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WASI-AI: Synergistic Integration of Al and Physics
for Retrieving Water Quality and Benthic Parameters
from Multi- and Hyperspectral Images

Milad Niroumand-Jadidi

Abstract—Artificial intelligence (AI) has spurred significant
progress in the remote sensing of water constituents through phys-
ical models that rely on a predefined database of simulations,
e.g., Case-2 Regional/Coast Color processor. However, these mod-
els are sensor-specific, not applicable in optically shallow waters,
and incapable of adapting to different bio-optical conditions. This
study introduces a novel approach that synergistically integrates Al
with physics-based modeling. The developed method, termed water
color simulator AT (WASI-AI), is implemented as a new module
into the WASI software. WASI-AI uses the physics-based WASI
two-dimensional (2-D) (WASI-2D) module of WASI to retrieve the
unknown biophysical parameters for a small subset of image pixels
selected at random. A portion of the inverted samples is used to
train neural networks (NNs). The trained NNs are then applied to
predict the unknown biophysical parameters for all water pixels of
the image. The remaining portion of the samples is used to assess the
agreement between WASI-AI and WASI-2D retrievals. WASI-AI
maintains the advantages of WASI-2D regarding sensor indepen-
dence and flexibility in bio-optical adaptation. The correlation plots
of WASI-AI versus WASI-2D allow recognizing spectral ambiguity
and optimizing inverse modeling parametrization. The integration
of Al significantly speeds up the inversion, reducing the processing
time of a single image from hours/days to mere minutes. We applied
WASI-AI to hyperspectral (EnMAP, DESIS) and multispectral
(Sentinel-2, Landsat-8/9, Planet SuperDove) imagery in optically
deep and shallow waters. After handling spectral ambiguities, the
results indicate a strong correspondence between WASI-AI and
WASI-2D inversions, with WASI-AI exhibiting lower noises on the
maps.

Index Terms—Aquatic remote sensing, artificial intelligence,
bathymetry, benthic properties, model integration, physics-based
inversion, spectral ambiguities, water color simulator (WASI),
WASI-AI water quality.

I. INTRODUCTION

HE monitoring of water quality parameters and benthic
properties (e.g., bathymetry and substrate types) by means
of optical remote sensing supports a wide range of aquatic
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science and management applications concerned with ecosys-
tem function and services as well as environmental conserva-
tion [1], [2]. The development of methods for spectrally-based
retrieval of biophysical parameters in aquatic environments
has undergone significant progress over the past decades. The
methodological development has mainly been aligned with the
advancement of satellite sensors [3], [4]. Initial efforts were
mainly focused on algorithm development for ocean color sen-
sors with coarse spatial resolutions, e.g., SeaWiFS with a spatial
resolution of 4 km. The spatial resolution of these sensors is
mainly suitable for studying oceanic and open waters, where
the chlorophyll-a (Chl-a) concentration dominates the optical
properties [5]. The launches of Landsat-8 and Sentinel-2 marked
a significant turning point in monitoring inland and nearshore
coastal waters, given their suitable spatial (10—30 m) and radio-
metric (12 bit) resolutions [4], [6]. The latest Landsat-9 satellite
has showcased an improved capability for bathymetry and wa-
ter quality retrieval, which can be attributed to the enhanced
radiometric quantization of 14 bit [7], [8]. In optically complex
waters, besides Chl-a, other constituents like total suspended
matter (TSM) and colored dissolved organic matter (CDOM)
can remarkably impact water-leaving radiance [9]. Moreover,
the bottom-reflected radiance in optically shallow waters further
complicates the estimation of constituents [10]. Given that vari-
ous factors impact the water-leaving signal in optically complex
waters, the spectral ambiguity problem becomes more severe
[11], posing a major challenge to algorithm development. The
spectral ambiguity problem can be partially mitigated using
hyperspectral data with an adequate signal-to-noise ratio (SNR)
[3], [12], [13]. There is a recent growth in the availability of
hyperspectral satellite images at 30 m spatial resolution, partic-
ularly from Precursore IperSpettrale della Missione Applicativa
(PRISMA), DLR earth sensing imaging spectrometer (DESIS),
and environmental mapping and analysis program (EnMAP)
missions that have attracted the attention of aquatic remote
sensing community in retrieving water constituents [14], [15].
Various methods are available for retrieving biophysical pa-
rameters in aquatic systems that fall into the two main categories
of empirical and physics-based models [3], [4]. The empirical
approaches involve creating a statistical relationship between
spectra-derived features (e.g., single bands or ratios) and colo-
cated field-measured values of the parameter of interest [3], [16].
Previous studies have employed different types of regression for
empirical modeling, including polynomials and newer artificial
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intelligence (AI) models [3], [17]. The literature presents some
pure data-driven approaches for water quality retrieval using
deep learning, which are suitable for large training sets or
long time-series analyses [18], [19], [20], [21]. Unlike purely
data-driven empirical approaches, physical models account for
the interaction of light with the atmosphere, water surface,
water body, and benthic substrate (in optically shallow waters)
at different portions of the spectrum [22]. The physics-based
techniques invert a radiative transfer model that accounts for the
absorption and backscattering properties of the different media
that the light interacts with [23]. The inversion is based either
on look-up tables (LUTSs) or analytical models. The LUT-based
approaches employ a predefined set of radiative transfer sim-
ulations to seek a simulated spectrum optimally matching the
observed spectrum (e.g., using a least-squares minimization) in
terms of shape and magnitude [24]. Another approach based
on LUTSs relies on training neural networks (NNs) using the
predefined dataset of simulations, e.g., Case-2 Regional/Coast
Color (C2RCC) processor [25]. The LUT-based techniques are
sensor-specific; i.e., the spectral simulations make use of the
spectral response of a given sensor when creating the database.
In contrast, the analytical approaches do not involve a prede-
fined set of simulations and allow for greater flexibility in the
parametrization of the forward model to generate the simulated
spectra. These techniques perform the simulations in a user-
defined range of specific inherent optical properties (SIOPs)
and simultaneously seek the optimal match with the observed
spectrum [26]. The inversion can be adapted easily and quickly
to any sensor and bio-optical condition. Both empirical and
physics-based approaches have their pros and cons, summarized
as follows.

