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A B S T R A C T

Gamma rays measured by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope tell
us a lot about the processes taking place in high-energetic astrophysical objects. The fluxes coming from these
objects are, however, extremely variable. Hence, gamma-ray light curves optimally use adaptive bin sizes
in order to retrieve most information about the source dynamics and to combine gamma-ray observations
in a multi-messenger perspective. However, standard adaptive binning approaches are slow, expensive and
inaccurate in highly populated regions. Here, we present a novel, powerful, deep-learning-based approach to
estimate the necessary time windows for adaptive binning light curves in Fermi-LAT data using raw photon
data. The approach is shown to be fast and accurate. It can also be seen as a prototype to train machine-learning
models for adaptive binning light curves for other astrophysical messengers.
. Introduction

Gamma rays are photons at the high-energy end of the electromag-
etic spectrum, with energies starting from a few hundred keV and
oing up to ultra-high energies in the TeV and PeV ranges. They are
roduced in various processes like nuclear decays and the collision of
igh energy particles (Gaisser et al., 2016). Hence, they are a unique
ay to study the high-energy phenomena in our Universe.

The Large Area Telescope (LAT) on board the Fermi Gamma-ray
pace Telescope is a satellite that studies gamma-rays from Galactic and
xtragalactic environments in the energy range between 100 MeV up to
 TeV. Several thousand gamma-ray point sources have been detected
y Fermi-LAT in the extragalactic sky (Ballet et al., 2024). The sources
t high Galactic latitudes are mostly blazars – active galactic nuclei
ith a jet of high energy particles pointing towards the observer – but
lso starburst-, radio galaxies and narrow-line Seyfert 1 galaxies (Ajello
t al., 2015; D’Ammando, 2019). It has been shown that the gamma-ray
luxes from those objects are, in most cases, highly variable (Sbarrato
t al., 2011). In order to catch the dynamics of the processes in those
ources, it is necessary to calculate time-dependent light curves. This
ets even more important in the emerging field of multi-messenger
stronomy, which tries to combine (time-dependent) measurements
f different particles (e.g. photons, neutrinos, protons) at different

∗ Corresponding author.
E-mail address: kristiantcho@gmail.com (K. Tchiorniy).

energies (for sub-eV to PeV) to get a comprehensive picture of the
processes happening within our Universe. Many of those studies already
use such approaches or could greatly profit from doing so (Padovani
et al., 2018; Giommi et al., 2020).

Due to the high variability and varying strength of gamma-ray
sources, it is challenging to choose an adequate time width for each
light curve bin such that the integration time is long enough to catch
the signal but short enough to catch relevant features. For a long time,
the preferred method for choosing the (adaptive) length of the time
bins was the so-called adaptive binning approach (Lott et al., 2012) that
aims to produce light curves with bins having a constant significance
or flux uncertainty 𝛥0. Numerically, this requires to solve the equation

𝜎𝑓 (𝑇0, 𝑇1, ̄𝛾 , 𝐹 ) = 𝛥0 (1)

for the ending time of a time interval 𝑇1 giving some starting time
𝑇0 and some function 𝜎𝑓 . 𝛾̄ and 𝐹 are the average flux and photon
spectral index over the interval [𝑇0, 𝑇1], respectively. However, the
(sequential) search for the time bins fulfilling this equation is extremely
expensive, so the computation of 𝜎𝑓 requires approximations instead of
a full likelihood model. Nevertheless, with traditional methods, a single
adaptive light curve often takes several hours, if not days, to compute.
This paper presents a novel approach for the (fast) generation of
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adaptive binning for light curves that uses a machine-learning approach
to approximate the Fermi likelihood function.

In recent years, machine-learning-based methods have become quite
popular in astronomy as they are quick in the calculation and provide
a high accuracy (Fluke and Jacobs, 2020; Sen et al., 2022; Glauch
et al., 2022; Kronmueller and Glauch, 2019). As a result, our new
tool,1 flashcurve, allows large-scale generation of adaptive-binning for
gamma-ray light curves as well as quick follow-up studies in astronom-
ical real-time programs.

The paper is structured as follows. In Section 2, we present the
dataset of light curves that we use to train the machine-learning es-
timator; in Section 3, we explain its structure and the training process;
and in Section 4, we show how it can be used. We conclude with a
summary in Section 5.

2. Data sample of 𝜸-ray light curves

2.1. Fermi-LAT LCR & analysis

The Fermi-LAT Light Curve Repository (LCR) (Fermi-LAT, 2023) is
a database of light curves including 1525 sources from the 10-year
Fermi-LAT point source 4FGL-DR2 catalogue (Ballet et al., 2020). This
database and the corresponding raw photon data downloaded from
the Fermi-LAT data server were used to train the machine-learning
estimator model presented here.

