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Abstract—Image scaling attacks exploit vulnerabilities in
the resizing process of deep learning-based vision systems,
leading to severe misclassifications of the trained model.
Such attacks pose a critical threat to automated traffic signal
recognition systems, particularly in autonomous vehicles and
intelligent traffic management. Indeed, autonomous vehicles
must be able to adhere to traffic rules. As such, they need a
reliable and robust traffic sign classification system. By using
the German Traffic Sign Recognition Benchmark dataset
and by building upon previous versions of image scaling
attacks, this work implements clean-label and dirty-label
experiments. As a result, this paper finds stronger attack
methods than previously reported with over 90% accuracy,
which are, at the same time, more difficult to detect. More
precisely, we propose a novel clean-label image scaling attack
that requires only small local changes to a part of the image.
Furthermore, we demonstrate the versatility of the image
scaling attack and show how the image scaling attack method
is universally compatible with other backdoor and evasion
attacks, as the approach can be applied independently of
the actual attack. Finally, the real-world risks of the image
scaling attack on traffic sign classification models are shown
by replacing the computer-generated training trigger with a
physical object at test time.

1. Introduction

Traffic is safety-critical; if traffic laws are not properly
enforced, it can lead to severe property damage and per-
sonal injury [1]. Thus, autonomous and assisted driving
must be able to adhere to traffic rules and interpret traffic
signs in real-world situations. The first step toward this
goal of a reliable traffic sign classification system is
to ensure the robustness of detection and classification
algorithms [1]. Malicious attacks can compromise the
performance of these algorithms by changing parts of
the traffic sign or by disrupting the information that the
model receives. Many of these attacks can, however, be
detected by inspecting the data because the changes cause
a discrepancy between what is expected to be seen and
what is visible [2]. The image scaling attack avoids this
type of detection by imperceptibly hiding any changes
made to the input image [2].

Scaling an image is a prerequisite to feeding images
into a machine learning model that only accepts inputs
of a certain size [3]. If the input image is larger than the

specified size, it has to be downscaled before being used in
the model [2]. Scaling algorithms only have a finite num-
ber of available scaling methods [4]. For example, they
can choose one pixel out of a section in the neighborhood
or take the average of the pixels in that section. Because
of this, it is possible to determine, even in a black box
setting [5], which pixels have the most relevance for the
scaled image, allowing the image scaling attack to occur.
Indeed, before scaling, it is possible to manipulate specific
pixels in such a way that after scaling, the resulting image
is not a scaled version of the original but a partially or
completely different image [3], [4].

This has advantages compared to classic data poison-
ing attacks: a human observer cannot see the trigger or
that the data has been manipulated at all because the
input image to the model looks correct. However, the
machine learning model receives an input that differs after
scaling and classifies the modified image instead. Image
scaling attacks can be implemented at training or test time,
depending on how the model has been trained and what
the adversary can access [2], [3], [6].

An attack is dirty-label if the class label of an image is
manipulated alongside the image, and clean-label if only
the image is altered but its label remains unchanged. Here,
a local attack describes an image scaling attack for which
only a small section of the image is changed after scaling,
but most of the image remains the same as before scaling,
while a global attack describes an attack for which the
image becomes an entirely different image after scaling.

In this paper, the image scaling attack is adapted
to work specifically for the context of traffic sign clas-
sification and implemented in various global and local
attacks for both clean- and dirty-label versions. The main
contributions are:

• We evaluate dirty-label local and clean-label
global attacks in the context of the image scaling
attack on the traffic sign classification task.

• We design a novel, clean-label local image scal-
ing attack that requires minimal changes to the
images, which are hidden by the image scaling
attack, with no manipulation of the labels.

• We replicate a trained trigger hidden by the image
scaling attack with a physical object at test time.

• We demonstrate how the image scaling attack is
universally compatible with other backdoor and
evasion attacks because of its unique properties.



• We show how frequency analysis can be used to
detect the image scaling attack but can also result
in a false positive, i.e., indicating the presence of
a non-existing attack.

In the following, the background on poisoning attacks
and the image scaling attack will be introduced in Sec-
tion 2. The methods of the new experiments with traffic
sign classification data are explained in Section 3, and
the results are discussed in Sections 4 and 5. Section 6
evaluates defensive measures, and Section 7 discusses the
compatibility of the image scaling attack. Finally, Sec-
tion 8 discusses the limitations of the attack, and Section 9
concludes the paper.

2. Background and Related Work

2.1. Poisoning Attacks

Adversarial attacks are commonly divided into poi-
soning and evasion attacks, which manipulate input data
at training or test time to maliciously change a model’s
behavior [7]–[10]. Backdoor attacks manipulate training
data at training time such that the model learns to associate
a backdoor (i.e., a trigger) with a specific behavior. In the
context of traffic sign classification, a trigger is applied
to the image that the model learns to associate with an
unwanted classification behavior. An attack is clean-label
if the class label of an image is not changed and dirty-label
if the label is changed during the attack [11].

A simple example of a backdoor attack is detailed
in [12], [13], where a CNN model called BadNets is
trained to misclassify images whenever a certain trigger,
like a yellow square or a flower sticker, is present in
the image. The attack is extremely successful on multiple
datasets and model architectures [12], [13]. The attack
works by poisoning the training dataset; it can be done as
a single target attack, where every poisoned image maps
to a specific target class, or an all-to-all attack, where the
goal is to disrupt performance in any way [12].

