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In this work, two different variants of image segmentation are compared to
evaluate the use of generalized machine learning models against the accuracy
of bespoke models to further their use for the analysis of microstructure
images with multiple phases. The results from the analysis are then used to
evaluate the effect of different iron contents and the presence or absence of
convection on the formation of the microstructure with emphasis on the
development of the intermetallic phases in technical aluminum alloys. To this
end, the study focuses on aluminum-silicon base cast alloys with high iron
content directionally solidified under microgravity conditions, with additional
controlled convection created by a rotating magnetic field. Optical microscopy
images from the different processing zones are then used to train the different
chosen models, which are afterwards used to segment and analyze the
microstructures. Key results include the evaluation of the effects of convection
and iron content on several parameters describing the different intermetallic
phases as well as the comparison of the models.

INTRODUCTION

Recycled aluminum alloys are playing an increas-
ing role in the manufacturing industry.1 To better
understand the influence of composition changes on
the alloys’ microstructure, a study of the effects on
its components is required. The changes include the
enrichment of some elements only present in low
amounts in the primary alloys. For example, iron is
an element with an average concentration of 0.07–
0.10 wt% in aluminum cast alloys. Remelting cycles
during recycling lead to an increase in concentra-
tion that can lead to iron contents of up to 1.5 wt%
in alloys for high-pressure die casting.2 These
increased amounts of iron further the formation of
iron-containing intermetallic phases, for example, a-

Al8Fe2Si or b-Al9Fe2Si2,3 or change the formation
processes of these or other intermetallic phases.2,4

With these changes, an impact on the mechanical
properties must be expected. Furthermore, changes
in the solidification behavior of the intermetallic
phases can also impact the overall processing and
solidification of the melt because of the formation of
phase networks or other three-dimensional struc-
tures and their interaction with the dendritic
network.5 This necessitates the analysis of the
impact of changes in melt flow behavior on the
microstructure as always present in casting pro-
cesses. The analysis of the microstructure can be a
time-consuming process due to the long sample
preparation and measurements.6 While reducing
the duration of sample preparation is difficult, the
measurements and analysis performed on the
microstructural components have high potential
for automation due to the advancements in image
analysis techniques.7–9 The introduction of(Received January 31, 2025; accepted March 19, 2025;
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automated processes, using machine learning tools,
for example, still requires optimization of the mod-
els used for the analysis to improve the model
accuracy, speed of application and training, as well
as the ease of use.

In this work, an advanced machine learning
algorithm called Mask R-CNN (Mask Region-
based-Convolutional Neural Network),10 trained
for broad applicability, is compared with the results
of simpler bespoke models trained on a per-image
basis using the random forest algorithm. This
algorithm is implemented in the Weka Segmenta-
tion plugin11 in Image J.12 The differentiation
between bespoke and broadly applicable models
refers to the impact of the respective training
database. For the bespoke models, the training is
conducted using a large fraction of a single image.
This makes applying the model outside of the
training image very unreliable but allows for the
full segmentation of that image. The broadly appli-
cable model, on the other hand, uses a wide variety
of training images and can therefore be used to
segment a diverse set of similar images in the end.
The methods are evaluated on two aluminum alloys
with increased iron content, solidified under micro-
gravity conditions onboard the International Space
Station (ISS) in the European Space Agency’s (ESA)
Materials Science Laboratory (MSL) within the
frame of the ESA-project MICAST13 with convection
induced using a rotating magnetic field. The alloys
are the hypoeutectic Al-6 wt% Si-4 wt% Cu-1 wt%
Fe (MICAST 3#3), for which b-Al9Fe2Si2 phase
precipitates after primary a-Al, and the hypereu-
tectic Al-6 wt% Si-4 wt% Cu-2 wt% Fe (MICAST
3#5), for which a-Al8Fe2Si phase precipitates first,
followed by primary a-Al. Besides evaluating the
model training and performance, the focus here is
on analyzing the influence of convection and iron
content on the size and positioning of the phases
present in the microstructure.