The sources included in the LCR database have a variability index
greater than 21.67, indicating the average fractional flux variability
(dF/F) measured on timescales of 1 year. Having a variability over this
value for over 12 intervals means that these sources are estimated to
have a <1% chance of being a steady source (Fermi-LAT, 2020). The
resulting source selection comprises blazars, further classified as flat
spectrum radio quasars, BL Lacs, and blazar candidates of unknown
type.

Each source in the catalogue has light curves with three different
fixed time-bin lengths: 3 days, 1 week, and 1 month. This was done
for over 14 years of data, from 2008 August to 2023 December, which
accumulated to over 3.7 million individual time bins.

The gamma-ray flux of each time bin was estimated using a max-
imum likelihood analysis as described in Fermi-LAT (2009). The sig-
nal hypothesis of the likelihood function includes a power-law point
source flux 𝜙 on top of a diffuse gamma-ray background and the
known gamma-ray sources in the region. Free parameters are the flux
normalisation 𝜙0, and the spectral index 𝛾 i.e.,

𝜙(𝐸𝛾 ; 𝛾 , 𝜙0) = 𝜙0 × (𝐸𝛾∕𝐸0)−𝛾 (2)

with the photon energy 𝐸𝛾 . The test statistic (TS) quantity is defined as

  = −2 ln (𝐿max,0∕𝐿max,1
)

(3)

where 𝐿max,0 is the maximum likelihood value for a model without
an additional source (the null hypothesis) and 𝐿max,1 is the maximum
likelihood value for the signal hypothesis.

In order to maximise the signal and background likelihood, the
observed energy and direction of the photons are used with the LAT
instrument response function (IRF). The exact location of the source is
found through a grid search for the maximum test-statistic value. The
analysis settings for the Fermi-LAT LCR analysis can be found in Table 1.
Our machine-learning algorithm uses the same data settings regarding
energy range, event selection, IRF and acceptance cone. For Fermi point
sources analyses, the TS is distributed approximately as a 𝜒2 distribu-
tion (Fermi-LAT, 2009); thus, the square root of the TS is approximately
equal to the detection significance for a given source (Wilks, 1938).
This TS will be the target variable for our machine-learning algorithm
using the raw photon data as input. The LCR analysis rejects the
background hypothesis only when   ≥ 4.

1 Available at https://github.com/kristiantcho/flashcurve.
2 
Table 1
Analysis settings for the Fermi-LAT LCR analysis.

Time Bins 3 day, 7 day, 30 day
Energy range 100 MeV–100 GeV
Event selection P8R3_SOURCE
IRF P8R3_SOURCE_V2
Acceptance Cone (ROI) 12 deg (radius)
Zenith Angle Cut (zmax) 90 deg
Fit optimiser MINUIT
Galactic interstellar emission model gll_iem_v07.fits
Isotropic spectral template iso_P8R3_SOURCE_V3_v1
4FGL-DR2 Catalog gll_psc_v27.fit

Fig. 1. An example of an LCR ’sanity check’ for time bins with analyses which may
have failed. If a flux-to-flux uncertainty ratio within a time bin wildly deviates from
an approximately linear behaviour over the square root of the test statistic, this time
bin should not be used in high-level analysis.
Source: Plot taken from Fermi-LAT (2023).

To obtain the LCR light curve data conveniently, we used the
Python API script pyLCR,2 which was used to get the exact time bins
and corresponding TS for each source. We include time bins with a
minimum TS of 0. By including time bins with TS < 4, we aim to train
the estimator so that it possibly recognises the background. For these
time bins, however, only upper limits for fluxes are provided.

2.2. Data sample cleaning

The LCR data source comes with some caveats. One caveat was that
some results may have come from non-convergent analyses. Thus, we
removed these samples from the final data sample selection by checking
for non-zero MINUIT (James and Roos, 1975) return codes. Some
data points had negative TS values, resulting from non-convergent fits.
Those data points were also removed.

Apart from this, the LCR usage notes3 recommend performing’sanity
checks’ to check whether the flux uncertainty to flux to ratio, 𝜎𝐹 ∕𝐹 ,
behaves approximately linearly to the square root of the TS, as well
as to check whether fluxes are deviating quite strongly from the total
distribution of fluxes for a given source. Fig. 1 taken from Fermi-LAT
(2023) shows an example of data which deviates from the linear ap-
proximation. However, we found no deviations in our selected sources
when performing such a sanity check with the data.

