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Abstract: Railway transportation systems have high accuracy and high integrity demands
for safe localization. In the future, railway signaling is expected to rely on onboard sensors
like Global Navigation Satellite Systems (GNSSs) in order to reduce installation and main-
tenance costs. GNSS position determination can, however, be highly degraded because of
the presence of multipath on the train and railway environment. This paper tackles the
characterization of multipath in code measurements caused exclusively by the antenna
installation and derives a conservative error model of the antenna-installation-induced
multipath and noise. First, we isolate multipath and noise from other GNSS errors using
the Code-Minus-Carrier method. Second, an overbounding error model is derived. The
limitation of modeling with restricted set of real data typically found in practice is dis-
cussed and we review methods that ensure the independence of samples. A new approach
that creates separate data sets is ultimately proposed to derive an overbounding sigma.
The presented methodology is supported by real measurements collected in an open-sky
railway scenario. The derived models can be used as a reference nominal error models to
build the null hypothesis of fault detection algorithms that detects the presence of excessive
multipath in dynamic scenarios or as a part of a total error budget consideration.

Keywords: Global Navigation Satellite Systems (GNSSs); railway safety; multipath
characterization; time-correlation

1. Introduction

Recent developments in railway localization systems have targeted replacing track-
side based signaling systems, such as balises, with an on-board based localization solution.
Most of the on-board localization system proposals have leaned towards implementing
a fusion solution of different sensors, with Global Navigation Satellite Systems (GNSSs)
playing a key role. The use of GNSSs can potentially reduce the installation and main-
tenance costs of infrastructure-based signaling systems compared to infrastructure ones
while, at the same time, ensuring cross-country interoperable safe operations. However,
GNSS positioning can be challenging in railway environments because GNSS signals can
be highly affected by multiple reflections (i.e., multipath) and other GNSS threats like
non-line-of-sight (NLOS) signals or the presence of interference. Multipath is particularly
pronounced on trains due to the presence of multiple irregular metal elements on the roof
and the limitation of optimal antenna placement locations. Moreover, the complex and
dynamic nature of the railway surroundings makes predicting and mitigating multipath
effects particularly challenging.
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Research and development efforts to overcome these challenges have led to a range of
solutions across different stages of GNSS receiver processing, for example, at the hardware-
or correlator-signal-processing level. For safety-related applications, error characterization
is typically performed at post-correlation level [1,2].

Modeling multipath at this stage is a cost-effective solution, that can be performed
with commercial off-the-shelf antennas and receivers, avoiding the need for complex and
expensive hardware solutions.

The detection and estimation of multipath relies on statistical knowledge and assump-
tions about the error. It is, however, challenging to isolate and characterize multipath in
land-based applications due to the varying nature of the measurements [3].

Multipath error caused by the surrounding operational environment is expected to be
changing during the train’s movement, while multipath caused by the vehicle structure and
antenna installation is expected to have similar stochastic properties for a given satellite
elevation and azimuth with respect to the user. This permanent multipath contribution is
assumed in this work to be the basis for constructing error models and fault detectors for
the operational environment, and it will be the focus in this paper.

In order to meet the high integrity requirements needed for safety-critical applications,
GNSS multipath errors must be properly characterized. Robust error modeling has been
achieved in other applications by the Gaussian overbounding method [4]. In this method,
the unknown true error distribution is replaced by a Gaussian distribution, which preserves
its bounding properties after convolution in the position domain. This theorem has been
extended in [5]. Error model bounds considering the correlation of samples have previously
been tackled in [1,6]. In previous work, a first approach to model the antenna-installation-
induced multipath and noise for trains was introduced [7]. However, the models were
derived without considering the time correlation of the collected sample data.

In this paper, we extend the work in [7] and derive robust code multipath error
models for the permanent multipath error, e.g., the contribution due to antenna installation
and surrounding train rooftop. The methodology takes into account the limitation of the
number of sample data typically found in practice. We also propose a new approach to use
all the available data when determining overbounding distributions by evaluating different
sets of independent samples.

Models are obtained for different train installations with real data collected during the
EU ERSAT-GCC project.

