% vs. 37.98%).

Finally, for large slum patches, QuickBird detected 88.39% of reference slum pixels, while
transfer learning significantly enhanced Sentinel-2 mapping (47.18% vs. 62.46%). A slight
performance decline was noted for TerraSAR-X (48.36% vs. 55.34%). These findings
underscore the strong influence of slum patch size on detection rates across all datasets.

Table 5 Sensitivity measurement as a function of varying slum patch size.

Small

<5ha

Medium

5-25ha

Large

>25ha

FCN-QB 78.57% 83.63% 88.39%

FCN-S2 09.32% 28.19% 47.18%

FCN-TF-S2 24.67% 50.64% 62.46%

FCN-TX 31.26% 47.36% 55.34%

FCN-TF-TX 20.78% 37.98% 48.36%

In summary, the study reveals that the FCN trained on QuickBird excels in classify-
ing complex urban environments, demonstrating high accuracy in heterogeneous settings.
Additionally, transfer learning significantly enhances the performance of Sentinel-2, par-
ticularly in detecting slum areas, where finer details are captured more effectively. How-
ever, the TerraSAR-X data shows lower overall performance compared to optical data
like QuickBird and Sentinel-2. Moreover, transfer learning does not improve the overall
performance of TerraSAR-X, although it does offer marginal benefits for slum classifica-
tion. These findings highlight the strengths and limitations of different data sources and
learning approaches in semantic segmentation tasks.
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3.2. Large Scale Slum Mapping in 10 Cities Using Transfer Learning

3.2.1. Categorizing Slums and Their Morphological Variability
In Section 3.1 FCNs have been demonstrated as an effective method for slum mapping
using a variety of remote sensing datasets within the city of Mumbai. However, large-
scale slum mapping presents several challenges, including the fuzzy boundaries between
formal and informal settlements, a significant imbalance between slum and non-slum areas,
and the diverse morphological characteristics of slums from different geographical regions.
These challenges complicate the scalability of slum mapping methods when applied to
larger scale.

In this study these challenges are addressed by using semantic segmentation across 10
cities in the Global South: Cape Town (South Africa), Caracas (Venezuela), Delhi and
Mumbai (India), Lagos (Nigeria), Medellin (Colombia), Nairobi (Kenya), Rio de Janeiro
and São Paulo (Brazil), and Shenzhen (China). This research emphasizes the complexity of
defining slums due to their highly variable morphological features, which differ significantly
not only between cities (interurban variability) but also within the same city (intraurban
variability). This variability highlights the need for adaptable and robust methods in
large-scale slum mapping efforts.

The study addresses the challenges of categorizing slums due to their varied and in-
consistent characteristics. As seen in Figure 5 slums differ significantly in physical ap-
pearance across and within cities, such as dense, low-rise shacks in Mumbai 5(a) and
three-story buildings in Medellin 5(d), or even within Lagos, where some slums have float-
ing shacks 5(b) while others have regular road networks 5(c). To tackle this, the study
categorizes slums into three groups based on its morphologic type as presented in (Tauben-
böck et al., 2018). Category C1 includes extreme cases like those in Mumbai and Nairobi,
marked by high density and irregular building orientation. Category C2 features slums
with slight deviations, such as those in Delhi and Lagos. Category C3 covers slums in
cities like Cape Town and Rio de Janeiro, where slum morphology can resemble formal
settlements. The study uses transfer learning a custom FCN to improve slum mapping.
Tested on multichannel HR remote sensing data from PlanetScope, this approach aims
to enhance global slum mapping, especially in areas where traditional methods fall short.
Incorporating auxiliary data, like road layouts from OpenStreetMap.

3.2.2. Transfer Learning Using Remote Sensing and Auxiliary Data
CNNs pretrained on natural images, e.g. ImageNet dataset, oftentimes limit input image
depth to three channels, thereby neglecting the rich multispectral data available in remote
sensing imagery. To fully exploit the spectral depth of optical satellite sensors, CNNs
can be trained from scratch on multispectral data with any number of input channels.
However, this approach is computationally expensive (Li and Liu, 2019; Senecal et al.,
2019). Specific architectures can balance depth and efficiency, making the model lighter
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(a) Mumbai

(b) Lagos (c) Lagos

(d) Medellin

Figure 5 A comparison of the inter- and intra-urban variability of slums. Image (a) shows a typical slum in
Mumbai, India, consisting of very densely built shacks. The images (b, c) in the middle show two very different
slums in Lagos, Nigeria: poverty areas in the city’s periphery as well as the downtown floating slum of Makoko in
the Lagoon of Lagos. Last, image (d) depicts a slum in Medellin, Colombia, with three-story buildings made of
concrete. Images from Google Street View provide additional close-up information on the local built-up structure.

and easier to train. The Xception network, an evolution of the Inception models, exem-
plifies this balance (Chollet, 2017; Szegedy et al., 2015). It employs depthwise separable
convolutions to reduce the model’s parameter size while maintaining performance. Thus
a modified Xception network is used as the backbone architecture for a FCN called a fully
convolutional xception network XFCN.

The Xception network’s architecture is composed of modules designed to decouple cross-
channel and spatial correlations, thus shrinking the model’s parameter size (Chollet, 2017).
These modules, integral to the Xception network, perform depthwise 3×3 convolutions
followed by pointwise 1×1 convolutions. This design reduces the number of connections
required, making the model lighter and more efficient. The architecture consists of an entry
flow, a middle flow, and an exit flow, with residual connections throughout to maintain
information flow. The final XFCN model includes 41 convolutional layers, combining
batch normalization, ReLU activation fucntions, and dropout layers.
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Figure 6 The architecture of the XFCN. The Xception backbone is slightly changed to allow for a
multi-dimensional input and more rigorous regularization. After the exit flow a fully convolutional flow follows.
All convolutional blocks are a combination of standard 2D convolutions Cn or depthwise separable convolutions
Cds

n in combination with batch normalization, dropout, and ReLU activation functions. The XFCN features
residual skip connection throughout the whole network (Rn), and during the upscale flow the dilated convolutions
(CD

n ) are fused with the long distance skip connections from the entry flow.

For the decoder, the XFCN uses an upsampling approach similar to the original FCN (Long
et al., 2015), with five dilated convolutions to upscale the output back to the original input
dimensions. A softmax classifier then produces a single prediction tensor. The decoder
also incorporates long-distance skip connections to preserve low-level features, ensuring
fine-grained upsampling performance.

The XFCN was specifically designed to map slums using HR PlanetScope data. Plan-
etScope imagery, with a geometric resolution resampled to 3m and four spectral bands
(blue, green, red, and near-infrared), is an ideal data source for large-scale poverty map-
ping. To enhance this data, the normalized difference vegetation index (NDVI) was added
as a fifth feature, improving the ability to detect subtle landscape variations. All datasets
used in this study were 16-bit surface reflectance data, normalized to a range of 0–1 to be
compatible with the deep learning framework. Additionally, the OpenStreetMap (OSM)
road network was incorporated as an auxiliary layer. Only paved roads accessible by auto-
mobiles were selected to ensure consistency across cities. A binary logarithmic proximity
to each road was computed, providing information on road distance and settlement struc-
tures. This auxiliary road network data complements the spectral data by offering further
insights into urban morphology and slum patterns, strengthening the XFCN’s capacity
for accurate slum detection (Ibrahim et al., 2019; Kuffer et al., 2017).

The reference data for the 10 cities were composed of manually mapped polygons for each
PlanetScope scene in order to maintain consistent delineation of slum boundaries across
the cities and to ensured coherent transfer learning between datasets. Bing aerial imagery
and Google Street View were used to construct the reference datasets. Only slums larger
than 1 hectares were included. Table 6 provides an overview of the datasets utilized for
training the XFCN model. The accompanying table presents detailed information on
the dataset from each city, including the total area covered by the satellite imagery, the
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Caracas MumbaiNairobi Delhi Lagos Medellin Shenzhen Cape
Town

Rio São
Paulo

CA MU NA DE LA ME SH CT RI SP

Category C1 C1 C1 C2 C2 C2 C2 C3 C3 C3

Area [km2] 357 1379 211 852 230 59 1471 356 2086 3764

Number of
slums

104 452 47 232 51 49 1872 70 404 905

Slum area
[km2]

30.4 41.3 8.2 5.3 15.0 4.1 46.2 6.1 26.4 51.3

Mean
size[ha]

29.2 9.1 17.5 2.3 29.4 8.4 2.5 8.3 6.5 4.4

Training
data

Training
samples

10,902 19,109 2,300 2,162 3,090 1,565 23,909 2,117 10,722 18,822

Slum pro-
portion [%]

38.2 26.4 22.7 7.3 46.1 24.1 22.7 19.8 19.4 16.9

Table 6 Overview on the datasets used for training the XFCN. The table shows information on each city’s
dataset with the total area of the satellite scene, the number of slums within the city, the total area of slums and
the mean size of slums for each site. The number of image patches used for training the XFCN and the slum
sample percentage gives more insight about the available datasets.

number of slum regions identified within the city, the total area these slums occupy, and
the average size of the slums at each site. Additionally, the number of image patches
employed in training the XFCN and the percentage of slum samples within these datasets
offer further insights into the data availability with a total number of 94,698 samples
including 22,798 slum samples.

In order to prevent overfitting, batch normalization, dropout layers, and early stopping
are used. The models are trained using a softmax cross-entropy loss function and the
Adam optimizer, with an exponential decaying learning rate. Unseen image patches from
the test dataset, with dimensions of 299 × 299 pixels, are predicted with an overlap of 199
pixels in both the x and y directions. This method allowed for multiple predictions over
the same area, ensuring robust handling of uncertainties and minimizing edge prediction
issues. The results are evaluated using the F1-score and IoU.

Three sets of experiments are conducted. In the first experiment named XFCN city,
individual datasets for each city are used for both training and testing, with geographical
separation between the training and testing areas within the same city. This experiment
establishes a baseline for performance in scenarios with limited data availability. The
second experiment involves a leave-one-out cross-validation approach, where datasets from
all cities except one are combined for training. The experiment is named XFCNLSP for
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its Large Scale Poverty dataset. The trained model is then tested on the remaining
city, with the test dataset for each city being identical to the first experiment. This
setup assesses the model’s ability to generalize across different geographic regions. In the
final experiment XFCNTF

LSP , the leave-one-out cross-validation method is extended with
a transfer learning approach. Here, models trained on the leave-one-out cross-validation
dataset are further transfer-learned using the same city-specific datasets from the first
experiment. This experiment evaluates the effectiveness of transfer learning in improving
model performance when applied to geographically distinct areas.

Each of these experiments is conducted twice: first using a five-dimensional dataset (B,
G, R, NIR, NDVI), which consists solely of remote sensing data from PlanetScope. The
second set of experiments utilizes a six-dimensional dataset (B, G, R, NIR, NDVI, OSM),
which incorporates auxiliary road network data from OpenStreetMap (OSM). This addi-
tional road network data complements the spectral information by providing insights into
urban morphology and slum patterns.

3.2.3. Evaluation of Results and the Implications of Slum Categories
Results for all experiments using the IoU and the F1-score accuracy measures for each
city can be seen in Table 7. In the first experiment XFCN city, models were trained on
individual city datasets and tested on spatially separated areas within the same city. For
the five-dimensional input data (B, G, R, NIR, NDVI), the mean IoU across all cities was
62.93%, with a mean F1-score of 66.86%. When the road network was included as an
additional input layer, the six-dimensional data achieved a higher mean IoU of 67.98%
and a mean F1-score of 73.35%. Notably, the inclusion of the road network improved the
IoU by 5.05% and the F1-score by 6.49%. The best results were observed in Mumbai,
Nairobi, and São Paulo.

The XFCNLSP experiment trained models on a large scale poverty (LSP) dataset, where
nine cities are combined into one training dataset and tested the model on the remaining
city. For the five-dimensional input data, the mean IoU was 57.81% and the mean F1-score
was 63.87%. With the six-dimensional input, these scores increased significantly to 71.64%
and 75.30%, respectively. The inclusion of the road network was particularly beneficial,
improving the mean IoU by 13.82% and the F1-score by 11.41%. Cities like Caracas,
Lagos, and Shenzhen exhibited the highest IoU accuracies with the six-dimensional input
data.

In the XFCNTF
LSP experiment, models were first trained on the LSP dataset and then

transfer learned on individual city datasets. The mean IoU for the five-dimensional data
was 72.60%, with a mean F1-score of 77.69%. For the six-dimensional data, these scores in-
creased slightly to 74.53% and 78.10%, respectively. The highest accuracies were observed
in Mumbai and Shenzhen, where IoU scores exceeded 80%.
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Dataset CA MU NA DE LA ME SH CT RI SP Mean

Slum category C1 C1 C1 C2 C2 C2 C2 C3 C3 C3

ndim IoU

XFCNcity 59.13 71.16 73.13 56.23 61.04 51.47 63.24 66.56 58.89 68.42 62.93

XFCNLSP 5 58.16 50.58 49.05 57.97 67.48 61.27 63.01 57.48 56.74 56.43 57.82

XFCNTF
LSP 80.70 80.86 75.63 58.10 70.44 68.35 70.11 77.98 73.37 70.49 72.60

XFCNcity 76.73 78.49 78.09 60.22 71.91 48.95 85.98 72.28 54.48 61.19 68.83

XFCNLSP 6 78.14 66.32 64.54 67.18 80.77 70.51 80.99 78.63 65.25 64.08 71.64

XFCNTF
LSP 81.62 81.80 79.73 64.65 74.72 69.83 86.29 81.54 60.95 64.20 74.53

F1-score (F1)

XFCNcity 63.66 76.29 56.63 61.22 51.76 77.23 71.19 71.66 64.12 74.84 66.86

XFCNLSP 5 63.87 54.81 56.15 63.66 70.78 66.30 77.31 59.12 63.50 63.37 63.89

XFCNTF
LSP 85.93 86.98 79.76 59.20 74.56 75.73 73.62 83.89 80.03 77.25 77.70

XFCNcity 81.48 83.98 82.67 68.47 71.99 60.15 89.49 73.81 57.27 64.16 73.35

XFCNLSP 6 82.68 70.33 66.94 71.81 76.78 76.58 83.59 82.61 71.52 70.20 75.30

XFCNTF
LSP 86.17 86.63 83.24 67.44 79.52 72.72 89.48 83.76 64.46 67.53 78.10

Table 7 Results for all experiments using the IoU and the F1-score accuracy measures. The top part of the table
shows the experiments for the five-dimensional remote sensing data, while the bottom part includes the proximity
to the road network as an additional sixth input dimension. The highest accuracies for each experiment are
presented in bold; the highest overall accuracy for each accuracy score is highlighted in gray.

Intra- and inter-urban variability present significant challenges for deep learning models
when mapping slum morphologies. These morphologies can vary not only between cities
(inter-urban variability) but also within a single city (intra-urban variability), as exem-
plified by the case of Lagos (Figure 5). The segmentation results of the XFCN models in
Figure 7 highlight the complexity of variability across three different cities using the three
proposed approaches.

In slum settlements where most or all typical slum morphologies are present, the models
tend to perform with high accuracy. This slum category C1 as seen in Caracas, Mumbai,
and Nairobi, consistently achieves high accuracies across all experiments with both the five-
dimensional and six-dimensional datasets. In the city of Mumbai the results are presented
in Figure 7 and demonstrate robust performance for all experiments in the segmentation
tasks. The slum areas exhibit the characteristic morphological features typical of informal
settlements, including irregular building patterns and dense spatial layouts, which are
distinctly different from the organized structure of formal settlements.

For Shenzhen, seen in Figure 7 and the other cities within the second category C2, Delhi,
Lagos, and Medellin, the accuracies achieved using both the five-dimensional and six-
dimensional datasets are somewhat lower compared to the cities of the first slum category
C1. The urban villages in Shenzhen can still be effectively classified into slum category
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Figure 7 Comparative alignment for three cities of each slum category (C1-3). All results were trained on the six
dimensional input data. The left column shows the results for the XFCNcity , the middle column shows results
from the XFCNLSP model, and finally, the right column shows the transfer learned XFCNTF

LSP results.

C2. As shown in Figure 7, the segmentation results remain reliable despite the challenges
posed by these areas, which feature a mix of dense, irregular layouts and multi-story or
even high-rise buildings. Although not fully representative of typical slum morphologies,
the models successfully capture the unique spatial characteristics of Shenzhen’s urban
villages, enabling accurate mapping and classification.

In the case of Cape Town, the accuracies are the lowest among the experiments, as the
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townships fall into slum category C3 with their untypical slum morphologies. These areas
often have a regular road layout and lower building density, making them less characteristic
of conventional slums. Nevertheless, the segmentation results for Cape Town, Rio de
Janeiro, and Sao Paulo, still demonstrate the model’s capability to successfully map slum
areas, even in these more structured environments, as shown in Figure 7. This underscores
the robustness of the methodology, which adapts well to diverse urban forms.

Despite this, it remains critical to focus on these atypical slum settlements, as they are
often understudied and underrepresented in research, and frequently overlooked by NGOs
and governments (Kuffer et al., 2024, 2016; United Nations, 2024). Overall, the inclusion
of the road network as an additional input layer consistently improved the model’s perfor-
mance, particularly in complex urban environments. The transfer learning approach was
especially effective, demonstrating that models trained on a diverse set of slum morpholo-
gies could be successfully adapted to local conditions, yielding significant improvements
in accuracy. This approach was most beneficial in cities with challenging datasets, where
training from scratch was insufficient.
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3.3. Slum Detection Using Uncertainty Quantification With Transfer
Learning on Limited Data

3.3.1. Addressing Uncertainty in Slum Detection with Fuzzy Boundaries
and Limited Data

In section 3.2, it was observed that while semantic segmentation was highly successful in
detecting slums in HR imagery, one of the challenges encountered was the presence of mul-
tiple categories of slums. For instance, segmenting slums with distinct and typical slum
morphologies proved to be relatively straightforward. However, it was significantly more
difficult to delineate slum boundaries when the slum settlements lacked typical morpho-
logical features. This challenge was particularly evident in cases where slum morphologies
gradually transitioned into formal settlements, resulting in an indistinct separation be-
tween slum and formal areas. Due to these complexities, a new approach was adopted for
this study. In this study, a scene classification approach is presented, combined with an
approximation of uncertainty in slum predictions, to better capture and understand the
gradual transitions between slum settlements and formal settlements.

The challenge illustrated in Figure 8 draws upon the findings of Zhu et al. (2019), where
predictions for LCZ class 7, characterized by dense, low-rise buildings, highlights two
regions within Nairobi, Kenya. Although both areas exhibit similar structural traits,
closer inspection using Google Street View imagery reveals that only a portion of one
area can be identified as a slum. This underscores the limitation of classifying slums
based solely on morphological features like density and building height. Dense, low-rise
structures do not automatically indicate slums, nor does the absence of such density
negate the possibility of slum classification. A more nuanced assessment involving multiple
morphological characteristics is essential. Given the noisy nature of the dataset and the
challenges in acquiring accurate ground truth data, this study focuses on assessing the
typical morphological features associated with slum settlements to better understand the
confidence levels of slum predictions.

The study addresses two primary challenges: Limited data availability and noisy datasets
in the context of slum mapping using HR PlanetScope data. The primary objective is to
develop an efficient method for detecting slums with a limited number of training samples
and to estimate the uncertainty within these predictions. To achieve this, a transfer learn-
ing approach is employed, leveraging a large, imbalanced dataset to effectively transfer-
learn towards a smaller, balanced dataset. This approach ensured that only a few samples
were required for successful slum detection. To address the issue of noisy datasets, Monte
Carlo dropout is utilized, enabling the approximation of uncertainty associated with slum
settlement predictions, thereby providing a more robust and reliable analysis. Addition-
ally, a custom CNN, named the slum transfer network (STnet), is introduced. STnet,
as seen in Figure 9, is specifically designed for HR remote sensing data and engineered
to enhance training efficiency with a limited number of samples, while also significantly
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Figure 8 Dense and low-rise areas shown with a black outline for the city of Nairobi (Zhu et al., 2019). Google
Street View imagery is used to show that only some parts of the dense areas can also be considered a slum
settlement highlighting the challenge of slum mapping.

improving processing time compared to standard CNN models. The research aims to
demonstrate the effectiveness of STnet in accurately detecting slums in diverse urban
environments, contributing to advancements in both urban studies and remote sensing.

3.3.2. Transfer Learning STnet Using Efficient Learning Strategies
The custom STnet is optimized for processing HR remote sensing imagery. STnet is based
on a modified Xception network, with a simplified structure seen in Figure 9. Its entry flow
includes five convolutional layers with residual skip connections, using large 9x9 kernels in
the first two layers to capture more extensive areas. Feature pyramid pooling is applied
in the middle flow for multi-scale feature extraction. The classification flow consists of
two linear functions, while batch normalization and dropout are used throughout. STnet
contains 22 layers and 3.3 million trainable parameters.

The learning strategy in this study is divided into two phases using two datasets, which
are created using a leave one out cross validation approach. Initially, the STnet model is
pretrained on a class-imbalanced dataset, denoted as Dbase. To address the class imbal-
ance, a weighted loss function is employed, giving greater importance to under represented
classes. This ensures that the model learns effectively from all available data, despite the
imbalance. After pretraining, the STnet undergoes transfer learning using another dataset,
Dloocv, which is class-balanced through under sampling. This balanced dataset ensures
that each class is equally represented, mitigating any bias introduced during the pretrain-
ing phase on the imbalanced Dbase.

To estimate uncertainty in model predictions, Monte Carlo dropout was employed. This
technique involves averaging multiple predictions, each made with a different dropout
configuration, to model the distribution of the predictive posterior (Gal and Ghahramani,
2016; Seoh, 2020). By using a dropout probability of 0.3, the model achieves a balance
between maintaining accuracy and capturing uncertainty. The final prediction is obtained
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Figure 9 Simplified schematic of the STnet architecture, comprising five convolutional variants in the entry-flow,
succeeded by feature pyramid pooling layers and a classification-flow in the end. This light-weight architecture
encompasses 3.3 million trainable parameters.

by averaging the results of multiple forward passes, providing a more robust and reliable
output.

The remote sensing data used in this study is collected from PlanetScope satellites in
2021, covering eight cities in the Global South; Cape Twon (South Africa), Caracas
(Venezuela), Lagos (Nigeria), Medellin (Colombia), Mumbai (India), Nairobi (Kenia),
and Rio de Janeiro and Sao Paulo (Brazil). The data is divided into 88×88 pixel patches,
which are used to train and test the deep learning models. The dataset includes three
classes: background, formal built-up areas, and slums. The class distribution of each city
can be seen in Figure 10. In total 64,746 samples are available, of which 6.5% are slum
samples. Slum areas were manually mapped by experts using up-to-date aerial imagery
to create accurate reference data (Stark et al., 2020). A patch was labeled as a slum if it
contained at least 25% slum pixels; otherwise, it was discarded or classified based on the
highest pixel count.

The experimental setup included the use of an Adam optimizer, weighted soft cross-entropy
loss, and Monte Carlo dropout for uncertainty estimation. The models were evaluated
primarily on their ability to identify slum areas, using metrics such as F1-score, precision,
and recall. Additionally, the study assessed the impact of 25 Monte Carlo iterations
on model stability, training-, and inference time, ensuring a comprehensive evaluation
of both performance and computational efficiency. This rigorous approach provides a
clear understanding of the model’s general performance across varying datasets, helping
to optimize the overall quality of the results.
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Figure 10 Class distribution in eight cities and combined distribution. The figure displays nine pie charts
depicting the class distribution in eight cities, with the slum sample proportion highlighted for each city. The
final pie chart showcases the combined distribution, illustrating the overall class proportions across all cities.

3.3.3. Evaluation of Results and Conclusion of Using Limited Data
The transfer learning results for the STnet model demonstrate a clear relationship between
the number of samples per class used during training and the resulting F1-scores. As
seen in Table 8, increasing the number of samples generally leads to improved F1-scores,
although there is a notable plateau effect after 50 samples, where F1-scores stabilize around
the high 80% range. Interestingly, even with just one sample per class, the model achieves
a respectable F1-score of 73.24%, underscoring STnet’s potential to perform well with
limited training data. The highest F1-score, 86.24%, is observed when using 100 samples
per class, highlighting the benefits of using more data in the transfer learning process.