Finally, we removed sources within 10 degrees of the Galactic plane
to avoid confusion with the Galactic background, for a total of 163
sources. The LCR database also includes a few extended sources, which
we excluded. All of the aforementioned filters amount to a total of 1362
sources and around 1.5 million time bins that could be used to train
the estimator model. Fig. 2 shows the distribution of the TS for all the
selected time bins.

2 https://github.com/dankocevski/pyLCR, last accessed: 01.04.2024.
3 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/

about.html, last accessed: 01.10.2024.

https://github.com/kristiantcho/flashcurve
https://github.com/dankocevski/pyLCR
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/about.html
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/about.html
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Fig. 2. Binned distribution of test statistic from the Fermi LCR time bins which were
to be used for training the estimator model.

3. Machine-learning-based adaptive light curve

3.1. General idea

Artificial neural networks have made huge strides in the last few
years, especially in computer vision. Many techniques and architectures
have been developed to increase the prediction quality of image recog-
nition, both in categorical and regression estimation (Chai et al., 2021;
Zhao et al., 2024). Similarly, we use the spatial and energy information
of the time-integrated Fermi-LAT observations to estimate the detection
significance.

For training data, we use the previously discussed Fermi-LAT LCR
dataset. Although this dataset only covers light curves with three dif-
ferent time-bin lengths, it covers an extensive range of TS values due to
the sources’ variability. Moreover, sources are distributed isotropically
in the sky, avoiding directional bias in the training.

3.2. Data preparation

Overall, our training dataset contains 1.5 million time bins. We
generated neural network input images for each time bin by binning
the photon counts in right ascension (RA), declination (Dec), energy,
and time.

Similar approaches have been used in Caron et al. (2018), which
binned photon counts in right ascension, declination and several energy
bins as image channels instead of a single (broad range) channel.

The generation of the input images for the neural network has two
steps. Firstly, the photons are rotated into a spherical coordinate system
in which the source is located at a pole. We do this to standardise
the angular distances of each photon event from the source. Secondly,
the photons are binned into four dimensions: time, energy, and the
two tangential dimensions of the rotated spherical coordinates, which
we denote as X and Y in the flattened image (see Fig. 4). In order to
avoid creating an exceedingly large feature space, only six energy bin
channels were used. Thus, similar to energy bins typically used in Fermi-
LAT spectral energy distributions, energy was binned in half powers of
10 MeV, (102 MeV, 102.5 MeV, 103 MeV, 103.5 MeV, 104 MeV, 104.5 MeV,
and 3⋅105 MeV). Since the point spread function of Fermi-LAT decreases
with energy (Fig. 3), we decrease the range of the X-Y histogram with
increasing energy (Fermi-LAT, 2013) to 12 deg, 5 deg, 3 deg, 1.5 deg,
1 deg, and 0.6 deg following the 95% quantile of the Fermi-LAT point
spread function. In each dimension, 56 bins are used.

Figs. 4 and 5 illustrate the neural network inputs generated with this
procedure. The first image is from 4FGL J0319.8+4130, and the second
3 
Fig. 3. 68% and 95% containment angles of the acceptance weighted PSF for
both the front/back PSF event types for the LAT P8R3_SOURCE_V2 IRF. Plot
taken from https://www.slac.stanford.edu/exp/glast/groups/canda/archive/pass8r3v2/
lat_Performance.htm, last accessed: 01.03.2024.

Fig. 4. Example neural network input image for 4FGL J0319.8+4130 used to train
the estimator model. The total input has six (energy bin) channels with photon counts
binned in angular distance for a tangential plane around the source. The colour bars
indicate counts in each bin. Each panel has counts of photon events within a specified
energy range (energy bin). The source depicted here has a TS of 569.12.

comes from the source 4FGL J2253.9+1609, which had the highest
significance time bin of all samples. Both images depict time bins of
1 month with significant gamma emission (TS of ∼ 570 and ∼ 1.3 ⋅ 105
corresponding to significances of ∼ 25𝜎 and ∼ 360𝜎 respectively).

Fig. 5 visually shows clear emission from the source in all energy
channels, while in Fig. 4, it is less visible to the human eye. Especially
at low energies, photons from a nearby source are dominating the
image. The picture is clearer at higher energies, contributing most to
the overall significance.