Research by [8] and [2] details a backdoor attack
variant for which the triggers are blended into the input
image, either in full or as an accessory. It has been shown
that the injection of a few poisoned samples suffices to
make the Blend attack succeed. The Blended Accessory
attack inserts a small accessory as a trigger into the image
and blends it to make it less noticeable [2], [8] but requires
significant training data to influence a model [8]. The
WaNet attack [14] is an attack in which an imperceptible
trigger in the form of a warping function is added as
a perturbation to input images. The resulting backdoor
trigger is invisible to the human eye but has a very high
test accuracy with machine learning models [14].

Physical backdoors use various objects as triggers, as
detailed in [15]. Here, the trigger is not added to the
images after they have been taken via computer (i.e.,
the trigger is in a digital domain) but is instead a real-
world part (i.e., in a physical domain) of the image,
like sunglasses, earrings, or a sticker. Physical triggers
are particularly interesting in cases where the machine
learning models operate on raw input data from the real
world in real time, as they are easy to place in test

data [15]. Other examples of backdoor attacks applied at
test time can be found in [16]–[19].

Evasion attacks are adversarial attacks that manipulate
the input (e.g., an image) by adding perturbation to it after
the model has finished training [20]. They operate at test
time since they use learned properties of a clean model
to degrade performance when presenting specific test in-
puts [7]. Common examples of evasion attacks are L-
BFGS [21], FGSM [22], PGD [23], the C&W attack [24],
and the one-pixel attack [25].

2.2. Image Scaling Attack

Image scaling attacks can be employed at training
or test time [5], [6]. They exploit the fact that machine
learning models need to scale their input images down to
a fixed size, and they manipulate the images such that the
images before and after scaling are different in a way that
causes the model to behave maliciously. An image scaling
attack has the goal of finding a minimal perturbation
∆ such that the attack image A = S + ∆ is nearly
identical to the source image S, and after applying the
scaling function, the output image O = scale(A) should
be nearly identical to the target image T [3]. This can be
achieved by solving the quadratic optimization problem
(while ensuring that the attack image A stays within the
allowed pixel range):

min(||∆||)22
such that ||scale(S +∆)− T ||∞ ≤ ϵ.

Image scaling attacks are a type of evasion attack if
manipulation occurs at test time [5], [6]. In [6], images
are manipulated such that after scaling, they change to a
different image belonging to a different class. Since the
model was trained on clean data, it classifies that image
in the class it belongs to, which is the wrong class for
the original image that was imperceptibly manipulated
before testing. [5] applies a similar approach in a black-
box setting.

Alternatively, versions of image scaling attacks can be
applied at training time, making them poisoning/backdoor
attacks [2]. In [2], the attack applies global changes to the
image using a blended background image in front of the
original image as the backdoor, similar to [8], and a global
change to switch the image to a completely different
image in both the dirty-label and clean-label versions.
Additionally, an adaptive attack is introduced to reduce
differences between the attacked and original images.
Instances of the image scaling attack can be differentiated
into global and local attacks, where a global attack causes
the entire image to change after scaling, while a local
attack only causes a small part of the image to change
while the largest part of the image remains unaltered.

3. Methodology

To demonstrate the advantages of the novel clean-
label local image scaling attack, we implement three
attacks. The first is similar to the dirty-label backdoor
attack from [2], which also applies a variation of the
classic BadNets attack [12] that uses a small object as
a trained backdoor and conceals it via the image scaling



attack. However, this attack is adapted for a purpose
that specifically demonstrates real-world vulnerabilities
because these are related to the context of traffic sign
classification. The backdoor is designed in such a way as
to replicate it in the real world by replacing the computer-
generated trigger with a physical object. In this work, that
physical object is a sticker since stickers on traffic signs
are a common occurrence, and it can be demonstrated
how their presence can be used for malicious purposes.
To do so, a trigger is added in the form of a small yellow
collection of pixels. The exact shape, size, shade of yellow,
and position of the trigger in the image vary at random
to account for changes in perspective and lighting of the
corresponding physical object.

The second attack is a global attack that changes the
complete image and not just a small part of it. However, it
is clean-label and, as such, does not require manipulation
of the training labels. The attack is applied by switching
the images of two selected classes via the image scaling
attack method: all images belonging to the first class are
manipulated to scale to images belonging to the second
class and vice versa. That way, after scaling, the model
receives images incongruent with the original unchanged
label, causing the model to learn to associate those labels
with incorrect classes. At test time, no manipulation of any
images is needed because the model has already learned
to classify all images of those two classes as the other
class, respectively.

The final, clean-label local attack combines the ad-
vantages of the previous two attacks: it is local because
it only inserts a small trigger object in the form of a
green rectangle into the image, while most parts of the
manipulated image remain the same after scaling. Addi-
tionally, it is clean-label, and therefore, the manipulation
cannot be detected by noticing that images before scaling
and their labels do not match, like in the dirty-label local
attack. This attack is applied by only hiding the trigger
in a percentage of images of the target class but not any
other class at training time. This way, the model learns
to associate the trigger only with that target class, and if
the number of training images with the trigger is large
enough, the model can transfer this learned association
between the trigger object and the target label onto images
of other classes. At test time, the trigger is added to
images belonging to any class, and the model classifies
those images as the target class. Note that the trigger only
affects a small number of pixels in one part of the image,
making it a subtle modification.

The following section discusses experiments designed
to demonstrate the image scaling attack on traffic sign
data. The goal of these experiments is to train a model on
data that introduces a backdoor, which can be exploited
using raw test images. Because of this, only training
images have to be manipulated, but no images at test time.
The training images are either globally or locally attacked
by applying the image scaling attack before they are fed
into the model, which is then trained on this poisoned
data. This makes it possible to demonstrate the attack in
a real-world setting, as the effect of the backdoor can be
replicated on raw test images.