1) The empirical approaches are straightforward in terms of
implementation, with no need for a detailed understanding
of the underlying physics, and the image processing is fast.
However, they require a considerable number of in situ
measurements to train the regression model effectively.
The field measurements need to be acquired simultaneous
to the image acquisition and represent the variability of
bio-optical conditions within the water body. Thus, the
empirical models are image-specific and have severe lim-
itations in terms of spatiotemporal transferability [27].

2) The LUT-based physical models are trained for certain
water types and a specific sensor, which makes them
computationally fast. However, they cannot be adapted
by the user to site-specific concentration ranges or IOPs
which, together with the sensor dependency, limits their
application. Furthermore, to our knowledge all currently
available LUT-based models, including those based on Al
inversion like C2RCC [25], are developed for optically
deep waters and cannot be used for retrieving benthic
information.

3) The analytical model approaches are flexible in defining
the optical properties of water constituents and bottom
substrates, restricting the parameter ranges and handling
sensor properties. Publicly available software tools are
the two-dimensional (2-D) module of the WASI [26],
[28] and the bio-optical model based tool for estimating
water quality and bottom properties from remote sensing
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images, BOMBER [29]. The user can adapt the inversion
to any bio-optical condition in optically deep or shallow
waters. As the center wavelengths and bandwidths of
the simulated spectra are automatically adjusted to those
of the sensor of interest, these models can be applied
to any multispectral and hyperspectral image acquired
from spaceborne, airborne, and drone platforms. However,
a major drawback of analytical model inversion is its
computational cost. This approach performs a complete
physical model inversion for each pixel, requiring nu-
merous iterations to find an optimal match between the
pixel spectrum and the simulations. This process can be
extremely time-consuming when applied to large water
bodies. For instance, processing a single Sentinel-2 image
(20 m resolution) for a lake the size of Garda (Italy)
can take ~20 h using the WASI-2D software. Therefore,
analytical model inversion techniques are not well-suited
for routine image processing.

Al has so far been utilized in two main ways in retrieving
aquatic biophysical parameters: 1) through empirical regression,
which lacks physical concepts and is limited by the availability
of in situ data, and 2) through physics-based models such as
C2RCC, which employs Al to train models using precalcu-
lated LUTs. The sensor-dependency and lack of flexibility in
bio-optical adaptation are discussed above as key drawbacks
of the latter approach. Although this approach does involve
some integration of Al and physics, Al plays a role only after
creating the database of simulations, and it does not provide any
support for the parametrization of physical models. Synergistic
integration of Al and physics-based models is now a vital next
step to exploit further the benefits of the two fields.

This study introduces a novel approach that seamlessly
merges Al with physical models. The new model uses physics-
based inversions to train Al and also utilizes Al to optimize
the parametrization of physical models, establishing a two-way
learning process (from physics to Al and vice versa). The devel-
oped approach, termed WASI-AI, first performs an analytical
inversion of a small number of image pixels using WASI-2D
with a user-defined choice of the retrieval (fit) parameters and
associated SIOPs and initial values. Then, a portion of the
samples inverted by WASI-2D is used to train NNs for each
fit parameter. The trained models are then used to predict the
fit parameters for all water pixels. The portion of samples not
seen through training is then used to assess the agreement
between WASI-2D and WASI-AI retrievals. As the inversion
methodologies of WASI-2D and WASI-AI are independent,
the agreement analysis provides feedback on the suitability of
parametrization used for the physical models that can guide the
user to optimize the inversion. This synergistic Al and physics
integration through WASI-AI pursues the following objectives:
1) integration of AI with the physics-based WASI-2D while
maintaining flexibility in adapting to any bio-optical condi-
tion and being sensor-independent. The Al integration aims
to provide feedback on the parametrization of physical models
and significantly speed up the inversion; 2) implementation of
WASI-ALI as a freely available software module to the public;
3) application of WASI-AI on a comprehensive set of multi-
and hyperspectral imagery acquired over various water bodies
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with diverse bio-optical conditions. The WASI-AI retrievals are
rigorously assessed by performing agreement analysis relative to
the standard WASI-2D inversion results. Furthermore, the noise
levels are quantified for the maps derived from both methods.
The rest of this article is organized as follows. Section II
briefly describes the WASI software along with its 2-D module
and then elaborates on the developed WASI-AI and assessment
metrics. Section III outlines the image dataset used in the study.
Section IV provides WASI-2D and WASI-AI inversion results
and the agreement analysis between the two models. Section V
provides discussion. Finally, Section VI concludes this article.