In a comparative analysis of three different CNN architectures, STnet, Xception, and
ResNet-50, STnet exhibits competitive performance despite its lower parameter count of
3.3 million. This efficiency is particularly notable in scenarios with limited samples for
transfer learning, where STnet outperforms the more complex Xception and ResNet-50
models. As shown in Table 8, F1-scores for all models were averaged over five indepen-
dently seeded runs, with standard deviations provided to illustrate performance variability.
Although all three CNNs deliver similar overall F1-scores, STnet’s streamlined architec-
ture results in significantly faster training times, as detailed in Table 9. However, STnet
requires more epochs to achieve optimal performance compared to the other models, sug-
gesting a trade-off between speed and the number of training iterations.

The influence of varying Monte Carlo dropout rates on STnet’s performance was also ex-
amined, focusing on inference time, F1-scores, and entropy values (a measure of prediction

Table 8 Comparison of F1-scores for STnet, Xception, and ResNet50, averaged over five differently seeded runs
shown with their standard deviations. All models employed 25 Monte Carlo iterations.

Inference 1 5 10 25 50 100

STnet 0.7201 ± .11 0.7324 ± .09 0.7806 ± .05 0.8082 ± .05 0.8358 ± .04 0.8432 ± .05 0.8624 ± .05

Xception 0.6724 ± .16 0.7309 ± .08 0.7804 ± .05 0.8031 ± .06 0.8380 ± .06 0.8502 ± .04 0.8775 ± .05

ResNet50 0.7150 ± .09 0.7010 ± .12 0.7811 ± .05 0.7941 ± .04 0.8553 ± .04 0.8709 ± .04 0.8957 ± .02
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Table 9 Comparing different CNN architectures
based on their size and training time.

Parameters
Training time

per step total time

STnet 3.3m 33.25it/sec. 56:34 36 epochs

Xception 20.8m 21.28it/sec. 1:22:45 24 epochs

ResNet50 23.5m 17.85it/sec. 1:15:37 20 epochs

Table 10 Comparison of STnet’s inference time,
F1-score, and Entropy across different Monte Carlo
Dropout iterations, trained on 100 samples per class.

Monte Carlo

Iterations
Inference time F1-score Entropy

1
31.59 it/sec.

2:11 min
0.8423 –

5
20.43 it/sec.

3:20 min
0.8515 0.7845

25
5.68 it/sec.

12:02 min
0.8624 0.7832

50
3.10 it/sec.

22:17 min
0.8679 0.7810

uncertainty) as presented in Table 10. As the number of Monte Carlo dropout iterations
increased from 5 to 50, slight improvements in F1-scores and reductions in entropy values
were observed, indicating more confident predictions. However, this came at the cost of
significantly longer inference times, with a 275% increase from 5 to 25 iterations, and
an additional 84% increase from 25 to 50 iterations. Despite these trade-offs, 25 itera-
tions were selected as the optimal configuration, balancing accuracy and computational
efficiency.

Monte Carlo dropout provided valuable insights into the uncertainty associated with slum
classification as seen in Figure 11. The STnet model showed high confidence in predicting
typical slum settlements, particularly in cities with well-defined slum morphologies such
as Caracas, Medellin, and Mumbai. However, challenges arose in cities like Lagos, where
underclassification was prevalent, and in Nairobi, Rio de Janeiro, and Sao Paulo, where
overclassification occurred. These difficulties stem from the lack of distinct slum features
and the similarity of some formal settlements to slums in terms of density and building
patterns. The findings underscore the complexity of slum classification and highlight the
importance of considering local morphologic characteristics and the surrounding built-up
areas when applying the model to different urban contexts.

In Figure 12, results from the STnet model over the same area of interest seen in Figure
8 are shown. The slum reference polygons are outlined in black, and slum probability
results using different amount of training samples are displayed using the same red color-
bar. These results highlight the model’s performance in identifying slum settlements. All
images (12a–12f) are displayed at a scale of 1:10,000. Figure 12a shows VHR Google
satellite imagery of the point of interest, while Figures 12b–12f demonstrate the outcomes
of applying the STnet with different number of available samples.

Figure 12b shows results without transfer learning, while Figures 12c–12f depict the im-
pact of transfer learning with 1 to 50 samples, showing the improvement in performance.
Interestingly, increasing the sample count from 50 to 100 produces negligible changes in
accuracy and visual outcomes, so the figure concludes at 50 samples. Transfer learning
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Figure 11 Results for all eight cities using the transfer-learned STnet trained on 100 samples per class. All
results are in the same scale of 1:80,000 and use the same color-bar for the probability value of the slum class.
Black outlines are used for the reference slum polygons.
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Figure 12 Results for the STnet in a comparable area of interest, as depicted in Figure 8. All images (a-f) are
presented in a consistent scale of 1:10,000. Image (a) showcases a VHR Google satellite imagery of the identical
point of interest shown in Figure 8. Images (b-f) exhibit the outcomes obtained using the STnet , with variations
from no transfer learning (b) to transfer learning from 1 to 50 samples per class (c-f).

significantly improves the model’s ability to recognize Nairobi’s urban features.

Figure 11 provides a detailed overview of the STnet ’s performance across Nairobi. Without
transfer learning, the model achieved an F1-score of 49.06%, struggling to map slums
accurately. While Figure 12b initially shows promising results, the predictions come with
low confidence values. However, with the introduction of transfer learning using 1 sample
per class, the F1-score rises to 66.78%, showing the effectiveness of even a small number of
labeled samples in improving the model’s understanding of Nairobi’s urban morphology.
As shown in Figures 12c to 12e, the F1-score improves progressively, but over-classification
and overconfidence become issues. By Figure 6f, when enough samples are used, both the
F1-score and visual outcomes improve significantly, with only minor instances of over- and
under-classification.

These results highlight the capability of the proposed transfer learning approach to dis-
tinguish between areas with mixed formal and informal settlements. The presence of
slums that either gradually transition into formal settlements or exhibit atypical slum
morphologies presents challenges for traditional classification methods. This underscores
the robustness of the transfer learning approach in handling such complexities. The find-
ings have broader implications for cities like Lagos, Rio de Janeiro, and São Paulo, where
similar challenges in distinguishing between formal and informal dense settlements arise.
This highlights the generalizability of the transfer learning approach to other urban envi-
ronments with complex morphological characteristics.
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3.4. Slum Detection Using Uncertainty Quantification in 55 Globally
Distributed Cities

3.4.1. Mapping Urban Poverty on a Large Scale
In Stark et al. (2024a), significant advantages were demonstrated through the use of a scene
classification approach combined with uncertainty-aware prediction utilizing Monte Carlo
dropout. The methodology was further refined in this study, where uncertainty estimation
was enhanced by integrating both test-time augmentation and test-time dropout, resulting
in higher-quality uncertainty estimations. This advancement enabled the application of
the approach on a large global scale for the first time.

Leveraging HR data from 55 cities across the Global South, this study marks a substantial
step toward the detection of global urban poverty. The identification and assessment of
slums across diverse urban areas, from small to large, present unique complexities (Friesen
et al., 2018; Kraff et al., 2019). Unlike well-known mega-cities, smaller and mid-sized cities
often lack visibility and recognition in academic and policy circles, resulting in limited
resources and attention towards their urban dynamics, including slum prevalence and
characteristics. Recognizing the gradual change from informal to formal settlements and
the inherent uncertainties in this spectrum is essential for advancing the field. Uncertainty
aware methods provides valuable insights into the diverse morphologies of slum settlements
and aids in developing more robust methodologies.

The cities used in this study were chosen based on their significant presence of densely
built-up areas, specifically those classified under LCZ classes 3, 6, and 7, as identified by
Zhu et al. (2019), and based on the classification scheme of (Stewart and Oke, 2012). These
LCZ classes were selected because they typically exhibit dense settlement patterns, which
are often associated with potential slum areas, posing a challenge in distinguishing between
formal and informal settlements. Figure 13 illustrates the geographical dispersion of the
selected cities, ranging from smaller urban centers like Ilorin, with 842,000 inhabitants, to
megacities like Delhi, with over 17 million inhabitants.

These cities were analyzed using PlanetScope data from 2022, which provides Red, Green,
and Blue channels at a 8bit radiometric resolution and a geometric resolution of 4.77 me-
ters. Though most scenes featured minimal cloud coverage, some areas were occasionally
obstructed. A consistent comparison of city scales was ensured by cropping the Plan-
etScope data using a bounding box around the morphological urban areas, as defined by
(Taubenböck et al., 2019). This approach ensured an adequate representation of vegeta-
tion and water bodies within the classification schema, offering a broader environmental
context.

The reference dataset was generated by integrating our own slum dataset from Stark
et al. (2024a, 2020) with the LCZ dataset. The slum dataset was created through manual
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Figure 13 Location of the 55 cities across the Global South. The cities are scaled and colored by their
population size.

mapping by remote sensing experts and aligned with the 2022 PlanetScope imagery. This
mapping utilized additional sources such as Google Satellite imagery and, where accessible,
Google Street View data. To ensure data accuracy, labels were limited to a maximum of
five slum settlements per city, or roughly 4.6 square kilometers, with a focus on accuracy
while acknowledging that many cities likely contain more slum areas than were mapped.
To enhance the dataset, the LCZ data was reclassified into four distinct classes. This
reclassification involved merging urban classes derived from LCZ classes 1 through 10,
consolidating all non-built-up and vegetation classes from LCZ classes A(11) through
F(16), and incorporating a water class. Subsequently, the slum data was amalgamated
into this reclassified dataset, resulting in a comprehensive representation of the urban
landscape.

The data was divided into smaller image tiles of 224×224 pixels, with an overlap of 45
pixels between tiles. Labels for these tiles were determined based on the majority class
within each tile, with special consideration given to tiles containing at least 10% slum
pixels, which were labeled as slum areas. This approach ensured that the dataset accu-
rately reflected the diverse characteristics of urban environments, including both formal
and informal settlements.

3.4.2. Transfer Learning Strategy Using Approximation of Uncertainty
Estimation

The methodological approach can be seen in Figure 14, where transfer learning principles
are leveraged. CNNs are first pretrained using data from four well-documented cities,
Caracas, Mumbai, Nairobi, and Rio de Janeiro. This pretraining phase uses a large
dataset of 143,188 image tiles, of which 21,448 were classified as slum areas. Following
pretraining, the models were adapted to the target city’s dataset through transfer learning,
using a carefully balanced dataset of 100 image tiles per class. The slum samples were
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Figure 14 A simplified schematic overview of our approach to estimate slum probabilities on a large scale using
Medellin, Colombia, as an example for one (42th) of the 55 cities in our slum probability dataset.First, four CNNs
are pre-trained on an initial imbalanced dataset, and these representations are subsequently transferred to a
balanced city’s dataset. The final slum probability is approximated using multiple methods, including test-time
augmentations, test-time dropout, overlapping image tiles, and model ensembles.

selected from different areas to ensure geographic diversity. To enhance the reliability of
predictions and account for uncertainty, approximation methods, incorporating test-time
augmentations and dropout techniques are used. In addition an ensemble of four CNNs
is included, enabling an aggregate of predictions that effectively enhance overall model
variability.

Four CNNs were used to create a diverse model ensemble. Firstly, ResNet-18, as proposed
by He et al. (2015), is a cornerstone in deep learning with 11.7 million parameters, bal-
ancing complexity and efficiency. Secondly, ReXNet-150, introduced by Han et al. (2021),
comprises 9.8 million parameters, optimizing performance with effective channel dimen-
sion configuration. Thirdly, EfficientNet-B4, proposed by Tan and Le (2020), features
19.5 million parameters and scales depth, width, and resolution dimensions, offering sub-
stantial capacity for capturing intricate patterns. Lastly, MobileNetV3 Large, introduced
by Howard et al. (2019), has 5.5 million parameters, excelling in resource-constrained en-
vironments with its compact yet powerful design. By incorporating these diverse CNN
architectures, the goal is to benefit from their capabilities across a spectrum of tasks.

The tranfer-learning methodology, illustrated in Figure 14 begins by pretraining each
CNN model initialized with ImageNet weights on a sizable but imbalanced remote sensing
dataset. Figure 14 (A1) and (B1) shows the pre-training of CNNs using data from four
well-known cities: Caracas, Mumbai, Nairobi, and Rio de Janeiro. These cities were
selected for their well-documented spatial information from Stark et al. (2020, 2024b),
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enabling the creation of a large dataset consisting of 143,188 image tiles, with 21,448 tiles
classified as slum areas.

Subsequently, transfer learning is employed to adapt these models to a specific city’s
dataset, which is carefully balanced with 100 image tiles per class, as illustrated in Figure
14 (A2) and (B2). For each city depicted in Figure 13, 100 samples per class were selected,
totaling 400 samples. The classes include urban, vegetation, and water, which were ran-
domly sampled. The slum samples are specifically sampled from different slum areas to
ensure geographic diversity for transfer-learning, transfer-validation, and transfer-testing.
It is important to note that while urban, vegetation, and water samples are drawn from
the entire city, slum samples are limited to a few slum settlements. This means that due
to random sampling, slum image tiles might be present in the urban, vegetation, and wa-
ter categories, resulting in a class-balanced transfer-learning dataset but with potentially
noisy labels. During the transfer-learning process, the entire CNN architecture remains
trainable, with no layers being frozen.

Each transfer-learned model estimates the uncertainty of its predictions by averaging over
25 iterations (Gal and Ghahramani, 2016; Stark et al., 2024b). To gauge uncertainty,
test-time augmentation is applied to address epistemic uncertainty (model uncertainty)
by introducing various data augmentations to the test data, thereby reducing the model’s
lack of knowledge through consensus predictions. The same methods for data augmen-
tation as described in Wang et al. (2019) are used. Test-time dropout addresses both
epistemic uncertainty and aleatoric uncertainty (data uncertainty), capturing variability
due to model uncertainty and intrinsic noise in the data (Ebel et al., 2023; Wang et al.,
2019). For the dropout method, a value of 0.3 is applied, as shown in (Stark et al.,
2024b).

For our experiments several steps regarding uncertainty approximations within the method-
ology are combined:

First, the logits of final layer L for i = 1 to 25 iterations are combined into an array of
size n× i, where n = 4 classes:

L =




L11 L12 . . . L1i

L21 L22 . . . L2i

...
...

. . .
...

Ln1 Ln2 . . . Lni




(3.1)

Towards Detecting Global Urban Poverty from Space 45



Next, a sigmoid function σ(x) over the array to scale each network output to the range
[0, 1] is applied:

σ(L) =




σ(L11) σ(L12) . . . σ(L1i)

σ(L21) σ(L22) . . . σ(L2i)

...
...

. . .
...

σ(Ln1) σ(Ln2) . . . σ(Lni)




(3.2)

Finally, the mean is calculated for only the corresponding values to the 4th class, defined
as the slum class probability µslum.

µslum =
1

i

i∑

k=1

σ(L)4k (3.3)

After calculating the approximated slum probability µslum, each image tile is georeferenced
to its original remote sensing data source. To address the inherent characteristics of remote
sensing datasets and mitigate edge-related issues, a strategy of predicting on overlapping
image tiles is employed.

Due to the use of overlapping image tiles, each tile overlaps with its neighboring tiles by
45 pixels in both the x and y directions. This overlap results in five overlapping predicted
image tiles for each location in the original image. To generate a final prediction for
each location, the mean probability is calculated from the five overlapping tiles. This
process involves averaging the predicted probabilities, which helps to smooth out noise
and improve the robustness of the predictions.

As a result, the final output is a set of image tiles with a size of 45 × 45 pixels, where
each pixel represents the mean probability derived from the overlapping predictions. This
approach leverages the redundancy provided by overlapping tiles to enhance the accuracy
and reliability of the final probabilistic outputs.

The overlapping mean probability µoverlap in equation 3.4 for each pixel (i, j) can be
expressed as follows:

µoverlap =
1

5

5∑

k=1

pi,j,k (3.4)
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where pi,j,k is the predicted probability at the pixel (i, j) from the k-th overlapping tile,
and k ranges from 1 to 5.

Our research adopts an additional approach of averaging model predictions across multiple
models.The aim is to capture different sources of uncertainty stemming from variations
in model architectures and initializations. By averaging these predictions, as shown in
equation 3.5, the goal is to mitigate the uncertainty associated with individual models.

µensemble =
1

n

n∑

j=1

µ4 (3.5)

This strategy aims to enhance predictive stability and interpretability within ensemble
learning frameworks, as shown in Figure 14 (C). Averaging predictions within each model
reduces inherent variability and mitigates the influence of outliers or noisy predictions.
Averaging within each model promotes greater stability, clearer interpretation of contri-
butions, and stabilizes predictions despite high variability (Song et al., 2023).

3.4.3. Evaluation of Results and Discussion of Slum Variability
Table 11 presents the accuracy metrics for the four different classes, including the standard
deviation of results from the 55 cities. These results are based on the transfer testing
dataset. It is important to note that the testing dataset is noisy, as the mapped slum
settlements in most of the 55 cities are incomplete and not fully represented. Nevertheless,
Table 11 provides an indicator of the class-based accuracies of our method. The urban
class achieved high accuracy with an F1 score of 95.27% ± 5.68%, indicating strong model
performance in identifying formal built-up areas. Vegetation was also well-detected, with
an F1 score of 92.06% ± 6.09%. However, the water class showed significant variability,
with an F1 score of 73.98% ± 28.56%, suggesting that while water bodies were accurately
identified when detected, some instances were missed.

The slum class presented the most significant challenges, with an F1 score of 47.41% ±
19.62%. Although the recall was high at 87.19% ± 21.50%, indicating that most slum
areas were detected, the precision was much lower at 47.81% ± 29.81%. This discrepancy
suggests that a considerable number of non-slum areas were incorrectly classified as slums,
likely due to the incomplete nature of the reference dataset, where some correctly identified
slums were not present in the reference data and were thus counted as false positives.

The study generated slum probability maps for all 55 cities, visualized in Figures 15 and 16.
These maps reveal the varying probability of slum presence across different morphological
urban areas. The visual analysis highlights the diversity in slum settlement sizes and
probabilities, with some cities exhibiting small, concentrated slum pockets, while others
display extensive slum areas. Cities such as Douala, Islamabad, and Johannesburg show
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Table 11 Accuracy metrics for the four classes in our classification schema.

Class F1 [%] Precision [%] Recall [%]

Built-up 95.27±5.68 95.42±2.17 95.63±8.46

Non built-up 92.06±6.09 94.74±4.70 89.84±8.25

Water 73.98±28.56 98.17±4.79 76.63±26.08

Slum 47.41±19.62 47.81±29.81 87.19±21.50

high slum probabilities, indicating widespread or more certain slum areas, while cities like
Conakry, Ho Chi Minh City, and Delhi exhibit lower slum probabilities, reflecting either
smaller or less certain slum areas.

The variability within and between cities underscores the complexity of slum classification,
influenced by both the morphological characteristics of slums and the surrounding urban
environment. This variability makes it challenging to uniformly describe slum areas across
different cities, necessitating careful consideration of local contexts in slum mapping.

The analysis reveals that cities with high slum probabilities generally have extensive slum
areas, while cities with lower probabilities might have smaller or less distinct slum settle-
ments. The variability in slum probability distributions further emphasizes the need for
tailored approaches to slum detection and classification in different urban contexts.

A significant challenge in this study was the incomplete reference dataset, which likely
underrepresents the actual number of slum settlements. This limitation affected the pre-
cision of the model, as some areas identified as slums were not recognized in the reference
data, leading to false positives. Addressing this issue requires improving the quality and
completeness of slum mapping data to better align the model’s predictions with reality.

Moreover, the variability in slum characteristics across different cities complicates the task
of accurately identifying and categorizing slum areas. Slum morphology can vary widely,
from informal makeshift housing to more permanent structures, necessitating a nuanced
approach to classification that accounts for these differences. The study’s findings highlight
the importance of integrating HR data and comprehensive mapping efforts to enhance the
accuracy and utility of slum detection models, ultimately supporting more effective urban
planning and interventions. This research extends beyond traditional boundaries in slum
mapping. Figure 17 demonstrates how the approach maps slum settlements across vari-
ous geographical environments, identifying both typical and atypical slum morphologies.
Different slum categories and their probabilities are detected, including areas where slums
transition into formal settlements. This method offers an improvement over traditional
binary classifications that only recognize typical slum characteristics.
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Figure 15 Slum probability maps for the cities 1 to 28.
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Figure 16 Slum probability maps for the cities 29 to 55.
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Figure 17 Examples from three cities, each representing a different slum category. The figure displays the
city-wide slum probability on the left and two areas of interest (AOI) on the right. For each AOI, Google satellite
imagery is shown. Slum probabilities are provided for the entire city and for each AOI.

In Islamabad, the capital of Pakistan with a population of approximately 1.2 million,
slums can be characterised by typical slum morphologies (Rehman et al., 2022). A city-
wide slum probability map (Figure 17) reveals numerous small slum settlements with high
slum probability. In AOIs 1 and 2, these settlements have distinct borders separating
them from formal settlements and non-built-up areas, resulting in high slum probability
values.

Medellin, home to 2.6 million people, represents the second slum category, where slum set-
tlements exhibit most morphological traits of slums but often include multi-story concrete
buildings. Many slum areas in Medellin are vulnerable to landslides (Kühnl et al., 2023).
The slum probability map (Figure 17) shows large areas with varying probabilities, indi-
cating a gradual transition of slum areas into formal settlements, especially in AOI 1. In
AOI 2, a slum settlement with lower slum probability lacks the more typical morphology
of slums.

In Port Au Prince, Haiti’s capital, over 60% of the population lives in low environmental
quality conditions in densely populated areas (Joseph et al., 2014). The city’s slum proba-
bility map shows low probability scores in many areas, with a few distinct high-probability
slum settlements. This variability places Port Au Prince in the third slum category due to
its intra-urban diversity. While AOI 1 exhibits typical slum characteristics, many neigh-
borhoods, such as AOI 2, show atypical slum morphologies.

This research demonstrates the effective application of advanced machine learning and
uncertainty-aware methods to map slum areas across 55 diverse cities. By utilizing trans-
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fer learning and ensemble predictions, the challenge of limited labeled data is overcome,
achieving high accuracy in slum detection. The resulting slum probability maps provide
valuable insights into urban poverty patterns, aiding policymakers and urban planners in
addressing socio-economic disparities.

A coherent methodology was applied to a comprehensive slum dataset across the Global
South, including probability estimates for each prediction. This approach offers a nu-
anced understanding of slum categories within each city, revealing intra- and inter-urban
variability. These insights are crucial for tailoring interventions to specific urban needs,
leading to more effective urban planning.

By integrating transfer learning with large-scale remote sensing data, the study enhances
the understanding of urban environments and promotes sustainable development. The
slum probability maps serve as valuable tools for addressing urban poverty and fostering
equitable growth. This work highlights the potential of advanced machine learning in
transforming urban analysis and addressing the complex challenges of cities in the Global
South.
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4. Discussion

4.1. Limitations of the Contributed Applications

4.1.1. Methodological Constraints in Mapping Slum Morphologies
Semantic segmentation has proven to be an effective tool for mapping slum morpholo-
gies in cities where typical slum structures are prevalent, such as Mumbai and Caracas
(Fisher et al., 2022; Mahabir et al., 2018; Verma et al., 2019). In these cases, the dis-
tinct spatial characteristics of slums, including dense, informal settlements with irregular
patterns, enable the segmentation algorithms to perform relatively well. However, when
faced with more complex and atypical slum morphologies, such as those found in cities like
Medellín and Port-au-Prince, where informal settlements coexist alongside formal housing
structures, semantic segmentation encounters significant challenges. These mixed mor-
phologies blur the boundary between formal and informal areas, making it difficult for
conventional segmentation approaches to accurately delineate slums.