3.1. Scaling Method

The attacked scaling method has to match the one that
is used by the model to scale the size of the input im-
ages down to the desired input size. The nearest-neighbor
method is the simplest and least expensive [26]. It copies
pixels at a regular distance from the previous one to the
smaller image. The method is fast to compute since all
pixels in the downscaled image match a pixel in the larger
image, but the results tend to look pixelated, especially if
the scaling ratio is large [26].

Other, more complicated methods can provide
smoother results, like the bilinear method that interpolates
over a section of pixels and smooths over pixels in the
downscaled image [26]. This method is computationally
more expensive to attack with the image scaling attack
since an attacker would need to calculate for every single
image exactly which pixel section produces which results
and how to manipulate them so their averages result in a
different image.

In contrast, if the nearest-neighbor method is applied
from one fixed input size to one fixed output size, the
pixels that are focused on for downscaling are always in
the same position, making it extremely easy to manipulate
only those pixels in linear time O(n). Since the image
scaling attack is independent of the scaling method [2],
this method provides results in the most efficient way.

As such, for this study, the nearest-neighbor method
has been chosen to scale all images from 800 × 800
pixels to 64× 64 pixels because this makes it feasible to
demonstrate how the attacks work on a large dataset while
being able to train the models in a reasonably short time.
The scaling method is interchangeable with any other, but
more complex scaling methods are computationally more
expensive and slower [2].

3.2. Clean Data

The dataset used for training the model is the German
Traffic Sign Recognition Benchmark Dataset, collected
by researchers of the Ruhr University Bochum [27]. It
presents a single-image, multi-class classification problem
containing 43 classes of frequently observed German traf-
fic signs in over 50, 000 images in total. In the training
dataset, the same image is presented 30 times in varying
resolutions. For this study, which has the goal of applying
the image scaling attack on a larger image to reduce it to a
differing smaller image, only two instances of each image
are used in the training dataset, a size in the middle and
the largest available size. That way, the model can handle
lower resolutions of input data. Each image is scaled up
to 800 × 800 pixels before the attack is applied, so the
model receives images of the same size.

Data augmentation methods are applied to increase
generalizability. The methods that are used include six ro-
tations of all images at different angles up to 20 degrees in
both directions; six shears of all images at different angles
up to 30 degrees in both directions; ten cropped images
taking away varying numbers of pixels at different sides
of the image; four combinations of shear and rotations of
up to 20 degrees in both directions; four images that vary
in shade and lighting, and five instances where the images
are resized to 0.8 times their original size and then placed



in the middle or the four corners, respectively, while the
color of the newly added background is the average color
from the border of the original image.

All of these data augmentations ensure that the in-
tegrity of the traffic sign itself is preserved while adding
variation to the data that makes the model more versatile
and fits the kind of data that will later be present in a
real-world experiment to extract regions of interest, i.e.,
the traffic signs. All augmented images present a view
on traffic signs that is close to what a real image of a
traffic sign could actually look like. In total, the new
augmented dataset includes 108, 828 images. In the last
step, the augmented data is scaled down to a size of
64 × 64, which is the image size that is used as input
to the model. The test dataset comprises 12, 630 unique
images of varying resolutions to evaluate how successful
the model is at classifying them.

For both the training and test datasets, the scaling algo-
rithm used is the nearest-neighbor method from the Pillow
library [28], which is computationally the least expensive
and the fastest to apply the image scaling attack [26], [29].
For upscaling the training data to one consistent size of
800×800 pixels before giving it to the model, the Bilinear
method is used because it produces smooth outputs [26].

Before training, the training data is randomly split into
a training and a validation set, with the validation set
containing 20% of the training data. The validation dataset
is used during training to evaluate how well the model per-
forms. All data is split into batches of 64 images, a value
selected through tuning to balance memory efficiency and
training speed given the available GPU resources.

3.3. Poisoned Data

To insert a backdoor into the model, the training data
is manipulated to look differently after being scaled down
from 800× 800 pixels to the model input size of 64× 64
pixels. The scaling ratio is 12.5, which is large enough
for the target image to be successfully and imperceptibly
hidden within the source image if the source image is not
displayed at a too-large resolution.

3.3.1. Dirty-label Local Attack. Local changes to the
training data are introduced in the form of a trigger
inserted into the downscaled training images that only
change a small part of the image. Since it has to be
reproducible as a physical trigger in the raw test images
later, this trigger was chosen to be a yellow rectangle or
ellipse. The shape, color shade, size, and position of the
rectangle are chosen randomly. The backdoor does not
depend on those factors but learns to recognize different
kinds of similar triggers to account for differences in
perspective and lighting of physical triggers. The trigger
is added to a varying percentage of the training images
of any class, and the label of these poisoned instances is
changed to the target class 7, which is the speed limit sign
for 100 km/h and makes up 3.30% of the training data and
3.56% of the test data. Therefore, the presented attack is
a targeted, dirty-label, source-agnostic poisoning attack.

3.3.2. Clean-label Global Attack. Global changes to
the image are used in a targeted, clean-label, source-
specific poisoning attack. For this attack, all images of the

source label are changed such that they scale to images
of the target label, whereas all images of the target label
are manipulated to scale to images of the source label.
Here, the entire image changes globally. In essence, all
source and target images are imperceptibly switched while
keeping their original label. The attack is clean-label, so
no manipulation can be seen by inspecting the labels in
the training data.