II. METHODS

A. WASI-2D: Inversion Based on Physical Models

WASI is a well-established and publicly available software
tool for the simulation and analysis of different types of spectral
measurements in deep and shallow waters. It is based on a
number of physical models that parameterize the illumination-
dependent apparent optical properties and light field parameters
of water bodies in terms of analytical equations, which make
use of wavelength-dependent material-specific, so-called SIOPs
and parameters describing the environmental and illumination
conditions such as concentrations of water constituents, water
depth, areal fractions of benthic cover types, sun zenith angle,
and viewing angle. WASI can be adapted to any bio-optical
condition in optically deep and shallow waters by changing the
parameters or spectra defining the SIOPs of water constituents
and the albedo of bottom substrates. A representative database is
provided together with WASI, but the user can easily exchange
each spectrum with a site-specific measurement. The details of
WASTI are provided in [28] and [30].

The WASI module WASI-2D allows the inversion of mul-
tispectral and hyperspectral images corrected for atmospheric
effects [26]. The inversion iteratively simulates spectral mea-
surements and systematically changes the values of certain
model parameters (called fit parameters) until the simulated
spectrum agrees with the measured spectrum as well as possible.
The agreement between the two spectra is quantified by the
residual, which is, by default, the sum of squared differences
(least squares) but can be changed by the user, for example, by
weighting each spectrum band individually. WASI-2D has been
used in various studies, e.g., [14], [31], [32], [33], [34].

The diversity and different compositions of SIOPs introduce
a fundamental numerical problem to inversion: different com-
binations of water constituents can lead to indistinguishable
reflectance spectra [11]. This problem, known as spectral ambi-
guity, cannot be generally solved. However, it can be handled by
restricting the variability of SIOPs to the relevant ones, analyzing
correlations between parameters, or limiting the ranges of the
variable parameters. All these measures require site-specific
knowledge and are difficult to implement in software to process
global data sets. WASI-2D is designed to handle these spectral
ambiguities by allowing the user to import site-specific SIOPs,
deciding for all model parameters if they shall be used as fit
parameters or kept constant, assigning appropriate values to each
model parameter, and defining image-specific initial values and
ranges for each fit parameter. WASI-2D provides reasonable
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TABLE I
FIT PARAMETERS OF WASI-2D USED IN THIS STUDY

Symbol  Unit Description
Concentration of phytoplankton class i in terms of Chl-a.
C; mg m™ Name of phytoplankton group is used as a subscript (e.g.,
Cdmroms)
Cx gm?  Concentration of TSM
Cy m"'  Concentration of CDOM in terms of absorption at 440 nm
Zg m Water depth
fai - Areal fraction of bottom substrate type number i
g o Fraction of sky radiance due to direct solar radiation (sun
da

glint)

defaults for all settings, so the adjustment to a certain image
usually requires only changing a few default values. Table III
in [26] lists all parameters, which can potentially be used as fit
parameters in WASI-2D and suggests, which to fit and which
to keep constant for different conditions. The fit parameters
relevant to this study are summarized in Table I.

B. WASI-AI: Inversion Based on Al and Physics Integration

The newly developed method WASI-AI synergistically in-
corporates Al into the inversion process of WASI-2D to identify
ambiguity problems, assist the user in tuning the fit and fixed
parameters and ranges of the physical models, and significantly
reduce computational time. The concept of WASI-Al is to invert
only a small number (in the order of several hundred) of image
pixels, selected at random, based on the analytical models im-
plemented in WASI-2D. Then, WASI-AI refines the inverted
samples by identifying and eliminating outliers. The outliers are
defined as samples with WASI-2D residuals higher than three
scaled median absolute deviations from the median [35].

The refined samples serve as training and validation sets for
NN regression models. The latter is a holdout portion of the
inverted samples not seen through the training. Among different
Al models, we rely on NNs as they are proven to be powerful
in learning complex and nonlinear relations between the input
features (spectral data) and the response (fit) parameter [36].
The NNs in WASI-AI comprise feedforward fully connected
layers, and the layer size is automatically chosen depending on
the number of spectral bands. Specifically, two fully connected
layers are considered for multispectral imagery (< 20 bands),
whereas four layers are used for hyperspectral images. Deeper
networks with more layers are unsuitable since our objective
is to limit the training set to a few hundred pixels, suiting
well for shallow networks. The NNs for hyperspectral images
involve more layers to handle the complexity of the data. The
spectra of training samples feed the first fully connected layer
as input to the NN. The input to each fully connected layer
is multiplied by a weight matrix, followed by adding a bias
vector [36]. The network response is a fit parameter whose
values for the training set are known from WASI-2D inversion.
The working mechanism of such NN is extensively described
in the literature [36], [37]. WASI-AI trains an individual NN
for each fit parameter, and these NNs are subsequently used to
predict the fit parameters for all water pixels. Since WASI-AI is
designed for image-specific inversion (training and prediction
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layers and neurons are shown in the NN architecture for illustration.

on the same image), the likelihood of overfitting is minimal, as
the model is not intended to transfer to other datasets. Moreover,
as the training data are randomly selected from various locations
on the image, they effectively capture the variability of the
fit parameters. Consequently, the trained NN rarely encounter
predictions outside the range of training data.