3.3. The artificial neural network - architecture & training

3.3.1. Convolutional & residual neural networks
Convolutional neural networks (CNN) are a class of deep neural

networks (DNN) that are designed to be trained to make predictions
using visual data or images (LeCun et al., 2015). A CNN generally
takes an N-dimensional grid input and uses convolutional layers and
non-linear activation functions to map the input to an M-dimensional
output. The input can be, for example, a multichannel image with
dimensions (𝑤, ℎ, 𝑐), 𝑤, ℎ being the width and height of the image in
terms of the number of pixels and then 𝑐 the number of channels. In
the case of a colour image, we have three channels: red, green, and
blue. In our case, we have six energy bins. The output could be a set of
predictions for different image class options or, as in our case, a single
number (regression problem).

Additional improvements in network performance can be achieved
using residual neural networks (ResNets) (He et al., 2015). Instead of

https://www.slac.stanford.edu/exp/glast/groups/canda/archive/pass8r3v2/lat_Performance.htm
https://www.slac.stanford.edu/exp/glast/groups/canda/archive/pass8r3v2/lat_Performance.htm


T. Glauch and K. Tchiorniy Astronomy and Computing 51 (2025) 100937 
Fig. 5. Same as the figure before, but using data from the source 4FGL J2253.9+1609, which, in the given time window, had a TS of 129479.46, making it the most significant
time bin in the data sample.
Fig. 6. The basic working principle of a residual block used in ResNets, which consists of an input 𝑥 having transformations 𝐹 ( ) applied to it, whilst having an identity mapping
added onto its output in the form of a ‘skip connection’: 𝑥 + 𝐹 (𝑥). Image taken from Wikimedia Commons https://commons.wikimedia.org/wiki/File:ResBlock.png, last accessed:
01.10.2024.
learning independent features in each layer, a residual neural layer
only learns corrections to the previously learnt features. This can be
implemented by including an identity connection between subsequent
layers, as illustrated in Fig. 6.

A ResNet consists of a sequence of multiple residual blocks. This is
because stacking more layers in a typical DNN could lead to a swift
reduction in training accuracy, often referred to as the ‘degradation’
problem (He et al., 2015). If a DNN is able to reach a maximal
training accuracy with the initial layers (or some other sub-combination
of layers inside the architecture), then these skip connections would
ensure that only the additional unnecessary layers are skipped and that
only the identity mapping is kept. ResNets have been shown to increase
training stability and, therefore, accuracy (Zhang et al., 2024).
4 
3.3.2. Flashcurve architecture & training
Fig. 7 depicts the network architecture of flashcurve. The model

consists mainly of the previously mentioned residual blocks, each with
a 3 × 3 convolutional layer with a stride of 1 and a filter count of 32,
64, or 128. At the end of each layer, we use the RELU function as a
non-linear activation layer.

The identity mapping is performed with a 1 × 1 convolutional layer,
which ensures that the number of channels in both layers matches when
added at the end of the residual block.

Some preprocessing steps are performed in the input layer: First, a
rescaling layer normalises the counts in each energy channel using the
maximum values found in the training data set. In addition, we used a
random flip layer as well as a rotation layer, which rotates the images

https://commons.wikimedia.org/wiki/File:ResBlock.png
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Fig. 7. Left: First layers of the flashcurve estimator model. All layers between two
consecutive ‘Add’ layers comprise a residual block. Included here are also the ‘Rescaling’
preprocessing layer, which normalises the images, and the ‘Random Flip’ and ‘Random
Rotation’ layers, which are only used during training to horizontally flip or rotate the
images in 90-degree steps.
Right: Last layers after the residual blocks, including a ‘Dense’ layer with a RELU
activation, which acts as a linear output for the TS estimation.

in random multiples of 90 degrees. Those data augmentations increase
the size of the training dataset by a factor of 8, allowing a better model
generalisation (Perez and Wang, 2017).

In the network’s last layer, the network features are mapped to a
single number, the test statistic, see Fig. 7. The final linear layer has
another RELU activation to ensure that the TS value is a strictly positive
number.

We trained the model with a batch size of 256 using the Tensorflow
python package, the Keras API, the ADAM (Kingma and Ba, 2017)
optimiser, and a mean-squared error (MSE) loss function. Table 2 sum-
marises our model’s total number of residual blocks. This combination
of layers was chosen such that the number of parameters is one order
of magnitude smaller than the total number of samples. In total, the
network has ∼400000 trainable parameters.
5 
Table 2
Ordered list of residual blocks and the corresponding number of filters used in the
convolutional layer within each block used for the final estimator model.

# of Res. Blocks # of filters

15 32
5 64
1 128

Fig. 8. Learning curve displaying the output of the mean squared error loss function
during the training of the best estimator model at different epochs for both the
validation and training set.