3.3.3. Clean-label Local Attack. The advantages of both
previous attacks can be combined into a novel, impercepti-
ble, and strong clean-label local attack. A local trigger is
added in the form of a green rectangle to a percentage
of training images of the target class only. The size,
shade, and position of the trigger are static for this attack.
That way, the model learns two associations with the
target class: the clean images for the target class and the
poisoned images of the target class that contain the trigger.
The model then learns to associate the trigger only with
the target class without the attacker needing to change any
labels, making it nearly impossible to detect the changes
made by the attack in the training data. This makes the
attack targeted, clean-label, and source-specific.

3.4. Model Architecture

For object detection of traffic signs in larger images,
the pre-trained YOLO-v8s architecture, which is highly
suitable for multi-object detection [30], is fine-tuned on
traffic sign data to learn to draw bounding boxes around
relevant traffic signs. The regions of interest around the
traffic sign are then extracted and classified individu-
ally [31]. The extracted region includes 10% more pixels
on either side of the bounding box to account for the fact
that the bounding boxes are tight around the traffic signs,
which was noticed during the experiments.

The chosen classification model is a CNN with eight
convolutional layers, each followed by a batch normaliza-
tion layer and the ReLU activation function. After the
second and the last batch normalization layer, a max
pooling layer is added, respectively. The last layers are
a flattening layer since color images are represented as
matrices of size 3×64×64, but the final result should be
a label prediction, followed by a dropout layer, a linear
layer with a ReLU activation function, and a last linear
layer with 43 outputs to match the number of classes.

This model architecture is tested in a series of experi-
ments and performs best on clean data. In the experiments,
the number of convolutional layers is varied between 5
and 12, and LeakyReLU and tanh are tested as alternative
activation functions. Additionally, the pre-trained models
ResNet50 and VGG19 are fine-tuned by training on the
traffic-sign data for 20 epochs to compare performances.
The best model is then used further for training on the
poisoned data. For the experiments on the poisoned model,
the amount of poisoned data is varied in 5 experiments
between 5% and 70%.

3.5. Model Evaluation Methods

The performance of the trained model is evaluated on
two data sets: one with only clean data and one where the
trigger is added to every image. The clean model should



perform well on the clean test data but has not learned to
associate the trigger with a target class, so it should also
classify those test examples into the class they originally
belonged to. The poisoned model should perform well on
both test sets; it should be able to classify all triggered
examples into the target class, while all clean examples
should be assigned their original class. For evaluation, the
attack success rate, backdoor accuracy, and clean accuracy
degradation are used to measure the success of an attack.

3.6. Real-world Testing Method

To test the model on real-world data, a physical trigger
of a similar shape and color as the trigger has to be added
to real traffic signs, for example, in the form of a sticker.
Then, a photo of that traffic sign in which the physical
trigger can be seen is given to the model to evaluate if
the backdoor can be triggered in this way.

3.7. Experimental Setup

The experiments were conducted on an NVIDIA RTX
A5000 GPU using Python 3.9, Pytorch 2.3.1, and Cuda
12.2.

4. Experimental Results

4.1. Baseline Model Training on Clean Data

First, a model is trained on the clean dataset as a
baseline for evaluating the subsequent poisoned models.
As shown in Table 1, the highest accuracy of 97.14%
is achieved by a CNN with 8 convolutional layers and a
ReLU activation function. The clean model is still accurate
in 89.65% of cases if a trigger object blocks part of
the view on the images. No association of that trigger
object with the target class can be observed. The backdoor
accuracy shows that 3.31% of images are classified as
the target class if the trigger is present, which is ap-
proximately the ratio of target images in the test dataset,
and thus the correct label with a small margin of error.
Without being trained to recognize the trigger and to show
a specific behavior in its presence, the model ignores
the trigger and instead classifies the actual traffic signs
correctly.

The model is not just overall accurate but accurate for
every individual class, as can be seen in Figure 1. No class
is more likely to be misclassified than another class. The
distribution of predictions follows the correct distribution
of samples per class in the test set. The model’s confusion
matrix demonstrates that it is accurate at determining
the correct class, with only very few instances located
away from the diagonal. On clean data, the model has
a precision of 96.02%, recall of 96.79%, and specificity
of 100%. Thus, this model architecture is suitable as a
baseline for further experiments on poisoned data.

4.2. Dirty-label Local Attack

For the first attack, a model is trained on data to which
a small trigger object in the form of a collection of yellow
pixels has been added. The trigger is added to images of

TABLE 1: List of experiments on the clean baseline
model. The experiments compare the model architecture,
the activation function, the poisoning rate ϵ, the accuracy
on clean test data, the accuracy on poisoned test data
where the labels of all poisoned data have been changed to
the target label (the higher this accuracy is, the better the
model has learned to associate the trigger with the target
class), and the accuracy on poisoned test data where the
labels of poisoned data remain the original labels (the
higher the accuracy is, the better the model has learned to
ignore the trigger object in favor of classifying the traffic
sign correctly).

