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Abstract

The estimation of accurate and precise Satellite-Derived Bathymetries (SDBs) is impor-
tant in marine and coastal applications for a better understanding of the ecosystems and
science-based decision-making. Despite the advancements in related Machine Learning
(ML) studies, quantifying the anticipated bias per pixel in the SDBs remains a significant
challenge. This study aims to address this knowledge gap by developing a spatially explicit
uncertainty index of a ML-derived SDB, capable of providing a quantifiable anticipation
for biases of 0.5, 1, and 2 m. In addition, we explore the usage of this index for model opti-
mization via the exclusion of training points of high or moderate uncertainty via a six-fold
iteration loop. The developed methodology is applied across the national coastal extent
of Belize in Central America (~7017 km?) and utilizes remote sensing data from the Euro-
pean Space Agency’s twin satellite system Sentinel-2 and Planet’s NICFI PlanetScope. In
total, 876 Sentinel-2 images, nine NICFI six-month basemaps and 28 monthly PlanetScope
mosaics are processed in this study. The training dataset is based on NASA’s system Ice,
Cloud and Elevation Satellite (ICESat-2), while the validation data are in situ measure-
ments collected with scientific equipment (e.g., multibeam sonar) and were provided by
the National Oceanography Centre, UK. According to our results, the presented approach
is able to provide a pixel-based (i.e., spatially explicit) uncertainty index for a specific
prediction bias and integrate it to refine the SDB. It should be noted that the efficiency of the
optimization of the SDBs as well as the correlations of the proposed uncertainty index with
the absolute prediction error and the true depth are low. Nevertheless, spatially explicit
uncertainty information produced by a ML-related SDB provides substantial insight to
advance coastal ecosystem monitoring thanks to its capability to showcase the difficulty of
the model to provide a prediction. Such spatially explicit uncertainty products can also aid
the communication of coastal aquatic products with decision makers and provide potential
improvements in SDB modeling.

Keywords: prediction uncertainty; machine-learning; google earth engine; satellite-derived
bathymetry; Sentinel-2; PlanetScope
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1. Introduction

Earth Observation (EO) constitutes a crucial and promising tool for the Paris Agree-
ment’s agenda towards climate change mitigation and adaptation [1] due to its capabilities
of understanding, monitoring, and predicting a plethora of ocean system physical in-
dexes and climate change impacts. Examples of those capabilities are applications on
benthic habitat mapping [2-4]) and Satellite-Derived Bathymetry (SDB) [5,6], as well as
time-sensitive prognoses on climate change threats related to water bodies and coastal
systems. In particular, EO can showcase potentially serious socio-economic fallouts, such
as the rise in sea level [7] and coastal flood risk [8]. Within this context, the contribution
of the combination of Machine Learning (ML) and cloud-computing developments is con-
sidered to aid significantly in the performance of EO analysis, as it can be applied across
large geographic scales and historical temporal periods, which was not possible a few
decades ago [9]. Furthermore, these cutting-edge techniques and technologies are crucial
in providing robust blue carbon accounting [10-14]. One promising nature-based solution
to climate change is to identify and conserve coastal ecosystems such as mangrove forests,
tidal marshes, and seagrasses because of their abilities to sequester and store carbon out of
the atmosphere and water column [15,16].

In recent years, Google Earth Engine (GEE), a cloud-based platform for scientific
analysis and visualization of big geospatial datasets (https:/ /earthengine.google.com/),
has become a key contributor to the global remote sensing community [17]. Thanks to GEE’s
infrastructure, users can utilize Google’s cloud computational power and petabyte-scale
catalogs of remote sensing, raster, and vector data in order to perform local- to planetary-
scale geospatial analysis [18]. Since GEE’s launch, the number of submitted articles related
to Random Forest (RF) classifiers and water resources has been on the rise [19]. From time-
series analysis of China’s annual coastal tidal flat changes [20] and Indonesia’s shoreline
dynamics [21], to blue carbon accounting in The Bahamas [11] and flood impact assessments
following maritime storms in the western Mediterranean [22,23], GEE has repeatedly
demonstrated its utility and value for an extensive range of applications (e.g., image
processing, land and habitat classification, algorithm development and execution, etc.) [9]
and for the processing of big data analytics [24].

Up to today, the EO community has made a laborious effort for a better comprehension
of uncertainty in ML-produced continuous distributions. Most studies quantify uncertainty
using spatially bound approaches, often employing frequentist statistical methods such as
r-squared and root mean square error (RMSE), which rely on the validation data [25,26].
Due to the relationship with the validation data, these accuracy indices beget diagnostic
uncertainty information. A literature review by Sayer et al. [25] on aerosol optical depth, a
continuous distribution variable, highlighted that predictive uncertainty estimation at the
pixel level offers insights for informed decision-making. Similarly, Tran et al. [26] reviewed
676 papers on another continuous distribution variable, the EO-based evapotranspiration,
and identified the need for evaluating and disclosing uncertainties in reference data. Ad-
ditionally, their findings underscored the importance of considering both the complexity
of methodologies and the characteristics of data when evaluating the validity of uncer-
tainty estimations. However, diagnostic uncertainty estimation is spatially constrained,
presenting challenges for evaluations of large-scale applications [8]. Moreover, as this
per-pixel diagnostic is tied to classifier accuracy and precision—both of which depend on
spatially limited in situ data—uncertainty values may also be affected by the amount of
validation data.