2. Multipath Error Modeling Methodology

Since permanent multipath error estimates are expected to have high levels of time
correlation, we propose the following methodology in order to derive permanent multipath
error models based on independent samples. Figure 1 gives a graphic overview of different
methodology steps. The first step is the collection of the appropriate dataset for the
implementation of the methodology, which is in this case a long, static, and open-sky
scenario dataset. The second step is the isolation of the permanent train code measurement
multipath error with the Code-Minus-Carrier method, followed by the decorrelation of the
multipath samples. The next steps are repeated separately for each of the created subsets of
independent samples. Those steps are, firstly, elevation-dependent binning, since multipath
errors are highly elevation dependent, and secondly, calculating the CDF overbound for
every elevation bin. The last step performed for every subset is the finite sample inflation to
account for the limited number of samples available. Lastly, the final step of the proposed
methodology is selecting the final overbounding model.
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Figure 1. Overview of processing steps.

2.1. Open-Sky Data Collection and Multipath Isolation

In order to model the permanent multipath behavior, it is first necessary to obtain
GNSS measurements that are not affected by the varying multipath observed during
railway-along-track operations. This can be done by collecting data in static, open-sky
scenarios during longer periods of time, as suggested in [7]. By collecting data in this
way, we try to minimize the contribution of the varying multipath errors. In other words,
we presume that the total isolated multipath error is the permanent train multipath error
caused by the antenna installation. Multipath is isolated by using the Code-Minus-Carrier
(CMC) observable [8].

Code-Minus-Carrier (CMC) is expressed as a difference of pseudorange measurements
p;, and corresponding carrier phase measurements ¢; for satellite s at time k. As shown
in [3], for a single receiver, satellite s and frequency j can be expressed as follows:

CMC; = pf — ¢ = MPL + (2IF — AN}) + (e — mpi — Gp), (1)

where MPZ’j and m pi’j are the multipath errors of code and carrier phase measurements, I;’j
represents ionospheric error, NZ’j denotes carrier phase integer ambiguities (in cycles), A;
corresponds to the wavelength, and S;’j and §Z’j represent code and phase noise, respectively.
The CMC combination eliminates all common errors terms. However, it retains code
multipath errors, carrier-phase multipath errors, code and carrier-phase noise, carrier-
phase ambiguities, as well as twice the ionospheric delay. Assuming that carrier-phase
multipath and noise are significantly smaller in magnitude compared to code multipath
and noise, they can be neglected.

The ionospheric error can be estimated and removed by a linear combination of two
carrier-phase measurements received for the same satellite at the same time epoch [1]. The
resulting linear combination of carrier-phase ambiguities can be eliminated by leveraging
the fact that integer ambiguities remain constant during a continuously tracked cycle-slip-
free period [3], allowing for bias estimation and removal.

2.2. Multipath Samples Decorrelation

Multipath errors are expected to be correlated over time due to the presence of elements
in the surrounding of the antenna and the relative slow movement of satellites with respect
to the user LOS. However, estimating the variance based on correlated samples would
lead to a biased estimation, as seen, for example, in [9]. For that reason, it is necessary to
consider only decorrelated samples when deriving parameters of sample distributions in
our case of a multipath error model.
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In this work, the construction of empirical distributions is based on samples that are
separated by at least their correlation time. One possibility for determining the correlation
time is to investigate the autocorrelation of every time series.

The level of time correlation of a signal can be studied by the autocorrelation function,
which can be expressed, based on the expectation operator, as follows [10]:

- E[MPy MP,;] — E[MP]?
Ryip(At) = [ OZM IMP]" 2)
MP

where Uzz\/f is the variance of the signal and E is the expectation operator.

Analyzing the autocorrelation of the different time series of the isolated multipath for
all satellites allows us to estimate a minimum necessary time lag between two data samples
in order to be considered independent.

The necessary time lag is estimated by finding the time lag for which their normalized
autocorrelation is within a threshold of £0.2, since 0.2 is typically in statistics considered as
the limit for weak correlation [1]. In the remaining paper, the median time lag of all normal-
ized autocorrelations is used to select decorrelated samples to derive multipath models.

Creating one independent dataset by selecting single samples separated by the esti-
mated decorrelation time lag significantly reduces the amount of available data. Moreover,
it does not guarantee that this specific subset contains possible outliers.

For that reason, we did not create a single subset of independent samples, but we
created all possible subsets with independent samples. More specifically, if a = t.f; is
the estimated decorrelation time lag, where . is the average time correlation constant of
the processes and f; is the sampling frequency, we define the subset index k such that
k=1,2,...aand k € N. The subset zj is defined as selected multipath estimates for all
satellites in view and given epochs such as
M M
a’ a

z = {MPy(beyi_nya) ;. Vi=12,...,—;

p €N, 3)

where M is the number of all samples collected.