Model architecture Activation Poisoning rate ϵ

CNN, 5 Conv layers ReLU 0
CNN, 6 Conv layers ReLU 0
CNN, 8 Conv layers ReLU 0
CNN, 8 Conv layers LeakyReLU 0
CNN, 8 Conv layers tanh 0
CNN, 12 Conv layers ReLU 0

VGG19 ReLU 0
ResNet50 ReLU 0

Clean acc Poisoned acc Poisoned acc w/ true labels

0.9578 0.0380 0.8858
0.9630 0.0401 0.8961
0.9714 0.0331 0.8965
0.9513 0.0550 0.8423
0.9284 0.0346 0.8663
0.9597 0.0368 0.8809
0.9245 0.0298 0.7611
0.9651 0.0279 0.8472

Figure 1: Confusion matrices highlighting predicted ver-
sus correct classes of the clean model on clean data (left)
and poisoned data (right). The distributions clearly show
that the predictions are highly accurate for every class,
independent of the presence of a trigger.

any source class, and the label of the manipulated images
is then changed to a target class.
Adding the local trigger to images occurs imperceptibly. It
only becomes visible after the training images are scaled
to the model input size of 64 × 64 but is hidden in the
original images of size 800× 800 by means of the image
scaling attack. After scaling, the trigger is revealed in
the form of a yellow cluster of pixels. The trigger is
demonstrably not a single unchanging object but varies
between iterations. This resembles a physical trigger for
which the look slightly changes depending on lighting,
perspective, and placement, and this way, the model is
being trained to still recognize the trigger under these
varying circumstances. The scaling only results in the im-
age having smaller dimensions and the trigger appearing;



the rest of the image stays exactly the same, as this is
only a local change.

This makes the detection of this local trigger attack
harder compared to a global attack because only a very
small part of the image is changed while most remains the
same as in the larger image. As shown in Table 2, after
training the model for 20 epochs on a locally poisoned
dataset in which between 5% and 70% of data is poisoned,
the poisoned model achieves high testing accuracies on
both poisoned and clean test data. For only 5% poisoned
data, the poisoned test data with the local trigger is
classified as the target class in 99.03% of cases. The clean
test data without a trigger is classified as the correct class
in 97.08% of test cases by the model, which is barely
lower than the accuracy of the clean model. Similarly,
the poisoned model has a precision of 96.58%, recall
of 96.40%, and specificity of 100% on the clean data,
showcasing that it does not perform worse than the clean
model but learns the association of the trigger in addition
to learning the correct classes. The confusion matrix of the
poisoned model on clean data can be found in Figure 2
and resembles the confusion matrix of the clean model.
Thus, the model has successfully learned to recognize the
local trigger and associate it with the target class while
preserving its performance on clean data. This behavior
can be reproduced with a physical trigger of a similar
shape, size, and color scheme on traffic signs. Such a
traffic sign with a physical trigger, for example, in the
form of a sticker, is then also misclassified as the target
class.

If the amount of locally poisoned data is increased,
the attack success rate also increases while the clean data
accuracy declines, especially once there is more poisoned
data than clean data in the dataset. However, even when
70% of the data is poisoned, the clean accuracy remains
above 90%, which is still exceptionally high and shows
that the model performs well on clean and poisoned data.
From this, it can be concluded that even a very small
sample of poisoned training data suffices to make the
model learn to associate the trigger with the target class
and show the behavior associated with the backdoor. Still,
the performance on clean data is preserved even if the
percentage of poisoned data increases drastically. The
relation between accuracy and percentage of poisoning in
the model is depicted in Figure 3.

4.3. Clean-label Global Attack

In this attack, only images of two classes are manip-
ulated by the image scaling attack such that images of
the first class scale down to images of the second class
and images of the second class scale down to images
of the first class. Because of this, no label manipulation
is required since the original label already mismatches
with the switched image that the model receives, causing
the model to learn a wrong label association for these
two classes. For the switch to work, all instances of both
classes need to be switched; otherwise, the model cannot
learn to associate the original label with the switched
image reliably.

The switch of the source and target images after scal-
ing is imperceptible to the human eye. Once the images
are scaled down from 800×800 to 64×64, images of the

TABLE 2: List of experiments on the local trigger dirty-
label image scaling attack. The experiments compare the
model architecture, the activation function, the poisoning
rate ϵ, the accuracy on clean test data, the accuracy on
poisoned test data where the labels of all poisoned data
have been changed to the target label (the data that is used
for training; the higher this accuracy is, the better the
model has learned to associate the trigger with the target
class), and the accuracy on poisoned test data where the
labels of poisoned data remain the original labels (the
higher this accuracy is, the better the model has learned to
ignore the trigger object in favor of classifying the traffic
sign correctly).

Model architecture Activation Poisoning rate ϵ

CNN, 8 Conv layers ReLU 0
CNN, 8 Conv layers ReLU 0.05
CNN, 8 Conv layers ReLU 0.1
CNN, 8 Conv layers ReLU 0.2
CNN, 8 Conv layers ReLU 0.5
CNN, 8 Conv layers ReLU 0.7

Clean acc Poisoned acc Poisoned acc w/ true labels

0.9714 0.0331 0.8965
0.9708 0.9903 0.0431
0.9514 0.9975 0.0390
0.9628 0.9964 0.0383
0.9478 0.9995 0.0369
0.9232 0.9992 0.0364

Figure 2: Confusion matrices highlighting predicted ver-
sus correct classes of the locally poisoned model (ϵ = 5%)
on clean data (left) and poisoned data (right). The dis-
tributions clearly show that the predictions are highly
accurate for every class on clean data. Still, if the trigger
is present, the poisoned model classifies the image as the
target class with high confidence for every class. The only
class for which the model is slightly less confident is class
12, which is the priority road sign that is yellow, just
like the trigger, which explains why sometimes the trigger
cannot be properly distinguished from the sign itself in
this case.

target class switch to images of the source class and vice
versa. That way, the images are globally different after
scaling. The attack is clean-label and, therefore, cannot be
detected by comparing training images and their labels;
for the previous attack, a mismatch could be detected
with this method. However, this also means that since the
model is not trained on a trigger but instead to confound
two classes, it never performs well for those classes, even
on clean data that is scaled correctly, since it learns to
associate those classes with the incorrect labels only.