As for the spatially explicit uncertainty information in SDBs, a few existing studies
primarily focus on the following;:

e  Error residuals [27] and standard deviation [25,28] between different SDB models;


https://earthengine.google.com/

Remote Sens. 2025, 17, 3060

30f20

e  Rough depth-dependent uncertainty estimation [29];
e Confidence approximations based on multiple SDB predictions [30].

The literature reveals a significant gap in spatially explicit uncertainty quantification,
hindering thorough understanding and decision-making processes. Capturing uncer-
tainty at the pixel level is crucial for implementing effective protection and monitoring
policies [26,27,30]. Moreover, the potential of refining uncertainty assessments per pixel
can enhance ML model performance by mitigating noise introduced by reference data [31].
However, a comprehensive prognostic method for quantifying the spatially explicit uncer-
tainty of cloud-based, ML-generated SDB using fused EO and reference data has yet to
be developed.

In coastal remote sensing, uncertainty estimates for ML-generated continuous distri-
butions typically follow two approaches: diagnostic, which involves extrapolating based
on reference data, and prognostic, which relies on extrapolating directly from the ML
predictions. However, there is a critical gap in spatially explicit uncertainty estimation
that affects both diagnostic and prognostic approaches. This gap refers to the inability
of current methods to provide a quantifiable anticipation of error/bias, given the input
data and the difficulty of the model to perform. The difficulty here refers to the high
spectral resemblance of the sea surface, which is greater than that of the land surface due to
interactions between the water surface, water column, and seabed. For these reasons, the
aim of this study is to create a cloud-based semi-automatic framework to quantitatively
assess the spatially explicit uncertainty of a ML-generated SDB. The goal is to identify high-
uncertainty regions, support better decision-making, optimize in-situ sampling strategies,
and potentially improve the model’s performance. The optimization is data-driven, as it
is based on the removal of reference data with high uncertainty in an attempt to reduce
the introduction of noise into the model. This approach represents a fundamental shift in
uncertainty assessment, offering a more granular and spatially explicit perspective that is
not constrained by model comparisons or validation-based diagnostics.

2. Methodology
2.1. Study Site

The coastal national extent of Belize (Central America) is the study case of this research
(Figure 1). This coastal area holds a vital ecological and socio-economic significance for the
country as the foundation of the coastal Marine Protected Areas by the local government in
the early 1980s [32]. Furthermore, the largest part of the Mesoamerican Reef system runs
through Belize, and along with its considerable seagrass meadows and all Caribbean native
mangrove species, it contributes to the country’s Gross Domestic Product (GDP) [33]. In
addition, a variety of endangered marine fauna inhabits the coastal habitats of Belize, such
as loggerhead, green, and hawksbill sea turtles, along with the West Indian manatee [33].
The GDP contribution is approximately 30% and benefits commercial fishing, ecological
and cruise tourism, and coastal developments from private sector investments, as well
as aquaculture [33]. With 45% of the national population living close to the coastline,
the identification of pressure drivers in the coastal environment is essential, as there is a
constant transmogrification of the Belizean coastlines due to dynamic oceanic processes in
the region and the rise in the sea level [34].

2.2. Remote Sensing and Reference Data

In this study, we utilized images from the European Space Agency’s (ESA) Sentinel-2
system (S2) through the Copernicus program Planet’s monthly basemaps (https://www.
planet.com/products/basemap/, accessed on 30 June 2023) and six-month mosaics (PS),
provided by the Planet-NICFI agreement (https://www.nicfi.no/). These two satellite data
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providers and archives were selected for their global and pan-tropical (in the case of the

NICFI data) availability, high spatial resolution, and contribution to marine remote sensing

research as described in the Introduction. Therefore, we consider them ideal for applying

the presented method and examining its adaptability, not only in data with different scales

and image footprints, but also in different satellite sources that operate on the optical

spectrum. Additionally, the spatial and temporal coincidence of both satellite archives now

allows a pan-tropical data and method comparison.
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Figure 1. Coastal extent of Belize over which the entire analysis was conducted. The displayed

aggregated and mosaicked Earth Observation data are based on Sentinel-2, while the Training Data

originate from ICESat-2 and the Validation Data from the National Oceanographic Center. Coordinate

reference system: EPSG:4326.
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Using the GEE platform, a collection of 876 atmospherically corrected (i.e., surface
reflectance) S2 Level-2A images undergoes a multi-temporal and semi-analytical process to
produce one cloud-masked, sunglint-corrected [35], and land-and-optically-deep-water-
masked image composite [36]. As introduced by Traganos et al. [37], the composite was
generated by selecting the first percentile of reflectance values across the image collec-
tion. This low percentile helps minimize the influence of clouds, atmospheric noise, and
sunglint—ensuring that the clearest water pixels are prioritized in the final composite.
Subsequently, the image composite is the one that undergoes the presented uncertainty
workflow and is named ‘Sen18’ due to the three-years acquisition period of the S2 data,
which ranges from December 2018 to December 2021. The spatial and temporal resolution
of S2 data are 10 m and five days, respectively. Concerning the spatial resolution of the
52 aerosol band (B1), which is 60 m, a resampling of 10 m takes place in GEE prior to the
production of Sen18. The decision to include this band, despite the bias due to its creation,
is because of the water penetration and worthiness for SDB’s methods and applications [38].
In the case of PS, we process and analyze two PS atmospheric corrected image collections,
resulting in two different image composites. The composites were created like the Sen18
composite, and their given names are PS16 and PS20 according to their acquisition time
periods, which date/are counted from 2016 to 2019 and 2020 to 2022, respectively. PS data’s
spatial resolution is 5 m while the temporal resolution is one day. The image collection
accounted for PS16 consists of eight NICFI six-month basemaps and correspondingly for
PS20, from one NICFI semester basemap and 28 monthly PlanetScope mosaics, in total.