Fig. 9. Predicted TS from an unseen test set of images vs. the true TS. To simplify the
plot, mean, median, and the 10% to 90% quantile region of binned values are taken
and plotted against the medians of the binned true TS.

3.4. Validation & performance

In order to test the model performance and its ability to generalise,
we split the dataset into three sets: 80% was used as a training set, 10%
as a validation set, and the remaining 10% as a test set, which would
remain unseen until the model completed training. The validation set is
used during training to test the model’s performance after each epoch.
It is also used to select the final model based on the epoch at which the
model produced the best validation loss. Fig. 8 shows the output of the
loss function over all the epochs for our best-performing model.

Fig. 9 shows the model’s performance on the unseen test set, which
achieved approximately constant relative uncertainty across the entire
TS space.

To evaluate how the size of the training dataset impacts the model
performance, we rerun the training procedure with different subsets of
the training dataset, all while still keeping the same validation and test
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Fig. 10. Learning curve displaying the output of the mean squared error (MSE) loss
function during the training of an estimator model at different epochs for different
subsets of the main training set.

Fig. 11. Learning curve displaying the output of the mean squared error (MSE) loss
function during the training of an estimator model at different epochs, with different
subsets of the main training set, and testing then on the main validation set.

set. The results are shown in Figs. 10 and 11. The losses on the training
set show that more data leads to a more stable training; meanwhile,
the validation losses indicate that lower losses are achieved with more
data. This indicates that the amount of training data available currently
limits our model.

3.5. Investigation of bad predictions

We find two types of bad predictions from the test dataset: the
model predicts a low TS, whereas the true TS is orders of magnitude
higher, or vice versa. The former case was investigated by performing
the checks recommended by Fermi-LAT (2023) and then subsequently
running Fermipy to cross-check the TS. One such case occurred with
the source 4FGL J1234.0-5735, in which a TS of ∼2 was predicted, but
the Fermi-LCR stated a TS of ∼300. Figs. 12–14 show the recommended
checks performed.

The badly predicted TS does not appear to be an outlier when look-
ing at Fig. 12, which, according to the Fermi-LCR, would be the main
reason to investigate further. However, looking at the distributions of
flux and flux uncertainty, this data point exhibits a sudden burst of flux
compared to the typical lower activity of the source. Fig. 15 depicts the
respective image with which the model under-predicted the TS.
6 
Fig. 12. Set of TS vs. their corresponding squared ratio of flux/flux uncertainty from
the Fermi-LCR for a 3-day binned lightcurve of 4FGL J1234.0-5735. The red cross
indicates a TS, which the estimator had vastly under-predicted. However, it does not
appear very clearly here to be an outlier.

Fig. 13. Log-binned counts of flux data of 4FGL J1234.0-5735, see 12 for more details.
The badly predicted TS (red cross) appears to be an outlier from the distribution.

Fig. 14. Log-binned counts of flux uncertainty data of 4FGL J1234.0-5735, see 12 for
more details. The badly predicted TS (red cross) also appears to be an outlier from the
distribution.
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Fig. 15. Image of binned photon event counts for 4FGL J1234.0-5735 in a 3-day period, corresponding to a TS ∼300, for which the estimator model under-predicted a TS of only
∼2. See Fig. 4 for more information.
Fig. 16. Same as the figure above for 4FGL J1311.0+3233 and a time bin of 1 week. Fermi-LCR reports a TS of 3.63, whereas the estimator model predicted ∼300. Additionally,
overlaid on this image as red stars are the (relative) positions of nearby sources; the black star is 4FGL J1311.0+3233. It is apparent in this image that there is a high amount of
activity close to the central source.
Finally, the time bin (3-days centred at 673617601 MET) was rerun
independently through Fermipy and along with the 3-day bin before and
after the time bin in question, all of which came out with extremely low
flux (𝑂(10−10)) and extremely low TS (𝑂(10−5)). Thus, we concluded
that this was an outlier in the LCR database that was missed during the
initial data cleaning.

However, judging by the flux and flux uncertainty distributions, one
can see that the expected amount of outliers per source could be in
the order of 10, which would mean that the total number of expected
outliers in the entire data set would be in the order of 104, two orders of
magnitude less than the total number of data-points. Hence, the impact
of these outliers on the model is expected to be small. For the future, we
plan to create more stringent filters for the data cleansing, for example,
7 
by filtering out data points whose flux or flux uncertainty sit outside 5%
and 95% quantiles as in Figs. 13 and 14.