EXPERIMENTAL SETUP AND SAMPLE
ANALYSIS

MSL’s Bridgman-type furnace insert SQF (solid-
ification and quenching furnace; moving furnace,
static sample) was used to directionally solidify the
rod-like samples with a length of 276 mm and a
diameter of 7.9 mm. The furnace is equipped with a
coil system capable of generating a rotating mag-
netic field for electromagnetic stirring of the liquid
sample during processing.4,13 For the processing,
the solidification velocity was held constant at
0.04 mm/s with a temperature gradient between
2.25 K/mm and 2.5 K/mm. During processing under
convective conditions, the magnetic field operated
with a frequency of 57 Hz and a field strength of
5.7 mT, inducing a laminar melt flow.5 To create
two processing zones during solidification, one
solidifying under pure diffusive mass transport
conditions and the other under forced convection

in microgravity, the magnetic field was switched on
after a traversal of 70 mm by the furnace. The
furnace continued movement till 150 mm without
stopping. During the analysis of the process data,
the positions of the processing zones were deter-
mined with three-dimensional polynomial models
over time, position and temperature measured by 12
thermocouples within the sample cartridge. The
models were inverted using the isothermal temper-
atures for the potentially occurring phases given in
Table I and the coordinates for the processing zones
calculated. For solidification under microgravity,
the conditions were that at the initialization of the
magnetic field the phase with the lowest melting
point (Al2Cu; Table I) had already completely
solidified after being fully melted at some point
during the process. For the zone that solidified
under convective conditions, the prerequisite was
that the sample area had to be fully liquid at
initialization of the magnetic field.

The samples were extracted as axial cross-sec-
tions using a Buehler IsoMet High Speed Pro
Precision Cutter and ground and polished to
0.05 lm using a SiC polishing solution. Mosaic
images for analysis were taken using a Zeiss
microscope (Axio Imager A2m). Observation was
focused on the b-Al9Fe2Si2 intermetallic phases
(IMP), the silicon particles from the Al-Si eutectic
and the Al2Cu phase occurring in the samples. The
phase composition was confirmed using a scanning
electron microscope.

To simplify some of the planned measurements
and reduce the data load during model training, the
analyzed area of the cross-sections was restricted to
a horizontal rectangular section, as shown in Fig. 1.
Since the full images show an agglomeration of
intermetallic phases in the center of the sample, but
the restricted area precludes the full use of the
vertical axis, changes to the description of this
agglomeration are required. The determination of
the position of the analyzed microstructure compo-
nents therefore only considered the horizontal devi-
ation from the center of the sample, with the center
being represented by the x-component of the full
samples focal point. The low estimated impact of the
vertical y-axis in the restricted sample area used for
the measurements makes this change feasible.

Training of the Random Forest Models

The training of the models for the initial segmen-
tation of the sample images was conducted on the
extracted image sections, an example of which is
shown in Fig. 2. The figure also includes marked
regions in red for the second segmentation method.
The models for the first segmentation method were
trained using the Weka Segmentation plugin in the
Fiji implementation of Image J. The chosen training
features were Gaussian Blur, Hessian, Mean, Sobel
Filter, Difference of Gaussians and Bilateral. Fur-
ther information on these training features can be
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found in the plugin documentation. As classes for
the model, all recognizable features of the
microstructures were used: aluminum matrix, sili-
con particles, b-Al9Fe2Si2 particles, Al2Cu particles
and a background for sample surroundings and
random defects or image artifacts.

A single, bespoke model was created for each
image. This allowed for the segmentation of the full
microstructure in one classification. A result of a
segmentation is shown in Fig. 3. After the

segmentation, a median filter with a 2-pixel radius
was applied to the images to eliminate thin artifacts
and classification errors at the edges of the compo-
nents of the microstructure, especially of the b-
Al9Fe2Si2 particles. This is necessary since the
coloration of the phases often differs at the edges
because of the polishing process, which leads to
classification errors. These show as thin, wrongly
classified outlines. The median filter recolors pixels
in the predominant color in a small radius,

Table I. Isothermal temperatures used in the determination of the processing zone positions according
Thermo-Calc (TCAL5 database)

Phase

AlSi6Cu4Fe1 (hypoeutectic) AlSi6Cu4Fe2 (hypereutectic)

temperature (�C) temperature (�C)

a-Al8Fe2Si – 628
a-Al 610 608
b-Al9Fe2Si2 602 603
eutectic Al-Si 561 559
Al2Cu 522 521

Fig. 1. Schematic of the area selection method for later analysis (left) and of the measurement method of the particle distance to sample center
(right, sample diameter 8 mm).