The bathymetric data for the training of the SDB model originated from NASA's Ice,
Cloud and Elevation Satellite-2 (ICESat-2) space-based laser altimeter [39]. In this study we
used ICESat-2’s geolocated photon data version 3, which is processed following signal ex-
traction and correction algorithms described in Neumann et al. [40]. Therefore, the resulting
bathymetry is inherently influenced by these algorithms and their parameterization, a poten-
tial source of bias that this study seeks to minimize. The temporal coverage of the ICESat-2
data is two years (October 2018-November 2020), while the temporal and spatial resolution
are 91 days and 70 cm x 70 cm, respectively (https:/ /nsidc.org/data/atl03/versions/3,
accessed on 30 April 2023 ). The number of bathymetric points that were extracted from
ICESat-2 data is 641,562, while the depth range is 0 to ten meters [28]. Regarding the
validation source of the SDB model, it is composed of almost 9500 high-resolution points
provided by the National Oceanography Centre (NOC). These points are high-resolution
and high-quality in situ measurements and were collected with airborne lidar and acoustic
side-scan sonars and CAMEL (Containerized Autonomous Marine Environmental Labo-
ratory). CAMEL is a portable marine science laboratory, conceived and developed by the
NOC in partnership with L3 Harris. It uses a high-grade multibeam echo sounder to map
the depth of the seafloor (https://projects.noc.ac.uk/cme-programme/news/portable-
marine-science-lab-returns-belize, accessed on 30 April 2023) In order to produce the
bathymetry, however, certain preprocessing on the training and validation datasets is
required. Due to the origin, the spatial resolution, and the different grid system of ICESat-2
data, their point proximity in many cases is less than the spatial resolution of both satel-
lite data of this study (5 and 10 m). Therefore, a special function called ‘Vector2Raster’
was established to estimate the mean depth value of all the points enclosed in each pixel
and then, set that value as the new one. The result of this preprocessing treatment and
aggregation is the minimization of the spatial error during the training and validation
of the SDB models [38]. Such spatial error can be generated by the overlay of different
depth values in one pixel and introduce vertical bias in the final product. Accordingly, the
SDB model training and accuracy assessment were conducted separately for each remote
sensing dataset, which is preferable for minimizing spatial autocorrelation and reducing
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potential errors associated with using training and validation data derived from the same
source and data pool. To be exact, 2753 training and 777 validation points are used for
producing and validating the SDB coming from the Sen18 image composite, while the
number of points for processing PS data are 2852 and 742, respectively. It is important to
note that these datasets were not harmonized to a common vertical datum. While this may
introduce some vertical offsets, the primary objective of this study is to assess pixel-level
uncertainty in the predicted bathymetry. Therefore, although vertical harmonization would
improve absolute depth accuracy, its absence is acknowledged as a limitation that does not
undermine the core findings but may be related to them.

According to literature [41-43], Object-Based Image Analysis (OBIA) is applicable
to benthic habitat mapping, so here we also examine its application and contribution in
satellite-derived bathymetry and primarily in the uncertainty workflow. Object creation is
based on all the optical bands of the satellite systems that we use here (i.e., blue, green, and
red), including Hue, Value, and DIV bands as they were estimated based on the research
of Lee et al. [36] and Poursanidis et al. [44]. The saturation band of HSV was not used.
According to our experiments, the accuracy of the SDBs was reduced significantly when
the saturation band was involved, and therefore it was excluded from the analysis.

In Table 1 we provide all the information of the satellite and reference data that was
produced as described in this section.

Table 1. Overview of satellite data used for creation of the image composites, spectral bands used for
training the model, and number of training (TD) and validation (VD) points.

# of Image/Tiles Used for

Composite C . Bands Number of TD  Number of VD
omposites
SEN18 876 24 in total, 6 pixel-based and 18 2753 777

PS16 8 (NICFI basemaps every . object-bgsed.

semester) Pixel-based: Three optical channels, DIV, 2852 742
29 (besides the first composite that Hue, and Value.
PS20 is a NICFI six-month basemap, all Object-based: Mean, Median, and
the others are monthly mosaics) StdDev of all the pixel-based bands.

2.3. The Workflow, the Pixel UNCertainty (PUNC), and the Model Retraining

The workflow (Figure 2) of the presented study is divided into three steps. Initially,
a separation of the training data occurs, and six balanced subsets are produced. With the
ratio of training and validation data being 80:20, each subset possesses 15% of the original
training size. In the second step, these subsets undergo an iterative loop where SDB and
PUNC estimation, as well as SDB retraining processes, take place, resulting in the third
step, which is the production of an ENSEMBLE-SDB product and its spatially explicit
uncertainty for a bias in a given range. The estimation of bathymetry in this study occurs
with the RF classifier [45], which is set through GEE to provide continuous values instead
of distinct ones, which is suited mainly for classification procedures. Additionally, for
replication purposes, the parameters of trees and seed for the RF function, which determine
the number of RF predictions, are set to 15 and 42, respectively.