In the opposite case, there were numerous over-predictions from
the model, one example of such being a prediction of ∼300 for a true
TS of ∼3.6. One of the sources in question was 4FGL J1311.0+3233
for a time bin centred at 242308801 MET with a duration of 1 week.
Fig. 16 shows the image with photon counts along with the relative
positions of nearby sources overlaid. We see that there is a considerable
amount of gamma-ray sources close to 4FGL J1311.0+3233, even at
relatively small angular distances, the most prominent being OP 313,
with a source strength (for photon flux > 1 GeV) ∼4 times larger than
4FGL J1311.0+3233. This causes source confusion, something which
is also not handled well by Lott et al. (2012). On the other hand, the
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complete Fermi-LAT analysis correctly accounts for the fluxes from all
surrounding sources.

There are two types of over-predictions; one type comes from the
statistical noise of the model itself. This is what is shown in Fig. 9.
Here, you see a normal spread of over and under-predictions around
the median. The second type of over-predictions comes from cases with
strong source confusion, i.e. a strong neighbouring source. It is hard to
quantify the number of over-predictions, but as a general estimate, the
latest Fermi catalogues have around 6658 gamma-ray sources in the sky.
This is equal to one source every 6.2 square degrees. Hence, it is rather
rare to have sources as close as 1 degree.

To handle source confusion better, in the future, we plan to explore
a model which additionally incorporates these nearby source positions
and fluxes, perhaps as a seventh layer on top of the current image
format or overlaid on each layer as in Fig. 16.

3.6. Time bin search algorithm

The machine-learning-based TS estimation is central to our new
adaptive light curve approach. We also require an algorithm that
partitions the entire data range into possible time windows. Different
methodological and numerical approaches could be considered here,
independent of the machine-learning estimator. Our choice is depicted
in Fig. 17 and consists of the following steps:

1. A time window (red interval) is searched with sub-time intervals
(blue intervals) based on the time stamps of selected photon
events 𝑡𝑛. Each interval uses the time window’s lower bound
(𝑡𝑖𝑛𝑖𝑡) as its own lower bound. To speed up the search, only pho-
tons with a relatively large impact on the TS are considered for
calculating the intermediate’s time stamps 𝑡𝑛. These are photons
that have an energy and angular proximity to the source above
and below chosen thresholds respectively.4 The TS is predicted
using the machine-learning estimator for each resulting time
interval.

2. The time stamps whose intervals produce TS within a TS target
range (here [4,9]) are within the green interval. The last largest
time window within the green interval is then used as the end
time 𝑡𝑜𝑝𝑡,1 for the light curve. If the TS are below the target
range, the time window gets extended, and further events are
processed.

3. The search for more time bins continues repeatedly with a new
time window from each 𝑡𝑜𝑝𝑡 onwards until all photons are parsed
through. The last bin will, therefore, not necessarily have a TS
above the threshold.

Since the search is performed chronologically, if one takes the first
event’s timestamp within a time window that produces a TS within
the target range as 𝑡𝑜𝑝𝑡, exceedingly short time bins tend to occur. If
one runs these time bins through the Fermi-LAT analysis, they will be
evaluated as sudden strong fluxes with sudden hard spectra. For this
reason, we take the last timestamp with a TS that is still within the
target range instead of the first. If the last timestamp of a time window
still produces a TS within the target range, then the time window is
increased (while keeping the same initial 𝑡𝑖𝑛𝑖𝑡) until timestamps which
produce TS above the target range are found. This is depicted in Fig. 18.

The final time bins can then be fed through the Fermipy python API
to produce the final light curve with adapted time-binning.

4 The thresholds are set by default to a minimum energy of 1 GeV and
a maximum angular proximity of 1 degree. Most photons contributing to the
source signal fall below this threshold. This works well for most sources. If the
algorithm produces exceedingly high TS, the thresholds should be loosened.
On the other hand, when the algorithm gets too slow, the thresholds can be
made stricter to speed up the search. We are currently working on an updated
search algorithm that does not require this threshold. It will be added to the
project GitHub.
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Fig. 17. Visualisation of the steps of the time bin search algorithm with a TS target
range of [4,9].

Fig. 18. Visualisation of the steps of the time bin search algorithm in the case of
an unfinished range of event timestamps whose TS are within the target range (here
[4,9]).

4. Example light curves

In this section, we provide a few example light curves that we
produced using flashcurve and compare them with the light curves
based on the method of Lott et al. (2012).5 Four independent test
sources were studied:

• TXS 0506+056, an IBL/LBL blazar which was identified as a
source of high-energy neutrinos (Padovani et al., 2018; IceCube-
Collaboration, 2018)

• CTA 102, a flat spectrum radio quasar
• MKN 421, an LBL, which is one of the closest and brightest blazars
• MKN 501, a blazar with relatively lower gamma-ray flux.