The WASI-AI estimates for the validation samples are then
regressed against WASI-2D fit results, and agreement metrics
(see Section II-C) are computed. The WASI-AI vs. WASI-2D
plots provide an effective means of assessing the suitability
of WASI-2D parametrization and identifying ambiguity prob-
lems. Since the WASI-2D and WASI-AI inversions are based
on independent approaches, a poor correspondence between
their inversion results demonstrates that the solution of the
inversion problem is ambiguous, whereas a strong agreement
shows that the results are independent of the retrieval algorithm
and the parameter can be derived reliably from the available
spectral information with the chosen model parameterization.
The agreement analysis, therefore, provides valuable feedback
to the user, allowing to tune the physical modeling and repeat
the inversion if needed. Therefore, WASI-AI not only preserves
the flexibility of WASI-2D in adapting to diverse sensors and
bio-optical conditions but also contributes to improving the
parametrization of physical models, ultimately enhancing the
quality of inversion.

The conventional WASI-2D image processing module per-
forms inverse modeling for every pixel individually, which is
time-demanding. The processing time of a single image can
range from several hours to days, depending on the size of
the water body and the number of pixels. This computation-
ally demanding inversion process makes WASI-2D and similar
physics-based processors less favorable for routine image pro-
cessing. Furthermore, the problem of processing time can be
exacerbated when spectral ambiguities make it necessary to tune
the parametrization and repeat the inversion process. In contrast,
WASI-AI uses the WASI-2D inversion for only hundreds of

Workflow of the developed WASI-AI that integrates NN-based image processing into the physics-based inversion of WASI-2D. Arbitrary numbers of

pixels through the training phase. Then, the NNs perform the
entire image analysis, speeding up the process significantly.

The new method has been seamlessly integrated into WASI
as module WASI-AI, making it readily accessible to the public
(details in the Software Availability section). The workflow of
the developed WASI-ALI is illustrated in Fig. 1.

C. Agreement Analysis

As mentioned in Section II-B, WASI-AI assesses the agree-
ment between estimates of WASI-AI and WASI-2D for the
validation samples. We use a set of metrics for the agreement
analysis, including the coefficient of determination (R?), root-
mean-square difference (RMSD), normalized RMSD (NRMSD)
expressed in percentage, and bias [38]. The following equations
define the metrics:

S, (B - FP)

1
2 2D
o R B I
D1 (EiQD - E2D> =1
1/2
n(BAI _ p2D)?
RMSD = (Z“( : ) 2
n
RMSD
NRMSD = 3
max (E2P) — min (E2P) )
Dy tosio (B2 /B2P)
bias = 10 — 4)

E?P and EAT are the estimated values of a given fit parameter
based on WASI-2D and WASI-ALI, respectively, and n represents
the number of samples. Note that bias is calculated in a log-
transformed space [38], and WASI-2D results are considered the
reference. bias values close to 1 imply that WASI-AI estimates
are minimally biased with respect to the WASI-2D results.
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TABLE II
STUDY SITES AND IMAGE DATA USED TO ASSESS THE PERFORMANCE OF WASI-AI RELATIVE TO WASI-2D

Surface Acquisition Pixel size # Atmospheric .
Water body (km?) Water type Image date [m] Bands correction Fit parameters
Amathus Harbour 13 Shallow DESIS 9 Jun 2020 30 157 PACO 2B, [t sand> 8dd
(Cyprus) ;
C Cai
Deep EnMAP 1 Aug 2022 30 73 PACO green algae> “diatoms
Cx Ga
Lake Constance 536 Deep DESIS 14 Aug 2021 30 114 PACO Cx, Cy, Su
(Germany) Deep Landsat:9 2 Aug 2022 30 6 ACOLITE Cyreen atgaes Cx» ad
Deep Sentinel-2 2 Aug 2022 20 9 ACOLITE Cyreen atgae> Cx» ad
Lake Garda (Italy) 370 Deep Sentinel-2 17 Aug 2016 20 8 C2RCC Cx, Cy, Su
Deep & shallow  Landsat-8 8 Jul 2021 30 6 ACOLITE Deep: Cy. Cy. gu
Lake Junin (Peru) 120 Shallow: zg, f4sites f1,macrophytess
Deep & shallow  Sentinel-2 14 Jul 2021 20 9 ACOLITE Lad
Laguna Lasuntay (Peru) 0.2 Deep SuperDove 16 Aug 2022 3 8 ACOLITE Cyreen aigae> Cx»> Sad
Lake Limassol (Cyprus) 11 Shallow DESIS 9 Jun 2020 30 177 PACO Zg, fasands famacrophytes
Lake Trasimeno (Italy) 128 Deep Sentinel-2 5Jul 2019 20 8 C2RCC Cyreen algae> Cx»> ad

bias > 1 and bias < 1, respectively, convey overesti-
mation and underestimation of WASI-AI estimates com-
pared to WASI-2D. For instance, a bias of 1.05 means
that WASI-AI results are 5% overestimated relative to
WASI-2D.