2.3.1. PUNC Estimation in ML Products with Continuous Distribution

Following Christofilakos et al. [31], the estimation of uncertainty takes place under
the Bayesian perspective, in a prognostic approach by utilizing the probabilities of the
ML prediction. In this study, we create an empirical probability distribution per pixel.
The probability estimation for the SDB product’s prediction depth range is possible by
creating and using a histogram that shows the frequency of RF prediction falling within
a specific depth range. The probability is estimated by individually dividing the number
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Depth Prediction Lkelihood of point X and its
PUNC value, cluster width: 0.5 meters

M SDB prediction == PUNC

100.00%
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50.00%

Probability

25.00%

0.00%
25-3

Depth (m)

of predictions in a specific depth range by their overall size. GEE’s built-in function
“ee.Reducer.autoHistogram()” oversees the creation of the histogram, with the number of
clusters and their widths being the only parameters provided by the user. The number
of bins is set at eight or fewer in order to minimize the computation time. As shown in
Figure 3, three different cluster widths are set: 0.5, 1, and 2. As the calculation of the
probabilities is based on these widths, the produced probabilities show the potential of
the prediction to fall in a specific depth range. The selection of these widths is due to the
dynamics and the expected prediction precision of the parameter of interest. For example,
if a model’s aim was to estimate the concentration of an algae bloom, the widths could
be 5, 10, and 20, respectively. Thus, instead of estimating the probability of an accurate
prediction like in discrete distributions, we estimate the likelihood of the prediction per
depth cluster/range. The main assumption in this paper is that given the way uncertainty
is calculated, it is possible to provide a quantifiable assessment of uncertainty in the SDB
products in terms of probability for expected biases of 0.5, 1, and 2 m.
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Figure 2. Analysis Workflow. The Training Data originate from ICESat-2 and the Validation Data
from the National Oceanographic Center.

Depth Prediction Lkelihood of point X and its
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Figure 3. A visual aid for a better understanding of the estimation of PUNC at a random point X,
or more precisely, a random pixel. In this example, the predicted value is the mean prediction across
the RF trees, ranging from 2.5 to 5.5 m.

2.3.2. Retraining the SDB Model with Bootstrapping

The SDB and its retraining take place in the second step of the workflow through a
six-fold bootstrap loop, which is fed with the six subsets as mentioned in Section 2.3 and
Christofilakos et al. [31]. At the start of every new circle of the loop, a different initial
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subset of TD is fed to the RF function to estimate bathymetry. Then, and according to
Section 2.3.1, PUNC estimation takes place and creates three PUNC composites. These
composites are named PUNCO05, PUNC1 and PUNC2 in compliance with their expected
biases (i.e., 0.5, 1 and 2 m) and their quantifiable anticipation, PUNC. In turn, the retraining
starts, where the filtering of TD is based on the values of PUNCO05, PUNC1, and PUNC2
takes place. During retraining, the next subset in line is imported to the loop and is filtered
in order to remove training points that have uncertainty less than 50% and 90%, thereby
minimizing the noise introduced to the model [31]. These thresholds were selected based
on the findings of Lang et al. [46], who showed that excluding training data with model
uncertainty less than 90% can effectively reduce the overall error of the model. However,
since a certain level of noise contributes to the model’s adaptability, the lower threshold
of 50% was also included. Post the application of the uncertainty filter, the filtered subset
merges with the subset that was used initially (or before), and retraining of RF occurs. This
is repeated until all subsets are passed to the loop and a new retraining cycle starts with
a different initial subset. As the number of subsets is six, the retraining cycle is also six,
but the retraining process inside of these circles occurs five times because the first SDB in
each of them takes place with the initial subset. At the end of all the retraining circles, the
average value of their six different SDBs and PUNC estimations are calculated and passed
on to the final SDB product, the ENSEMBLE-SDB. Given the number of the uncertainty
thresholds, the three PUNC estimations per expected bias, and the three image composites
to work on, the total produced SDBs are 21. In addition to categorization by satellite source
(SEN18, PS16 and PS20), the produced ENSEMBLE-SDBs are also differentiated based
on the anticipated bias for each PUNC (PUNCO05, PUNC1, PUNC2) and the uncertainty
threshold (unc50 and unc90) that removed TD with excess PUNC. At the end, the name for
each ENSEMBLE-SDB is chosen based on its satellite source, uncertainty threshold, and
PUNC for a specific bias (i.e., SEN18_unc90_PUNC2).

2.4. Accuracy Assessment

At the end of the analysis, the SDB products go through the accuracy assessment
process. There, accuracy indexes of the SDB trained with the original set of training
data are compared with the ones from the SDBs produced via the presented uncer-
tainty retraining framework. In other words, this study examines the validity and the
spatial error of the aforementioned SDBs according to the validation datasets, through
R? and RMSE. For a better understanding of the produced products and their spatially
explicit uncertainty, further investigation takes place in the form of comparing the cor-
relation of True Depth—PUNC, Absolute Error (AE)—PUNC, and Standard Deviation
(StdDev)—PUNC distributions. A positive correlation between PUNC and StdDev of
predictions is expected, as both metrics reflect the uncertainty arising from within the RF
trees. High StdDev values indicate greater disagreement among individual tree predictions,
which should correspond to higher PUNC values, reinforcing the interpretation of PUNC
as an uncertainty indicator. The StdDev is extracted from the retraining models that were
passed to the ENSEMBLE-SDB and based on their depth value prediction. Finally, by taking
into consideration any changes that might occur in the PUNC distributions upon the appli-
cation of the uncertainty-based retraining, Student’s t-test is performed on each ENSEMBLE-
SDB to seek for significant changes in the means of the PUNC distributions [47]. The t-test
was calculated by exporting the PUNC distributions from GEE and using the Statistics
Kingdom web application (https://www.statskingdom.com/paired-t-test-calculator.html,
accessed on 30 June 2023). The export, as well as the correlation detection, takes place by
sampling the PUNC values based on the validation data (VD). The reason for that is the
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independent nature of the VD in relation to the TD under the context of different spatial
distribution and depth value acquisition between the two datasets.