Fig. 2. Selected section of the microstructure of MICAST 3#3 solidified under lg conditions, sample 2 (sample diameter 8 mm). Regions marked
in red are used in the second segmentation method (box size 1000 9 1500 pixels) (Color figure online).
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eliminating the outlines and other small artifacts.
Afterwards, the segmented and corrected images
were used to create binary versions, one each for Si,
Al2Cu and b-Al9Fe2Si2 particles. These binary ver-
sions were then used to extract positions, distances
and shape descriptors for all particles. During the
measurements, particles composed of< 30 pixels
were excluded because of the high probability of
errors, the low quality of extractable shape descrip-
tions and the low impact on measurable overall
area.

Training of the Mask R-CNN Model

The light optical microscope (LOM) images of the
samples demonstrate a microstructure consisting of
the matrix phase and three distinct precipitate
phases. These phases can be distinguished from each
other by their characteristic shape and color (Fig. 2).

� The Al-matrix, considered the background, has a
light gray-white color. Small dark spots consist
of SiO2 and are introduced during the metallo-
graphic preparation; they are ignored in further
analysis.

� The b-Al9Fe2Si2 phases have a characteristic
elongated needle-like shape in 2D and a light-
grey to dark-grey color.

� Eutectic silicon (Al-Si) has an irregular, faceted
shape and a very dark gray to black color.

� Finally, the Al2Cu phase is characterized by a
light red color. Its saturation strongly depends on
the sample preparation and microscopy proce-
dure, resulting in variability across images. This
phase exhibits an irregular morphology, ranging
from round globules to small, elongated colonies.
This phase can often be observed attached to Al-
Fe-Si needles or to eutectic Si. Due to its incon-
sistent shape and color, its identification by the AI
model has not been considered reliable and thus
has not been reported.

Dataset Generation

For the generation of the training dataset, neu-
tral background images were generated, with a

color scale analogous to the Al matrix. To simulate
the SiO2 particles, porosity and general image noise,
additional random noise was introduced to the
generated background images. From the LOM
images, approximately 100 particles from each
phase were extracted (see Fig. 4), selected from all
four experimental series MICAST 3#3 (lg and
RMF), as well as MICAST 3#5 (lg and RMF). The
dataset was then generated by randomly overlap-
ping cropped particle images on the background
images. For each cropped image that was overlaid,
the pixels corresponding to it were stored as a mask
and the bounding box was calculated. The respec-
tive data were stored in a JSON file in the COCO
format.

Training and Inference

Two distinct models were trained for the LOM
images: one for the eutectic Al-Si phase and another
for the Al-Fe-Si phase, both using 100–120 features
per image. For the training of each phase, 5000
training images and 500 validation images were
generated. The training was restricted to 30 epochs
to avoid overfitting. The intersection over the union
threshold was kept at 0.5 during training and 0.7 for
inference, while the score threshold was kept at 0.01
(training) and 0.05–0.1 (inference). Both thresholds
were kept low during the training to enhance detec-
tion of smaller features and generalization.

Contour Analysis

The eight rectangular cross-sections (two cross-
sections from the sample part solidified without and
two cross-sections from the sample part solidified
under convective conditions, for each of the two
sample rods) were divided into seven images (see
Fig. 2) with dimensions of 1000 9 1500 pixels each,
exemplarily shown in Fig. 2, and then loaded to the
trained model for the detection of the two phases.
The contours of the detected phases were exported
and loaded for further analysis. A minimum size
threshold of 5 pixels was used to filter out noise and
incorrect detections. Subsequently, the detected
contours underwent a further refinement, during

Fig. 3. Segmented microstructure of MICAST 3#3 solidified under lg conditions sample 2 (sample diameter 8 mm); colors correspond to the
available phases as follows: red = background or holes, green = aluminum matrix or dendrites, violet = silicon from the eutectic,
yellow = b-Al9Fe2Si2 phase, blue = Al2Cu; the right side of the image includes a zoomed-in view of one image section (Color figure online).
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which detections exhibiting an overlap > 35–80%
were excluded from further analysis, and only the
contour with the biggest area was kept.