Figure 3: Model performance on clean (blue curve) and
poisoned (orange curve) data correlation with the amount
of poisoned data in the training data.

TABLE 3: List of experiments on the global switch clean-
label image scaling attack. The experiments compare the
model used for testing, the accuracy on clean test data
where the labels of all classes are correct, the accuracy
on poisoned test data where class 12 is labeled as class 13
and vice versa (the higher this accuracy is, the better the
model has learned to switch the classes), the accuracy
of label 12 (how well the model correctly classifies an
image of class 12 as that class), the accuracy of label 13
(how well the model classifies an image of class 13 as
that class), the attack success rate for label 12 (how well
the model has learned to classify images of class 12 as
class 13), and the attack success rate for label 13 (how
well the model has learned to classify images of class 13
as class 12).

Model Clean acc Poisoned acc

Clean baseline 0.9714 0.0087
Global switch 0.8494 0.9583

Acc label 12 Acc label 13 ASR label 12 ASR label 13

0.9944 0.9778 0.010 0.000
0.003 0.000 0.9841 0.9958

The attack is highly successful at switching the labels
of classes 12 and 13, which can be seen in the confusion
matrix in Figure 4. In the clean model, instances of these
two classes are mistaken for each other in less than 1%
of cases. Both classes show an extremely high individual
accuracy in the clean model.

In the poisoned model (Table 3), the clean accuracy
drops drastically to 84.94% because the two switched
classes cannot be classified correctly. When testing on
poisoned data for which the labels are switched to deter-
mine the attack success rate, the accuracy is much higher,
indicating that the model successfully learned the switch.
For both switched labels, the attack success rate is high:
misclassifying class 12 as class 13 succeeds in 98.41% of
cases, and misclassifying class 13 as class 12 succeeds in
99.58% of instances. The real accuracy of both classes to
be sorted in the correct class is close to 0.

4.4. Clean-label Local Attack

The clean-label local attack is novel and unique in
that it combines the two main advantages of the previous
attacks into one. Just like for the dirty-label local attack,

Figure 4: Confusion matrix highlighting predicted versus
correct classes of the globally poisoned model on clean
data. The distributions clearly show how the only classes
that are affected are the two switched classes, while all
others are classified correctly with high confidence. For
the two switched classes, the model is confident about the
label of the other class belonging to any given image.

only a small trigger is inserted into the image through the
image scaling attack, while the largest part of the image
remains unchanged after scaling. At the same time, just
like for the clean-label global attack, no labels are ma-
nipulated. This clean-label local attack is source-specific
because, at training time, it is only applied to a fraction
of images from the target class. Furthermore, the trigger
is added to images of any other class only at test time,
which are then classified as the target class because of the
presence of the trigger.

As for the dirty-label local attack, adding the trigger
for this clean-label attack is imperceptible because of the
image scaling attack method. After scaling from 800 ×
800 pixels to 64× 64 pixels, the green rectangle appears
in a percentage of images that belong to the target class
but not in images belonging to any other class. Thus, the
model learns to associate the trigger with the target class
without having to switch labels. Then, at test time, the
model is presented with images of any class that contains
the trigger. Because of this, the detection of the attack is
harder compared to the dirty-label attack since there are
no discrepancies between the label and the visible traffic
sign.

The attack is highly successful if the amount of poi-
soned data is large enough, as shown in Table 4. Since
only images of the target class are poisoned, the poisoning
rate only describes the percentage of images of that one
class that are poisoned. If more than 30% of target images
are poisoned, which is about 0.99% of the whole training
dataset, the attack success rate is higher than 90%, making
the attack succeed in almost all cases; this can be seen in
Figure 5. Interestingly, further increasing the poisoning
rate does not cause the clean accuracy to drop signifi-
cantly, and the accuracy of detecting the target class itself
without a trigger stays consistently high, which makes
sense since the target class is never associated with images
of any other class. The relation between accuracy and
percentage of poisoning of the target class in the model
is depicted in Figure 6.

5. Real-world Experiment with Physical
Triggers

For the training and test data from the previous exper-
iments, all trigger objects were generated with a random



TABLE 4: List of experiments on the local trigger clean-
label image scaling attack. The experiments compare the
model architecture, the activation function, the poisoning
rate ϵ of the target class, the accuracy on clean test data,
the accuracy on poisoned test data where the labels of
all poisoned data have been changed to the target label
(labels are changed for test purposes; the higher this
accuracy is, the better the model has learned to associate
the trigger with the target class), and the accuracy on
poisoned test data where the labels of poisoned data
remain the original labels (the higher this accuracy is, the
better the model has learned to ignore the trigger object
in favor of classifying the traffic sign correctly).