By adopting this systematic approach, we can analyze and compare the properties
across various sets of independent samples and avoid the possibility of analyzing a single
dataset which might not be representative of the expected errors but allows for gaining a
comprehensive understanding of their distinct characteristics.

As an illustrative example of the subsets selection, Figure 2 is provided.

} Sample data set

IOO0.00Q,.OO0.000.000

K ‘

Subset of independent samples 1

00000 — Subset of independent samples 2
o000 ——— Subset of independent samples 3
00000 — Subset of independent samples 4

Figure 2. Illustration of subset selection, where a color group represents an independent subset.

According to Equation (3), in Figure 2, MP, represents the sample dataset, and zj
represents the four subsets of independent samples.
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2.3. Elevation Binning, CDF Overbounding, and Sample Inflation of a Subset Dataset
However, if X;,X5,... X, are observations of size n from a normal distribution

N(u,0?). If X is a sample mean of 1 observations, and S? is the sample variance. Then it
follows that the variance is chi-squared distributed since:

(n—1)82 Y (X;—X)?
o2 o o2

~ X (n—1). 4)

Figure 3 is given as an illustrative example of the impact of correlation. The derivation
of sets of independent samples, as presented in Equation (3), can be simulated by a sequence
of Monte Carlo simulations and a first-order Gauss-Markov process (GM(c?, 7)). The
subsets created are indeed comprised of independent samples, as seen in Figure 3a. In
Figure 3a, it can be seen that the sample distribution follows a theoretical probability
density function of a normal distribution. However, since the subsets originate from a
dataset which is comprised of correlated samples, the computed variances of subsets of
independent samples remain correlated, as seen in Figure 3b. The variance distribution
in Figure 3b does not follow the theoretical probability density function of a chi-squared
distribution, as would be expected following Equation (4).
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(a) Empirical histogram of samples in one subset (b) Empirical histogram of all subset variances
and corresponding theoretical pdf. and corresponding theoretical pdf.

Figure 3. Monte Carlo simulation.

After creating all the subsets of independent samples, the remaining methodology
steps are defined for each subset of independent samples separately. First, the elevation
binning is performed. The satellite signal reflection depends on the elevation angle between
the satellite and the user; hence, the multipath error is expected to highly depend on the
elevation angle [7]. The decorrelated multipath sample estimates from all satellites are
grouped by their elevation angle. The elevation bin width is adjusted to balance a similar
minimum number of samples in each elevation bin.

As a next step, our goal is to determine a parametric distribution based on the samples
in each elevation bin. Since, in a general sense, the samples do not follow a Gaussian
distribution, and, in most cases, they show longer tails [1], a Gaussian overbounding
process is used instead of a simple variance estimator.

In particular, the overbounding methodology, according to [5], involves determining
the likely error distribution by collecting a sample distribution. According to [11], the most
common choice for this simpler, likely error distribution is the normal distribution, as it
is the only finite variance distribution that remains stable through convolution. For that
reason, it is assumed that overbounding can be achieved by employing the Cumulative
Density Function (CDF). Furthermore, the [5] approach separately calculates the left-hand
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and right-hand sides of the CDE. What is obtained for each of the subset of independent
samples and each elevation bin is both the overbounding sigma estimate and a bias.

Finally, since ensuring independent samples, i.e., dividing the data into subsets, and
further dividing it into elevation bins may reduce the number of available samples for each
elevation bin, an inflation factor is applied to the variance to account for the finite samples,
similarly to [1]. The inflation factor K; of the measurements-based standard deviations
with respect to the truth is determined based on the chi-square distribution of the variance
as follows:

K=/ ——. (5)

where H represents the number of effective independent samples utilized in deriving the
variance for each elevation bin. Thus, in our case H = Hpyn, B is defined as the value
at which the chi-square distribution 2, — 1 achieves a probability of 1 — a (for a 95%
confidence interval, « = 0.05). This formula is chosen based on the principle that the
variance estimate obtained from a finite sample size is, in fact, a random variable that
follows a chi-squared distribution with H-1 degrees of freedom. In this case, we use the
CDF overbounding methodology to account for the non-Gaussianity of the sample dataset,
while the inflation factor is used to account for the limited number of samples.