This is expected to become even more challenging as many urban areas in the Global
South exhibit this gradual transition between informal and formal settlement structures.
In many cities, typical slum morphologies do not exist as distinct clusters but rather as
part of a continuum of different settlement types. This variability increases the difficulty
of applying a semantic segmentation approach universally across many cities in the Global
South. A purely semantic segmentation-based method is likely to struggle in consistently
identifying slum areas in these complex urban environments, potentially leading to less
robust and reliable results.

On the other hand, scene classification, while also limited in its ability to precisely differen-
tiate between slum and formal settlements, offers an alternative perspective. In cities like
Mumbai, where the distinction between informal and formal areas is stark, scene classifi-
cation may not always yield the most accurate delineation of slum boundaries. However,
when combined with uncertainty-aware methods, scene classification becomes more advan-
tageous. Introducing uncertainty measures allows for a gradual change in the confidence
of predicted classes, which better captures the transitional nature of slum-like settlement
structures. This is particularly beneficial in cities where the boundaries between slums
and formal settlements are not clearly defined. These aspects can be seen in Figure 18
for the city of Medellin, where two close up views of slum settlements are highlighted
18(2) and 18(3). By incorporating uncertainty, the scene classification outputs reflect a
more nuanced understanding of the urban fabric, offering a significant improvement over
standard semantic segmentation results in these contexts. In Figure 18(2), the slum is
classified as having mixed slum morphologies. The gradual transition into a formal settle-
ment further complicates the classification. Notably, only the scene classification approach
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Figure 18 Comparing the results for semantic segmentation from Stark et al. (2020) to the slum confidence
results from Stark et al. (2024a) in (1). (2) and (3) show two areas of interest where only the approach from Stark
et al. (2024a) was able to detect the slum settlement in (2).

incorporating uncertainty estimations from Stark et al. (2024a) successfully detected the
slum settlement, whereas the semantic segmentation approach failed to achieve accurate
detection (Stark et al., 2020).

Lastly, although not explored in this study, there are methods available for mapping indi-
vidual buildings within slum settlements, such as instance segmentation. Instance segmen-
tation presents a distinct set of challenges, particularly in densely packed slum areas, where
buildings are often clustered tightly together. Differentiating between individual structures
becomes difficult, especially when buildings are constructed using multiple materials for
a single roof. This complexity makes it challenging to accurately identify and segment
individual buildings in typical slum environments. Nevertheless, recent studies, such as
?[]+}(?![]∗[.!?]), havebeguntoexplorethepotentialofinstancesegmentationinthesecontexts, pavingthewayforfutureadvancementsinthedetailedmappingofslumsettlements.

In summary, while semantic segmentation and scene classification each have their strengths,
the complexity of slum morphologies across the Global South necessitates the exploration
of more nuanced approaches, including uncertainty methods to achieve more accurate and
robust mapping of slum settlements.

4.1.2. The Effects of Remote Sensing Data Resolution
Higher-resolution remote sensing data generally leads to more accurate results in mapping
and analysis tasks as presented in ?[]+}(?![]∗[.!?])insection3.1.IfV HRdatawereavailablegloballyforallcitiesintheGlobalSouth, itwouldsignificantlyenhancetheprecisionofurbanstudies.However, thefinancialcostsofacquiringsuchdataonaglobalscaleareprohibitive.WhilesomestudieshaveutilizeddatafromsourceslikeBingAerialImageryorGoogleSatelliteImagery, thesedatasetscomewithlimitations(Lesivet al., 2018; Rehmanet al., 2022).F irst, theyarecopyrighted, limitingaccessibilityandreproducibility.Additionally, thequalityofimageryvariessignificantlyacrossdifferentregions, andkeymetadata, suchasacquisitiondates, areoftenunavailable.Thislackofconsistentmetadatamakesitdifficulttoensurecomparabilityacrossglobaldatasets.

In contrast, globally available satellite platforms such as PlanetScope and Sentinel-2 offer
a more standardized option for scientific studies. These platforms provide consistent
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metadata, which is crucial for making research findings more comparable and reliable.
However, a trade-off exists: the geometric resolution of PlanetScope and Sentinel-2 is lower
than that of VHR data. While this lower resolution might reduce the precision of certain
analyses, the global coverage and availability of these datasets make them more practical
for large-scale urban studies in the Global South. Therefore, despite the limitations in
resolution, platforms like Sentinel-2 and PlanetScope are often the preferred choice for
research due to their accessibility, consistency, and cost-effectiveness.

4.1.3. Unreliable Ground Truth Data and Labor-Intensive Reference
Collection

Transfer learning has shown significant promise in the successful mapping of slum areas.
However, for each city some slum sample are needed as even a small number of local
samples have been demonstrated to significantly outperform standard classification from
a more generalized model, previously trained on slum data from other geographical re-
gions. Despite advancements in reducing the required number of samples, such as through
few-shot learning methods (Stark et al., 2023), the collection of reference data remains
essential. Although ongoing research aims to minimize the number of required samples,
reference data is still a critical component of slum mapping.

The development of larger foundational models (Xiong et al., 2024) or the creation of ex-
pansive slum datasets (Thomson et al., 2020) in the future could greatly enhance inference
accuracy and provide more robust slum mapping solutions. These advancements would
be invaluable in overcoming current limitations associated with data collection.

A significant challenge in slum mapping is the discrepancy between reference data and
ground truth data (Kraff et al., 2019). Slums are highly heterogeneous, with different
definitions and categories depending on the geographic region. This variability makes it
difficult to define a consistent morphological feature space for slums. As a result, there
is often a mismatch between the reference data used to train the models and the actual
ground truth of slum settlements. Additionally, ground truth data, where available, may
be outdated due to the dynamic and rapidly evolving nature of slums (Gevaert et al., 2019).
This temporal discrepancy introduces further uncertainty into the mapping process and
highlights the need for ongoing refinement of reference datasets and the methods used to
train slum-mapping models.

4.2. Significance of Contributions to Global Poverty Mitigation
Initiatives

In chapter 1, the SDGs and the UN’s Call for Better Data was introduced. This section
explores how the contributions of this work can support, inform, and enhance these and
other critical initiatives.
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4.2.1. Impact Towards the Sustainable Developments Goals
As the first of the SDGs, Goal 1 underscores its fundamental importance by aiming to
eradicate poverty in all its forms globally. SDG 1 encompasses seven key targets that con-
tribute to this overarching goal. These targets include eradicating extreme poverty and
reducing overall poverty by 2030, implementing social protection systems, ensuring equal
access to economic resources and basic services, building resilience against climate-related
and other shocks, mobilizing resources for poverty programs, and establishing policy frame-
works that support pro-poor and gender-sensitive strategies for poverty eradication.

A critical factor influencing the success of these targets is the accuracy and reliability of
the underlying data used to estimate the number of people living in extreme poverty. Inac-
curate or outdated data can significantly undermine efforts to track and address poverty,
leading to misinformed policy decisions and resource allocation (Kuffer et al., 2019). The
report from the World Bank for the city Port-au-Prince exemplifies the potential impact
of such data-related issues (D’Aoust et al., 2022). The report identified vulnerable city
sectors, highlighting areas such as Martissant, Cité Soleil, western Carrefour, and regions
along the Grise River and Kenscoff route as having the highest levels of vulnerability, pre-
dominantly in slum areas. In contrast, less vulnerable regions were identified in parts of
Pétion-Ville, Pacot, and the sparsely populated northern and eastern areas of Carrefour.

When comparing these findings to the slum confidence map from section 3.4 of Port-au-
Prince seen in Figure 19, a strong correlation is evident. However, the slum confidence
map offers several advantages, including higher resolution and the inclusion of confidence
scores, providing a more nuanced understanding of the spatial distribution of poverty.
These confidence scores allow policymakers to prioritize interventions more effectively
by identifying areas with uncertain data, thereby enabling more targeted and informed
decision-making. In the two highlighted examples in Figure 19 it can also be seen that the
proposed approach from Stark et al. (2024a) is able to identify slum settlements within
the city center more clearly. This example highlights the importance of utilizing advanced
methodologies and high-quality data to further support the targets of SDG 1.

Global efforts to eradicate extreme poverty have been severely disrupted by the COVID-
19 pandemic and a series of major shocks from 2020 to 2022. The pandemic reversed
decades of progress, increasing extreme poverty for the first time in years, and setting
global progress back by three years. Recovery has been uneven, with low-income coun-
tries struggling the most, and achieving the goal of ending poverty by 2030 is now unlikely
(United Nations, 2023b). By 2022, 9% of the world’s population, 712 million people, were
living in extreme poverty, with projections indicating that 590 million will still live in
extreme poverty by 2030. The pandemic has also slowed progress on halving national
poverty rates, with less than 30% of countries on track to meet this goal by 2030. Social
protection for children remains inadequate, with 1.4 billion children lacking coverage in
2023. Furthermore, economic losses due to disasters continue to exceed $115 billion annu-
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Figure 19 Comparing the results from the World Bank report from D’Aoust et al. (2022) of mapping urban
vulnerability to the slum confidence results from (Stark et al., 2024a). Two area of interests of slums are
highlighted in where only the results from Stark et al. (2024a) are able to detect slums within the city center.

ally, showing no signs of improvement (United Nations, 2023b). Government spending on
essential services has remained stable, with a persistent gap between advanced economies
and developing nations. This is why it is crucial to have updated, high-quality global data
on slum settlements (United Nations, 2024). While global slum mapping is not yet fully
realized, the methods presented in this work demonstrate a promising step forward. With
further improvements, a comprehensive global slum map could become an invaluable tool
for advancing the goals of SDG 1.

SDG 11 aims to make cities and human settlements inclusive, safe, resilient, and sustain-
able, directly addressing the challenges of slums and extreme urban poverty. Slum areas,
often characterized by poor-quality housing and inadequate infrastructure, are particu-
larly vulnerable to disasters due to unsafe building materials and lack of disaster-resilient
planning. In addition, limited road safety and infrastructure exacerbate the risks faced by
slum dwellers. Achieving SDG 11 requires reducing disaster risks, improving housing con-
ditions, and ensuring that urban development supports safer, more resilient communities,
especially in slum settlements where vulnerabilities are most acute (Kühnl et al., 2023).

Similarly SDG 6 aims to ensure clean water and sanitation for all, a goal particularly chal-
lenging in slum settlements. Slums often lack basic infrastructure, including proper water
supply systems and sanitation facilities, making access to clean water and hygiene diffi-
cult. Overcrowding and poor waste management exacerbate water contamination risks,
leading to heightened public health issues. Achieving SDG 6 in these regions necessitates
substantial investment in sustainable infrastructure and the development of innovative
solutions to ensure access to clean water and adequate sanitation in densely populated,
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informal urban settlements where conventional systems are challenging to implement. The
results, particularly those derived from semantic segmentation, offer valuable insights into
the spatial extent of slums, enabling more accurate estimates of slum populations. This
information serves as an optimal input for designing efficient water distribution networks
and supply infrastructure in urban areas (Friesen et al., 2017; Stark, 2018).

4.2.2. Poverty Data Repositories
The UN Call for Better Data aims to improve global efforts in monitoring and eliminating
extreme poverty by leveraging big data for official statistics (United Nations, 2024). Statis-
ticians worldwide will collaborate virtually through the UN Statistical Commission to ad-
vance this initiative. The key objectives include providing strategic direction for a global
big data program, promoting practical applications of big data while addressing challenges
such as methodology, legal concerns, and security, and enhancing capacity-building efforts.
Additionally, the initiative advocates for the use of big data in policy-making and works
to build public trust in its application for official statistics.

The IDEAMAPS Project is a global initiative aimed at creating a comprehensive slum
repository to support NGOs and local governments (Kuffer et al., 2024; Thomson et al.,
2020). This research network focuses on improving methods for mapping slum areas by
generating citywide maps that highlight deprivations and assets. The project helps stake-
holders use this data for urban upgrading, advocacy, and monitoring efforts. IDEAMAPS
emphasizes the importance of data validation by city stakeholders, ensuring that the data
is comparable across cities, regularly updated, and accessible to communities and local
governments to promote equity and justice in urban planning and development.

All results presented in this dissertation are fully reproducible and made available through
multiple GitHub repositories including some example data (Stark et al., 2024a, Stark
et al., 2024b). This marks an important step towards making the methods accessible
to the public, allowing others to replicate and build upon the work. Prediction maps
are shared upon reasonable request within established communities, such as the "Slum
Modeling Community of Practice". However, publicly sharing these predictions poses
ethical challenges, which are discussed in the following section. In the future, when models
are more refined or when sharing aggregated statistical values per city, the approach to
data sharing could become more flexible.

4.3. Ethical Considerations in AI Driven Slum Mapping

The use of deep learning methods in urban remote sensing offers vast potential for ana-
lyzing and understanding cities at scale. However, it also presents significant ethical chal-
lenges. Deep learning models trained on remote sensing data, such as satellite or aerial
imagery, can provide insights into various aspects of urban development, infrastructure,
and environmental conditions. These insights can aid in urban planning, disaster manage-
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ment, and sustainable development. Nevertheless, issues related to privacy, surveillance,
and data ownership must be carefully considered (Kochupillai et al., 2022; Zhu et al.,
2022).

One major ethical concern is the potential for Artificial Intelligence (AI) to infringe on
individual privacy. High-resolution imagery combined with AI can lead to unintended
surveillance, where personal or sensitive information about individuals or communities is
inadvertently exposed (Kamila and Jasrotia, 2023). There is also the risk of bias in AI
models, as these models may disproportionately impact vulnerable populations if they are
trained on biased or incomplete data (Jobin et al., 2019). For instance, urban remote
sensing can reinforce existing inequalities if the AI systems are not designed to fairly
represent diverse communities. Additionally, transparency and accountability are crucial
decisions are made based on AI predictions (Kim et al., 2020). The outcomes of AI models
should be explainable and accessible, ensuring that urban planning decisions driven by AI
are made ethically and with public oversight (Höhl et al., 2024).

In the context of labeling and predicting living conditions using AI, ethical considerations
become particularly sensitive. The process of classifying areas based on living standards
risks stigmatizing communities, especially when predictions or classifications are not con-
textually accurate (Reijneveld et al., 2000). Such data can inadvertently reinforce stereo-
types or cause harm by misjudging people’s living environments. Therefore, predictions
must be handled with great care, ensuring that the data does not lead to negative societal
consequences or unfairly label communities (Jaber and Abbad, 2023).

While there is a desire to make these AI-generated insights widely available for research,
urban planning, and policymaking, the ethical balance is delicate (Zhu et al., 2022). On
the one hand, sharing data can drive important interventions and improvements in urban
development. On the other hand, the risk of misrepresenting living conditions could
result in policy decisions that negatively affect the very communities the data is meant
to help (Corburn and Sverdlik, 2017; Owusu et al., 2021). Therefore, AI models need to
be designed with safeguards that minimize bias, respect cultural and societal contexts,
and ensure that outputs do not stigmatize individuals or communities. In the future,
sharing only aggregated data or statistical values, rather than direct classifications of
living conditions, could be a more ethically sound approach, helping to mitigate these
risks while still providing valuable insights.
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5. Conclusion and Outlook

5.1. Conclusion

This research sought to answer four key questions regarding the use of deep learning
in remote sensing for large-scale slum mapping. First, an investigation was conducted
into whether deep learning methods can be effectively applied to map slums with typical
morphologies using satellite imagery. Our experiments demonstrated that FCNs, when
applied to VHR imagery such as QuickBird, yield highly accurate results for typical slum
areas, such as those found in Mumbai. The detailed spatial resolution of 0.5 meter allowed
the network to capture the complex, irregular patterns characteristic of slum settlements,
achieving strong segmentation outcomes. Transfer learning further enhanced these results,
showing promise for the detection of slums using HR sensors like Sentinel-2, making large-
scale slum mapping more feasible.

Secondly, an exploration was conducted into whether these methods could be scaled to
map slums on a globally distributed level. Through transfer learning, a model was able to
generalize across different geographic regions, providing robust slum predictions in cities
with varying slum morphologies. Experiments showed that using a transfer-learned XFCN
mapping accuracy improves significantly compared to training the XFCN within only one
single city. This suggests that it is possible to leverage deep learning methods to map
slums at a global scale by using HR imagery, such as PlanetScope data.

Thirdly, detecting the gradual transition between formal and informal settlements requires
uncertainty estimates to distinguish between these fuzzy boundaries. By incorporating
Monte Carlo dropout into the deep learning models the confidence of slum predictions
could be assessed, which is crucial in areas where formal and informal features overlap. The
uncertainty-aware approach proved essential in refining predictions, particularly in urban
environments where slums share features with formal settlements, making classification
more complex. The introduction of uncertainty not only increased the robustness of the
results but also highlighted areas where the model was less confident, providing valuable
information for further analysis or ground validation.

Finally, the methodology was applied to a large-scale dataset, mapping slums across 55
diverse cities. The combination of transfer learning and uncertainty-aware methods pro-
duced slum probability maps that offer detailed insights into urban poverty patterns.
These maps provide a critical tool for policymakers and urban planners, enabling them to
address socio-economic disparities with more targeted interventions. The successful ap-
plication of our methods across a wide geographic range underscores the potential of deep
learning methods in transforming urban analysis, offering salable, accurate, and ethically
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sound solutions for slum mapping on a global scale.

In summary, this dissertation demonstrated that deep learning methods, combined with
remote sensing datasets, can effectively map slums across various geographical settings.
The presented approaches could handle the complexities of global-scale mapping and pro-
vide uncertainty estimates to navigate the blurry boundaries between formal and informal
settlements. By applying these methods to a wide variety of globally distributed cities, the
foundation for future work in large-scale urban poverty mapping is laid, offering valuable
tools for sustainable development and equitable urban planning.

5.2. Outlook

To build upon the results of this thesis and address the ongoing need for slum mapping
(United Nations, 2023b), further advancements in deep learning for detecting slums are
necessary. These developments will help create applications that can scale globally. Given
the rapid advancements in deep learning, several potential directions can be explored for
slum mapping using remote sensing data. These include expanding the models to handle
diverse urban environments on a global scale, integrating more complex data sources, and
improving the robustness of predictions in diverse and challenging urban contexts, such as
slums. The following outlines potential areas for future research and applications in this
domain.

Deep learning methods are rapidly evolving, model architectures often achieve higher accu-
racies in benchmark datasets by utilizing larger models or optimizing parameter efficiency,
all while maintaining reasonable processing times (Brown et al., 2020; Tan and Le, 2020).
However, these advancements typically rely on large datasets, which are often scarce in
the context of slum mapping. Despite this, some emerging techniques could still prove
beneficial for slum mapping. These methods have the potential to enhance accuracy and
generalization even with limited data, offering promising methods for future research in
this field.

The rise of Vision Transformers (ViTs) presents a potential improvement over standard
CNN architectures for slum mapping. Unlike CNNs, which rely on convolutional layers to
capture spatial hierarchies, ViTs use self-attention mechanisms to process entire images
at once, capturing global context more effectively. This can lead to better performance
in certain tasks, especially with larger datasets (Maurício et al., 2023; Wei et al., 2022).
Given their success in benchmark datasets, it would be interesting to explore whether
similar achievements could be realized in slum mapping, particularly in addressing the
need for diverse and expansive datasets, as discussed earlier. Incorporating ViTs could
offer a promising direction for improving the accuracy and generalization of slum mapping
models.
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Several promising research directions can enhance the scalability and effectiveness of slum
mapping using deep learning and remote sensing data. Active learning, for instance, could
allow models to become more efficient by selecting the most informative data points for
training, significantly reducing the need for large labeled datasets (Geiß et al., 2017; Tuia
et al., 2009). This approach, coupled with more advanced transfer learning and few-shot
learning techniques, could further improve the accuracy and adaptability of models in new
geographic regions, even when limited training data is available (Stark et al., 2023). These
methods are particularly relevant for applications in slum mapping, where labeled datasets
are often sparse, and urban structures can vary dramatically across different cities.

Another exciting avenue for future research is the application of self-supervised learning
strategies, which could enable large-scale slum mapping in the real world without relying
heavily on labeled data. By allowing models to learn from vast amounts of unlabeled
imagery, self-supervised learning could facilitate the creation of global slum maps with
less human intervention and greater scalability (Li et al., 2021; Tao et al., 2023; Wang
et al., 2022b).

Ethical considerations remain crucial in the development of deep learning based slum
mapping tools. Explainable AI (XAI) must be prioritized to ensure that models are trans-
parent, responsible, and free from bias (Jobin et al., 2019; Owusu et al., 2021; Zhu et al.,
2022). Given the sensitivity of slum mapping, where the misclassification of communities
can lead to stigmatization, ensuring fairness and accountability in AI predictions is es-
sential. This would foster trust among stakeholders and make the results of these models
more ethically sound and usable in real-world applications.

Lastly, making public datasets available for slum mapping poses ethical challenges, espe-
cially when georeferenced data might expose vulnerable communities. However, providing
unreferenced visual data or aggregated statistical data derived from the results could offer
valuable insights while maintaining privacy and ethical standards. The future of slum
mapping holds immense potential. With improvements in AI transparency and data shar-
ing, along with scalable learning techniques, the tools developed through this research
could transform urban analysis, ultimately leading to smarter, more equitable solutions
for poverty alleviation.
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A B S T R A C T

Unprecedented urbanization in particular in countries of the global south result in informal urban development
processes, especially in mega cities. With an estimated 1 billion slum dwellers globally, the United Nations have
made the fight against poverty the number one sustainable development goal. To provide better infrastructure
and thus a better life to slum dwellers, detailed information on the spatial location and size of slums is of crucial
importance. In the past, remote sensing has proven to be an extremely valuable and effective tool for mapping
slums. The nature of used mapping approaches by machine learning, however, made it necessary to invest a lot
of effort in training the models. Recent advances in deep learning allow for transferring trained fully convolu-
tional networks (FCN) from one data set to another. Thus, in our study we aim at analyzing transfer learning
capabilities of FCNs to slum mapping in various satellite images. A model trained on very high resolution optical
satellite imagery from QuickBird is transferred to Sentinel-2 and TerraSAR-X data. While free-of-charge Sentinel-
2 data is widely available, its comparably lower resolution makes slum mapping a challenging task. TerraSAR-X
data on the other hand, has a higher resolution and is considered a powerful data source for intra-urban structure
analysis. Due to the different image characteristics of SAR compared to optical data, however, transferring the
model could not improve the performance of semantic segmentation but we observe very high accuracies for
mapped slums in the optical data: QuickBird image obtains 86–88% (positive prediction value and sensitivity)
and a significant increase for Sentinel-2 applying transfer learning can be observed (from 38 to 55% and from 79
to 85% for PPV and sensitivity, respectively). Using transfer learning proofs extremely valuable in retrieving
information on small-scaled urban structures such as slum patches even in satellite images of decametric re-
solution.

1. Introduction

Poverty is considered one of the major challenges for our society in
the upcoming decades, making it the number one issue of the
Sustainable Development Goals as defined by the United Nations (UN,
2017). In urban areas, slums are the most visible, distinct manifestation
of poverty (Amnesty International, 2016). Unprecedented processes of
urbanization over the past decades have transformed mankind into an
urban species with two thirds of the global population being expected
to live in urban areas by the year 2050 (UN, 2015). This rural-urban
migration is especially intense in mega cities of the global south, such as
Mumbai in India which grew at a pace of up to 300,000 inhabitants per
year (Burdett and Rhode, 2010). Since formal urban development
cannot keep up with this pace of rural-urban migrants, many new urban

dwellers are forced to find their new homes in settlements of informal
nature with poor living conditions, lack of basic services such as access
to safe water and sanitation facilities. Today, these slums are home to
almost an estimated billion dwellers on a global scale (UN Habitat,
2015). In some cities, the share of slum dwellers accounts for up to 42%
of the city’s total population in official numbers (and a significantly
higher number in estimations) such as it is the case for Mumbai
(Taubenböck and Wurm, 2015). Various strategies for dealing with
slums have been developed by local authorities, however a recent
change can be observed towards a strategy of integrating the ‘invisible
city’ into governing structures is today for many cities the accepted way
to deal with those informal areas since the presence of slums cannot be
neglected anymore (Wurm and Taubenböck, 2018). Thus, the deriva-
tion of reliable, spatial information on the size and location of slum
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areas by mapping approaches has gained much of interest over the past.