The Feret diameter was calculated by measuring
the pairwise distance of all points of each individual
contour. Subsequently, two lines were generated:
one connecting the two points and one 90� rotated
from the former. The latter was shifted to pass
through the geometric center of the contour. The
minimum Feret diameter was calculated by measur-
ing the projected distance of the contour points on the
second line. Finally, the geometric centers of the
contours were used to calculate their distance from
the center line of the rectangular section, as well as
the distance to the nearest neighbor (NND), between
the same phases and the two different phases.

RESULTS AND DISCUSSION

Analysis of the Microstructure from Random
Forest Segmentation

The analysis of the microstructure focuses on a
limited set of parameters. Because the Si-particles

and the b-Al9Fe2Si2 particles both mostly have a
needle-like shape, the Feret diameter and minimum
Feret diameter, so the maximum and minimum
diameters of the analyzed particles, were chosen to
represent the particle shape. These align with a
needle or plate section length and width. Addition-
ally, the position of the particles is represented by
the horizontal distance from the sample center,
while the positional relation of the particles can be
shown using the distance to the nearest neighbor of
the specified type of particle. Where shown, the
standard deviation can be used to estimate the
uniformity of a distribution of measurements. All
chosen parameters are evaluated based on the base
alloy, specifically the changes in iron content from 1
wt% to 2 wt%, and based on the change in process-
ing from solidification in microgravity to being
influenced by the rotating magnetic field.

The results of the measurements for the Feret
diameter and the distance from the sample center
are shown in Fig. 5. For the MICAST 3#3 alloy with
1 wt% iron, the influence of the rotating magnetic
field, and therefore convective conditions during

Fig. 4. Features from all eight base images were cropped and overlaid on a neutral background resembling the aluminum matrix. Image (a) on
top illustrates examples of eutectic Al-Si features and needle-like Al-Fe-Si features after cropping. The lower images (b) and (c) show two
examples of training images, one for each phase.
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solidification, on the average distance from the
sample center is most pronounced. The average
distance for all observed phases decreases signifi-
cantly from processing under diffusive conditions to
processing under convective conditions. For the
alloy with 2 wt% iron (MICAST 3#5), an increase
in average distance is seen for silicon and Al2Cu
phases, while the distance stays mostly constant,
the average showing only a very slight decrease, for
b-Al9Fe2Si2. Regarding the influence of the iron
content, the comparison of the values for micro-
gravity conditions is more promising, since the
magnetic field has such a pronounced influence on
the MICAST 3#3 alloy. The increase in iron content
leads to an increase of the average distance from the
sample center for the b-Al9Fe2Si2 phase but to a
smaller decrease for Si and Al2Cu. For the Feret
diameter, the influence of convection created by the
rotating magnetic field leads to a small increase at
1 wt% iron for b-Al9Fe2Si2 and Si but to a slight
decrease for Al2Cu. At 2 wt% iron, a clear decrease
of the Feret diameter is seen for b-Al9Fe2Si2 and a
small increase for both other phases. Under the
same processing conditions, the increase in iron
content leads to a large increase of the Feret
diameter for the b-Al9Fe2Si2 phase. This increase

is somewhat less pronounced under convective
conditions.