In addition to performing the agreement analysis for the
validation samples, we perform a similar analysis for all image
pixels. Thus, the entire image is inverted both with WASI-AI and
WASI-2D. The results of fit parameters from the two methods
are compared pixel by pixel, and the consistency metrics are
calculated (1)—(4). The comparison suits well for quantifying the
agreement between WASI-AI and WASI-2D but cannot identify
systematic errors of the retrieved parameters, which may be
caused, for example, by errors of atmospheric correction or the
used SIOPs. Note that the goal of WASI-Al is not to improve the
accuracy of WASI-2D but to identify spectral ambiguity prob-
lems and facilitate optimizing inverse modeling parametrization.
Strong agreements between the inversion results of WASI-2D
and WASI-AI indicate an appropriate handling of the spectral
ambiguity problem using the WASI-AI vs. WASI-2D correlation
plots. Therefore, the agreement analysis is independent of in situ
data.

To facilitate the comparative analysis, difference maps
(WASI-AI — WASI-2D) are produced and visualized through
histograms. The noise level of map products is quantified us-
ing the coefficient of variation (CV), calculated as the ratio
between the standard deviation and the mean of pixel val-
ues within sliding windows of 5x5. The CV maps are then
averaged to compute the relative CV (RCV) as CVWASFAl
CVWASEZD “Ap RCV <1 indicates lower noise of the WASI-
Al map than that of WASI-2D on average. The CV metric
is also used to demonstrate the effectiveness of WASI-AI in
addressing the ambiguity issue. We also compare the processing
time of WASI-AI relative to WASI-2D by processing the entire
image.

III. IMAGE DATASET

We use a comprehensive image dataset to evaluate the per-
formance of WASI-AI relative to WASI-2D. The sensors have
different spectral and spatial resolutions, and the water bodies
cover a wide range of bio-optical conditions. The images are
acquired with hyperspectral (EnMAP, DESIS) and multispectral
(Landsat-8, Landsat-9, Sentinel-2, SuperDove) satellite sensors
(see Table II). The images are processed with different atmo-
spheric correction methods, including PACO [39], ACOLITE
[40], and C2RCC [25]. The selection of atmospheric correction
methods is based on the suitability of each processor for various
sensors and water types. However, the methodology discussed
in this study is not tied to any specific atmospheric correction
approach. The case studies represent both optically deep and
shallow waters. In the case of Lake Junin, different models and
fit parameters are used for the optically deep and shallow parts
of the lake (see Table II).

IV. RESULTS

In this section, we first describe how WASI-AI allows opti-
mizing the parametrization of physical models to mitigate errors
introduced by spectral ambiguities. The results of WASI-AI
vs. WASI-2D agreement analysis after optimizing the inverse
modeling are provided for all the images in Section IV-B. The
following sections analyze WASI-AI’s effectiveness in noise
reduction and inversion acceleration.

A. Optimization of Inverse Modeling

As outlined in Section II-A, inverse modeling faces a signif-
icant challenge known as spectral ambiguities [11]. Although
WASI-2D has been designed to handle this issue, it is not
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Fig. 2.

Typical correlation plots created by WASI-AI, obtained for the Landsat-9 image of Lake Constance. These plots illustrate the correspondence between

WASI-AI and WASI-2D for all fit parameters using validation samples, including (a) Cgreen algac [mg/m3], (b) TSM [g/m3], and (¢) gqq [1/sr]. The plots specify
R? and RMSD and are the basis for minimizing errors caused by spectral ambiguities.
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Fig. 3.

Tlustration of using correlation plots for handling the ambiguity problem at the example of phytoplankton classification from a DESIS image of Lake

Constance. Row (a): six fit parameters (four C;’s, C'x , and g 44 from left to right) having all bands weighted equally. Row (b): same six fit parameters with spectral
weighting applied. Row (c): three fit parameters (C'x, Cy, g4q from left to right) having all bands weighted equally without phytoplankton classification.

capable of detecting errors of fit results caused by these am-
biguities. Introducing the new WASI-AI addresses this limi-
tation by enabling the detection and quantification of errors
caused by spectral ambiguities. This is achieved by processing
the validation samples twice using entirely different methods.
When fit parameters are sensitive to errors in other fit param-
eters (error propagation) or noise in the input data, changing
the inversion method yields noticeable statistical differences
in the fit results. In the absence of ambiguity problems, both
methods produce similar results for validation samples due to
WASI-AI being trained on the output of WASI-2D. How-
ever, when strong ambiguities are present, the results become

decorrelated. Therefore, the correlation plots of WASI-AI versus
WASI-2D, using the R? metric, prove effective in identifying
these issues. Additionally, the average error caused by spectral
ambiguities can be quantified using the RMSD metric. Fig. 2
presents an example of the correlation plots typical for the
images processed in this study.