1.1. Morphological characteristics of slums from a remote sensing
perspective

As it can be observed for many applications in the context of urban
remote sensing, the turn of the millennium marks an important date
with the advent of very high resolution satellites providing images at
resolutions of 1m or better. Especially for the discrimination of very
small, heterogeneous objects such as buildings within the urban en-
vironment, high image resolutions are of crucial importance. Thus, also
in the context of slum mapping, an increased interest in the utilization
of VHR satellite images can be observed since then. This goes in parallel
with the advent of more sophisticated image analysis techniques such
as object-based image analysis or, recently, deep learning methods.
Thus, in the following we review previous works on remote sensing-
based slum mapping based on different methods and image features in
the light of the complex nature of slum morphology.

From a synoptic perspective, urban poverty finds its physical ex-
pression in many different ways which usually do not follow a strict and
universal concept (Taubenböck et al., 2018; Kuffer et al., 2017).
However, some forms of urban poverty in particular can be directly
associated with the morphology of the built environment, though
(Sandborn and Engstrom, 2016; Jean et al., 2016; Wurm and
Taubenböck, 2018). Most commonly, organic, irregular arrangements
of buildings are associated with slum areas, as well as low building
heights, poor construction materials and a generally high building
density in often hazardously exposed areas (Baud et al., 2010; Kuffer
et al., 2016a; Graesser et al., 2012; Jain, 2007). These characteristic
morphologic features are extensively exploited in remote sensing-based
image analysis for slum mapping. Since recently thorough studies on
the state of slum mapping have been released (Kuffer et al., 2016a;
Mahabir et al., 2018), we only summarize below past research efforts
based on significant cornerstones in methods or data. While generally,
very high mapping accuracies are achieved by visual image inter-
pretation (Wurm and Taubenböck, 2018; Taubenböck et al., 2018) or
knowledge-based methods using object-based image analysis (OBIA)
relying on tuned parameters (Kuffer et al., 2014; Baud et al., 2010),
large-area mapping of slums is usually based on machine learning al-
gorithms which aim at generalizing specific semantic knowledge in the
images based on labeled elements and image descriptors to provide
transferability of the learned knowledge into unknown areas. One key
feature in the identification of slums is their sharp contrast in their
physical appearing compared to formal developed urban areas. There-
fore, contextual image features such as the grey-level-co-occurrence-
matrix (GLCM) was used extensively in slum mapping in combination
with machine learning techniques such as random forests (e.g. Kuffer
et al., 2016b; Graesser et al., 2012; Wurm et al., 2017; Owen and Wong,
2013) or support vector machines (Huang et al., 2015). Besides the
extensive use of VHR optical data, only few studies were dedicated to
the exploitation of actively acquired data, e.g. such as dual-polarized X-
band SAR data from TerraSAR-X (Wurm et al., 2017; Schmitt et al.,
2018). Only recently, the current trend in machine learning for se-
mantic segmentation of images has been taken up by the application of
deep learning for the detection of slums in VHR images confirming
current trends in deep learning methods to outperform state-of-the-art
machine learning techniques (Persello and Stein, 2017). The next sub-
sequent step to learning and applying a network on the same data set is
to transfer a pretrained network to sensors of different resolutions.
Thus, deeper networks consisting of more hidden layers need to be
considered (Oquab et al., 2014).

1.2. Transfer learning for semantic segmentation using convolutional neural
networks

Generally, most machine learning methods work well because

human-designed representations and features are used to optimize
weights for an accurate prediction. Representation learning attempts to
automatically learn good features or representations, which works well
for small problems. In contrast, manually designed features are often
over-specified, incomplete, and are very time-consuming for design and
validation. Deep learning algorithms attempt to automatically learn
multiple levels of representations exclusively from its input data,
without the need of additional user input (Zhu et al., 2017). Besides its
effectiveness, this can be regarded as one of the reasons for the big
success of deep learning in machine learning since the task of training
and prediction is facilitated. Recent advances in the field have proven
deep learning a very successful set of tools, sometimes even able to
surpass human ability to solve highly computational tasks (Zhu et al.,
2017). Especially for image representations, convolutional neural net-
works have proven to excel at extracting mid- and high level abstract
features from raw images. Recent studies indicate that the feature re-
presentations learned by CNNs are greatly effective in large scale image
recognition (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014),
object detection (Girshick et al., 2016) and semantic segmentation
(Long et al., 2015).

Image segmentation aims at understanding an image at pixel level,
i.e. each pixel of an image is assigned a semantic class. Initially, images
of a fixed size were required for classification, but soon fully convolu-
tional networks (FCNs) without fully connected layers popularized CNN
architectures for dense predictions of images of any size and sig-
nificantly increased speed (Long et al., 2015). Apart from fully con-
nected layers, one of the main challenges using CNNs for semantic
segmentation are the ‘pooling layers’. They increase the field of view
and are able to aggregate the context while discarding the location
information. However, semantic segmentation requires the exact
alignment of class maps and thus, needs the spatial information to be
preserved. This issue can be tackled by encoder-decoder architectures
where an encoder gradually reduces the spatial dimension with pooling
layers and a decoder which gradually recovers the object details and
spatial dimension using transposed/fractionally strided convolutions.
While FCNs can learn the interpolation during the decoding process,
upsampling produces coarse segmentation maps because of loss of in-
formation during pooling. Therefore, skip connections are introduced
from higher resolution feature maps.

In Long et al. (2015), the authors describe the key observation that
fully connected layers in classification networks can be viewed as
convolutions with kernels that cover their entire input regions. This is
equivalent to evaluating the original classification network on over-
lapping input patches but is much more efficient because computation
is shared over the overlapping regions of patches. In remote sensing, the
use of deep learning brings up new challenges, since satellite image
analysis raises some unique issues that need to be considered, e.g. geo-
location of satellite images, sensor specifics (resolution, incidence an-
gles, data quality etc.) or the big data challenge (Zhu et al., 2017).

In the context of remote sensing, scene classification of satellite
images, which aims to automatically assign a semantic label to each
pixel in an image, has recently been an active research topic in the field
of VHR satellite images. Generally, scene classification can be divided
into two steps: feature extraction and classification. With growing num-
bers of images, training a complicated non-linear classifier is very time
consuming. Hence, to extract a holistic and discriminative feature re-
presentation is the most significant part for scene classification.
Traditional approaches are mostly based on the Bag-of-Visual-Words
model (Sivic and Zisserman, 2003; Zhu et al., 2016), but their potential
for improvement was limited by the ability of experts to design the
feature extractor and the expressive power encoded. In contrast, deep
learning architectures have been successfully applied to the problem of
scene classification of high-resolution satellite images outperforming
state-of-the-art image classifiers (Zou et al., 2015; Penatti et al., 2015;
Castelluccio et al., 2015; Mou et al., 2017).

As deep learning is a multi-layer feature learning architecture, it can
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learn more abstract and discriminative semantic features with growing
depth. Thus, it has been shown that it can achieve far better classifi-
cation performances compared to mid-level approaches (Zhu et al.,
2017). Training of neural networks, is usually performed using pre-
trained networks on large image datasets, e.g., COCO (Lin et al., 2014),
Pascal VOC (Everingham et al., 2010) or ImageNet (Deng et al., 2009)
which in general reach impressive accuracies (Hu et al., 2015; Zou
et al., 2015). Expanding the three channel input limitations of tradi-
tional deep learning algorithms (Kemker et al., 2018; Marmanis et al.,
2018) use specific architectures to use elevation information and mul-
tispectral imagery to boost performance in semantic segmentation fra-
meworks. Training networks from scratch is an extremely elaborate and
time consuming method which is usually employed only if the data has
completely different characteristics compared to internet images, for
example hyperspectral images (Mou et al., 2018; Pan et al., 2018) or
SAR (Gong et al., 2017; Hughes et al., 2018).

In general, transfer learning builds upon learned knowledge from
one dataset to improve learning in another dataset. More specifically, it
can be described as a method which aims to improve learning the target
predictive function f (·)T in the new target dataset DT using the
knowledge learned in the source dataset DS. As described by Pan and
Yang (2010), transfer learning can be divided into three categories: (a)
In inductive transfer learning the target task is different from the source
task, no matter if the source or target datasets are the same or not. In
this case labeled data is required to induce the target learning task. (b)
For transductive transfer learning both target and source learning tasks
are the same while their datasets are different. In this situation no la-
beled data in the target dataset are required. Lastly, (c) unsupervised
transfer learning is used when the target and source tasks are different,
and no labeled data is available in both source and target datasets.

Selection of transfer learning strategies not only depends on the
availability of existing labels in both source and target datasets and the
similarity of the source and target dataset but also if weights learned in
the source task can be adjusted or shared in the target task. Transfer
learning can be achieved using multiple strategies. Multi-task learning
has been used to improve object detection accuracy by transferring
knowledge from one object class to another using a support vector
machine’s (SVM) discriminative training framework for HOG template
models (Aytar and Zisserman, 2011) or using a hierarchical classifica-
tion model that allows rare objects to borrow statistical strength from
related objects (Salakhutdinov et al., 2011). Two multi-task classifiers
are used to obtain a more robust classifier for object detection in videos
(Ma et al., 2014). In hyperspectral remote sensing domain adaption
technology can be applied to share knowledge between different geo-
graphical domains when using support vector machines (Sun et al.,
2012) or random forest classifiers with transfer component analysis
(Xia et al., 2017). Impressive results could be observed using un-
supervised feature representation using pretrained CNNs for scene
classification in very high resolution remote sensing imagery (e.g.
Castelluccio et al., 2015; Hu et al., 2015). Inductive transfer learning
enables to further improve the learning task where backpropagation
successfully re-weights labeled data from natural image datasets, e.g.
ImageNet to solve new problems in remote sensing datasets (e.g.
Maggiori et al., 2017; Marmanis et al., 2016; Nogueira et al., 2017;
Kang et al., 2018). Therefore, in this study inductive transfer learning of
a FCN is used due to relative large labeled datasets where the fine
tuning of weights during backpropagation aims to achieve best possible
results.

1.3. Transferring deep features between various remote sensing data sets

In slum mapping, in particular approaches using remotely sensed
data from satellite images with varying characteristics were used ex-
tensively for assessing image processing and analysis techniques (Kuffer
et al., 2016a; Mahabir et al., 2018). Both scientific meta-studies state
that while previous work on remote sensing-based slum mapping has

acknowledged the advances of recent machine learning techniques for
locating slums in satellite images, they lack transferability between
various data sets. Costs for the large-area availability of very high re-
solution (VHR) optical satellite imagery at a geometric resolution of 1m
and below are a limiting factor and thus, multi-sensor approaches with
data sets of varying origins are proposed.

In this study we want to address these identified issues by using
state-of-the-art machine learning techniques from the family of con-
volutional neural networks (CNN) which need no tuning of parameters
and have therefore better capabilities for transferring a trained network
to another data set, as long as the training data set is sufficiently large
and representative. Specifically, we want to explore the capabilities of
this process of ‘transfer learning’ to adopt a pretrained CNN from VHR
optical Quickbird imagery to be applied to satellites with larger map-
ping areas but lower geometric resolution such as Sentinel-2. Further, in
a second experiment we want to assess the capabilities of transfer
learning from optical imagery to active SAR imagery from TerraSAR-X.

The remainder of this article is structured as follows: in the fol-
lowing Section 2 we present the methodological framework of fully
convolutional networks (FCN), transfer learning for slum mapping and
used data sets among the experimental set-up. In Section 3 we present
the results and discussion of the performed experiments, while Section
4 concludes the paper.

2. Methods and experimental set-up

2.1. Method: The fully convolutional network FCN-VGG19

FCNs, first introduced by Long et al. (2015) allow for semantic
segmentation to train end-to-end and pixel-to-pixel for the prediction of
dense outputs from arbitrary sized input images. Learning and inference
are performed on the entire image by dense feedforward computation
and backpropagation. Within the network upsampling layers enable a
pixelwise prediction and learning with subsampled pooling. For our
experiments, we use the CNN based on the classification architecture
VGG19 by the Visual Geometry Group of Oxford University (Simonyan
and Zisserman, 2014). The CNN relies on rather small receptive fields of
3×3 pixels which are convolved with the input at every pixel. In this
way a stack of two 3×3 convolutional layers has an effective receptive
field of 5×5. Consequently, four layers have a 9×9 effective re-
ceptive field. This strategy has the advantage of incorporating four non-
linear rectification layers instead of a single one, making the decision
function more discriminative. Furthermore, it decreases the number of
parameters: 4(32C2)= 36C2 produces less trainable weights than a
single 9×9 convolutional layer: 92C2= 81C2.

To adapt the CNN-VGG19 architecture to an FCN some modifica-
tions are required: The final classification layer is discarded and re-
placed with a 1× 1 convolution and with the channel dimension of the
number of used classes. Further, deconvolutional layers are introduced
for bilinear upsampling of the coarse outputs to pixel-dense outputs. In
this case, upsampling through deconvolutional layers means using
transpose convolutions. This operation simply reverses the forward and
backward passes of the convolution. Upsampling is performed for end-
to-end learning by backpropagation from a pixelwise loss (Long et al.,
2015).

A graphical representation of the used FCN-VGG19 architecture is
depicted in Fig. 1. It shows that the FCN uses skips, which combines the
final prediction layer with lower level layers with finer strides. Fusing
fine layers and coarse layers lets the model make local predictions that
respect a global structure. The FCN fuses the upsampled output of the
VGG19 network architecture with predictions computed on top of the
third and fourth pooling layer.

2.2. Method: Transfer learning approach

Training the FCN was performed using an inductive transfer
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learning approach (cf. Section 1.3). When given a source domain da-
taset DS and a learning task TS, a target domain dataset DT and learning
task TT aims to improve the learning of the target predictive function
f (·)T in DT using the knowledge in DS and TS where T TS T (Pan and
Yang, 2010). In this case the target domain dataset DT and the learning
task TTbenefit from using the knowledge learned in the source domain
dataset D .S We present two groups of experiments. In our first approach
weights from a vgg19 CNN which was pretrained on the ImageNet
dataset are transfer learned for 100 epochs with all weights available
for tuning during the backpropagation algorithm on all three remote
sensing datasets where the source domain is the ImageNet dataset
DS

ImageNet and the target domain is QuickBird, Sentinel-2 and TerraSAR-
X imagery (FCN QB, FCN S2, FCN TX). Instance transfer allows to re-
label weights from the source domain to the target domain and ensures
adapting the backpropagation algorithm to improve the target learning
task. Table 1 indicates a small dataset in the target domain for Sentinel-
2 DT

S2 with only 219 image tiles and also in the TerraSAR-X target
domain DT

TX with only 2113 image tiles. A small target domain in
DT

S TX2, is usually insufficient for finding good feature representations
between the source learning task TS

ImageNet and the target learning task
TT

S TX2, for which reason a second group of transfer learning experiments
was performed. It aims to reduce differences between the source and

target domain where both domains are based on satellite images. Thus,
the FCN trained on the QuickBird dataset (FCN QB) from the first group
of experiments acts as a new source domain DS

QB for the second group.
The target learning task for Sentinel DT

S2 benefits from a better feature
representation since both datasets DS

QB and DT
S2 are optical remote

sensing images. In the same way, the experiment is performed for the
TerraSAR-X target domain DT

TX . For both transfer learning experiments
all trainable variables of the FCN are available during backpropagation
to ensure adapting all parameters for the different resolutions and
image sensing methods of the remote sensing data.

2.3. Material: Satellite images for slum mapping

For our experiments, space-borne satellite images of three different
sensors (QuickBird, Sentinel-2, TerraSAR-X) with entirely different
specifications are investigated. Since we aim at testing the capabilities
of transfer learning of pretrained models between different images, we
briefly introduce the used satellite images for our experiments below
(Table 1). In general, our main image data set is from QuickBird. For
transfer learning we use Sentinel-2 and TerraSAR-X.

QuickBird: was the first VHR commercial space-borne sensor with a
sub-meter resolution of 0.5m in the panchromatic band. The four

Fig. 1. Architecture of the FCN-VGG19 adapted from Long et al. (2015) which learns to combine high level information with fine, low level information using skips
from the third and fourth pooling layer. Hidden layers are equipped with rectified linear units (ReLUs) and the number of channels for the convolutional layers
increases with the depth of the network. During training the input image is a fixed size of 224×224 pixels, while receptive fields for all filters are 3× 3 pixels
throughout the whole network. This configuration allows the FCN to learn approximately 140 million parameters. Prediction is performed using upsampling layers
with four channels for the all classes [ncl] in the reference data. Upsampling layers are fused with 1×1 convolutions of the third and fourth pooling layers with the
same channel dimension [x,y,ncl]. The final upsampling layer predicts fine details using fused information from the last convolutional layer, third and fourth pooling
layer upsampled at stride 8.

Table 1
Characteristics of satellite images for testing transfer learning techniques for the FCN-VGG19.

GSD Scene size Bands/Polarization Date Incidence Angle Image tiles

QuickBird 0.5 m 103 km2 blue, green, red, nir Nov 17, 2008 16.6° 7487
Sentinel-2 10m 781 km2 blue, green, red, nir Nov 19, 2017 4.8° 219
TerraSAR-X 6m 242 km2 HH/VV Sep 29, 2013 33.7° 2113

6m 242 km2 VV/VH Dec 11, 2013 33.7°
6 m 308 km2 HH/VV Oct 10, 2013 34.7°
6 m 308 km2 VV/VH Dec 04, 2013 34.7°
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multispectral bands blue, green, red and nir are acquired at 2m resolu-
tion. Scenes usually have a swath width of ∼17 km.

Sentinel-2: is the high resolution optical sensor of the European
Copernicus Programme with 12 spectral and thermal bands at varying
resolutions. The blue, green, red and nir bands are acquired at 10m re-
solution. The swath width is 290 km.

TerraSAR-X: is an active SAR sensing system with various imaging
modes of polarizations and resolution. For the commonly used stripmap
mode, dual and cross polarized images are acquired at a ground sam-
pling distance (GSD) of 6m. The swath width is 11 km.

Satellite images are split into image tiles of 224×224 pixels with
an overlap of 28 pixels to increase the amount of input data and to
counter classification problems near edges. Since semantic segmenta-
tion performs classification of the entire images, four semantic classes
are defined which cover the entire scenes: ‘urban’, ‘vegetation’, water’
and ‘slums’. For training and evaluation, fully labeled images are cre-
ated for each data set (Fig. 2). Labeling of reference data is based on a
multi-step image analysis procedure through a combination of hier-
archical, knowledge-based and object-based classification, machine
learning and visual image interpretation: in a first step, image objects
are generated through a combined workflow of quad-tree and multi-
resolution image segmentation methods. Further, spectral and spatial
image features are calculated for each image object and basic landcover
classes such as water and vegetation are classified using a random forest
classifier based on visually derived training objects. In a subsequent
step, slum patches are derived by visual image interpretation from
image analysts and cross-validated. The reference map is controlled by
a stratified spatial random sample of 800 test points over the image
with a resulting overall accuracy of 93% and a kappa value of 0.91.
Accuracy for the slum class is reported with sensitivity of 92% and a
positive prediction value of 95%. For the transfer learning experiments,
the reference map was adapted to the geometric resolution of each
target image data set.

2.4. Experimental set-up

The FCNs are trained on an Nvidia Titan X GPU using the ‘adam
optimizer’ (Kingma and Ba, 2014) and a batch size of two image tiles.
All FCNs use fixed learning rates of 10−5 and a dropout value of 15%.

The training methodology for the FCNs was as following: first, a pre-
trained model is initially trained for 100 epochs on all three datasets
(QuickBird, Sentinel-2 and TerraSAR-X) to set-up the FCN. Second, two
transfer learning experiments are conducted: the pretrained QuickBird-
FCN is transferred on Sentinel-2 and TerraSAR. The implementation of
the FCN is based on the TensorFlow™ framework of Shekkizhar (2017).

Performance of the FCN is evaluated within a 4-fold cross validation
procedure where each scene is split into four equal data strips. Out of
the four data strips, three strips are used as training samples which are
randomly shuffled after each epoch and the remaining strip is used for
validation. The cross-validation process is repeated four times, with
each of the four strips used exactly once for validation. Finally, the four
results of the folds are mosaicked to produce a single output covering
the entire scene with each strip being the result of one of the four
classification experiments and thus allowing for assessment of in-
dependent results.

For quantitative assessment of the accuracy of the outputs of se-
mantic segmentation, some commonly accepted performance measures
are used: First, overall measures assess the general performance and
second, class-specific measures reveal specific insights. The kappa index
is applied as a measure to define to what extent the classification out-
come differs from a random result with ranges between 0 and 1; where
0 corresponds to a completely random result and 1 corresponds to a
completely nonrandom result. The overall accuracy (OA) and inter-
section over union (IoU; also known as Jaccard Index) are calculated in
addition. OA is generated from an error matrix between the classifica-
tion map and the reference map and allows for a general assessment of
the agreement between the two maps; however, OA can be subject to a
strong bias for very imbalanced semantic class distributions.

Class-specific accuracy measures are calculated to assess the pro-
portion of correctly classified pixels from the reference (sensitivity) and
the fraction of correctly classified pixels from the output (positive
prediction value; PPV). These multiple standard measures are used for
comparison with other classification experiments and are, much like
OA, subject to well-known biases due to class-imbalance. Therefore, IoU
is used in deep learning such as PASCAL VOC and CITYSCAPES chal-
lenge (Long et al., 2015). This accuracy measure compares the simi-
larity between two maps and is calculated by the sum of true positives
divided by the sum of true positives, false positives and false negatives

Fig. 2. Composites and reference labels for all datasets: QuickBird and Sentinel-2 in false color and TerraSAR-X as PCA composite for a subset of central Mumbai.

M. Wurm, et al. ISPRS Journal of Photogrammetry and Remote Sensing 150 (2019) 59–69

63



over the whole data set. It can be viewed as a precise indicator to the
success of a classifier.

Besides the above introduced pixel-based performance evaluation
strategies, a patch-based accuracy assessment is applied to account for a
dependency of the slum patch area and the accuracy of the FCN. In this
way, slum patch sizes are grouped into three size-based classes: smaller
than 5 ha, 5–25 ha and larger than 25 ha. Accuracy assessment is per-
formed for each slum patch size and analyzed (see Section 3.3).

3. Results and discussion

In this section, the capabilities of deep learning for slum mapping in
different remotely sensed data sets with varying characteristics are
analyzed subject to the quantitative results of the performed semantic
segmentation experiments. Performance of the FCN is first evaluated for
all four semantic classes in general and second for the slum class in
particular. In total, five experiments were performed in two groups:

(1) training a pretrained model on the high resolution QuickBird image
(FCN QB), on Sentinel-2 (FCN S2) and on TerraSAR-X (FCN TX).

(2) transfer learning of the pretrained FCN on Quickbird to Sentinel-2
(FCN-TL S2) and TerraSAR-X (FCN-TL TX).

Training the FCN is performed using a sparse softmax cross entropy
loss function within TensorFlow™ to measure the performance of the
model. The loss is a summation of the errors made for each example
during the training stage, which implies how well or poorly a certain
model behaves after each iteration of optimization. The respective loss
curves are presented in Fig. 3 where all five FCNs indicate an inter-
pretation on how well the model performs for the training datasets. All
networks show convergence towards zero with some minimal jitter
between 0.01 and 0.5. Both transfer learned FCNs (FCN-TL S2 and FCN-
TL TX) reach a low loss value much faster than the pretrained FCNs,
while the FCN trained on Sentinel-2 data takes considerably longer to
converge against zero.