3. Results

Overall, S2 and PS data have better results in 50% of the total 18 SDBs produced via
the presented method and compared with a standard satellite-derived bathymetry method
(Figure 4). This is based on the comparison of the regressions performed on the three
initial composites (Sen18, PS16, PS20), created with different uncertainty thresholds and
PUNC of different expected bias, by taking into perspective both of the accuracy indexes.
On top of that, S2 data present better RMSE values with an uncertainty threshold less
than 50%. Figure 5 shows the percentage of training points that were used to retrain the
SDB model post the application of the presented uncertainty workflow. As indicated by
the findings, when the uncertainty threshold is 90%, the amount of TD that was used
for training and retraining the models ranges from 77.52% to 90.04%. On the other hand,
when the uncertainty threshold is 50%, these numbers are reduced to 17.64% and 56.08%,
respectively. Interestingly, the maximum differences between these two ranges are observed
in retrainings with PUNCO05, while the minimum differences are observed with PUNC?2. It
is important to emphasize here that while the proposed framework demonstrates improved
performance within the study areas, its application to other regions requires retraining with
site-specific reference data. This is necessary because variations in water quality (e.g., water
composition, hydrodynamic system, weather conditions, etc.) across coastal environments
directly affect the spectral reflectance that underpins the SDB predictions. Accordingly,
the framework is designed to be transferable, but only through retraining adapted to the
specific conditions of each new site.

Bar Chart of RMSE and R? before and after retraining the models

B Senis
RMSE B Seni8 retrained with
PUNC<80
T~ Sen18 retrained with
RMSE PUNC<50
(PUNCO05) PS16
R* (PUNCO05) PS16 retrained with
PUNC<80
(PURNMCS1E) PS16 retrained with
PUNC<50
R* (PUNC1) PS20
RMSE PS20 retrained with
(PUNC?2) PUNC<890
- PS20 retrained with
R* (PUNC2) PUNC<80
0.000 0.500 1.000 1.500

Figure 4. RMSE and R? values per image composite upon applying the presented method. “Unc50”
and “unc90” stand for the threshold on the spatially explicit uncertainty of the training data that are
filtered. “PUNC [05-2]” stands for quantifiable estimation.

The following figures show the PUNC2 and SDB maps before and after the application
of the presented method (Figure 6) and the SDB and PUNC05, PUNC1, and PUNC?2 of the
SEN18 (Figure 7) and the PS16 and PS20 (Figure 8) composites according to a standard RF
procedure with the whole training dataset.
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Percentage of TD used for retraining
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Figure 5. Percentages of the Training Data ultimately used per model according to the parameteriza-

tion of each case.

ENSEMBLE-SDBs and PUNC2
Before the method After the method

51-75%
76 - 100%

Figure 6. SDBs and PUNC2 maps produced from the image composites Sen18, PS16, and PS20 before
and after the application of the proposed method. The results shown here are from a small area of the
study region, which is highlighted with red boundaries. Coordinate reference system: EPSG:4326.
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Figure 7. From left to right, ENSEMBLE-SDB, which is optimized based on the PUNC information,
PUNCO5, PUNC1, and PUNC2. Here, the reader can see the expected precision of the model at the
pixel level. Coordinate reference system: EPSG:4326.

88.200°W PS16 - SDB PS16 - PUNCOS filtered with PUNC < 90% PS16 - PUNCI filtered with PUNC < 90% PS16 - PUNC?2 filtered with PUNC < 90°/J
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Figure 8. As in Figure 7, the PUNC maps show the expected precision of the model for the biases of
0.5,1, and 2 m. The top row provides the results of PS16, while the bottom row provides the results of
PS20. The five-point star represents the location of Belize City, capital of Belize. Coordinate reference
system: EPSG:4326.
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3.1. PUNC Values on S2 Data

Upon application of the presented method, the range of the interquartile uncertainty
interval of the S2-related products, where 50% of the validation data are found, seems to be
slightly shorter. Specifically, the percentage change of the PUNC2 intervals for uncertainty
thresholds 90% and 50% are —4.78% and —8.67, respectively. The changes on those intervals
for PUNCO5 and PUNC1, on both uncertainty thresholds, vary from —31.12% to —42.1%.
This less dispersed value allocation could justify the reduction in the salt and pepper noise
in the PUNC layers of the products. Opposed to the maximum PUNC values that occur
when the regression takes place with the whole training dataset, our products” maximum
uncertainty outliers are less than one. Regarding mean and median PUNC values (For
further details, please refer to the Supplementary Material), the ones with an expected bias
of two meters appear to achieve the least uncertainty scores. In particular, the difference of
mean and median PUNC for the three expected biases ranges from ~20-24% to ~8-12%,
respectively. The reason for that is the produced SDBs, who filtered their TD based on
PUNC2 and retrained, seem to foresee better precision in terms of expected bias than
the filtering and retraining with PUNCO05 and PUNC1. The bigger PUNC values found
in retrainings with PUNCO05 and PUNC1 can be justified from a disagreement in RF’s
15 prediction trees.