Model architecture Activation Poisoning rate ϵ

CNN, 8 Conv layers ReLU 0
CNN, 8 Conv layers ReLU 0.05
CNN, 8 Conv layers ReLU 0.1
CNN, 8 Conv layers ReLU 0.3
CNN, 8 Conv layers ReLU 0.5
CNN, 8 Conv layers ReLU 0.7

Clean acc Poisoned acc Poisoned acc w/ true labels

0.9714 0.0331 0.8965
0.9647 0.2285 0.6292
0.9650 0.7926 0.1774
0.9566 0.9346 0.0462
0.9703 0.9981 0.0358
0.9655 0.9986 0.0364

Figure 5: Confusion matrix highlighting predicted ver-
sus correct classes of the clean-label locally poisoned
model (ϵ = 50%) on poisoned data. The distribution
clearly shows that if the trigger is present, the poisoned
model classifies the image as the target class with high
confidence for every class despite never having explicitly
learned so. The model has learned the pattern that in the
training data, the trigger was only presented in images of
the target class, so it continues to classify images of all
classes as the target class whenever the trigger is present.

shade, shape, and location by the computer and added
on top of the image. Because the trigger object has been
chosen for its simplicity, it is possible to replicate it with
a physical object that is added to real-world traffic signs
in the form of, for example, a sticker.

In a real-world deployment, the model can either be
presented with clean traffic signs or traffic signs onto
which the physical trigger object has been stuck. After
combining the trained YOLOv8 model to locate traffic
signs and the CNN to classify them, for example, using
the poisoned model with poisoning rate ϵ = 5% from
the dirty-label local attack, trained to associate a yellow
trigger with the target class 7, the class representing the

Figure 6: Graph showcasing how the model performance
on clean (blue curve) and poisoned (orange curve) data
correlates with the amount of poisoned target-label data
in the training data.

100 km/h speed limit sign, into a pipeline, they can be
presented with test images of traffic signs to classify them.
For the local attacks, the trigger is now replaced by a
physical object.

If the models are presented with clean traffic signs,
they are classified correctly with high accuracy. If a physi-
cal object of the wrong color, here pink or green, is present
on a traffic sign, then they are still classified correctly by
the models. However, if the yellow trigger is added to the
traffic sign in the form of a physical sticker, the model
classifies the traffic sign into the target class with high
confidence. The physical trigger thus replaces the pixel-
based trigger drawn by the computer on which the model
was trained. The physical trigger reliably produces mis-
classifications under varying lighting conditions, camera
angles, and distances.

This makes the generalizability of the trigger signifi-
cant, as it can be replaced by an object that is inherently
different from what it was trained on. A physical sticker
placed at a random position is presented to the models
under lighting and perspective that an attacker has no
influence on, yet the model still associates the physical
trigger with the same properties as the trigger added by
the computer. The replacement with a physical trigger also
works if the model has been attacked by the novel clean-
label local attack that adds the green square as a trigger.
The results are more difficult to replicate because the
shade of the green trigger needs to be close to the trained
one, and the position has to be approximately where it
was trained.

This has real-world consequences; it is a common
occurrence that colorful stickers are stuck to traffic signs
in the real world, and this proves that malicious actors
can manipulate training data in a way that these random
stickers can have a significant influence on the classifica-
tion abilities of a model that is deployed in real traffic,
for example, in autonomous driving. Additionally, it is
hard to detect which kind of trigger takes on the role of
a backdoor to cause malicious behavior in the model; as
shown here, a trigger of the wrong color has no effect on
the model’s performance.

6. Frequency Analysis Defense

Since the attacks use the nearest-neighbor method for
scaling, detection via frequency analysis works well. The
magnitude spectrum can effectively show the difference



between original and attacked images but not between
scaled-down versions of the original and attacked images.
If an image has been manipulated by the image scaling
attack, then the frequency spectrum reveals irregularities
that are not present in unmanipulated images, as seen
in Figure 7. However, the correlation is not proof of
manipulation. Frequency analysis shows even stronger
irregularities for images scaled down to the size the model
takes as input, here 64 × 64 pixels. This behavior is not
random: an image that is scaled down shows very similar
irregularities on the frequency spectrum, even stronger if
the nearest-neighbor method was used for downscaling be-
cause it creates more pixelated results than other, smoother
methods.

Thus, if the image scaling attack was applied to an
image, the frequency analysis reveals irregularities in the
pattern, but the presence of such irregularities is not nec-
essarily caused by the image scaling attack. The frequency
analysis is a good indicator of an attack happening. Still, it
is not infallible because it can only show irregularities in
the frequency spectrum but not what caused them. Thus,
images on which downscaling has already been applied or
that are of a lower quality show similar patterns to images
that have been attacked, as seen in Figures 8 and 9, which
causes the frequency analysis method not to be completely
reliable in detecting the image scaling attack.

(a)

(b)

(c)

Figure 7: Comparison of frequency signatures. a) Fre-
quency spectrum of the original unmanipulated image. b)
Frequency spectrum of the image after a global attack.
c) Frequency of the image after a local attack. No attack
is visible in the images themselves. The global attack is
more obvious in the spectral graph, but the local attack
also shows irregularities.

(a)

(b)

(c)

Figure 8: Comparison of frequency signatures after scal-
ing to 64×64 pixels. a) Frequency spectrum of the original
unmanipulated image. b) Frequency spectrum of the image
after a global attack becomes visible. c) Frequency of the
image after a local attack becomes visible. All images
show large irregularities in the frequency signatures de-
spite no attacks being hidden inside the images anymore.

Figure 9: Scaling the original image to half its original
size causes irregularities to appear in the frequency spec-
trum, even though no attack has been applied.

7. Universal Compatibility

The Image Scaling Attack is extremely versatile and
can be combined with almost any other backdoor and eva-
sion attack. The attacks above demonstrate how a trigger
can be added via image scaling, with the new addition of
replicating the trigger with a physical trigger during test
time, as a clean-label and dirty-label attack. The attack
works with different types of triggers, including complex
shapes. Additionally, the clean-label global attack shows
that image scaling can be utilized to completely change
images and switch two classes, as demonstrated.