Semantic segmentation based on the FCN is performed on all total
scenes (cf. extents in Fig. 2) according to the above described experi-
mental set-up (cf. Section 2.4). A graphical depiction of the results for
the same subset of a central area in Mumbai is depicted in Fig. 4. Visual
interpretation of the results indicates very fine-structured patches for
FCN QB as it is also the case in the reference data set. For that reason
high accuracies are to be expected for the QB data set. As regards with
the Sentinel-2 data, the effects of transfer learning become clearly

visible: from large-structured patches of the results for FCN S2, a major
increase in granularity using the transfer learning approach FCN-TL S2
is observed: even at a geometric resolution of 10m, small fractions of
vegetation and slum patches are successfully detected. For TerraSAR-X
(FCN TX), no significant alteration of the classification result is ob-
served through transfer learning.

3.1. Overall accuracies

Quantitative results in terms of overall performance for the se-
mantic segmentation are presented in Table 2 for all five experiments.
With regards to overall measures, all five experiments obtained con-
siderable accuracies with Kappa values between 0.72 and 0.85. The best
performing set-up is reported, as expected, for QuickBird (FCN-QB). The
Kappa value (0.85) and the Overall Accuracy (90.62%) show a very
high agreement. This is followed by the Sentinel-2 experiment (FCN-TL
S2) with the same Kappa value (0.85) and marginally lower OA
(89.64%). Interestingly, highest IoU (87.43%) is reported for Sentinel-2
(FCN–TL S2) which can be considered as being mostly related to the
substantially larger area of interest for Sentinel-2 (cf. Fig. 2) and the
respectively larger shares of water bodies (cf. Table 3) which impact
significantly the overall measures in general and the IoU in particular.

Transfer learning from the ImageNet domain DS
ImageNet to the remote

sensing domains DT
QB,S2,TX performs well for the QuickBird learning task.

This can be accounted for by a sufficient quantity of training data inDT
QB

(cf. Table 1). The second transfer task DT
S2,TX with less training data

performs significantly poorer. Two possible reasons can explain this
aspect: for the Sentinel-2 target learning task there is just not enough
data available for a good knowledge transfer from DS

ImageNet to DT
S2. The

same accounts the for transfer learning task to TerraSAR-X data in-
cluding another difficulty of a stark difference in feature representation
of optical image data in DS

ImageNet and radar data in DT
TX.

As regards with the performance of transfer learning against the
performance of pre-trained networks, we observe remarkable differ-
ences among the transfer between QB/S2 and QB/TX: the transfer
learning approach could significantly increase all overall performance
measures for S2; however, no relevant change in accuracy is observed
for the transfer between QuickBird and TerraSAR-X data. In fact, ac-
curacy is even marginally lower for the transfer learning approach in
this particular setting. We interpret this effect by difficulties of the
network in transferring the learned model from optical features to SAR
image features (cf. Hughes et al., 2018). Thus, no additional improve-
ment of the model can be achieved.

Fig. 3. Logarithmic learning curves for training five FCNs. The x-axis shows all FCNs trained for an equal duration of 100 epochs. The y-axis shows the cross entropy
loss computed during training.
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Transfer learning from the QuickBird domain DS
QB to the Sentinel-2

domain DT
S2 improves performance for all accuracy measurements sig-

nificantly due to the similar feature representation in both the source
and the target domain. Performance when using transfer learning
techniques from the QuickBird domain DS

QB to TerraSAR-X 2 domain
DT

TX stagnates or decreases to about 1–2% in the accuracy

measurements. Prior studies have already pointed out this observation
when dealing with SAR data (Zhu et al., 2017). We can confirm these
issues where the upper limit of SAR classification accuracy is reached
when only 2113 image tiles are available. The knowledge transfer is too
difficult when transfer learning from either ImageNet or QuickBird to
SAR data due to the significantly different image information re-
presentation

3.2. Class-based accuracies

While overall performance measures allow for a general assessment
of the conducted experiments, detailed interpretation of class-based
performance evaluation shed more light on the segmentation results.
Thus, class-specific performance measures are presented in Table 3.
With respect to the individual semantic classes, we observe the fol-
lowing: by far the highest accuracies in all performance measures for
the classes ‘urban’ and ‘slum’ are obtained by QuickBird (FCN-QB). For

Fig. 4. Results of the semantic segmentation for the five experiments on the three data sets: QuickBird [QB], Sentinel-2 [S2] and TerraSAR-X [TX] on pre-trained
FCNs and transfer learned FCNs [FCN-TL].

Table 2
Performance Evaluation of the FCN For all Classes. OA: Overall Accuracy; IoU:
Intersection over Union; TL: Transfer Learned.

Approach Kappa OA (%) IoU (%)

FCN-QB 0.85 90.62 84.12
FCN-S2 0.81 86.71 83.94
FCN-TL S2 0.85 89.64 87.43
FCN-TX 0.73 80.68 73.96
FCN-TL TX 0.72 80.03 73.02

Table 3
Performance Evaluation of the FCN for the Individual Semantic Classes for the total scenes. IoU: Intersection over Union; TL: Transfer Learned; PPV: Positive
Prediction Value; Sens: Sensitivity; A: area (percentage of scene coverage). Best results are marked in bold.

Urban Vegetation Water Slum

Approach Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%)

FCN-QB 91.37 90.34 83.24 92.90 95.35 88.88 90.78 90.97 83.28 85.70 88.39 77.02
FCN-S2 87.47 75.87 68.43 96.42 98.44 94.97 85.35 89.72 77.75 38.21 78.82 35.51
FCN-TL S2 87.62 82.00 73.49 97.47 98.57 96.12 90.14 90.61 82.44 55.47 85.25 51.23
FCN-TX 84.29 83.13 71.99 93.86 94.03 88.59 78.46 75.65 62.63 51.64 72.50 46.27
FCN-TL TX 85.78 80.21 70.80 93.49 93.58 87.85 75.82 75.64 60.94 43.64 78.43 38.42
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the ‘vegetation’ class, Sentinel-2 (FCN-TL S2) obtained best results, most
likely due to the aggregation of information in Sentinel-2 and the
consequential less small-structured vegetation fraction. Accuracies for
the water class are quite similar between QuickBird (FCN-QB) and
Sentinel-2 (FCN-TL S2) with only marginal differences. While for the
urban class, QuickBird (FCN-QB) performs considerably better than
Sentinel-2 (FCN-TL S2). The effect for the ‘slum’ class is most striking:
the small-scaled buildings and their very organic arrangements are best
segmented by the sensor with the highest geometric resolution being
also capable of identifying individual buildings or shacks. Both, positive
prediction value (88.4%) as well as sensitivity (85.7%) reach very high
accuracies, i.e. the majority of slum areas as classified in the reference
data set could be detected and only very few false positives occur. These
effects are underpinned by high very IoU values (77%) which can be
seen a very conservative measure of accuracy.

Comparing the results for pretraining and transfer learning, we
observe a significant gain in accuracy in all semantic classes for
Sentinel-2. Especially the performance of slums is increased remarkably
making the effect of transfer learning in this case extremely valuable. As
already reported in literature (Hughes et al., 2018), no positive effect is
observed for TerraSAR-X data. Here, almost all classes are better

represented by the pretraining approach (FCN-TX) than the transfer
learning approach (FCN-TL TX); however, with one exception: PPV of
slums is increased. If considering only the slum class, however, very
competitive results in comparison to Sentinel-2 are obtained (55.47%
vs. 51.64%).

All in all, we can state the following:

(1) the pretrained network on QuickBird performs very well in classi-
fying heterogeneous urban environments.

(2) transfer learning for Sentinel-2 can significantly improve the re-
sults.

(3) for TerraSAR-X performance is reported lower than for the optical
data.

(4) Transfer learning for TerraSAR-X could not improve the perfor-
mance.

3.3. The impact of slum patch size

As stressed already in prior studies slum patch sizes vary sig-
nificantly within cities (e.g. Wurm et al., 2017). Friesen et al. (2018)
found that slum patch size distribution in several mega cities in the
world follow very closely Zipf’s law and can be analyzed via rank size
distribution (Zipf, 1941). The case for Mumbai is presented in Fig. 5.
We observe a majority of small slums with areas below 5 ha and only a
handful of large slums above 25 ha. Their respective contribution to the
total slum area is, however, inverse, as presented in Table 4.

Based on these observations, we additionally perform a patch size-
based accuracy assessment for the specific class of ‘slums’ to analyze the
impact of slum patch size on the resulting classification performance.
Both, a visual comparison for all approaches, and a quantitative as-
sessment of sensitivity are conducted (Table 5). Small slum patches
(< 5 ha) are presented in Fig. 6 with very good slum mapping cap-
abilities for QuickBird (FCN-QB: 78.57%). Further, a significant in-
crease of sensitivity for Sentinel-2 between pretrained and transfer
learned is observed (9.32 vs. 24.67%). Prior discussed effects for Ter-
raSAR-X images are also observed for the smallest group of patches:
decreasing sensitivity between pretrained and transfer learned (31.26
vs. 20.78%). Both, Sentinel-2 and TerraSAR-X, however, perform very
poor for this smallest group of patch sizes which is to be expected at
image resolutions of 10m and 6m, respectively.

Medium-sized slum patches are presented in Fig. 7. Here the same
trend is identified as for small patches: highest sensitivity is obtained by
QuickBird (FCN-QB: 83.63%) and transfer learning significantly im-
proves slum patch detection for Sentinel-2 against pre-training (28.19
vs. 50.64%). Again, a decrease is measured for the approach using
TerraSAR-X (47.36 vs. 37.98%).

Finally, results for large slum patches (Fig. 8) are reported highest
for all performed experiments. In QuickBird 88.39% of the reference
slum pixels are detected (FCN-QB). For Sentinel-2, again, transfer
learning significantly enhances mapping capabilities (47.18 vs.
62.46%) and a decrease in a performance is observed for TerraSAR-X
(48.36 vs. 55.34%). Summarizing these observations, a strong effect of
slum patch size on the detection rate is reported for all experiments (cf.
Wurm et al., 2017).

4. Conclusion

In this paper, we perform a series of experiments to analyze the
capabilities of fully convolutional neural networks for semantic seg-
mentation of slums for the example of Megacity Mumbai using satellite
images with different characteristics. As a result, we observe the fol-
lowing effects:

(1) very high geometric resolution of 0.5 m in QuickBird imagery al-
lows for the best results of all experiments.

(2) transfer learning of a pre-trained network from QuickBird to

Fig. 5. Rank size distribution of slum patch sizes in Mumbai in a loglog plot.

Table 4
Proportions of number of slum patches and area for three size-based classes.

Small slums
[< 5 ha]

Medium slums
[5–25 ha]

Large slums
[> 25 ha]

Patches 84.63% 13.62% 1.75%
Area 26.10% 36.40% 37.50%

Table 5
Sensitivity measurement as a function of varying slum patch size.

Approach Small slums
[< 5 ha]

Medium slums
[5–25 ha]

Large slums
[> 25 ha]

FCN-QB 78.57 83.63 88.39
FCN-S2 09.32 28.19 47.18
FCN-TL S2 24.67 50.64 62.46
FCN-TX 31.26 47.36 55.34
FCN-TL TX 20.78 37.98 48.36
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Fig. 7. Comparative alignment of medium sized slums [5 ha–25 ha] showing differences in segmentation results obtained by pre-trained FCNs and transfer learned
FCNs (FCN-TL) on QuickBird, Sentinel-2 and TerraSAR-X images. Slum patches in the reference map are depicted in yellow. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparative alignment of small slum patches [< 5 ha] showing differences in segmentation results obtained by pre-trained FCNs and transfer learned FCNs
(FCN-TL) on QuickBird, Sentinel-2 and TerraSAR-X images. Slum patches in the reference map are depicted in yellow. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Sentinel-2 images significantly improves the segmentation results.
This makes medium resolution sensors at 10m GSD an opportunity
for very large-area mapping of slums for entire countries or sub-
continents.

(3) for active satellite imagery such as TerraSAR-X, the transfer
learning approach does not improve the results, but even decrease
the performance. We relate this observation to the fact that the
network is not able to transfer the learned image features from
optical imagery to the SAR representation of urban structures.

(4) Further, we observe a strong effect of slum patch size for being
detected by the segmentation approaches. While this effect is
smallest for high resolution QuickBird imagery which already per-
forms at a very high level: from 79.57% for< 5 ha to 88.39%
for> 25 ha, an increase from 9.32 to 47.18% in sensitivity is ob-
tained for Sentinel-2 pretrained (FCN-S2) and from 24.67 to 62.46%
for Sentinel-2 transfer learned (FCN-TL S2). The same effect is also
observed for TerraSAR-X: from 31.26 to 55.34% for pre-trained
(FCN-TX) and 20.78 to 48.36% for transfer learned, respectively
(FCN-TL TX).

Finally, segmentation outcomes are extremely promising and en-
couraging for further experiments using transfer learning and fully
convolutional networks for slum mapping in satellite imagery. Further
experiments need to focus on large-area approaches and the transfer
between different geographical regions. This challenging task needs to
address the morphological representations of slums in different cultural
areas as shown by Taubenböck et al. (2018), since the physical nature
of slums is represented by a large variety of morphological structures.
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Satellite-Based Mapping of Urban Poverty With
Transfer-Learned Slum Morphologies

Thomas Stark , Michael Wurm , Xiao Xiang Zhu , Senior Member, IEEE, and Hannes Taubenböck

Abstract—In the course of global urbanization, poverty in cities
has been observed to increase, especially in the Global South.
Poverty is one of the major challenges for our society in the
upcoming decades, making it one of the most important issues
in the Sustainable Development Goals defined by the United Na-
tions. Satellite-based mapping can provide valuable information
about slums where insights about the location and size are still
missing. Large-scale slum mapping remains a challenge, fuzzy
feature spaces between formal and informal settlements, significant
imbalance of slum occurrences opposed to formal settlements, and
various categories of multiple morphological slum features. We
propose a transfer learned fully convolutional Xception network
(XFCN), which is able to differentiate between formal built-up
structures and the various categories of slums in high-resolution
satellite data. The XFCN is trained on a large sample of globally
distributed slums, located in cities of Cape Town, Caracas, Delhi,
Lagos, Medellin, Mumbai, Nairobi, Rio de Janeiro, São Paulo, and
Shenzhen. Slums in these cities are greatly heterogeneous in its mor-
phological feature space and differ to a varying degree to formal
settlements. Transfer learning can help to improve segmentation
results when learning on a variety of slum morphologies, with high
F 1 scores of up to 89%.

Index Terms—Fully convolutional network (FCN), remote
sensing, slum mapping, transfer learning, urban poverty, Xception.

I. INTRODUCTION

MORE than 600 million people live in extreme poverty,
according the Sustainable Development Goals Report

[1]. The credibility of these statistics, however, is in doubt [2],
as a systematic global inventory of slums is nonexistent. Al-
though methods for mapping urban poverty in earth observation
data have improved tremendously over the past few years, the
location of many smaller and lesser-known slum settlements
is still unknown to policy makers and NGOs [3]. In the Global
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South especially, the process of rapid urbanization can overstrain
sustainable city planning [4]; in other words, cities are failing
to provide the necessary living spaces for their population. The
consequence is the development of informal makeshift shelters,
resulting in highly dynamic patterns in the urban living spaces
of the poor. The perpetual migration into the cities, combined
with insufficient housing for low-income groups triggers the
formation of these informal settlements, where people looking
for job opportunities in the city can find a place to live [1],
[5]. Prominent slums like Dharavi in Mumbai and Kibera in
Nairobi cannot be denied by authorities and are often tolerated
by the local government, but slum dwellers living in smaller
and more unknown slums represent a “hidden society”—They
often fear eviction and relocation because they are located in
endangered areas and are exposed to natural hazards or because
city governments wish to upgrade these areas [6], [7].

Squatter settlements, favelas, huts, villas miseria, bidonvilles,
urban villages, slums, informal settlement, and many other
names are typically used, depending on the global location,
to refer to urban poor areas. In general, all these names em-
phasize negative characteristics and imply nonaffiliation from
a city’s point of view [8]. Additionally, all terms for poor
urban areas, while generally understood, contain ambiguities
in their morphological appearance, ranging from very deprived
areas to lesser ones [7], [9]. This diversity can, to some extent,
be described by regional differences, cultural context, and the
building material available for construction.

In this study, urban poverty areas are addressed on a large
scale, including highly variable morphological slum features
from 10 cities in the Global South. Thus, a uniform definition of
the exact urban morphology of poverty is infeasible. While there
are many discussions on the characterizations and nomenclature
of urban poverty, in the context of this study, we refer to all urban
poverty areas, with different physical morphologies compared
to formal settlements, by the term slums for naming purposes.

Mapping these settlements is not a trivial task and certain
challenges have to be addressed. The first challenge can be
described as interurban variability, where morphological slum
features can change depending on their particular geographical
location. But these morphological slum features are conceptu-
ally fuzzy, do not have international consensus, and are, thus,
very difficult to describe. The examples in Fig. 1 reveal that
morphologic appearances of poverty can be different in every
city, ranging from very dense low-rise shacks in Mumbai [see
Fig. 1(a)] to three-story buildings in Medellin [see Fig. 1(d)].
A second challenge, complicating the already complex task
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Fig. 1. Comparison of the inter- and intraurban variability of slums. Image (a) shows a typical slum in Mumbai, India, consisting of very densely built shacks.
The images (b) and (c) in the middle show two very different slums in Lagos, Nigeria: poverty areas in the city’s periphery as well as the downtown floating slum
of Makoko in the Lagoon of Lagos. Image (d) depicts a slum in Medellin, Colombia, with three-story buildings made of concrete. Images from Google Street View
provide additional close-up information on the local built-up structure.

of interurban variability, shows that slums can also feature
an intraurban variability within the same city [8], [10]. These
varying intraurban morphological slum features can be seen in
the middle of Fig. 1(b) and (c). Although the slum areas in Lagos
are located within the same city, their morphological appearance
is inherently different. The very dense swimming shacks of the
Makoko slum in Lagos [see Fig. 1(c)] and the less dense slums in
the peripheral area with an almost regular road network shown
in Fig. 1(b) demonstrate intraurban variability.

Fig. 1 also shows that deprived poverty settlements often
come with some variation in the previously mentioned slum
features. Fuzzy borders and similar morphological features on
formal built-up structures can lead to a complex super state
of the affiliation with a slum category. According to the work
in[8], characteristic features for slums are settlements of in-
credible density, complex building structures, and significantly
different appearances from their formal counterparts. In [3],

slums are interpreted in five dimensions of their morphologic
appearance: complex building geometry, high building density,
irregular or nonexistent road network, roofing material, and site
characteristics. These slums are described by the morphological
appearance and can contain a variation of their aforementioned
features. Additionally, in all examples in Fig. 1, the street layout
is highlighted, making the difference between an orderly planned
road structure in the formal settlements, a more irregular layout,
or even a nonexistent road network more visible in the slum
areas. Thus, besides the morphology of individual buildings,
the street network can be seen as a key feature for differentiating
between formal settlements from slums.

In this study, we aim to address the challenge of large-scale
slum mapping featuring varying slum morphologies in the
context of an applicable mapping approach. Thus, 10 globally
distributed cities are selected: Cape Town (South Africa), Cara-
cas (Venezuela), Delhi and Mumbai (India), Lagos (Nigeria),
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Medellin (Colombia), Nairobi (Kenya), Rio de Janeiro and
São Paulo (Brazil), and Shenzhen (China), featuring different
cultural regions, topographies, and building morphologies. The
perception of people and the spatial structure is subjective [11].
This is also the case with slums, i.e.: What can be called a slum,
since the boundaries to formal settlements are often fuzzy. We
apply the categorization of slums as presented in [8], as we seek
to integrate various morphologies into our mapping experiments.
In [8], slums are grouped into multiple representations using five
variables that describe their morphologies. The most extreme
slum morphologies, meaning high building densities, nonuni-
form building orientation, high heterogeneity of the slum build-
ings themselves, very small building sizes, and low-rise building
heights, can be found in the slums of Mumbai, Caracas, and
Nairobi. This first category of slums, which is referred to as C1,
reflects stark morphological differences from formal settlements
and correspond to the greatest possible physical assumption of
a morphological slum. A second category of slums C2 can be
formed if the slum morphology deviates in a small capacity
from the features of C1. These slum types can be found in
Delhi, Medellin, Lagos, and to an extreme in the urban villages
of Shenzhen: There, slums are still very dense and disregard
orderly building alignments, but their building heights are often
more than one story high and feature a variation of regular and
irregular road layouts in the slum settlements. In some cases,
morphological slum features deviate more significantly from
the typical assumption of the complex state of slum settlements.
This third category C3 of slums can be found in Cape Town, Rio
de Janeiro, and São Paulo. In these cities, slum settlements can
sometime even share urban morphologies found in their formal
counterparts. The Township Victoria Merge in Cape Town and
the Favela Paraispolis in São Paulo feature a regular road layout
and less heterogeneous building alignments, making these areas
difficult to categorize as C1 or C2. Here, the morphology of the
slums is a mixture of the slum features typical of the first two
groups and formal settlement structures.

The aim of this article is to systematically test transfer learning
techniques using a fully convolutional network (FCN) to map
slums of varying morphologic appearances from knowledge
learned in different geographical and cultural settings. By using
a large-scale globally distributed dataset of slums, the FCN
is better able to generalize and, thus, is able to map slums in
areas where this was previously not possible on high-resolution
remote sensing data. We want to analyze the extent of interurban
variability of slum settlements on a global scale and understand
if it is possible to learn from features of varying morphological
poverty representations. For this task, we specifically design a
fully convolutional Xception network (XFCN) to train on mul-
tichannel remote sensing data. In this study, the XFCN is tested
on its transfer learning capabilities of different slum categories,
for comparative studies of the Xception model in regards to
other convolutional neural networks (CNNs), we suggest the
following papers [12]–[14]. As an additional option, auxiliary
data in the form of the road layout from Open Street Map can
be used as an extended input layer to support the model in its
learning task.

The remainder of this article is structured as follows: In
Section II, background on poverty mapping and the state of the
art of semantic segmentation is reviewed. In Section III, the
methodology of our proposed approach using a XFCN is pre-
sented. In Section IV, the remote sensing and auxiliary datasets
including preprocessing steps are shown and the experimental
setup is introduced. In Section V, the results of all experiments
are shown. In Section VI, the results of all experiments are
discussed with respect to their implication on poverty mapping.
Finally, Section VII concludes this article.

II. BACKGROUND AND RELATED WORK

Deprived poverty settlements feature a characteristic struc-
tural type in many cities of the Global South. Various approaches
to detecting slums, ranging from machine learning techniques to
object-based solutions, are presented in Section II-A. In the past
five years, deep learning procedures for semantic segmentation
of slums have been able to surpass traditional mapping methods
in their ability to achieve mapping accuracies. These techniques
for pixelwise classification are presented in Section II-B.

A. Mapping Urban Poverty With Satellite Data

To describe physical slum characteristics using remote sens-
ing data, the morphological features of urban poverty need to
be well understood. Thus, the data must be able to represent
the physical properties of slum settlements. For example, since
many slum buildings are considerably below 100 m2 and slum
areas often only have a size of 1 ha [10], [15], [16], the related
images for their identification require a high spatial resolution.
Moreover, roof surfaces are frequently not homogeneous in
shape and color; when using high-resolution data, some of the
roof pixels will consist of mixed roofing materials. Thus, a spe-
cific geometric resolution is needed to capture the morphological
poverty features. At the same time, when talking about mapping
poverty in multiple globally distributed cities, data availability
also needs to be taken into consideration. This favors both
the Copernicus mission Sentinel-2 and Planet Labs data from
the PlanetScope satellite as optical sensor solutions, since both
products are globally available. In [17], Sentinel-2 data were
used to map slums and [18] compared Sentinel-2 data and very
high resolution data. Both studies conclude that while mapping
urban poor areas are possible in high-resolution 10-m ground
sampling distance, it is a very limiting factor, especially consid-
ering mapping smaller slum patches. Given this circumstance,
PlanetScopes 3-m geometric resolution strikes a perfect balance
between data availability and high spatial resolution.