Overall, the observations align with qualitative
observations of changes in the microstructure that
can be made directly from the images: The fluid flow
structure induced by the RMF leads to a strong
macro-segregation.5 The swirl flow in the bulk
liquid induces a flow motion inside the mushy zone.
The upward-directed interdendritic flow transports
solutally enriched liquid out of the two-phase region
at the axis of the sample. Consequently, a solute-
enriched channel develops inside the mushy zone. A
coarsened zone of b-Al9Fe2Si2 and Si in the sample
center for the samples with 1 wt% iron is formed;
2 wt% iron leads to more and larger b-Al9Fe2Si2
phases, which form a three-dimensional network
throughout the samples. This network, presumably
caused by the generally increased fraction of Fe-
containing phases and the occurrence of a second
Fe-based intermetallic phase, changes the flow
conditions early on during solidification and thus
prevents the channel formation for the samples with
2 wt% iron. In addition, the primary dendrite arm
spacing, as reduced by the influence of the RMF,14

leads to a reduction in the average size of b-
Al9Fe2Si2 particles, since they are smaller because
of the reduced space to grow.

Fig. 5. Feret diameter over the distance from the sample center for three microstructure components in AlSi6Cu4 alloys with 1 wt%
(MICAST3#3) and 2 wt% (MICAST 3#5) iron, samples solidified in microgravity and under influence of a rotating magnetic field.
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The standard deviation for the Feret diameter, as
shown in Fig. 6, generally follows the observations
from the average values and can be used to support
the findings made there. The decrease in the shown
values for 2 wt% iron due to the influence of
convective processing is very pronounced for the b-
Al9Fe2Si2 phase and can therefore be used to draw
the conclusion that the processing conditions lead
not only to a phase size reduction but also to a
homogenization with more uniform b-Al9Fe2Si2
particles being formed during the primary
solidification.

The minimum Feret diameter, again plotted over
the distance from the sample center, is shown in
Fig. 7. Generally, a low impact of the processing
conditions can be observed for the Al2Cu and b-
Al9Fe2Si2 phases. For the Si phases, an increase due
to convection is measurable for 1 and 2 wt% iron.
Together with the previously noted increase in the
(maximum) Feret diameter for the Si particles, this
points to an overall enlargement being caused by
the formation of a solutally enriched channel due to
the RMF (enrichment of Si). The decrease in the
minimum Feret diameter for the b-Al9Fe2Si2 phase
at 2 wt% iron caused by the onset of convective flow
can probably be attributed to the size reduction also
observed for the needle or plate length. The increase
of the iron content causes an increase of all mini-
mum Feret diameters, besides for b-Al9Fe2Si2 under
convection. There a decrease is observable.

The positional relation of the phases to each other
and the influence of processing and composition on

it can be analyzed using the nearest neighbor
distance (NND). A distinction is made here between
the distances within particles of one phase, shown
in Fig. 8, and the distances between the different
phases, shown in Fig. 9. For the same phase, the
influence of the change from microgravity to con-
vection at 1 wt% iron leads to an increase of the
NND for Si and b-Al9Fe2Si2 and a decrease for
Al2Cu. At 2 wt% iron, the NND for Si-particles stays
constant and increases for Al2Cu while decreasing
for b-Al9Fe2Si2. The influence of the iron concentra-
tion is marked by an increase of all NNDs by
varying degrees under microgravity conditions with
rising iron content (very small for Al2Cu). This
increase of the NND is still observable under the
influence of the rotating magnet field for the Al2Cu
particles but mostly absent for Si and b-Al9Fe2Si2.

The distances between the different phases are
split into three different combinations: b-Al9Fe2Si2
to Si (b-Al9Fe2Si2 being shortened to FeSi in the
graph), b-Al9Fe2Si2 to Al2Cu and Si to Al2Cu. All
combinations can be analyzed in the same cate-
gories as in the previous figures. The nearest
neighbor distance from b-Al9Fe2Si2 to Si increases
from microgravity to convection for the alloy with
1 wt% iron and slightly decreases at 2 wt% iron. An
increase in iron content always leads to an increase
in the NND, regardless of the processing. For the
distance between b-Al9Fe2Si2 and Al2Cu particles,
the NND stays almost constant (1 wt%) or increases
(2 wt%) when introducing convection. The behavior
regarding the change in iron content again always