For the generation of the flashcurve light curves, we use the entire
energy range between 100 MeV and 300 GeV. The light curves pro-
duced with the classic approach, on the contrary, are made with an
energy cut-off based on the optimal minimal energy 𝐸min calculated
with the Lott et al. (2012) methodology.

Note that the adaptive binning light curves made with the Lott et al.
(2012) method were produced with a constant relative flux error, as

5 Preliminarily provided by Narek Sahakyan (Sahakyan et al., 2024).
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Fig. 19. Light curves of four test sources comparing flashcurve with the method of Lott et al. (2012). The four right plots are a zoomed-in section of interest of each source, with
flux error and time bin length as vertical and horizontal errors, respectively.
the constant TS mode was not available at the time of this study.6 In
order to achieve comparable results, the range of TS calculated from
the constant relative flux error method was set as the thresholds for
flashcurve. The details are listed in Table 3.

The results of our study can be seen in Figs. 19 to 22. At a general
glance, flashcurve performs well, producing light curves with relatively
constant significance time bins and without upper limits while also

6 https://www.slac.stanford.edu/~lott/tuto_adaptive_binning.pdf, last ac-
cessed: 01.07.2024.
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Table 3
List of test sources used to make example light curves, along with the corresponding
target range (Min. TS to Max. TS) for the time bin search algorithm.

Source Min. TS Max. TS

TXS 0506+056 25 50
CTA 102 50 75
MKN 421 115 170
MKN 501 75 125

https://www.slac.stanford.edu/~lott/tuto_adaptive_binning.pdf
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Fig. 20. Left plots: Histograms of the time bin lengths using flashcurve (red) and the method of Lott et al. (2012) (blue) for the four test sources.
Right plots: Histograms of the relative TS deviation of the TS estimated using flashcurve from the TS calculated using the full Fermi-LAT likelihood analysis for the four test sources.
capturing the finer dynamics of the source flux. Moreover, we see
reasonable agreement with the Lott et al. (2012) method.

Fig. 19 shows the light curves of each of the test sources. We
observe a good agreement with the classic method for three of the
selected sources. This is the case for TXS 0506, MKN 421, and MKN
501. Looking at the histograms of the time bin lengths in Fig. 20 and
the spectral indices in Fig. 22 of these three sources, it is evident that
the two methods produce similar results, except for a few short time
bins producing overly hard spectra. This is due to flashcurve’s time bin
10 
search algorithm, which only produces time bins that begin and end on
photon event time stamps.

In the next step, we study the TS and relative flux errors of the light
curves in Fig. 21 as well as the relative deviation of the estimated TS
from the Fermi-LAT analysis in Fig. 20. Since flashcurve’s time bins for
TXS 0506+056 were relatively shorter, this resulted in higher relative
flux errors and lower TS than that of the Lott et al. (2012) method.
Overall, however, we observe consistency between the two methods.
We also note that flashcurve generally produces constant TS across
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Fig. 21. Left plots: TS calculated using the Fermi-LAT analysis for the time bins found using our flashcurve(red) and the method of Lott et al. (2012) (blue) for the four test sources,
with respective time bin lengths. In the case of CTA 102, a few extremely high TS are cut out for better visualisation.
Right plots: Flux error versus flux ratios for the time bins found by the two methods.
all its time bins. Similarly, there is good consistency between the
methods for MKN 421 and MKN 501. However, in this case, flashcurve
tends to predict larger time bins, resulting in relatively larger TS
with smaller flux error. This could be attributed to the energy and
proximity thresholds of the time bin search algorithm, which filtered
out intermediate photon events. Again, we see a relatively constant and
decently accurate TS prediction overall.

The situation is different for CTA 102. Here, the two methods
produce different results. CTA 102 was chosen due to its high activity
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and hard fluxes (D’Ammando et al., 2019), which was meant to provide
a challenging case for both light curve algorithms. Compared to the
true TS values, it appears that flashcurve frequently under-predicts the
TS values, as is evident in the TS error histogram in Fig. 20. This also
results in small relative flux errors in the light curve, especially in
its highly active flaring periods, since higher significance negatively
correlates to lower relative flux error. In these periods, we also see
larger variance in true TS; however, looking at relative TS error, we
see a clear peak indicating that TS prediction, although collectively
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Fig. 22. Best-fit spectral indices for the time bins found using flashcurve(red) and the method of Lott et al. (2012) (blue) for the four test sources.
deviating from the target range, was consistent across all time bins.
This, again, shows that the varied TS was more a fault of flashcurve’s
time bin search algorithm rather than its TS prediction accuracy. Also,
we see that the method of Lott et al. (2012) also displayed a relatively
larger variance in TS and relative flux error during these periods,
showing that these periods are generally difficult to process for either
method.