In the related scientific literature on slum mapping, various
methods have been presented. In [17] and [19], the studies
aimed at identifying complete slum patches using a combination
of machine learning and textural feature engineering methods.
Other work has been done using socioeconomic data and spatial
features to determine income levels of slum settlements on
a neighborhood level [9], [20], [21]. In [22], only the street
network was used to predict slum areas in a combination of
traditional machine learning and artificial neural networks. In
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[7], [8], and [16], poor urban areas were analyzed on the level of
individual buildings using an object-based approach to identify
the varieties of slums and their temporal changes.

In the past five years, using deep learning techniques has be-
come a popular trend, as it has been shown that mapping accura-
cies improved rule-based approaches significantly for mapping
slum patches [18]. In [23] and [24], nighttime light intensities
were used as a proxy for poor urban areas to transfer learn a
CNN to high-resolution remote sensing data. In [25]–[27], fully
convolutional neural networks (FCNs) were used to map slums
on either high-resolution or very high-resolution data, whereas
Wurm et al. [18] and Stark et al. [28] used different transfer
learning techniques to map slums between different satellite
sensors in the same city and between geographically separated
cities, respectively. The authors concluded that not only more
data, but also a novel deep learning architecture and more
rigorous regularization is necessary for robust segmentation of
slums on a large scale.

B. Semantic Segmentation Using Deep Learning

Semantic segmentation means understanding an image at a
pixel level. While traditional CNN aim to classify a whole image
patch, FCNs classify each pixel of an image, offering more
information about the area and shape of the target class. First
introduced in [29], FCNs replace the fully connected layers of
a standard CNN with convolutional layers and dilated convolu-
tions for upsampling to the original input dimensions. In the past
five years, more advanced methods for semantic segmentation
using deep learning techniques have been explored. Improve-
ments in the backbone architecture as well as the upsampling
phase can have been reported. Both U-Net [30] and SegNet
[31] improved upsampling techniques, introducing long distance
skip connections and convolutions during the upsampling phase,
for semantic segmentation. While the original FCN in [29]
used vgg16 architecture [32], today deeper and more efficient
backbone models are available. GoogLeNet [33] and its Incep-
tion versions [34], [35] introduced deeper and more advanced
implementations using network in network approaches, whereas
ResNet variants [36] introduced skip connections and heavy
batch normalization. Currently, not only the depth of the network
but also its efficiency is major factor to be taken into consid-
eration. While recently, the trend has been to go deeper with
convolutions, networks like Xception [12], and EfficientNets
[37] can outscore deeper variants while having fewer parameters
to train.

Specific improvements for semantic segmentation in re-
mote sensing data could be achieved in [38], where relation-
augmented FCNs are used, in [39], with a gated graph CNN
and structured feature embeddings, and in [40], by fusing very
high-resolution data with auxiliary data. Training a CNN from
scratch requires a significant amount of data and processing
power. It is also very time consuming [41], which is why fine-
tuning or transfer learning approaches are often used in order
to handle less training data or transfer knowledge from a source
domain to a target domain. Fine-tuning a CNN from a large

dataset, such as ImageNet [42], Coco [43], or PascalVOC [44],
was very popular in the first stages of adapting deep learning
techniques into to the remote sensing domain [41], [45], but
feature transformation from often low-quality natural images
to multichannel remote sensing data means sacrificing valuable
data information in the spectral and radiometric resolution of the
satellite images [41]. Therefore, training a CNN from scratch
specifically on remote sensing data often yields better results
[46]–[49]. To take full advantage of the data richness present in
remote sensing data, training from scratch offers great potential
in learning high-quality feature representation when enough data
and computational power are available.

III. PROPOSED APPROACH

CNNs pretrained on natural images most often limit the
depth of the input image to just three channels, and thus,
the high-quality multispectral data of remote sensing imagery
are neglected. To exploit the full spectral depth of optical satellite
sensors, CNNs can be trained on multispectral data from scratch
on any number of input channels, but training these networks can
be very computationally expensive [41]. Specific architectures
can strike a balance on being as deep as possible, while at the
same time, an efficient approach of implementing convolutions
can save parameters, making the model more light weight and
easier to train. Both these effects are present in the Xception
[12] network, which is an evolution of the Inception models
[33]–[35]. We propose using a modified Xception network as
the backbone architecture to create a FCN, where a fully con-
volutional flow for segmentation follows the exit flow of the
Xception network.

A. Backbone Architecture

The Xception network gets its name from the modules that
make up the backbone architecture. The main idea behind these
modules is to decouple cross-channel and spatial correlations to
shrink the parameter size of the model. The Xception module
is an evolution of the modules that are present in the Incep-
tion networks and take this principle to the extreme, hence
its name. Fig. 2 shows an Xception module in detail. First,
a depth/channel-wise 3× 3 convolution is performed on all
input dimensions; afterward, a pointwise 1× 1 convolution
maps the data to the desired output space. Thus, compared
with conventional convolutions, we do not need to perform
convolution across all output channels. This means that a number
of connections are fewer and the model is lighter.

The Xception architecture is a linear stack of depthwise
separable convolution layers with residual connections. This
makes the model very easy to define and modify. The complete
architecture, depicted in Fig. 3, consists of multiple entities. The
entry flow is split into multiple blocks. The first block employs a
2-D convolution at stride 2 and valid padding, whereas the sec-
ond 2-D convolution uses same padding and no stride, reducing
the input dimension from 299× 299× ndim to 147× 147× 64.
The remaining blocks use a similar sequence of two Xception
modules, where the second module is accompanied by a max
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Fig. 2. Xception module in comparison to a standard 2-D convolution for
the first depthwise separable convolution within the XFCN. After a depthwise
convolution on the number of input parameters, a pointwise convolution follows,
resulting in the desired number of output features.

pooling operation, which is fused with a residual connection
from the input tensor of the previous Xception module at a
stride of 2. The middle flow successively employs three Xcep-
tion modules eight times while keeping its tensor dimension
constant at 19× 19× 728. Finally, within the exit flow, two
blocks of each two Xception modules round up the Xception
backbone architecture, where the first of the two blocks is fused
with a residual skip connection. During the complete XFCN,
all convolutions are a combination of batch normalization, a
ReLU activation function, and a dropout layer. In total, the
XFCN consists of 41 convolutional layers, including residual
skip connections in the backbone.

B. Upsampling

The decoder of the XFCN uses an upsampling approach
similar to the original FCN [29]. In our XFCN, five dilated
convolutions are used to upscale the output of the exit flow
with its dimension of 10× 10× 2048 back to the original input
height and width dimension. A softmax classifier is used to
produce a single prediction tensor with a size of 299× 299× 1.
The decoder uses four long-distance skip connections fused with
the fitting counterpart of the entry flow to preserve low-level fea-
tures and a padding of two to ensure a fine-grained upsampling
performance, as seen in the upscale flow of Fig. 3.

IV. DATA AND EXPERIMENTAL SETUP

The XFCN introduced in Section III is specifically set up
to map slums in high-resolution remote sensing data. In areas
of low slum coverage especially, a transfer learning approach
is necessary to train the XFCN on multidimensional remote
sensing data. In this section, we present the remote sensing
data used in this article, the sampling methods employed to
create a large-scale dataset for transfer learning purposes, and
the experimental setup of the XFCN.

A. Data Preprocessing and Data Sampling

For our experiments, we deployed high-resolution Plan-
etScope data from Planet Labs, Inc., [50]. With its 3-m res-
olution, resampled from a 3.7-m ground sampling distance, a
daily global coverage, and a four-channel blue, green, red, and
near infrared (B, G, R, NIR) composite, the data fit the needs
of a large-scale poverty mapping approach in every respect. Be-
yond the spectral bands, we included the normalized difference
vegetation index (NDVI) as an additional feature that increases
number of the input images to five channels. Table I indicates in
detail all PlanetScope datasets we used in this study. All datasets
are surface reflectance 16-b data from the original PlanetScope
data. Each band is min–max normalized to a float32 range of
0− 1 to create an evenly distributed dataset suitable for our
deep learning framework.

The reference data for all 10 cities consist of manually mapped
polygons for each PlanetScope scene. The reference data were
created by multiple remote sensing experts to ensure consis-
tency between all test sites. Additionally, the reference data
were compared to ground truth data of poverty areas according
to census tracts, when this was available. In cases where no
official census data were available, or the ground truth data
were outdated, the reference was created based on Bing aerial
imagery and Google Street View images. The area of each city’s
dataset is limited by the PlanetScope scene and can be seen in
Table I. All slums larger than 1 ha within the PlanetScope scene
are included in the dataset. All slums, while featuring various
different morphologies, were delineated in a coherent manner to
ensure consistency when transfer learning between each city’s
dataset.

As an additional data source, we used the road network in
Open Street Map to create an auxiliary layer for the input data
tensor (B, G, R, NIR, NDVI, OSMp). To cope with incon-
sistencies in the street network between cities and the road
categories, only paved roads, accessible by automobile, were
selected, indicating major and residential usage. Foot and dirt
paths were excluded from the OSM road network to create a
coherent and unified data layer across all 10 datasets. Using only
these roads, we calculated a binary logarithm (log2) proximity
to each road. This not only shows the distance from each pixel to
the nearest street, it also gives insights about the general shape
of the road network, which can serve as a useful indicator of
settlement structures [10], [22].

The input data-cube is split into a 299× 299× ndim image
patch to match the input dimension of the XFCN. The image
patches are split with a large overlap of 199 pixels in bothx and y
directions to increase the datasets volume. To further increase the
dataset size and its slum sample proportion, we make use of data
augmentation on the image patches used for training. A variation
of image translation, dropout, and gamma adjustments in [51]
is used to increase the original data by a factor of four; each of
these augmented image patches is then rotated three times by
90◦. The augmenters are listed in Table II and are chosen based
on successful training techniques from the work in [52] and [53].

Table I provides insight about the dataset used for training the
XFCN. Ten cities in the Global South are selected, three in Africa



5256 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 3. Architecture of the XFCN. The Xception backbone is slightly changed to allow for a multidimensional input and more rigorous regularization. After the
exit flow, a fully convolutional flow follows. All convolutional blocks are a combination of standard 2-D convolutions Cn or depthwise separable convolutions
Cds

n in combination with batch normalization, dropout, and ReLU activation functions. The XFCN features residual skip connection throughout the whole network
(Rn), and during the upscale flow the dilated convolutions (CD

n ) are fused with the long distance skip connections from the entry flow.

TABLE I
OVERVIEW OF THE DATASETS USED FOR TRAINING THE XFCN

The table shows information on each city’s dataset, the training data, and finally, the total number of training steps for each experiment of the XFCN model is shown.

(Lagos, Nairobi, Cape Town), three in Asia (Delhi, Mumbai,
Shenzhen), and four in Latin America (Caracas, Medellin, Rio
de Janeiro, São Paulo). Ten cities are chosen due to their varying
morphologic slum features, providing a comprehensive morpho-
logic poverty feature set to learn diverse slum representations.
All 10 cities are categorized by their morphological features
from Section I into the categories C1−3. Although an intraurban
variability of the morphological slum features is present in all
datasets, the slums of each city are grouped into these three
categories according to the most prominent morphologic slum
features of all the slums in each city. Caracas, Mumbai, and
Nairobi represent the first category of slum morphologies C1,
where high building densities, nonuniform building orientation,

high heterogeneity of the slum buildings themself, very small
building sizes, and low-rise building heights can be found. Delhi,
Lagos, Medellin, and Shenzhen represent typical slum features
of type C2. In these cities, slum settlements can deviate to a
minor extent from the aforementioned features. In Cape Town,
Rio de Janeiro, and São Paulo, slums deviate more significantly
from the slum morphologies of type C1, forming a third type of
slum category, C3. Additionally, the dataset of these 10 cities
can be described by four components seen in Table I: number
of slums, mean size of slums, the number of image patches, and
the slum sample proportion. In Mumbai, Rio de Janeiro, São
Paulo, and Shenzhen, more than 400 slums are present in their
dataset, but with a smaller mean slum size in Rio de Janeiro, São
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TABLE II
DATA AUGMENTATION FOR THE TRAINING DATA

Dropout and Gamma augmentations are only used on the images and not their
annotations. All augmentations are rotated three times by 90◦.

Paulo, and Shenzhen, only the Mumbai dataset surpasses a slum
sample percentage of 25%. In contrast, Cape Town, Caracas,
Lagos, Medellin, and Nairobi feature fewer slums, but a larger
mean slum size in Caracas, Lagos, and Nairobi also shows a
substantial slum sample proportion. Delhi exhibits the lowest
slum sample proportion, with only 7% of all pixels labeled
as slums. Although there are in total more than 200 slums
in the dataset, the very small mean size of slums indicates a
challenging dataset. Grouping the 10 cities by these 4 features
can indicate where the XFCN is confronted with an easier or
more challenging task. But regardless of a large slum sample
proportion or a vast number of slums in the dataset, the decisive
challenge is the combination of the slum morphology typesC1−3

in combination with the training dataset components of Table I.

B. Experiments

The XFCN was trained on an augmented dataset for each
single city as a benchmark to test transfer learning capabilities.
The models that trained in one city and tested on unseen image
patches of the same city are labeled as XFCNcity. A global
poverty training dataset was created where all training patches
were combined into one big dataset, whereas all images of the
tested city were excluded. The XFCN trained on the global
dataset, which was tested for each city in a leave-one-out manner,
was named XFCNLSP [large-scale poverty (LSP) dataset]. In
addition, the XFCNLSP was transfer learned to a training dataset
of each city XFCNTF

LSP; thus 30 experiments for each, the five-
and six-dimensional input dataset were conducted. Throughout
all experiments, the complete dataset and the dataset of each
city were split into training (70%), validation (15%), and testing
(15%), where the testing and validation image patches were
selected manually for each city to create a coherent and spatially
separated dataset and to compare results in a meaningful manner.

1) Transfer Learning: The XFCN was trained using an in-
ductive transfer learning approach. Given a source domain
dataset DS and a learning task TS , a target domain dataset
DT and learning task TT , we aim to improve the learning of
the target predictive function fT (·) using the knowledge in DS

and TS , where TS �= TT [54]. In this context, the XFCNTF
LSP is

trained on the source domain dataset DS
LSP to target dataset DT

city

of each city excluded from the DS
LSP dataset. All variables of the

XFCN were available for training during the transfer learning
process.

2) Experimental Setup: The XFCN was implemented in
TensorFlow and adapted from the works in[55] and [56]. To
prevent overfitting, multiple constraints were employed. Batch
normalization with a batch size of 16 was used to improve
the learning procedure, including a weight decay of 0.99 for
L2-regularization to reduce overfitting. After each convolution,
a dropout layer followed. By randomly dropping nodes with a
20% probability during each weight update cycle, the model had
to adapt to learn independent representations. The XFCN was
trained using a softmax cross entropy-loss function and using the
Adam optimizer [57]. All models used an exponential decaying
learning rate. The initial starting learning rate was quite high at
0.1, which is possible due to using batch normalization, since no
activation can be either too high or too low [58]. When the XFCN
was transfer learned, a lower learning rate of 0.01 was used to
start training. The XFCNs were trained depending on the size
of their dataset. The total number of steps of each experiment
can be seen in Table I, and for each experiment, early stopping
was used to end the training process as soon as the validation
accuracy did not substantially improve.

V. RESULTS

Unseen image patches from the test dataset with an image size
of 299× 299× ndim were used for testing and were predicted
with an overlap of 199 pixels in both x and y directions. Thus,
nine image patches can be used to create an area of 100× 100
pixels of the same observation. The most probable result can be
derived using a majority operator. This method not only ensures
that uncertainties in the model variance are dealt with more
robustly, but also reduces the difficulties of predicting in the
edge region of the image patches.

Accuracies are reported in the F1-score and the Intersection
over Union (IoU). The F1-score takes both error of omission
and error of commission into consideration to compute its score.
Thus, the F1-score can be recognized as the harmonic mean of
precision and recall, as seen in (1)

F1 = 2× TP/(TP + FP)× TP/(TP + FN)

TP/(TP + FP) + TP/(TP + FN)
(1)

IoU =
TP

TP + FP + FN

where TP = True positives

FP = False positives

FN = False negatives. (2)

The IoU in (2), also referred to as the Jaccard index, is defined
as the size of the intersection between the ground truth and the
classified map, divided by the size of the union of the sample
sets. The IoU is a very penalizing metric and values above 50%
can be considered an adequate match of the similarity between
ground truth and the predicted map [59], since in real-world
applications, it is not likely that the x and y coordinates of the
predicted poverty area are going to exactly match the x and y
coordinates of the ground truth. Results for all 60 experiments
are reported in Table III. The results are grouped according the
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TABLE III
RESULTS FOR ALL EXPERIMENTS USING THE IOU AND THE F1-SCORE ACCURACY MEASURES

The top part of the table shows the experiments for the five-dimensional remote sensing data, whereas the bottom part includes the proximity to the road network as an
additional sixth input dimension. The highest accuracies for each experiment are presented in bold; the highest overall accuracy for each accuracy score is highlighted in gray.

morphologic slum categories C1−3. The highest accuracies for
each row are presented in bold and the highest overall accuracy
for each F1-score and IoU is highlighted in gray. The following
paragraphs report the results based on the three experiments
XFCNcity, XFCNLSP, and XFCNTF

LSP.

A. XFCNcity

The first set of experiments was trained on a single city’s
datasets and tested in a spatially separated area of the same city.
The XFCN trained on five-dimensional input data, including the
channels B, G, R, NIR, and the NDVI, achieved a mean IoU for
all cities of 62.93% and a mean F1-score of 66.86%. Training
the XFCN on six-dimensional data, including the proximity to
the road network, achieved a mean IoU for all cities of 67.98%
and a mean F1-score of 73.35%. Including the Open Street Map
road network in the dataset could increase the mean IoU by
5.05% and the F1-score by 6.49%. The best results on the five-
dimensional data were achieved in Mumbai and Nairobi (C1)
and São Paulo (C3), with an IoU of up to 73%. When training
on six-dimensional data, high IoU accuracies of over 70% could
be reached in Caracas and Mumbai (C1), Lagos and Shenzhen
(C2), and Cape Town (C3).

B. XFCNLSP

The second set of experiments was trained on a large-scale
poverty dataset in a leave one out manner, training on a combined
dataset of nine cities and testing the results on the remaining city.
Thus, the XFCNs ability to map slums from features learned
on a global slum repository was tested. The XFCN trained on
five-dimensional input data achieved a mean IoU for all cities of

57.81% and a mean F1-score of 63.87%. Training the XFCN
on six-dimensional data achieved a mean IoU for all cities of
71.64% and a mean F1-score of 75.30%. Including the Open
Street Map road network in the dataset could increase the mean
IoU by13.82% and the F1-score by11.41%. An IoU of over60%
could be reported in Lagos, Medellin, and Shenzhen (C2) for the
five-dimensional data. Best IoU accuracies of around 80% for
six-dimensional inputs could be reached in Caracas (C1), Lagos
and Shenzhen (C2), and Cape Town (C3).

C. XFCNTF
LSP

The third set of experiments was set up as an inductive transfer
learning experiment, where the XFCN is first trained on a
large-scale poverty dataset in a leave one out manner; afterward,
the XFCN was transfer learned to the remaining city’s training
dataset and tested in a spatially separated area of the same city.
The XFCN trained on five-dimensional input data, achieved
a mean IoU for all cities of 72.60% and a mean F1-score of
77.69%. Training the XFCN on six-dimensional data achieved
a mean IoU for all cities of 74.53% and a mean F1-score of
78.10%. Including the Open Street Map road network in the
dataset could increase the mean IoU by 1.93% and the F1-score
by 0.41%. In this experiment, the overall highest accuracies
could be reached for the five-dimensional remote sensing data in
Mumbai (C1) with an IoU of 80.86% and for the six-dimensional
data in Shenzhen (C2) with an IoU of 86.29%. In general, the
transfer learning approach is able to reach IoU scores of over
80% for the five-dimensional data in Caracas and Mumbai (C1)
and for the six-dimensional data in Caracas and Mumbai (C1),
Shenzhen (C2), and in Cape Town (C3).
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Fig. 4. IoU accuracies represented in a boxplot for (a) all 10 cities and (b)–(d) each slum category for the three experiments XFCNcity, XFCNLSP, and XFCNTF
LSP

on the five-dimensional remote sensing data and the six-dimensional data where the proximity to the road network is included. (a) C1−3. (b) C1. (c) C2. (d) C3.

VI. DISCUSSION

Comparing the results of the XFCN from the five-dimensional
input data, which solely consisted of remote sensing data, to the
results of the six-dimensional input data where the proximity
to the road network is added as an additional input layer, the
accuracies of the model tended to increase. Rio de Janeiro and
São Paulo are the only datasets where the IoU decreased when
comparing the five- and six-dimensional input data. This can
be attributed to slums featuring morphologic types of category
C3 in these cities. In both Rio de Janeiro and São Paulo, an
orderly structured road network in slum settlements deviated
significantly from typical complex slum morphologies, where
often nonpaved roads define an irregular mosaic of settlement
patterns. In general, the mean IoU for all five-dimensional
experiments is 63.42% and can be increased to 75.94% when
using the six-dimensional input data to train the XFCN. Thus,
the proximity to the road network, used as an additional input
dimension, is found to help the model to better differentiate
between formal settlements and slum settlements.

In our tests, we defined the set of experiments where the
XFCN was trained and tested within the same city (XFCNcity)
as a baseline for comparison with the other experiments. In
Fig. 4(a), all experiments can be compared to each other. The
mean IoU decreases from 59.83% to 57.81% when comparing
the XFCNcity and the XFCNLSP trained on five-dimensional
input data, but increases from 68.83% to 71.64% when com-
paring the six-dimensional input data. These results show that
including auxiliary information about the road network can help
improving segmentation results when the XFCN is trained on a
generalized large-scale dataset including various categories of
slum morphologies. The results for the transfer learned XFCN
(XFCNTF

LSP) achieved the highest overall mean IoU accuracies
with 72.60% for the five-dimensional data and 74.53% for the
six-dimensional data. Table I shows the setup for all training
datasets: We identify some challenging datasets when there

are few training samples, a small slum sample proportion in
the respective city, small-sized areas of urban poverty, or a
combination of these issues. In these cases, we find the learning
task can be difficult for the XFCNcity. These attributes can be
seen in some variation throughout all datasets and slum cate-
gories; e.g., Nairobi (C1), Delhi and Medellin (C2), and Cape
Town, Rio de Janeiro, and São Paulo (C3). Accuracy measures
confirmed this analysis in Delhi and Medellin (C2), and Rio de
Janeiro (C3), with IoU accuracy scores lower than 58.98% for
five-dimensional data and 60.22% for six-dimensional data. For
Nairobi (C1) and Cape Town (C3), this is not the case, which
can be attributed to stark differences in formal and informal
settlement morphologies, even in Cape Town (C3), where slum
morphologies deviate significantly from the slum features found
in category C1.

In Fig. 4(b)–(d), the achieved accuracies are split into each
morphologic slum type. For the first category of morphologic
slum types C1, the XFCNcity and the transfer learned XFCNTF

LSP
are able to achieve high mean IoU accuracies, between 67.8%
and 81.1% for both the five- and six-dimensional input data.
Mapping slums of category C1 from features learned from the
dataset of the nine other cities (XFCNLSP) result in lower mean
IoU accuracies, of 52.6% for the five-dimensional data and
69.7% for the six-dimensional input data. The XFCNLSP cannot
generalize well to slums of category C1 on the five-dimensional
remote sensing data. The results from XFCNLSP show a 17.1%
improvement of the mean IoU when comparing five- and six-
dimensional input data. This increase of the IoU score can be
explained by the inclusion of the Open Street Map road network;
training the XFCN on a variety of different slum categories,
the road network offers a feature set that is found in all slum
categories of C1−3. The accuracies for the datasets of the slum
category C2 suffer from the highest variance throughout all
three experiments in both the five- and six-dimensional input
data. While the mean IoU accuracies for the XFCNcity and
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Fig. 5. Comparative alignment for three cities of each slum category (C1−3). All results were trained on the six-dimensional input data. The left column shows
the results for the XFCNcity, the middle column shows results from the XFCNLSP model, and finally, the right column shows the transfer learned XFCNTF

LSP results.