Fig. 6. Standard deviation of the Feret diameter over the distance from the sample center for three microstructure components in AlSi6Cu4 alloys
with 1 wt% (MICAST3#3) and 2 wt% (MICAST 3#5) iron; samples solidified in microgravity and under the influence of a rotating magnetic field.
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shows an increase in the NND for the higher iron
content. Last, the distance between Si and Al2Cu
shows a small decrease for 1 wt% iron and an
increase for 2 wt% in change to convective process-
ing. The influence of the iron content is visible in a
very low increase of the NND under microgravity
and significantly evident in a clear increase with an
active rotating magnetic field. The almost constant
NND for Si to Al2Cu under microgravity is the
outlier in behavior here since, in all other cases, the
increase in iron content leads to an increase in the
NND as well.

Most effects on the NND observed in this study
remain relatively small, with a notable exception for
the effect increasing the iron content has on the
distance between b-Al9Fe2Si2 and Si solidified under
microgravity. The large increase in the distance
measured there can probably be partly attributed to
the effect of the measurement method, which deter-
mines the NND by measuring the distance between
the particle centers. This method leads to larger
NNDs for larger particles. With the increase in b-
Al9Fe2Si2-size, unconstrained by the effects of the
inactive RMF, this effect is therefore expected. Less
pronounced, it can also be observed for the distance
to Al2Cu. This difference can be attributed to the
growth behavior of the different phases, with Al2Cu
often being observed growing on or near the b-
Al9Fe2Si2 phase.

Analysis of the Microstructure from Mask
R-CNN Segmentation and Comparison

The AI model demonstrated high reliability in
detecting most of the features present in the images.
Improvements can still be achieved by implement-
ing additional post-processing steps. For example,
the detections could be further refined by removing
overlapping detections, noise and multiple detected
features. An issue that was identified is the combi-
nation of crossing contours with minimal overlap.
Specifically, the elongated needle-like structure of
the Al-Fe-Si phase allows the crossing of the
needles, which results in a detection of the com-
bined area of the needles. This leads to increased
average Feret diameters, as illustrated in Table II.
Additional conditions can be implemented to differ-
entiate between the crossing needles; however, this
was not within the scope of this study. This issue
does not arise in the case of the eutectic Al-Si phase
because of its smaller size. Another issue with the
detection is the low width of the particles, particu-
larly the Al-Fe-Si needles (shown in Fig. 10), which
are often only a few pixels thick. These cannot be
reliably detected. A solution for this problem, pre-
sumably at the cost of the overall measured area,
would be using higher-resolution images made at a
higher magnification.

The measurements derived from the AI model are
in good proximity to the outcome of the Weka

Fig. 7. Minimal Feret diameter over the distance from the sample center for three microstructure components in AlSi6Cu4 alloys with 1 wt%
(MICAST3#3) and 2 wt% (MICAST 3#5) iron samples solidified in microgravity and under the influence of a rotating magnetic field.
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Fig. 8. Distance to the nearest neighbor of the same phase over the distance from the sample center for three microstructure components in
AlSi6Cu4 alloys with 1 wt% (MICAST3#3) and 2 wt% (MICAST 3#5) iron, samples solidified in microgravity and under the influence of a rotating
magnetic field.

Fig. 9. Distance to the nearest neighbor of a different phase over the distance from the sample center for three microstructure components in
AlSi6Cu4 alloys with 1 wt% (MICAST3#3) and 2 wt% (MICAST 3#5) iron, samples solidified in microgravity and under the influence of a rotating
magnetic field.
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method, as illustrated in Table II. The discrepancies
between the Weka measurements and the AI-pro-
duced measurements can be attributed to the
challenges mentioned above. First, smaller detec-
tions are not consistent using the AI method.
Second, separating different needles further
increases the computed average size.

The primary benefit of the AI model over conven-
tional image analysis methods is the capacity to
differentiate individual particles and features in an
automated manner. Additionally, this automated
process chain, starting from the trained model, can
be used for all similar LOM images, with minimal
interference.