Both flashcurve and the classic method have similar time bin length
distributions. However, there is an additional population of extremely
short time-bins, which was found by the Lott et al. (2012) method,
as seen in CTA 102’s time bin length distribution in Fig. 20. These
shorter time bins do not necessarily indicate a better choice, as many
of them come from the period of larger variance in flux error for the
method of Lott et al. (2012). Using energy and proximity thresholds
in flashcurve’s time bin search algorithm can cause it to predict fewer
extremely short time bins.

In less active periods, we see more constant TS and similar flux
dynamics relative to the classic method, as seen in the additional
zoomed-in light curve of CTA 102 in Fig. 23.

We also see that, again, no upper limits were produced by the time
bins predicted by flashcurve.

A final remark about the difference in the estimation of the time
bins between the two methods is that it was clear that flashcurve is
much faster than any previous method. The time scales for producing
these time bins (not including the Fermi-LAT analysis after that) ranged
from ∼30 min to a few hours in the case of the very high activity
sources. Using the method of Lott et al. (2012) can take up to several
days, depending on the source strength. For an average source, it takes
around 10 h to compute the time bins. This was mainly made possible
using a neural network model that produces fast TS estimations. This
can be sped up by multiprocessing, with around 100 threads used
in these example cases. The main bottleneck of flashcurve is its time
bin search algorithm, which can be replaced with a quicker and more
sophisticated algorithm in the future. This might also improve the light
curves by allowing the energy and proximity thresholds to be set lower
in order to avoid missing shorter duration time bins, as in the case of
CTA 102.
12 
5. Conclusion and outlook

Using a machine-learning-based estimator model, we have pre-
sented a novel approach to adaptive binning of Fermi-LAT gamma-ray
light curves. By leveraging neural networks, specifically convolutional
neural networks, flashcurve estimates the test statistic for gamma-ray
sources with respect to the pure background for gamma-ray events
detected in a given time window. The method offers a significant
improvement in computational speed over traditional methods like Lott
et al. (2012). Light curves generated with flashcurve aim for a constant
significance. This allows for fast variations in flux to be captured while
at the same time avoiding upper limits in quiet periods. We validated
flashcurve against multiple test gamma-ray sources. The results showed
that for most sources, flashcurve produces high-quality light curves,
which contain time bins with relatively constant TS, have no upper
limits, and encompass smaller flux variations whenever appropriate.
Results were also generally similar to that of the Lott et al. (2012)
method, with only minor differences observed, particularly in highly
active sources like CTA 102. Both methods, however, generally pro-
duced results with higher variance in relative flux error. In less active
periods, however, flashcurve’s performance still demonstrated accurate
results.

The training process, involving over 1.5 million time bins, utilised
a residual block-based convolutional neural network architecture opti-
mised with the ADAM optimiser. Despite challenges such as data im-
balance towards lower TS values, the model for flashcurve generalised
well on unseen test sets.

Validation against traditional methods showcased the potential of
this approach in producing reliable light curves for gamma-ray sources
at quick speeds, emphasising the importance of future improvements
in model training and data handling techniques.

Future development of flashcurve will focus on several key areas.
Firstly, expanding the dataset to include more sources, particularly
those near the Galactic plane and extended sources, will help the
generalisation capabilities of the estimator. Additional input layers
could help to include information on the (known) sources in the region.



T. Glauch and K. Tchiorniy Astronomy and Computing 51 (2025) 100937 
Fig. 23. Continuation of Fig. 19. Additional zoomed-in light curves.
Secondly, similar to the prediction of the TS values, the same approach
can also be used to predict the flux uncertainty as an alternative method
for generating adaptive binning light curves.

The model can be continuously improved by using flashcurve’s
output as samples for the training. This way, the network could be
trained in an infinite training loop for maximal accuracy, only limited
by computational resources.

As for the time bin search algorithm, other numerical approaches,
such as a bisection method (similar to the one described by Burden and
Faires (1985)) could, in future, be implemented to help further speed
up computation. This would also allow testing a more extensive range
of time windows, reducing the variance in the light curve test statistics
or flux uncertainties.

In general, using a machine-learning estimator to retrieve the time
windows of adaptive-binning light curves is not limited to Fermi-LAT
data. It could be similarly used to produce light curves in any other
wavelength if sufficient training data is available.
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