3.2. PUNC Values on PS Data

Contrary to S2 data, there is no meaningful improvement of the mean and median
PUNC values of the retrainings performed on PS-related products nor a pattern of lower
uncertainty in specific expected bias. In both cases, the mean PUNC values seem to be
slightly better for the expected bias of two meters. Upon applying the presented method,
the difference of the mean value of PUNC2 from the mean values from PUNCO05 and
PUNCI1 ranges from 0.013 to 0.091. Meanwhile, the median PUNC2 values are slightly
bigger than the corresponding PUNCO05 and PUNCI values, as their differences range from
0.01 to 0.824. However, in PS data the range of improvement for mean and median upon
applying the presented workflow is smaller than the range in SDBs produced by S2 data.
Maximum uncertainty with a value less than one is achieved for all the products but one.
Moreover, as in S2 data, there is also a reduction in the uncertainty range. Interestingly,
compared with the 52 results, the reduction in the uncertainty range is more profound in
PS data, especially at the smaller values of the distributions. In addition, the skewness
of PUNC values in PS data is smaller than the S2 one. The biggest difference in PUNC
skewness between PS and S2 data is observed with PUNC2.

3.3. T-Test and Observed Correlation Between Absolute Error, True Depth, and Standard Deviation
with PUNC

Interestingly, and as shown in Figure 9, SEN18-SDB products retrained with
PUNC2 and under both uncertainty thresholds (i.e., SDBs: “Sen18_unc50_PUNC2”
and “Senl18_unc90_PUNC2”) are the only products that showcase a low correlation
(i.e., 0.3 < 0.349 < 0.5 and 0.3 < 0.347 < 0.5) between Absolute Error (AE) and PUNC.
Detailed comparisons of PUNC and AE based on the validation data are provided in
the Supplementary Material. The standard RF SDB performed with SEN18 and all the
TD (i.e., SDB: Sen18_allData_PUNC?2) shows negligible correlation, as it has a coefficient
value of 0.278. As far as the t-test is concerned, there were two cases of PS-related prod-
ucts and one from S2, whose PUNC values were reduced significantly. These cases are
“PS16_unc50_PUNC2” (p-value: 0.001 < 0.006 < 0.01), “PS20_unc50_PUNC1” (p-value:
0.001 < 0.003 < 0.01), and “Sen18_unc90_PUNC?2” (p-value: 0.01 < 0.04 < 0.05). Regardless
of EO data or uncertainty thresholds, such statistically significant reductions in PUNC
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values do not occur when the retraining is based on PUNCO05. Furthermore, among S2
and PS data, the latter prevail during retraining with an uncertainty threshold of 90% as
they achieved a bigger percentage of TD that passed the uncertainty filter. On the contrary,
with an uncertainty threshold of 50%, the S2 data utilize the TD in the higher percentage of
56.08%. Suggesting thus that, given the bigger portion of TD with uncertainty threshold
50%, the SEN18 composite produced ENSEMBLE-SDBs with higher precision compared to
PS16 and PS20, whose maximum percentages of utilized TD are below 50%.

Correlation of Absolute Error-PUNC
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Figure 9. Correlation between Absolute Error and PUNC.

Turning to the correlation between true depth and PUNC (Figure 10), our find-
ings indicate a low correlation for the PS-related SDBs with retraining performed with
PUNC?2. The only exceptions to that are the ENSEMBLE-SDBs “PS20_unc90_PUNC2”
and “PS20_allData_ PUNC2”, which manifest negligible correlation. Conversely, PUNC2
values of SEN18-SDBs are very close to zero, indicating no linear relationship for depth
and PUNC2 in all SEN18-related SDBs. Additionally, only “SEN18_unc50_PUNC1” and
“SEN18_unc90_PUNC1"” exhibit a weak correlation between depth and PUNCI.

This analysis also found evidence on the correlation of PUNC and the StdDev of the
depth prediction coming from the ENSEMBLE SDB models. Particularly, PUNC2 demon-
strated the strongest correlation, as the coefficient values are in the range of 0.340 and
0.557. The lowest correlation among PUNC2-related products (0.3 < 0.340 < 0.5) is found
at the ENSEMBLE-SDB “PS20_unc90_PUNC2”, and the strongest (0.5 < 0.557 < 0.7) at
the “Sen18_PUNC2”, where the standard training method was applied. In general, the
correlations of PUNC2 with StdDev are the highest with the standard training method
with all three image composites (i.e., Sen18, PS16, and PS20), rather than the presented
retraining framework via uncertainty analysis. Nevertheless, moderate correlations
are also observed upon applying the presented method (Figure 11), with the lowest
(0.3 < 0.340 < 0.5) belonging to “PS20_unc90_PUNC2” and the highest (0.3 < 0.473 < 0.5) to
“PS16_unc50_PUNC2”. In addition, the presented method achieved a better correlation of
PUNC1 with StdDev in three out of the six cases, with two of them coming from the uncer-
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tainty threshold of 90%. These cases are “Sen18_unc90_PUNC1”, “PS16_unc90_PUNC1”,
and “Sen18_unc50_PUNC1”, while their respective coefficients are 0.340, 0.317, and 0.340.

Correlation of Depth-PUNC
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Figure 10. Correlation between depth and PUNC.
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Figure 11. Correlation between StdDev and PUNC.