XFCNTF
LSP are the lowest of the three slum categories for the

five-dimensional data with 57.9% and 66.8%, respectively, the
highest overall IoU accuracies can be seen in XFCNLSP for
the five-dimensional data and for the six-dimensional data. The
XFCNLSP also achieves highest mean IoU accuracy, 74.86% for
the six-dimensional input data, when comparing the three slum
categories C1−3. Consequently, the XFCN is able to robustly
map slums of the category C2 when it is previously trained on
a large variety of slum morphologies. Although the slums of
category C3 deviate more significantly from the morphologic
slum features found in C1−2, it does not necessarily mean that
the XFCN suffers from low mapping accuracies.

Based on the results in Table III, we can confirm that the
XFCN is able to learn more robust representations of morpho-
logical slum features when it was previously trained on a large

morphologic variety of slum morphologies and then transfer
learned to a local domain dataset Dcity

T . This is shown in a
general increase of accuracies for the XFCNTF

LSP experiments.
Slums are highly heterogeneous in nature, especially when
comparing slum settlements on a global scale. While Table I
can explain some differences of the general slum features, some
are more complex to describe. Different morphologic slum types
(C1−3) can be seen in Fig. 5. Here, the mapped results for all
three models, trained on the six-dimensional input data, can be
depicted. The results in Mumbai (C1) show that all three models
XFCNcity, XFCNLSP, and XFCNTF

LSP achieve an IoU score of over
66.32%. With 452 total slums, a mean slum size of 9.1[ha], and
slum features of category C1, slums can be mapped using all
three XFCN models and only the XFCNLSP model suffers from
some mild under classification. Results in Shenzhen (C2) show
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similar effects as seen in Mumbai. With a dataset consisting of
a large amount of slums, 1872, and a slum sample proportion of
22.7%, high IoU scores can be achieved in both XFCNcity and
XFCNTF

LSP with over 85.98%. The strength of transfer learning
slum features form a large-scale poverty dataset to a small local
dataset can be seen in the mapping results of Cape Town in
Fig. 5. This dataset has a low amount of slums, 70, and only
2117 training patches. Thus, the XFCNcity only achieves an IoU
score of 72.28% and suffers from over and under classification.
Only the transfer learned XFCNTF

LSP is able to differentiate better
between the slums of category C3 and the formal settlements.

In the cities with a lower IoU accuracy score of 65% (Delhi,
Rio de Janeiro, and São Paulo), the XFCN struggles for various
reasons. Slums of the morphologic category C2 in Delhi and
C3 in Rio de Janeiro and São Paulo, in combination with the
training datasets components (see Table I), indicate that these
cities not only suffer from a small mean slum size of less than
6.5 ha and a slum sample proportion of less than 20%, but
the slum settlements also share a certain similarity to formal
settlements. This effect is also represented by a more regular
road network in the slum settlements of in Rio de Janeiro and
São Paulo. The accuracy scores for both cities are higher when
the road network is not included in the training dataset. The
highest accuracies could be reached in Mumbai and Shenzhen,
where the training dataset in Table I provides a high number
of slum patches and a large slum sample proportion, and the
slum type morphologies of category C1 and C2 offer a stark
difference between formal settlements and slums, as seen in
Fig. 5. The big advantages of transfer learning to map slums
could be observed in Caracas and Medellin (C2), where the
initial training dataset is quite small and, thus, training the
XFCN from scratch is insufficient. Transferring poverty features
learned from the large-scale poverty dataset to these cities could
elevate to IoU from just under 48.9% to 69.8% in Medellin and
from 59.1% to 80.7% in Caracas.

VII. CONCLUSION

Detecting urban poverty from remote sensing data is still a
major challenge. It must deal with fuzzy feature spaces between
formal and informal settlements, often with a significant im-
balance of slum occurrences within the urban landscape and
an inter- and intraurban variability of morphological slum fea-
tures between different geographical regions. In this article, we
propose a transfer-learned XFCN, which is trained on three
experiments, testing whether it is possible to learn slum features
in geographically separated regions. We have found that the
success of transfer learning is not only dependent on the training
dataset components, e.g., high slum sample percentage and a
higher number of training patches, but also on the different slum
morphologies. The combination of both the dataset and distinct
slum morphology features are of importance to reach high map-
ping accuracies [Caracas, Mumbai, and Nairobi (C1), Shenzhen
(C2), and Cape Town (C3)]. In cases where the training dataset
components are not ideal, the XFCN trained on various slum
morphologies is able to match or surpass accuracies compared to
training the XFCN within the same city. The best overall results

were achieved when the XFCN was transfer learned from a
large-scale poverty dataset to a smaller local dataset. Comparing
the results from the five-dimensional input data, which consisted
of only remote sensing data, and the six-dimensional data, where
the proximity to the road network was added as an additional
input dimension, accuracies improved segmentation outcomes
in most cases. This shows that additional data can be of major
importance to detecting urban poverty. Using more auxiliary
data to accompany remote sensing data for mapping slums
and novel deep learning architectures could potentially further
increase accuracies; thus, data sources outside of remote sensing
data could be used to make the decision process more robust
during training to map slum settlements on a global scale.
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Quantifying Uncertainty in Slum Detection:
Advancing Transfer Learning With Limited

Data in Noisy Urban Environments
Thomas Stark , Michael Wurm , Xiao Xiang Zhu , Fellow, IEEE, and Hannes Taubenböck

Abstract—In the intricate landscape of mapping urban slum
dynamics, the significance of robust and efficient techniques is often
underestimated and remains absent in many studies. This not only
hampers the comprehensiveness of research but also undermines
potential solutions that could be pivotal for addressing the complex
challenges faced by these settlements. With this ethos in mind, we
prioritize efficient methods to detect the complex urban morpholo-
gies of slum settlements. Leveraging transfer learning with minimal
samples and estimating the probability of predictions for slum
settlements, we uncover previously obscured patterns in urban
structures. By using Monte Carlo dropout, we not only enhance
classification performance in noisy datasets and ambiguous feature
spaces but also gauge the uncertainty of our predictions. This offers
deeper insights into the model’s confidence in distinguishing slums,
especially in scenarios where slums share characteristics with for-
mal areas. Despite the inherent complexities, our custom CNN
STnet stands out, delivering performance on par with renowned
models like ResNet50 and Xception but with notably superior
efficiency—faster training and inference, particularly with limited
training samples. Combining Monte Carlo dropout, class-weighted
loss function, and class-balanced transfer learning, we offer an
efficient method to tackle the challenging task of classifying intri-
cate urban patterns amidst noisy datasets. Our approach not only
enhances artificial intelligence model training in noisy datasets but
also advances our comprehension of slum dynamics, especially as
these uncertainties shed light on the intricate intraurban variabil-
ities of slum settlements.

Index Terms—Imbalanced dataset, learning from few samples,
noisy dataset, slum mapping, transfer learning, uncertainty
estimation.

I. INTRODUCTION

THE criticality of data in artificial intelligence (AI),
particularly in deep learning model development, are

Manuscript received 15 October 2023; revised 11 December 2023 and 18
January 2024; accepted 25 January 2024. Date of publication 29 January 2024;
date of current version 15 February 2024. The work of X. Zhu is supported
by the German Federal Ministry of Education and Research (BMBF) in the
framework of the international future AI lab “AI4EO – Artificial Intelligence for
Earth Observation: Reasoning, Uncertainties, Ethics and Beyond” under Grant
01DD20001. This work was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program
under Grant 714087-So2Sat. (Corresponding author: Hannes Taubenböck.)

Thomas Stark and Xiao Xiang Zhu are with the Chair of Data Science in
Earth Observation, Technical University of Munich, 80333 Munich, Germany
(e-mail: t.stark@tum.de; xiaoxiang.zhu@tum.de).

Michael Wurm and Hannes Taubenböck are with German Remote Sensing
Data Center, German Aerospace Center, 82234 Weßling, Germany (e-mail:
michael.wurm@dlr.de; hannes.taubenboeck@dlr.de).

Digital Object Identifier 10.1109/JSTARS.2024.3359636

well-documented [1], [2], [3]. Quality datasets, free from biases
and errors, are essential for creating algorithms that are gen-
eralizable and trustworthy for decision-making processes [4],
[5], [6]. However, the prevalence of biases and inaccura-
cies in training datasets necessitates either thorough curation
or specialized methods to handle these challenges. The ad-
vancement of AI architectures has been significant in address-
ing issues like imbalanced and noisy datasets, or classifying
within fuzzy feature spaces [7], [8], [9]. These improvements
are pivotal for handling the complexities and unpredictabil-
ity of real-world scenarios, underscoring the importance of
data quality in AI workflows for accurate and meaningful
outcomes.

By leveraging AI, researchers can uncover hidden connec-
tions and gain a deeper understanding of complex phenomena,
leading to more insightful studies and breakthrough discoveries.
The constant evolution and improvement of AI architectures,
especially in dealing with challenging datasets marked by im-
balanced and noisy datasets [7], [8], or classifying within fuzzy
feature spaces [9], has empowered researchers to handle diverse
and unpredictable real-world scenarios effectively. As AI contin-
ues to progress, it brings the promise of more comprehensive and
accurate solutions for the complexities of our dynamic world.

One area where AI has shown promising results is in remote
sensing, particularly when it comes to understanding urban
environments [10], [11]. This technology has been used to gather
vast amounts of insightful data on cities, including information
about population density [12], land use [13], or transportation
patterns [14]. This also includes detecting urban poverty, where
researchers and policymakers can gain valuable insights on
locations of slum settlements. The utilization of high-resolution
remote sensing imagery played a pivotal role in the comprehen-
sive mapping of slums within the dynamic cityscape of Mumbai,
as highlighted in [15]. Similarly, the city of Accra witnessed the
integration of remote sensing data in conjunction with income
data, facilitating an insightful mapping of poverty patterns, as
seen in [16]. Furthermore, Kuffer et al. [17] conducted an intri-
cate examination of the multifaceted factors that contribute to the
enduring presence of slums, shedding light on their persistence
within urban landscapes. Satellite imagery, population data,
and economic indicators can help to recognize poverty patterns
and map poverty levels to identify needy areas, enabling more
focused and effective poverty reduction activities [18], [19],
[20], [21].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Dense and low-rise areas shown with a black outline for the city of Nairobi [26]. Google Street View imagery is used to show that only some parts of the
dense areas can also be considered a slum settlement highlighting the challenge of slum mapping.

Detecting urban poverty from remote sensing data is very
challenging, due to data availability and the many different
morphological features that can occur in slum settlements [22].
The issue of data availability is twofold: While some data exist
for large and often studied areas [23], [24], for many cities of the
Global South there are still very few data on slum settlements
following a coherent and reproducible approach. The data that
exist on slum settlements is often outdated, incomplete, and
based on heterogeneous approaches on its definition regarding
the morphology of slum settlements [24]. The second major
challenge to detect slum settlements is the nature of its noisy
feature space. Despite the fact that a typical morphological slum
can be characterized by its high building density, small and com-
plex street layouts, low-rise and small building structures, and
use of a wide variety of construction materials, in reality slum
settlements sometimes share just parts of these features [22].
Moreover, as indicated in [25], the delineation of slums is subject
to variability owing to differing opinions on what constitutes
a slum. Recognizing this, the data used for training an AI to
classify slum settlements needs to diligently harmonized into
a unified dataset to enhance a study’s reliability, given that
such variability in slum definitions could markedly affect the
results. This subjectivity poses a challenge in classifying urban
poverty. This impact can make it difficult to distinguish between
a slum settlement and a formal built-up region. This challenge is
depicted in Fig. 1 where the results from [26] show predictions
of the local climate zone class seven, which is described as
dense-low-rise buildings and shows two areas within the city of
Nairobi, Kenya. While both highlighted areas display dense and
low-rise building structures, only some parts of one highlighted
area can be described as a slum upon having a closer look using
Google Street View imagery. Thus, classifying a settlement as a
slum cannot be solely determined by the previously mentioned
features. Conversely, just because a settlement has a low-rise and
dense structure does not automatically make it a slum. Similarly,
the absence of density in a settlement does not guarantee that it
cannot be classified as a slum. In other words, the combination of
multiple morphological characteristics is a detrimental criterion

for determining whether a settlement is a slum or not. While
other factors, like plumbing and access to basic services need to
be considered in evaluating the status of a settlement as well,
these are not derivable from high-resolution remote sensing
data. Thus, with the described noisiness of the dataset in mind,
for the purpose of this research and considering the limitations
in acquiring actual real ground-truth data, we rely here on the
typical morphological appearance of slum settlements.

In our study, we focus on addressing two primary challenges:
limited data availability and noisy datasets in the context of slum
mapping using remote sensing data. Our main goal is to develop
an efficient method for detecting slums with limited training
samples, and to estimate the uncertainty in these predictions. To
this end, we employ a transfer-learning approach, leveraging a
large, imbalanced dataset to effectively train toward a smaller,
balanced dataset. This method ensures that only a few samples
are needed for successful slum detection. To tackle the issue of
noisy datasets, we utilize Monte Carlo dropout. This technique
allows us to approximate the uncertainty associated with pre-
dicting slum settlements, providing a more robust and reliable
analysis. In addition, we introduce a custom convolutional neural
network (CNN), the slum transfer network (STnet), specifically
designed for high-resolution remote sensing data. STnet is engi-
neered not only to enhance the training efficiency with a limited
number of samples but also to offer significant improvements
in processing time compared to standard CNN models. Our
research aims to demonstrate the effectiveness of STnet in accu-
rately detecting slums in various urban environments, thereby
contributing to the broader field of urban studies and remote
sensing.

II. RELATED WORK

A. Detecting Urban Poverty Using Remote Sensing

Traditional machine learning approaches have already made
significant contributions to the detection of urban poverty by
enabling the analysis of large datasets [24]. These approaches
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have proven to be invaluable in providing researchers and policy-
makers with the necessary tools to gain a deeper understanding
of poverty patterns within urban areas. By employing various
machine learning algorithms, such as classification and regres-
sion models, researchers can process and analyze extensive
datasets containing socioeconomic and spatial information [19].

A specific area where traditional machine learning has shown
promise is in the application of remote sensing data for larger
scale urban poverty detection [27], [28]. In the context of poverty
detection, remote sensing data provide valuable information
about the morphological patterns of slum settlements. This
data can include features such as building density, land cover
classification, and infrastructure characteristics [29], [30].

While traditional machine learning approaches have been
effective in urban poverty detection, recent advancements in
AI have further enhanced our ability to identify poverty using
innovative techniques. AI, including deep learning models, has
demonstrated remarkable capabilities in analyzing satellite im-
agery for poverty detection [15], [27], [31], [32], [33]. Deep
learning algorithms, characterized by their ability to learn hierar-
chical representations of data, can automatically extract intricate
visual features from satellite images, capturing subtle patterns
that may indicate poverty.

However, despite these advancements, there is still a need for
larger scale applications of poverty detection using AI. Most
existing studies in this field are often limited to specific areas of
interest within the same geographical region. To fully harness
the potential of AI in urban poverty detection, it is essential
to expand research efforts to encompass a broader range of
urban environments worldwide. By doing so, it is intended to
unlock the true power of AI in addressing the complex challenges
associated with urban poverty on a global scale.

B. Training on Imbalanced Datasets

Studies revealed that slum morphologies in general consist
of a small share of the built-up environment in cities, and in
particular, mapping information is only scarcely if at all avail-
able [34]. Dealing with imbalanced datasets in deep learning
involves several approaches that can help mitigate the issue of
class imbalance. Some common methods include cost-sensitive
learning, as seen in [35], which adjusts misclassification costs,
favoring the minority class and improving overall performance
on imbalanced datasets. Synthetic data generation increases
the minority class representation by creating artificial samples,
achieving a more balanced dataset and enhancing predictive
accuracy [36], [37]. Using curriculum learning gradually ex-
poses the algorithm to challenging examples, minimizing biases
toward the majority class [38], [39].

Another simple approach is resampling the dataset by either
oversampling the minority class or undersampling the major-
ity class. Oversampling involves replicating or generating new
instances from the minority class to balance the dataset. Under-
sampling reduces the majority class to match the minority class.
Both approaches help achieve a more balanced class distribution
and improve AI model performance [33], [40], [41]. The choice

between them depends on the dataset and learning algorithm
used.

Furthermore, class weight adjustment is a technique in AI
used to tackle imbalanced datasets. By assigning higher weights
to the minority class during training, the model places greater
emphasis on learning from the minority class. This helps to
address the issue of class imbalance and ensures that the model
pays more attention to the minority class, improving its ability
to correctly classify instances from that class. By adjusting the
class weights, the model becomes more sensitive to the minority
class and achieves a better balance in handling imbalanced
datasets [42], [43].

It is important to carefully evaluate the performance of the
model after implementing these methods to ensure that the
imbalance has been effectively addressed without negatively
impacting the overall performance. In this work, we direct our
attention toward a class-weighted loss function for pretraining
and for transfer learning an undersampling method. Both present
a straightforward and efficient workflow that can be effortlessly
replicated. By choosing to focus on these specific methods, we
aim to harness their advantage and capitalize on their ease of
implementation.

C. Transfer Learning From Few Samples

Transfer learning a CNN involves adjusting the weights of
an already trained model to fit the specific task or dataset in
the target domain. This is achieved by pretraining a model and
retraining it with a smaller learning rate on a related classification
task for the target domain [44]. The benefits of transfer learning
a CNN include: faster training times as the model has already
learned useful features from the pretraining data [45], [46],
improved performance on the target task as compared to training
a model from scratch, and the ability to leverage the knowledge
gained by the pretrained model on a large dataset to improve the
performance on a smaller dataset [47], [48].

When it comes to transfer learning with few samples, the
situation is similar to few-shot learning techniques. However,
in transfer learning, the focus is not solely on handling a few
labeled examples of a new task. Instead, transfer learning aims to
exploit the knowledge learned from a source task with sufficient
labeled data and apply that knowledge to a target task with
limited labeled data. Whereas in few-shot learning, the model
is trained to learn from none or very few labeled samples.
In [9], a few-shot learning technique from [49] was used in order
detect complex morphologies representing poor areas within the
urban environment, the authors found out that the technique
works very well when only a hand-full of samples are available.
Other approaches have been using self-supervised embedding
optimization for adaptive generalization in urban settings [50]
or using prototypical networks for urban damage detection after
natural hazards [51].

D. Bayesian Uncertainty Estimation

In deep learning, Bayesian uncertainty refers to the incor-
poration of probabilistic inference into neural networks and
can be categorized into two domains: epistemic and aleatoric.
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The former, epistemic uncertainty, pertains to the uncertainty
associated with the model parameters or weights, while the
latter, aleatoric uncertainty, is commonly associated with data
uncertainty.

Variational inference, which models the network’s weights as
probability distributions and employs optimization techniques
to approximate them [52], [53], and Bayesian neural networks,
which treat the network’s parameters as random variables and
infer posterior distributions [54], [55], offer valuable insights
into model uncertainty. These approaches can significantly assist
in improving the trustworthiness of deep learning methods in
remote sensing tasks [56], [57], [58].

Monte Carlo dropout is another method used for uncer-
tainty estimation in predictive models. It leverages dropout to
approximate Bayesian inference for deep neural networks by
performing multiple forward passes with dropout during infer-
ence [59]. Each pass generates different predictions, allowing for
the calculation of prediction variance and capturing the inherent
epistemic uncertainty in the model’s output. It can also be used
to prevent overfitting [60]. This technique has been applied
successfully in various domains, such as computer vision [61],
[62], natural language processing [63], and healthcare [64].

One of the key benefits of Monte Carlo dropout is its potential
to enhance prediction interpretability [65]. By generating multi-
ple predictions with dropout, the method provides a probabilistic
distribution of possible outcomes, enabling a more comprehen-
sive understanding of the model’s uncertainty. This distribution
can be visualized and analyzed to gain insights into the factors in-
fluencing the model’s decisions. Monte Carlo dropout has found
applications in a wide range of tasks. Uncertainty estimation
helps to identify ambiguous regions in image classification tasks,
or it can guide the system to seek clarification or avoid providing
incorrect or misleading information. Moreover, Monte Carlo
dropout has been utilized to understand the level of confidence
in the model’s predictions and assisting in making informed
decisions [66].

III. METHODOLOGY

A. Convolutional Neural Networks

ResNet-50 [67] and Xception [68] are two widely acclaimed
and standard CNNs that find extensive usage in various sci-
entific domains, including remote sensing image classification
tasks. ResNet-50, short for residual network with 50 layers,
revolutionized the field of deep learning by introducing residual
connections that mitigate the vanishing gradient problem and
enable the training of extremely deep networks. This architec-
ture facilitates the construction of deeper models, leading to
improved accuracy in image classification tasks. On the other
hand, Xception, an extension of the Inception architecture, takes
the concept of depth-wise separable convolutions to an extreme
level. It separates the spatial and channel-wise convolutions,
reducing the computational cost significantly while maintaining
high performance.

In our study we use both, ResNet-50 and Xception in order
to introduce our Slum Transfer network (STnet), a custom CNN
specifically designed to excel in processing high-resolution

remote sensing imagery. The STnet is a heavily customized
Xception network [68] and a simplified schematic can be seen in
Fig. 2. The entry flow consists of five convolution combinations
using residual skip connections. In order to capture a larger area
when using high-resolution remote sensing imagery, the first
two 2-D convolutions use large 9x9 kernels. In the middle flow,
feature pyramid pooling is used to provide a unified framework
to extract features at different scales. Finally, the classification
flow is composed of two linear functions. Throughout the whole
STnet, a combination of batch normalization and dropout layers
afterwards are used. In total, STnet has 22 layers and 3.3 million
trainable parameters.

B. Transfer Learning

The learning strategy employed in this procedure can be
divided into two distinct phases. In the initial phase, the STnet
undergoes pretraining on a class-imbalanced dataset denoted
as Dbase. To address the class imbalance during this stage,
we employ a weighted loss, as illustrated in (1), to give due
importance to underrepresented classes and make the most of
the available data. Subsequently, the STnet is transfer learned
using an additional dataset, referred to as Dbal

loocv. However, one
of the classes in Dbase is significantly imbalanced compared to
the others, while in Dbal

loocv, a class balanced dataset is created
using undersampling. Dbal

loocv is designed to be class balanced,
meaning it contains an equal number of images from all classes.
By ensuring that each class is represented equally in Dbal

loocv, we
mitigate the bias toward the imbalanced class from Dbase. This
balanced dataset allows for a fair and unbiased transfer-learning
process, as each class contributes equally to the training of the
new classifier.

During pretraining and transfer learning, we use a class
weighted cross entropy loss L as seen in (1) where wi is the
weight for each class, scaled by the inverted count of the class
occurrence

L(x, c, w) = −
∑

i

wi · y′i · log
(

exp(xi)∑
j exp(xj)

)

where

wi : weight for class i;

y′i : target distribution after

label smoothing for class i;

xi : logit for class i. (1)

During transfer learning, the complete CNN remains train-
able, and no layers are frozen. This means that all the layers of the
pretrained CNN, are trained using theDloocv dataset. By keeping
all layers trainable, the CNN can adapt its learned features to the
new dataset while still benefiting from the knowledge gained
on the base dataset. This approach allows the CNN to capture
task-specific features from Dbal

loocv while retaining the general
knowledge acquired from Dbase.
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Fig. 2. Simplified schematic of the STnet architecture, comprising five convolutional variants in the entry -flow, succeeded by feature pyramid pooling layers
and a classification- flow in the end. This light-weight architecture encompasses 3.3 million trainable parameters.