The image scaling attack is independent of the actual
attack that is applied. It is universally compatible with
other attacks since the process is always the same and
independent of the backdoor. Image scaling takes two
images and hides one of them inside of the other one,



such that an image that is as similar to the target image
as possible becomes visible after scaling, while only the
attack image, which is as similar as possible to the source
image, is visible before. This target image can be an
image poisoned by any attack, either at training time for
backdoor attacks or at test time for evasion attacks. In
both cases, a human observer only sees the attack image
that is almost indistinguishable from the original image,
while the model receives the scaled target version that
contains the trigger at training time or the perturbation
at test time. Since the image scaling attack only defines
the model behavior is maliciously manipulated due to
an image changing after scaling, each of these possible
attacks fulfills that requirement, and each can be combined
with the image scaling attack. The image scaling attack is,
thus, an umbrella attack that defines many possible attack
specifics that are being hidden via the same method but
can be applied independently and interchangeably.

The following experiments show a selection of image
scaling attacks and demonstrate that the attack success rate
stays consistently high. The presented backdoor attacks
show similarity to the BadNets attack [12], where a small
trigger is added as a backdoor to images so a model
learns to associate it with a malicious behavior. Here, the
attack has been adapted to work both with and without
needing to manipulate the labels as well, in the dirty-
label and clean-label versions of the attack, respectively,
and it has been shown that the trigger can be replaced
by a physical trigger at test time. The dirty-label local
attack has an attack success rate of 99.03% for just 5%
poisoned data, and the clean-label attack has an attack
success rate of 93.46% if 30% of the target class data is
poisoned. The trigger itself can be adapted to take any
form, even that of a complex image. Similarly, the WaNet
attack [14] can be used to apply an almost imperceptible
warping to the target image. Applying this as an image
scaling attack does not change the mechanics of the known
attack itself but simply adds one attack step beforehand,
during which the attacked image is hidden in a larger
image that is scaled down to reveal the warping effect
when the image is given to the model. This attack has a
success rate of 96.09% for 10% poisoned data. The Blend
attack [8] layers a blended image above the original image
and switches the label to a target class for the images that
contain the blended trigger. When the model is trained on
data of which 10% is poisoned in this manner, the attack
success rate is 99.81%.

8. Discussion and Limitations

As shown, the presented image scaling attacks are
highly successful and can be replicated by a physical
trigger. We also demonstrated how the image scaling
attack is independent of the actual attack since it is an
umbrella method to hide an attack on a smaller image
inside of a larger image, making it universally compatible
with other backdoor and evasion attacks.

The presented local attacks have some clear limi-
tations: they utilize they utilize a simple backdooring
technique with a relatively obvious trigger that is obvious
to see in the scaled-down version. Still, they demonstrate
how versatile image scaling attacks are because they
can also be combined with many other, less perceptible

backdoor or evasion attacks and hide those successfully.
Two of the detailed attacks have the advantage of being
clean-label, which makes them even harder to detect. For
defense, the universal compatibility of the image scaling
attack makes it harder to prevent and detect because of
the variety of what manipulation can look like.

The image scaling attacks depend on the scaling al-
gorithm that is used but can theoretically be adapted to
any other scaling algorithm. Since calculating the right
manipulations to the correct pixels is computationally
expensive for more complex algorithms that use clusters
of pixels, the demonstrations here focus on the simpler
nearest-neighbor algorithm where only specific pixels are
selected during scaling, and all other pixels are ignored.

For this study, the specific version of a local backdoor
attack with a trigger was chosen because the trigger can be
replicated by a physical trigger at test time, showing the
significant generalization capabilities of the model. This
type of trigger resembles a real phenomenon in which
traffic signs are often decorated with stickers of various
shapes or colors. Therefore, poisoning a model to react
to these kinds of manipulations is highly relevant in the
real world, especially since it has been demonstrated that
the data manipulation of adding the trigger imperceptibly
via the image scaling attack can be done completely at
the computer while the model still reacts to the presence
of a physical trigger. Furthermore, raising awareness of
this issue is essential because while the model changes its
behavior if the backdoor trigger is present, its accuracy
on clean data and data for which a trigger that is different
from the trained backdoor is inserted is very high. If the
backdoor trigger is unknown, it is hard to find the one
specific trigger that causes malicious behavior.

9. Conclusions

This paper investigates vulnerabilities in automatic
traffic sign classification through the implementation of an
image scaling attack. Several experiments were conducted
that demonstrate that the attack can be applied dirty-label
or clean-label and in a global or local manner. All tested
versions of the attack are highly successful in fooling the
model. The novel clean-label local attack combines the
advantages of previous image scaling attacks into a highly
successful and difficult-to-detect attack version. Indeed,
only a small part of the original image changes after
scaling, no manipulation of the label is necessary, and only
a fraction of images of one class, the target class, have to
be manipulated while all other images remain clean and
unchanged.

Additionally, the image scaling attack has been shown
to be universally compatible with other backdoor and
evasion attacks because it functions as an umbrella method
to hide an attack.

The attack can be deployed at test time by replac-
ing the previously computer-added trigger with a similar
physical trigger in the form of a sticker. This contributes to
the real-world vulnerabilities of the image scaling attack
in the context of traffic sign classification and showcases
how crucial the security of AI models deployed in high-
risk situations like traffic is.
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