4. Discussion

The findings of this study support the notion of a transferable, cloud-based, and data-
agnostic approach for the production of a spatially explicit uncertainty layer of information,
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which is not only able to visualize the PUNC of an ML-produced SDB but also to enable
the retraining of the model and improve its accuracy and precision. The transferability of
the method refers to the two satellite sources of the input data (SEN18, PS16, and PS20),
while the cloud-based part refers to the GEE platform, where this analysis of a total area
of ~7000 km2 and size of ~95 GB has been performed. That size number refers only to the
21 SDB and three ENSEMBLE-SDB models produced during Section 2.3.2, the calculation
of DIV, HUE, VALUE, and object bands for the input data (SEN18, PS16, PS20) during
Section 2.2, but not to the creation of the initial composites with 52 and PS data. Regarding
the best achieved accuracy, it belongs to S2 data and, more specifically, to the product of
retraining based on PUNC2 and an uncertainty threshold during the filtering of TD of 90%.
According to the validation analysis, even if the R? of that ENSEMBLE-SDB is reduced by
0.009, its RMSE, mean and median PUNC indexes perform better by 0.064 m, 0.034, and
0.063, respectively. Finally, the RZ, RMSE, and average PUNC values for that product are
0.596, 1.140 m, and 0.565, respectively.

4.1. Usage and Challenges of PUNC
4.1.1. Usage of PUNC

On the whole, the presented method seems to be able to cast a new light, firstly on the
understanding of the spatially explicit accuracy in a SDB, and secondly on its optimization
and downstream applications. This thus fulfills the need for reliable uncertainty informa-
tion for critical evaluation of the effectiveness of an analysis [29] and, more importantly,
introduces a scale-independent metric for comparing the uncertainty of the model on the
pixel level [29]. That is happening due to (i) the slightly (change in the second decimal
place) superior RMSE and R? scores achieved with the presented approach and (ii) the
produced PUNC metrics resulting in (iii) a better comprehension of the noise introduced to
the SDB model by the training data, providing thus (iv) a criterion for optimum training
data selection according to SDBs” PUNC values. Following Chenier et al. [30], this approach
offers a robust form of validation for assessing the accuracy of SDB estimates across a
wider geographic area. In addition to providing quantifiable uncertainty measures, this
approach allows for the evaluation of the expected bias magnitude. Our findings on the
correlation of PUNC with StdDev, Depth, and AE support that claim. With the inclusion
of two different satellite data sources and the manageable data size (~95 GB) relative to
the national extent of Belize, the scalability and transferability of the PUNC estimation
method appear promising. However, further research and repeatable proof of concept
across different spatial and temporal scales, as well as different satellite and reference data
input, are necessary to confirm its applicability in diverse contexts. Furthermore, with
reference to the t-test findings and the downgrade (even if it is with small significance) of
PUNC values for expected biases of one and two meters, it seems that retraining based
on PUNC of expected bias with big magnitude can potentially optimize the precision
of the ML product. That suggestion requires further investigation due to the fact that
here, we only investigate the changes on SDB products, and depending on the variable of
interest, the applied method, and the scale of the data, the definition of big and small bias
might differ.

4.1.2. Uncertainties of PUNC

As PUNC aims to be a measure of the validity of an ML prediction, it is important
to be aware of the uncertainties of the methodology in order to highlight them and name
solutions and/or possible drawbacks for future researchers. The PUNC of the SDB, and
therefore the noise of the model, is influenced by a number of drivers like technological
(e.g., sensor noises) and environmental (e.g., back-scattering of water column, air-water
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interactions and seabed influence) interferences [29], but also from the ML parameterizing
(e.g., complexity of model, size of reference dataset, etc.). Starting with the low correlation
of the AE and PUNC distributions, a possible justification might be the noise level of the
image composites that were used to model the ENSEMBLE-SDBs. This is based on the fact
that the retraining process and removal of TD with high PUNC values (according to the
decided thresholds, 50% and 90%) revolve exclusively around the spectral distribution of
the TD and not of the image. The reasoning behind that is the volume of preprocessing
(Section 2.2) that the image endured during the feature engineering (i.e., multi-temporal
composite creation, estimation of Hue, Value, DIV, and object bands production) is related
to high uncertainty values due to the complexity level of the image [48]. Based on our
findings and thanks to its prognostic capabilities (as explained in Section 2.3.1), elevated
PUNC values can be explained in a percentage by the inherent data noise [49] and utilized
by the presented workflow to optimize the accuracy and precision, yet applied research
and solid arguments are needed to fortify that. Without a targeted experiment to search for
the changes on the PUNC distribution with different combinations of feature engineering,
like a comparison between multi-temporal and single-day composites or pixel-based and
object-based bands, that assumption remains a hypothesis. On top of that, the spectral
resolution of the satellite data shall also be taken under consideration, as according to
our findings, PS-related PUNC distributions were unable to achieve a correlation between
them and the AE for all cases of PUNC (i.e., PUNCO05, PUNC1, PUNC2, and with both
uncertainty thresholds).

Turning to the results of the correlation between depth and PUNC distributions
(Section 3.3), there is a clear distinction between them, with that being related to the
expected bias (i.e., 0.5, 1, and 2 m) that PUNC is estimated for and the sources of EO data
that were used. Once the SEN18 composite was retrained with the presented uncertainty
workflow, it showed a correlation of small significance when the PUNC was estimated
based on a one-meter bias (i.e., PUNC1), while on the contrary, only the PS16 out of the
PS composites achieved a correlation (of small significance) with the PUNC estimated
for the anticipation of a two-meter bias (i.e., PUNC2). The reasons for that distinction
on the PS-related distributions might be the different temporal data and approaches that
were used to create the image composites PS16 and PS20 (Section 2.2). In addition, the
different acquisition periods and therefore different spectral distributions due to pertinent
atmospheric and environmental conditions are another crucial dissimilarity between PS16
and PS20; the type of data that these composites consist of is also different. The dissimilarity
is the origin of the composites because PS16 is developed from eight NICFI basemaps,
while PS20 is developed from 29 PSs. A total of 28 out of these 29 mosaics are monthly
PlanetScope mosaics, with the remaining being a six-month NICFI basemap. Thus, there
is a limitation of PS20 compared to PS16, and that is to achieve a correlation, even of
small significance, between the Depth—PUNC distributions. A limitation that can be
attributed to the differences and dissimilarities of PS16 and PS20. Turning again to Sen18'’s
observed small correlation between the Depth and PUNC values, it might be related to 52’s
greater water column penetration properties compared to PS’s [50], resulting in an SDB
with better precision and thus explaining the minimization of PUNC2 and the inflation of
PUNCI. After all, the mean PUNC2 value is constantly smaller than the PUNCI in all the
ENSEMBLE-SDB, an anticipated event at a certain point due to the known precision of RF
in coastal remote sensing studies.