WASI-AI automatically generates the correlation plots, which
quantify the correspondence between WASI-AI and WASI-2D
results for the validation samples. These plots serve to identify fit
parameters that cannot be reliably determined under the current
settings. Based on these correlation plots, the impact of spectral
ambiguities can be minimized by the user by systematically
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TABLE III
AGREEMENT BETWEEN WASI-AI AND WASI-2D RESULTS

Cehi-a Cx Cy Zp fa Yaa
Range  0.07-14 mg/m* 0.1-15g/m*  0.01-1.1 m’! 0.01-12 m 0-4.8 -1-0.92 sr!
Parameter Mean 3.1 mg/m’ 2.4 g/m? 0.24 m’ 0.9m 0.99 0.09 sr!
SD 2.9 mg/m’ 1.7 g/m? 0.23 m’ 2.4m 0.87 0.18 sr!
Range 0.82-0.93 0.82-1 0.96-0.98 0.93-0.98 0.89-0.98 0.86-1
0.76-0.92 0.90-0.99 0.92-0.97 0.91-0.98 0.89-0.99 0.82-1
R2 Mean 0.87 0.95 0.97 0.95 0.94 0.95
0.85 0.94 0.95 0.94 0.95 0.94
SD 0.03 0.06 0.01 0.02 0.04 0.05
0.05 0.03 0.02 0.03 0.04 0.06
Range 5.6-10 1.1-6 1.4-33 2-5.4 1.8-6.1 0.5-5.9
4.9-7 0.5-5.9 1.6-3.4 1.9-4.8 1.7-4.1 0.5-5.9
NRMSD (%] Meaw {3 27 2 2 3 2
SD 1.5 1.8 0.9 1.4 1.4 2.2
0.9 1.7 0.8 1.2 1 1.5
Range 0.98-1.04 0.99-1.01 1-1.01 1-1.05 0.95-1.06 0.87-1.03
0.97-1.06 1-1.07 0.97-1.02 1-1.04 0.98-1.05 0.89-1.03
. 1 1 1 1.02 1 0.98
Bias Mean 1.02 1.02 1 1.01 1 0.98
SD 0.02 0.01 0.01 0.02 0.03 0.04
0.03 0.02 0.02 0.02 0.02 0.05

For each metric, the first value is associated with the validation holdout and the latter with the entire image.

adjusting the fit settings until areasonable correlation is achieved
for all fit parameters. Fig. 3 shows the correlation plots from
two attempts to separate phytoplankton groups (PGs) using the
hyperspectral DESIS image of Lake Constance. Using C; of
four PGs, C'x and g4 as fit parameters, with equal weighting of
all bands, the concentrations of two PGs are uncorrelated (R? <
0.1), indicating that only two PGs can be distinguished under
the chosen fit settings [see Fig. 3(a)]. However, by employing
a spectral weighting function adjusted to sensor noise and the
spectrally dependent information content for PGs [41], the con-
centrations of all four PGs show at least a modest correlation
(R?>0.35). Consequently, PG classification could be enhanced,
and the uncertainties arising from spectral ambiguities can be
quantified [see Fig. 3(b)]. When only three parameters (C'x, Cy,
g4q) are treated as fit parameters without attempting phytoplank-
ton classification, the correlation of all parameters significantly
increases [see Fig. 3(c)]. This is expected since reducing the
number of variable parameters effectively minimizes the occur-
rence of spectral ambiguities. Hence, limiting the number of
fit parameters is the most effective approach to mitigate the
ambiguity problem. However, this strategy might hinder the
detection of relevant parameters for specific applications. In
the example of Fig. 3, configuring data processing for deriving
maps of four PGs might be more interesting than optimizing
all correlation plots. Even though some correlations are weak
and the concentration uncertainties relatively large in Fig. 3(b),
the PG maps, as shown in [41], still hold value, mainly because
the RMSD in the correlation plots enables the quantification
of their uncertainties. To highlight the advantage of WASI-Al in
addressing the ambiguity issue, Fig. 4 presents the dinoflagellate
maps before and after applying the spectral weighting function.
Corresponding CV maps are included to quantify the noise
levels in each case. Evidently, the noise level is significantly

reduced after resolving the ambiguity issue, with the average
CV decreasing by a factor of approximately 3. For brevity, maps
are shown for one PG, but the average CV reduction across all
PGs is about 5 times.

B. Agreement of WASI-AI and WASI-2D

Each image listed in Table II is processed twice, once using
WASI-2D and once using WASI-AIL. The random sampling
of WASI-AI was set to 400 pixels within each image, from
which 80% is used for training and the remaining for validation.
Table III summarizes the agreement statistics for each fit pa-
rameter, both for the validation samples and the entire water
pixels. The range, mean, and standard deviation (SD) values
for each agreement metric are calculated as averages over all
images. The results show that WASI-AI retrievals exhibit strong
agreement with those of WASI-2D for both optically deep and
shallow inversions. The typical R? is 0.95 for all fit parameters
and NRMSD < 3.9%, except for Chl-a, which has a slightly
lower agreement (R?> = 0.85, NRMSD = 5.9% ). The bias
values for all fit parameters are close to one, indicating minimal
systematic differences between the retrievals of the two methods.
The agreement statistics for the entire image are comparable with
those for validation samples, indicating that WASI-AI provides
a robust inversion employing a few hundred image pixels as
training data, and the statistical parameters derived from the
validation samples are representative of the entire image. In
addition to the complete agreement statistics (see Table III),
we illustrate the results of WASI-AI and WASI-2D by com-
paring several maps for each fit parameter (see Figs. 5-9). The
difference maps and associated histograms are also provided
for better visual comprehension of the agreements between the
maps of the two methods. While it is not feasible to show all
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Fig. 6.  'TSM maps derived from WASI-AI and WASI-2D, along with associated difference maps and histograms.