C. Monte Carlo Dropout for Uncertainty Estimation

In our classification setting, we have a dataset D(X,Y ),
where X = x1, x2, . . ., xn represents the records of input im-
ages and Y = y1, y2, . . ., yn denotes the corresponding refer-
ence labels. We employ our STnet model to predict new outputs
ȳ from new data x̂. The model’s predictions rely on a set of
weights, and the task at hand involves finding the optimal set of
these weights through an optimization problem

ȳ =
1

T

T∑

t=1

y(t)

where

ȳ : Averaged prediction over Monte Carlo runs;

T : Total number of Monte Carlo runs;

y(t) : Prediction for the tth forward pass. (2)

To incorporate the Monte Carlo dropout technique as seen in
(2), we use a probability p = 0.3 for each dropout layer, and for
each model in all our experiments. This decision was informed
by the preliminary test with p = 0.1, p = 0.3, and p = 0.5,
where p = 0.3 offered the most effective balance between the
Monte Carlo probabilities and the accuracies of the models.

During the forward pass, a unit is dropped and set to zero if its
corresponding binary variable is zero. By utilizing Monte Carlo
dropout, we aim to model the distribution, and subsequently, the
predictive posterior distribution of ȳ. Notably, we can achieve

this by training the neural network as if it were a typical network,
with the inclusion of dropout layers after each layer with weight
parameters and performing T predictions.

In summary, unlike the conventional classification setting
where a single prediction y(t) is obtained, the Monte Carlo
dropout technique allows us to model a predictive distribution.
This approach entails training the network with dropout layers
and making multiple predictions, resembling the training pro-
cess of a standard neural network with slight modifications.

IV. DATA AND EXPERIMENTAL SETUP

A. Dataset

The remote sensing data used in this study were acquired
using PlanetScope satellites during 2021. In total, 8-bit RGB
data were used and all scenes were resampled to 3-m reso-
lution per pixel. Data from eight cities of the Global South
were collected including Cape Town, Caracas, Lagos, Medellin,
Mumbai, Nairobi, Rio de Janeiro, and Sao Paulo. The division
of the remote sensing data into 88 ∗ 88 pixel patches (equivalent
to 264 m ∗ 264˜m) was methodically chosen based on empirical
evidence from previous studies in the domain of learning with
few samples, which demonstrated the efficacy of this specific
patch size [9], [49].

Our dataset consists of three target classes: zero back-
ground,one formal built-up areas, and two slums. The formal
built-up areas were derived by using data from the LCZ42
dataset [26]. Reference data for the slum settlements were
created by mapping polygons from experts in the field of remote
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Fig. 3. Class distribution in eight cities and combined distribution. The figure displays nine pie charts depicting the class distribution in eight cities, with the slum
sample proportion highlighted for each city. The final pie chart showcases the combined distribution, illustrating the overall class proportions across all cities.

sensing and urban poverty on the basis of up to date aerial
imagery using Google Earth. To ensure data consistency for
the reference data gathered from all sources, all polygons were
checked and if necessary adjusted by the authors.

Each image patch used for training and testing the AI model
has a dimension of 88 ∗ 88 ∗ 3, with each label patch is 88 ∗
88 ∗ ncl, where ncl = 3 for the three classes used. If a reference
patch contains at least 25% pixels of slum settlements, it is
considered toward the slum class, patches with less than 25% but
containing at least one slum pixel are discarded during training
the model. For all other samples, the class with the highest pixel
tally is considered as the main class. In total, 64 686 samples
are available in the Doriginal dataset used for training and testing
our approach as seen in Fig. 3.

B. Data Sampling

We define Doriginal in (3) as the set of ordered pairs, where
each pair consists of an image X and CL as its corresponding
city’s location. Xn is the nth image in the set and CLi as the
location of the nth image, where i ranges between the city’s
location ID from 1 to 8. This dataset contains a wide range of
diverse samples, encompassing various morphologies of urban
patterns relevant to our topic.

For all experiments, we use a leave-one-out cross-validation
approach, which is instrumental in ensuring comprehensive
model evaluation and robustness across diverse urban environ-
ments, reflecting the variability in slum morphologies. This
method also effectively mitigates the risk of overfitting, en-
suring the model’s adaptability and generalizability to different
geographical contexts, crucial for the real-world application of
urban poverty analysis and slum mapping. The image patches
from seven of the eight cities are used for training and validation,
while the remaining city’s dataset is used for testing and transfer-
learning. This process is repeated for all eight cities creating
eight pretrained models to use for the test datasets. We parti-
tioned Doriginal into two distinct datasets as seen in (4). The first
subset, named Dbase, was employed for pretraining the STnet.
Dbase served as the foundation for training the initial weights

and learning representations, the dataset always consist of seven
cities of the dataset as seen in (5). The second subset, called
Dloocv in (6), was dedicated to the transfer-learning phase. By
using a leave-one-out cross-validation dataset Dloocv, we were
able to refine and optimize the STnet’s performance, ensuring its
adaptability and robustness. Overall, the division of Doriginal into
Dbase and Dloocv played a crucial role in our research, enabling
us to achieve accurate and reliable results.

During the transfer-learning phase, the datasetDloocv is turned
into a class balanced dataset Dbal

loocv, using undersampling of
the majority class. In (7) Xn is the nth image in the dataset
with its corresponding label Yn. We count the occurrence of
all classes c and randomly sample j patches used for transfer
learning.

Doriginal = {(X1,CL1), (X2,CL2), . . . , (Xn,CLi)} (3)

Doriginal = Dbase ∪ Dloocv (4)

Dbase = {(X1,CLi), . . . , (Xn,CLi)} ∈ Doriginal (5)

CLi �= loocv

Dloocv = {(X1,CLi), . . . , (Xn,CLi)} ∈ Doriginal

CLi = loocv (6)

Dbal
loocv =

{(
Xn, Yn

) ∣∣∣∣ count
(
Yn ∈ Dloocv, Yn = c1

)
= j,

count
(
Yn ∈ Dloocv, Yn = c2

)
= j,

count
(
Yn ∈ Dloocv, Yn = c3

)
= j

}
. (7)

To evaluate the number of image patches required for transfer
learning, we examine 1, 5, 10, 25, 50, and 100 image samples per
class. For each experiment, we randomly select these samples
per class from Dloocv, and use the remaining city, not included
in the training dataset, for transfer learning. The samples cho-
sen for transfer learning are subsequently eliminated from the
test dataset. This process ensures that our experiments avoid
bias and accurately reflect the model’s capability to generalize
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from limited data. In order the address the effects of randomly
choosing image samples, we averaged the outcomes of five dif-
ferently seeded experiments and report the standard deviations
in our results, highlighting the impact of sample selections on
the model’s performance. In order to guarantee that there are
sufficient samples of each class, particularly the slum class,
100 samples were the maximum number of samples required
to verify our transfer-learning strategy.

C. Experimental Setup

To examine the impact of transfer learning on noisy datasets,
we follow the setup outlined as follows. In all experiments, we
warm up the optimizer for three epochs with a learning rate of
1e− 8. For pretraining, we use a learning rate of 1e− 3 and for
transfer learning 1e− 4. All experiments use an Adam optimizer
and weighted soft cross entropy loss. In addition, a batch size of
16 is used for training. To tackle both, dataset noise and model
prediction uncertainty, we employ Monte Carlo dropout. This
technique involves obtaining an average of 25 outputs from
the model’s predictions. We compute the average of the raw
logits produced by the model and calculate the corresponding
entropy value in order to compare the level of uncertainty of the
prediction.

In our evaluation framework, it is important to note that while
our models were trained on three classes to effectively manage
class (im-)balance, the accuracy metrics reported specifically
pertain to the slum class. This focused approach is due to our
primary interest in slum mapping. Classes representing back-
ground and urban/formal built-up areas are not included in the
accuracy assessment. Therefore, in assessing performance, we
use three commonly used metrics for image classification prob-
lems, namely the F1-score, precision, and recall, as our primary
metrics to gauge the effectiveness of our models in accurately
identifying slum areas. To further compare the efficiency of
different models, we analyze the training time required for each.
In addition, we assess the influence of Monte Carlo steps on
our results, examining how variations in this parameter impact
the models’ stability and inference time. By integrating both
performance metrics and computational efficiency measures, we
ensure a thorough evaluation that guides our decision making
process and optimizes the overall quality of our outcomes.

A fundamental challenge in the context of transfer learning is
the variability in model performance when using a limited num-
ber of samples. This variability arises due to the random selection
of training samples, leading to potential sample selection bias.
To obtain a comprehensive understanding of model performance
and address the issues arising from outlier data training, it is im-
perative to employ a rigorous approach. Specifically, we conduct
five seeded runs to effectively assess the models’ capabilities. By
averaging the results obtained from these diverse seeded runs, we
obtain a robust estimation of model performance, which allows
for a more accurate representation of sample selection bias. This
approach aids in reducing the impact of random fluctuations,
providing a clearer picture of the model’s general performance
across varying training data subsets.

TABLE I
RESULTS FOR EIGHT CITIES COMPARING DIFFERENT NUMBER OF SAMPLES

USED FOR TRANSFER LEARNING THE STNET, INCLUDING THE STANDARD

DEVIATION FOR FIVE SEEDED RUNS

V. RESULTS

A. Transfer-Learning Results

The results of the transfer-learned STnet reveal an empirical
relationship between the number of samples per class used for
transfer-learning and the corresponding F1-score as seen in
Table I. Notably, an increase in the number of samples yielded
improved F1-scores. However, it is noteworthy that even with
just a single sample per class, the model achieved commend-
able F1-scores of 73.24%. Nevertheless, after 50 samples, the
F1-score seems to plateau, suggesting an upper limit of high
80% F1-score for this classification task. These findings indicate
the potential for achieving favorable F1-score with STnet, even
when training data are scarce. The highest F1-score of 86.24%
was achieved when using 100 samples per class for transfer-
learning.

In addition, when examining the precision and recall val-
ues in Table I of the transfer-learned STnet, notable patterns
emerge. While the precision values increases more drastically
as the number of samples for transfer learning increases, the
recall values, however, only steadily increases. These results
underscore the effectiveness of the transfer-learning approach
in refining the model’s precision and recall, leading to improved
overall performance and indicating the potential of STnet in
applications with limited training data.

Fig. 4 depicts the F1-scores for eight cities and the correspond-
ing number of samples used to transfer learn our STnet model.
The general trend observed in the figure indicates that as the
number of samples per class used for transfer learning increases,
the F1-scores also increase. The experiment was conducted five
times, with each transfer-learning approach utilizing different
random samples. The error band in Fig. 4 from the five runs uses
confidence intervals of 95% to draw around estimated values.

In Cape Town (93.60%), Caracas (90.62%), and Medellin
(91.09%), we achieve the highest F1-scores, when using 100
samples for transfer learning. But it needs to be noted that in
Medellin and Caracas, we already achieve high accuracies using
simple inference of over 82.10%. We also observe a decrease in
F1-score when only one sample per class is used for transfer
learning, in Caracas, Medellin, Lagos, and Mumbai, indicating
a more challenging setting for transfer learning. But even in
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Fig. 4. F1-score for eight cities using a variety of number of samples to transfer learn the STnet pretrained using a transfer-learning approach.

TABLE II
COMPARISON OF F1-SCORES FOR STNET, XCEPTION, AND RESNET50,
AVERAGED OVER FIVE DIFFERENTLY SEEDED RUNS SHOWN WITH ITS

STANDARD DEVIATIONS

Lagos and Mumbai, using only five samples per class results in
a major improvement of roughly 10% in F1-score compared to
simple inference.

B. Comparing Various CNNs

In Table II, we conduct a comprehensive comparative analysis
of the F1-scores for three distinct CNNs: STnet, Xception, and
ResNet50. This comparison spans a range of scenarios in transfer
learning, starting from simple inference results to the use of 1–
100 image samples in transfer-learning processes. Each model’s
F1-score is calculated as an average across five independently
seeded runs, and we provide the standard deviations to illustrate
the variability in performance. In addition, all models were
subjected to 25 Monte Carlo iterations to ensure consistency
in our evaluation methodology. Our analysis reveals that STnet,
despite having a considerably lower parameter count of only 3.3
million, achieves performance metrics that are comparable to
those of Xception and ResNet-50, which are significantly more
parameter intensive. Notably, in scenarios where only a limited

TABLE III
COMPARING DIFFERENT CNN ARCHITECTURES TO EACH OTHER BASED ON

THEIR SIZE AND TRAINING TIME

number of samples are employed for transfer learning, STnet
demonstrates superior performance, outscoring both Xception
and ResNet-50.

Table III provides a detailed comparison of the training times
for each step and the total time required to achieve the best
validation metric for the three models. Although the overall
F1-scores of these CNNs are relatively similar, a significant dif-
ference is observed in their training durations. This discrepancy
is largely attributed to STnet’s more streamlined architecture,
which makes it considerably lighter and faster in processing
compared to Xception and ResNet-50, as evidenced in Table III.
Notably, STnet not only demonstrates faster processing times
but also requires less total time to attain the optimal validation
metric. However, it is important to note that despite its shorter
overall training duration, STnet demands more epochs to reach
the best model fitness, in contrast to Xception and ResNet-50.
This aspect highlights the efficiency of STnet in terms of time
management.

C. Comparing Monte Carlo Dropout Rates

In Table IV, we investigate the impact of varying the number
of Monte Carlo dropout test runs on our STnet model. The
performance of the model is evaluated using inference time,
F1-score, and finally, the entropy value, which is a measure
of uncertainty or randomness within the predicted distributions
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TABLE IV
COMPARISON OF STNET’S INFERENCE TIME, F1-SCORE, AND ENTROPY

ACROSS DIFFERENT MONTE CARLO DROPOUT ITERATIONS, TRAINED ON 100
SAMPLES PER CLASS

generated by the Monte Carlo dropout technique. Specifically,
we compare the results obtained from using 1, 5, 25, and 50
Monte Carlo dropout test runs. In [69], 50 iterations are men-
tioned when using Monte Carlo dropout, but they only used a
dropout layer in the last layer of their CNN. Since STnet uses
dropout throughout its complete architecture, we test iterations
of up to 50.

Our findings reveal that increasing the number of Monte Carlo
dropout test runs leads to a slight improvement in the F1-score.
Furthermore, we observe a slight decrease in the entropy values
as the number of Monte Carlo dropout test runs increases,
which implies that the predictions become more focused and
certain as more test runs are performed. Significant observations
were made regarding the inference time when increasing the
number of Monte Carlo dropout iterations. The results indicate a
substantial increase in inference time, with a 275% rise observed
when transitioning from five Monte Carlo dropout iterations to
25, followed by an additional 84% increase when reaching 50
iterations. Despite the availability of insightful uncertainty mea-
surements with just five iterations, the experiments conducted in
this study employed 25 iterations as the preferred configuration
for analysis.

VI. DISCUSSION

A. Uncertainty of Slums

Fig. 5 shows the results obtained for all cities using the
transfer-learned STnet with 100 samples per class. The incor-
poration of Monte Carlo dropout as a method for uncertainty
estimation unveils a significant advantage. It allows us to dis-
cern the STnet’s level of certainty in predicting the location of
slum settlements and identifies cases where its predictions are
inconclusive. This not only provides crucial insights into the
decision-making process of the STnet but also sheds light on
the inherent challenges associated with the classification of slum
areas.

The analysis demonstrates that the STnet exhibits ele-
vated confidence in predicting the presence of typical slum

settlements, characterized by typical morphologic slum features,
including high density, heterogeneous building patterns, and
irregular road shapes. This pattern is evident in cities that achieve
high F1-scores, namely Cape Town, Caracas, Medellin, and
Mumbai.

In addressing the challenges faced in slum classification
within specific cities, it is observed that Lagos presents notable
difficulties with underclassification of slums. Conversely, in
Nairobi, Rio de Janeiro, and Sao Paulo, the primary challenge
lies in overclassification. These issues are largely due to two key
factors. The first factor is the absence of distinct morphological
features typically found in slum settlements, which are otherwise
noticeable in cities like Caracas and Medellin. The second factor
contributing to these classification challenges is the presence of
formal settlement structures that share similarities with slum
areas in terms of density and low-rise characteristics. This
overlap in physical attributes complicates the task of clearly
differentiating between formal and slum classes in these urban
environments.

This highlights the complexity of slum classification due
to local morphologic specifics in relation to the surrounding
built-up morphologies as well as it emphasizes the importance
of taking into account differences in morphological character-
istics present within slums. Moreover, in fringe regions, where
slum settlements are intertwined with urban formal settlements,
vegetation areas, or both, higher uncertainties are observed.

In regards to assessing the uncertainty of slums and their
prediction, evaluating the chosen dropout value during training
and Monte Carlo inference becomes a crucial aspect of our
methodology. The decision to implement a 30% dropout rate
was a strategic one, aimed at striking an optimal balance in
our models. This rate was selected after observing effects of
different dropout rates in preliminary tests. At a lower 10%
dropout rate, we noticed less variability in uncertainties, but
this did not significantly enhance the models’ accuracies. On
the other hand, a higher dropout rate of 50% adversely impacted
the models’ accuracies, suggesting a potential overadjustment
in the learning process.

This understanding of the impacts of varying dropout rates
was important in optimizing the performance of our models. By
settling on a 30% dropout rate, we managed to maintain a balance
where the accuracy of the models was not overly compromised,
nor was the effectiveness of the Monte Carlo estimation diluted.
This decision was crucial in ensuring that our models remained
robust and efficient in predicting slum areas.

It is crucial to acknowledge the influence of the inherently
noisy dataset on our results. Although we have unified the dataset
into a coherent representation of slums, as detailed earlier in this
article, the intra- and interurban variability inherently introduces
a significant level of noise. This variability means there is a wide
range of slum characteristics to learn and predict. However, this
diversity also serves as a key advantage of employing the Monte
Carlo Dropout method. By using this technique, we can observe
the effects of this variability in the probabilities, which is also
evident in the maps presented in Fig. 6.

Furthermore, it is important to consider how the application
of our models to different definitions of morphological slums
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Fig. 5. Results for all eight cities using the transfer-learned STnet trained on 100 samples per class. All results are in the same scale of 1:80 000 and use the same
color bar for the probability value of the slum class. Black outlines are used for the reference slum polygons.

could impact the results. Slums can vary greatly in their physical
characteristics, spatial distributions, and overall appearances
from one urban area to another. If our models were applied
to slum areas with different morphological characteristics than
those on which they were trained, this could potentially lead
to variations in predictive accuracy and uncertainty estimations.
Such a transfer would require careful consideration and possibly
adjustments to the model to account for these differences. This
aspect underscores the importance of context and adaptability
in model application, especially in diverse urban environments.

B. Transfer Learning With Few Samples

In Fig. 6, we present the results obtained for the STnet within
a similar area of interest as depicted in Fig. 1. To provide
additional clarity, we have outlined the slum reference polygons
with a black border. Furthermore, we present the slum probabil-
ity results obtained from the five different training techniques
using the same red colorbar. These results shed light on the
model’s performance in identifying slum settlements. All images
(a)–(f) within this figure are consistently displayed at a scale
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Fig. 6. Results for the STNet in a comparable area of interest, as depicted in Fig. 1. All images (a)–(f) are presented in a consistent scale of 1:10 000. Image (a)
showcases a very high-resolution Google satellite imagery of the identical point of interest shown in Fig. 1. Images (b)–(f) exhibit the outcomes obtained using
the STNet, with variations from no transfer learning (b) to transfer learning from 1 to 50 samples per class (c)–(f). (a) Google Satellite basemap. (b) No transfer
learning. (c) One sample. (d) Five samples. (e) Ten samples. (f) Fifty samples.

of 1:10 000. Fig. 6(a) offers a detailed view, featuring very
high-resolution Google satellite imagery of the exact point of
interest showcased in Fig. 1. The subsequent images, Fig. 6(b)
through 6(f), illustrate the diverse outcomes achieved through
the utilization of the STnet. Fig. 6(b) presents results ob-
tained without the application of transfer learning, while images
Fig. 6(c) through 6(f) demonstrate the progressive impact of
transfer learning with 1 to 50 samples, highlighting the evolution
of performance and insights gained through this process. The
variation in results for Nairobi, transitioning from utilizing 50
samples per class to 100 samples per class for transfer learning,
exhibits negligible differences in both accuracy metrics and
visual outcomes. Consequently, we conclude the figure at the
50 sample mark, as further iterations do not yield significant
improvements in performance or visual representation. By lever-
aging transfer learning, we aim to improve the model’s ability to
recognize and understand the unique features of Nairobi’s urban
landscape.

From Fig. 4, we find a comprehensive overview of the STnet’s
performance metrics for the entire city of Nairobi. Specifically,
we evaluate the model’s F1-score. When employing simple
inference without transfer learning, the F1-score achieved was as
low as 49.06%, indicative of an initial struggle to map the slums
of Nairobi. While Fig. 6(b), initially presents promising results
with minimal overclassification tendencies, it is essential to

consider the broader context. The depicted area represents only
a small portion of the dataset. What is particularly noteworthy
is the relatively low confidence values associated with these
predictions. This underscores the significance of considering
local context, which becomes evident that the models using
transfer learning displays higher confidence in its classifications,
emphasizing the value of leveraging transfer learning to enhance
the classification accuracy and contextual understanding.

However, as we incorporate one sample per class for transfer
learning, we observe a notable improvement, with the F1-score
rising to 66.78%. This demonstrates the efficiency of using
a limited number of labeled samples to enhance the model’s
understanding of Nairobi’s unique morphologic characteristics.
In Fig. 6(c), we observe a significant increase in the F1-score
for the entire city of Nairobi. However, this improvement is
accompanied by a notable issue of overclassification in the area
of interest. In addition, there is an evident rise in the overconfi-
dence levels of the predictions, highlighting a disparity between
quantitative scores and visual accuracy. From Fig. 6(c) to 6(e),
there is a noticeable progression in the F1-score. However, it
is not until Fig. 6(f), when a sufficient number of samples are
utilized for transfer learning, that the visual outcomes demon-
strate considerable improvement. In this instance, the results
are promising, exhibiting only minor instances of over- and
underclassification.
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As discussed in Section I, low-rise and dense settlement struc-
tures do not necessarily equate to slum settlements. The region
depicted in Fig. 6 exemplifies this challenge, containing only
one slum settlement amidst several dense formal settlements.
This blend of characteristics intensifies the difficulty of accurate
classification. Furthermore, these findings hold broader implica-
tions, suggesting that our results are highly generalizable to other
cities with similar fuzzy feature spaces between formal, low-rise
dense settlements and slum settlements. Cities like Lagos, Rio de
Janeiro, and Sao Paulo, known for their similar morphological
appearances of slums, can especially benefit from these insights,
as they present comparable classification challenges.

VII. CONCLUSION

Through the integration of Monte Carlo dropout, we gained
valuable insights into the uncertainties in our predictions, allow-
ing us to identify areas where our AI model is more or less certain
in its slum classification. The presence of multiple typical slum
morphologies led to higher certainty in the model’s predictions.
However, challenges arose when slums shared features with
formal areas, which made the classification task more complex.
Despite this, the application of Monte Carlo dropout proved to be
effective, especially when dealing with noisy datasets and fuzzy
feature spaces, which typically pose significant challenges for
any classification tasks.

Moreover, we introduced our custom CNN STnet, which
demonstrated comparable results to renowned models like
ResNet50 and Xception while offering significantly reduced
processing time. We have successfully attained an elevated
F1-score of 86.24%, a performance that can be deemed re-
markable in the context of slum mapping, where we address
intricate urban patterns and challenges. Particularly noteworthy
was its performance when trained on limited samples, making
it an ideal choice for scenarios with fewer available training
data. We were able to outscore both Xception and ResNet50
when using ten or fewer samples per class for transfer learn-
ing. By combining Monte Carlo dropout, a class-weighted loss
function for pretraining, and class-balanced transfer learning,
we presented a simple yet efficient approach for accurately
classifying challenging urban patterns in noisy and imbalanced
datasets. Our approach not only addressed the uncertainties in
slum classification but also tackled the inherent complexities of
working with real-world data, which often lacks perfect labels
and may exhibit imbalances across classes. In summary, our
research provides a valuable contribution to the field of urban
pattern classification and demonstrates the importance of con-
sidering uncertainties in AI models for more accurate and robust
predictions. The proposed framework opens avenues for future
research in improving the understanding of slum settlements and
urban planning, ultimately leading to more effective and targeted
interventions in urban development and poverty alleviation.
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