As far as Student’s test is concerned, PS data are more prone to the presented workflow,
as they present the most cases of proving the hypothesis that a reduction to the mean
PUNC is occurring upon applying the workflow. This case concerns exclusively the PUNC
categories of PUNC1 and PUNC2. On the other hand, upon applying retraining with TD
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filtered based on PUNCO05, the resulting ENSEMBLE-PUNCO05 values get elevated in all
ENSEMBLE-SDBs from both satellite sensors (i.e., S2 and PS), but one. PUNCO05 refers to a
quantifiable and prognostic measurement for the possible bias of half a meter. A bias of half
a meter, though, is not considered a crucial bias within the context of EO-produced SDBs
and can be explained by, but is not limited to, the atmospheric conditions (haze, clouds, etc.)
and the texture and variability of the sea surface under which the SDB is modeled. Another
reason for PUNCO5’s increase is the inability of the workframe to properly remove TD with
excessive PUNCO5, thus mitigating the noise down to the training of RF and resulting in
such high values. In addition, a bias so small can be attributed to ML and model limitations
and inadequate training samples, but also and more importantly, to the underprediction
due to the backscattering effect of the water column [51]. Rationally, this phenomenon will
be more dominant in larger depths where the benthic reflection is influenced by a bigger
water column and thus larger light attenuation.

4.2. Future Prospects

Starting from the last point of Section 4.1.2, the coarseness of the histograms that
PUNC estimation is based on (Section 2.3.1) plays the role of the fundamental parameter
for the magnitude of anticipated bias for which PUNC aims to provide a quantifiable
and spatially explicit prognostic estimation/anticipation measurement. Scientists and
researchers who may apply the presented workflow in their respective studies should
consider the dynamics of their variable of interest and parameterize the histogram'’s cluster
widths accordingly. For example, in the case of using RF and EO data for Sea-Surface
Temperature (SST) quantification and monitoring [52], the corresponding parameterization
of the histogram’s cluster widths should change due to water’s thermophysical properties,
resulting in a non-dynamic nature of SST distribution and therefore a need for broader
biases such as PUNC for an expected bias of five and 10 degrees Celsius. Another aspect
that needs to be assessed is the spatial and spectral resolution of the EO data and, in
general, the feature engineering chain of the input data due to their inherent noise, as it
was explained in the beginning of Section 4.1.2. Therefore, and given the slightly observed
reductions in RMSE, in future work, we will polish the findings of this study and attempt
to identify how, and to what extent, different features (e.g., pixel-based vs. object-based
bands), data creation and aggregation (single-day vs. multi-temporal composite), and
atmospheric noise (atmospheric correction method) can influence the PUNC estimation,
as they certainly influence the electromagnetic spectrum of the EO readings. Last but not
least, given that the presented method is able to highlight regions where the ML struggles
to derive results (high uncertainty means a serious disagreement within the trees of RF),
we are looking forward to studies that would use that information for better planning and
sampling of in situ reference data. While the current study focuses on Random Forest,
future research could investigate whether similar uncertainty estimation approaches are
applicable to other ML models, such as Support Vector Machines or K-Nearest Neighbors,
provided they are adapted to output prediction probabilities, which are necessary for
uncertainty assessment.

5. Conclusions

In conclusion, this study demonstrates the potential of spatially explicit uncertainty
estimation using a data-driven approach in improving the accuracy and precision of SDB
outputs. We show that the estimation of a prognostic PUNC is possible by producing
an empirical probability function created by assessing GEE’s RF inner predictions. By
utilizing PUNC, this study demonstrates the usage of PUNC for proper training data
selection in the context of removing the ones prone to bias, resulting in the reduction in the
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noise introduced to the model. A noise that is considered to have both environmental and
technological origin as explained in Section 4.1.2, and is speculated to be related, within an
undefined percentage, to the feature engineering process that was followed.

In addition, the improvements in accuracy, the usage of PUNC information is also
indicative due to the observed low correlation between the absolute errors of the SDB
prediction and the PUNC values for an expected bias of two, but unfortunately only for
Sen18. Furthermore, PS data are more sensitive to our approach due to the shorter PUNC
boxplots (For further details, please refer to the Supplementary Material) after the retraining.
In contrast to PS data, PUNC values coming from S2 data show a bigger variation in values
among the PUNC distribution and also an extension of the first quarter values towards
lower ones.

Looking into the future, we are preparing the next step of exploring PUNC’s usage
with different EO data, feature engineering, and study sites in order to solidify and better
document its proof of concept. This upgraded proof of concept and prototype can enable
improved and transparent monitoring of coastal ecosystems, their underlying bathymetry
and geomorphology, and in turn, thus, their better protection, conservation and restoration.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/rs17173060/s1.
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