the maps due to their large number, we provide representative
examples for each fit parameter associated with different water
bodies and images. In optically deep waters, the nearshore areas
with possible interferences on the R, data due to the bottom
effects are excluded from the computation of the agreement
statistics (see Table III). However, we visualize these areas on
the maps to gain insights into the relative performance of the
two methods for the areas where the parametrization of physical
models is unsuited. For example, in the shallow region on the

western side of Lake Constance with bio-optical conditions
differing from the main water body, the differences between
WASI-AI and WASI-2D are the highest for retrievals of Chl-a
and TSM from the Landsat-9 image (see Figs. 5 and 6). This
example from Lake Constance illustrates that a poor agreement
between WASI-AI and WASI-2D results indicates a need to
refine the parametrization of the physical models. All maps
show very strong spatial correspondences between WASI-AI
and WASI-2D for all fit parameters. All dynamic structures are
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reproduced, even the highly variable sun glint patterns, which
can differ strongly from pixel to pixel (see Fig. 8). Note that the
strip effects on the DESIS maps (see Fig. 7) are related to the
Sensor noise.

C. Noise Reduction

The noise of all maps derived with WASI-AI is compared
to that of WASI-2D using the RCV defined in Section II-C.
The mean RCV values are less than one for all fit param-
eters (see Table IV), implying the advantage of WASI-AI
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CDOM maps derived from WASI-AI and WASI-2D, along with associated difference maps and histograms.

in producing maps with less noise than WASI-2D. For in-
stance, the Chl-a and TSM maps of WASI-AI are, on av-
erage, 12% and 13% less noisy than those of WASI-2D,
respectively.

Fig. 10 compares the CV maps of WASI-AI and WASI-2D
for the example of TSM retrieval in Lake Constance from the
Landsat-9 image. The WASI-2D retrievals in the northern part
of the lake exhibit high CV values, whereas the CV map of
WASI-AI depicts low and homogeneous values across the lake,
indicating reduced noise levels. This finding is also visually
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evident from the TSM maps (see Fig. 6), indicating D. Reduction of Processing Time

noisy est1mate§ mn t.he northern. part of .the lake. An Table V reports the processing times of WASI-AI and WASI-

RCV of 0.66 is achieved for this map pair, correspond- . . .

. onifi v 1 349, se level f h 2D for different images. All images were processed on a com-

IVI:]gA StIOAEIl significantly lower (34% ) noise level for the puter with an Intel Xeon 3.8 GHz quad-core processor and
~Al map. 64 GB RAM. The WASI-2D processing takes up to ~26 h in
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the case of the Sentinel-2 image of Lake Constance, whereas it
takes only ~2 min for WASI-AI (749 times faster). As another
example, WASI-Alis 1179 times faster than WASI-2D inverting
the Sentinel-2 image of Lake Garda. Although the computa-
tional time of WASI-AI increases with the number of spectral
bands, all images, whether multispectral or hyperspectral, are
processed in under 3.5 min. WASI-2D takes approximately 4.7
days for all inversions, whereas WASI-Al reduces it to only about
19.5 min. These results demonstrate the significant advantage
of using WASI-AI over the traditional WASI-2D in terms of
faster and more efficient retrieval of water quality and benthic
properties.
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Water depth and bottom brightness maps derived from WASI-AI and WASI-2D, along with associated difference maps and histograms.

V. DISCUSSION

The new WASI-AI method accelerates image processing by
two to three orders of magnitude and provides feedback for the
parametrization of physical models. The agreement analysis for
the validation samples serves as an assessment of the suitabil-
ity of the parametrization. A poor WASI-AI versus WASI-2D
agreement for one or more fit parameters suggests that the
parametrization requires tuning. Although a strong agreement
between WASI-AI and WASI-2D results cannot guarantee high
accuracy of the retrieved parameters due to the natural variability
of optical properties, it ensures the unambiguousness of the
inversion results as the two methods are based on independent
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TABLE V
COMPARING THE PROCESSING TIME OF WASI-AI wiTH WASI-2D

Water Water type  Image WASI-AI  WASI-2D Times
body yP g [min] [min] faster
Amathus - iow  DESIS 2.9 81 28
Harbour
Deep EnMAP 2.2 719 327
Lake Deep DESIS 3.5 1183 338
Constance Deep Landsat-9 1 774 774
Deep Sentinel-2 2.1 1572 749
Lake Garda Deep Sentinel-2 1 1179 1179
Deep Landsat-8 0.78 193 247
Lake Junin Shallow 0.8 122 152
Deep Sentinel-2 1 355 355
Shallow 0.7 88 125
Laguna
Lasuntay Deep  SuperDove 0.75 42 56
Lake Shallow  DESIS 2 36 18
Limassol
Lake Deep  Sentinel-2 0.8 373 466
Trasimeno
TABLE IV