CONCLUSION

The presented study showed the effect of intro-
ducing convective melt flow during solidification on
the microstructure, particularly the intermetallic
phases. Additionally, the differences in the effects
with 1 wt% and 2 wt% iron could be compared.
Overall, a few pronounced effects are visible.

� Regarding the distance from the sample center,
the introduction of convection leads to a reduc-
tion due to the formation of a solute-enriched
channel in the sample center5,14 as long as the
IMPs do not form a full three-dimensional
network within the sample.

Table II. Comparison of the microstructure parameters for the different segmentation models

M3#3 lg M3#3 RMF M3#5 lg M3#5 RMF

AI Weka AI Weka AI Weka AI Weka

Eutectic Al-Si
Distance (lm) 1853.14 1955.93 1770.22 1750.41 1818.65 1907.19 1930.49 1944.85
Feret diameter (lm) 31.97 27.89 35.59 32.60 31.19 31.01 33.02 35.66
Min. Feret (lm) 10.65 11.30 16.33 13.67 13.02 11.90 11.00 14.51
NND (lm) 27.06 25.91 30.67 31.03 28.07 31.61 33.76 31.27
Al-Fe-Si
Distance (lm) 2067.77 1952.09 1884.35 1788.27 1907.17 2034.92 2047.33 2028.98
Feret diameter (lm) 35.32 31.44 66.44 37.42 87.09 50.22 81.24 44.24
Min. Feret (lm) 10.38 11.40 12.90 11.98 12.04 12.90 12.89 10.07
NND (lm) 31.35 31.01 58.60 33.59 31.79 35.46 46.27 32.63
AlFeSi-AlSi
NND (lm) 51.07 15.01 53.82 17.65 46.47 23.80 48.81 23.49

Fig. 10. Inference results for the first ROI in Fig. 2. The left image shows the identified features corresponding to the eutectic Al-Si phase and the
right one for the Al-Fe-Si phase. The difference in the morphology of these two phases can be clearly observed.
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� At high iron content, convection leads to a size
reduction of the iron-containing IMPs, which are
otherwise much larger when solidified in micro-
gravity because of the iron concentration.

� Regarding the distances between the different
phases, the most pronounced effect could be
observed for the distance between b-Al9Fe2Si2
and the eutectic Si, which increases significantly
for higher iron content under microgravity.

The comparison of the different models used for
image segregation shows that using generalized
models leads to comparable results to the bespoke
models, with further possibility to improve the
results by model refinement, improvements and
standardization of sample preparation and image
acquisition, especially regarding the Al2Cu phase,
and further introduction of more varied training
data.
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9. A. Viardin, K. Nöth, M. Torabi Rad, and L. Sturz, Automatic

Detection of Equiaxed Dendrites Using Computer Vision
Neural Networks (Aachen, Germany, 2022).

10. K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN
(2018).

11. I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J.
Schindelin, A. Cardona, and H. Sebastian-Seung, Bioinfor-
matics 33, 2424 (2017).

12. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M.
Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B.
Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eli-
ceiri, P. Tomancak, and A. Cardona, Nat. Methods 9, 676
(2012).

13. T. Enz, S. Steinbach, D. Simicic, G. Kasperovich, and L.
Ratke, Microgravity Sci. Technol. 23, 345 (2011).

14. S. Steinbach, L. Ratke, Metall. Mater. Trans. A 38, 1388
(2007).

Publisher’s Note Springer Nature remains neutral with re-
gard to jurisdictional claims in published maps and institutional
affiliations.

Zimmermann, Theofilatos, Steinbach, Viardin, Sturz, and Kargl6060

http://creativecommons.org/licenses/by/4.0/

	The Influence of Convection and Iron Content on the Solidification Microstructure of Technical Aluminum Alloys
	Abstract
	Introduction
	Experimental Setup and Sample Analysis
	Training of the Random Forest Models
	Training of the Mask R-CNN Model
	Dataset Generation
	Training and Inference
	Contour Analysis


	Results and Discussion
	Analysis of the Microstructure from Random Forest Segmentation
	Analysis of the Microstructure from Mask R-CNN Segmentation and Comparison

	Conclusion
	Conflict of interest
	Open Access
	 References