NOISE LEVELS OF MAPS DERIVED FROM WASI-AI RELATIVE TO WASI-2D
QUANTIFIED IN TERMS OF RCV FOR ALL FIT PARAMETERS

Cehi-a Cx Cy zp fa Yaa

Range 0.41-1.02 0.66-1 0.98-1.03 0.87-1.01 0.73-1.03 0.32-1.03
RCV Mean 0.88 0.87 0.99 0.97 0.90 0.78
SD 0.23 0.12 0.02 0.07 0.11 0.28

approaches. Traditionally, users had to manually evaluate WASI-
2D’s final maps after hours or even days of processing to identify
unreliable fit parameters based on noisy outputs. This process
required repeating the inversion with adjusted parameterization,
making the procedure excessively time-consuming and limit-
ing the practical usability of WASI-2D. Experimental results
using various multi- and hyperspectral imagery demonstrated
that WASI-AI inversion results strongly correspond to those
of WASI-2D for different fit parameters after minimizing the
ambiguities. Furthermore, the maps produced by WASI-AI ex-
hibit lower noise than those of WASI-2D. WASI-Al significantly
speeds up image inversion, making it invaluable for efficiently
processing imagery across extensive spatial and temporal scales.
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Coefficient of variation (CV) of TSM maps derived from (a) WASI-AI and (b) WASI-2D processing Landsat-9 image in Lake Constance.

The samples inverted by WASI-2D are selected at random
locations on the image to capture the variability of bio-optical
conditions within the scene. If an inappropriate parametrization
of WASI-2D results in high inversion residuals, a significant
portion of the samples may be removed during the outlier
removal stage. This reduction in the number of samples can be
observed on the scatter plots. Consequently, the user can increase
the number of samples and/or adjust the parametrization of
WASI-2D to repeat the inversion process. The high residual val-
ues for certain samples indicate significant uncertainties in the
WASI-2D inversion results for those samples, leading to their ex-
clusion. Extraordinary bio-optical conditions, such as sediment
plumes and algal blooms, can complicate image analysis. This
complexity arises because a single parametrization of WASI-2D
may not be suitable for processing an entire image with extensive
bio-optical variability. Therefore, the image should be processed
in multiple (usually two) steps, using different parametrizations
of WASI-2D for regions with markedly different bio-optical
conditions.

The adaptability of WASI-2D, and thus, WASI-AL, to diverse
bio-optical environments enables it to effectively handle the
complex conditions in aquatic systems. In contrast, existing
NN-based algorithms such as C2RCC lack this flexibility and
tend to perform poorly under challenging scenarios, particularly
in the presence of algal scums or floating blooms [42]. This
limitation stems from their reliance on extensive simulated train-
ing datasets, which are often constrained by substantial spectral
ambiguities.

VI. CONCLUSION

The newly developed WASI-AI provides a framework for the
synergistic integration of Al and physics for retrieving biophysi-
cal parameters in aquatic systems from multi- and hyperspectral
imagery. The inversion using physical models benefits from
WASI-AI versus WASI-2D correlation plots for the validation
samples to identify ambiguity problems and, thus, optimize the
parametrization. On the other hand, the AI component benefits
from the training samples produced by the physical modeling to
train NNs. This approach allows for creating training samples
tailored to the specific bio-optical conditions of the given image
by accounting for the underlying physics.
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WASI-AI adapts the number of layers and neurons in the NN
architectures according to the number of spectral bands that pro-
vided high performance in various experiments. In addition, ad-
vanced hyperparameter tuning can be employed, but it increases
the computation time. Although the current NN architectures
are efficient, the WASI-AI software module provides a tuning
option based on Bayesian optimization [43] that is not used in
this study.

The routine processing of imagery on large scales can signif-
icantly benefit from WASI-AI, given its high-speed processing,
low noise level, and the feedback provided to the physics-based
parametrization. The close integration of Al with physical mod-
eling in the framework of WASI-AI opens up new opportuni-
ties in remote sensing of water quality and benthic properties.
Although the proposed integration of AI with physics-based
modeling is developed for the WASI software, it is generic and
can be implemented in other similar physics-based models.

SOFTWARE AVAILABILITY

The developed AI method has been incorporated into the
software WASI as a new module WASI-ATI that allows the user
to apply this new inversion approach for image analysis. The
core of WASI-AI is implemented as a standalone MATLAB
software and called by WASI. There is no need for MATLAB
software or a license to be installed. The only requirement is
to install MATLAB Runtime, which can be obtained freely
from the MathWorks website: https://www.mathworks.com/
products/compiler/matlab-runtime.html (accessed on 15 Jan.,
2025).

Since MathWorks specifies that end users can run ap-
plications created by MATLAB compiler royalty-free using
MATLAB Runtime (https://www.mathworks.com/products/
compiler.html#encrypted-royalty-free), MathWorks bears the
responsibility for all modules and components utilized by MAT-
LAB Runtime and associated licensing issues. The user is re-
ferred to the WASI manual for information about the installation
of MATLAB Runtime. WASI, including the WASI-2D and
WASI-AI modules and the relevant manuals, is available at:
www.ioccg.org/data/software.html.
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