It can be shown that, from around 300 samples, the necessary inflation factor to
guarantee 95% estimation probability is close to one. We have used this value to guarantee
the minimum number of samples available in each bin.

2.4. Final Model Selection

The last step of the methodology is the final model selection. The final model selection
is performed after creating all separate datasets that contain independent samples, deter-
mining the overbounding sigma and inflating the overbounding sigma estimate to account
for the limited number of samples, as introduced in Equation (5).

Two possibilities for a final model selection are introduced. The final model can be
selected based on the 95% quantile of the estimated inflated sigma CDF overbound of all
subsets or based on the median of the estimated inflated subset sigma CDF overbound of
all subsets. Selecting the 95% quantile would allow for a more conservative error model of
the isolated multipath, while selecting the median as a final model would provide a tighter
bound. In the future, we will investigate the better suitability of one of the two options,
depending on the specific application and goal.

3. Experimental Setup

Results presented in this paper are obtained based on data collected within the Eu-
ropean Union ERSAT-GGC project. The dataset was collected during a measurement
campaign in Cagliari, Italy, in open-sky and static conditions during the course of eight
consecutive hours. The location of the train during the data recording is shown in Figure 4.
The setup consisted of a commercial train ALn668-3136 from Trenitalia. The GNSS antenna
installed on the train was Antcom G5 antenna, and it was internally connected with a Javad
Delta-3N receiver. The receiver was collecting raw measurements with a sampling rate of
10 Hz.
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Figure 4. Train location during static measurements.

During the collection of the data, the train was placed an as close as possible to
an open-sky scenario, given the operational constraints. This allowed for the isolated
multipath error to be considered as the multipath caused exclusively by the antenna
installation. Furthermore, the long-term recording enables the assumption that the integer
ambiguities of the carrier-phase measurement can be successfully estimated and removed
(as introduced in Section 2.1). Additionally, we can obtain measurements from a variety of
different elevation angles and azimuths.

4. Results

Following the methodology steps introduced before, we first isolate the code multipath
of the measured GNSS signals and, second, derive the time lag of the correlated multipath
estimates. The result of time lag estimation based on the normalized autocorrelation for the
ERSAT-GGC data set is given in Figure 5.

Normalized autocorrelation R,(At)

Normalized autocorrelation R,(At)
o
o

o

-0.5 -0.5 : y y
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 90 100

Figure 5. Normalized autocorrelation GPS L1 (left) and Galileo E1 (right).

The time lag used for the decorrelation of the samples is the mean time lag based on
the normalized autocorrelation of all available time series and equals, in this case 25 s for
GPS L1 and 29 s for Galileo E1 measurements.

Following that, we generated the different subsets, each containing only independent
samples. The multipath estimates of each subset are separated into different elevation bins,
such that in each elevation bin, we do have the minimum number of 300 samples. This
resulted in 19 elevation bins for both GPS and Galileo.

Next, we calculate the CDF overbound, resulting in a left and right hand bias and
sigma estimate, we consider only the maximum of both estimates. Finally, we inflated
this sigma estimate to account for the limited number of samples. The results are given in
Figure 6.
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Figure 6. Sigma overbound estimate and sigma-inflated subset of independent samples: GPS L1 (left)
and Galileo E1 (right).

As introduced, we calculated the CDF overbound of every subset containing indepen-
dent multipath estimates. We repeated the CDF overbound and the finite sample inflation
for all generated data subsets of independent samples. The corresponding sigma estimates
are shown in Figure 7. Figure 7 shows sigma values of different independent subsets,
colored according to the corresponding elevation bins. In other words, different colors
denote sigmas of different elevation bins. Each sigma estimate was inflated with the exact
inflation factor based on the number of samples in the corresponding elevation bin.
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Figure 7. Inflated sigma estimates: GPS L1 (left) and Galileo E1 (right).

By computing the overbounding sigmas of all the subsets and inflating them to account
for the limited number of samples, and finally providing the model based on only one of
the independent subsets, we ensure that the one independent subset is selected after an
insight to the full dataset and that the limited number of samples are tackled by adopting
the inflation factor.

The final step of the methodology is selecting the sigma estimate for the final model
selection. Currently, two options are explored: the median inflated sigma estimate and the
95% quantile sigma estimate. The visualization of both is shown in Figure 8.
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Figure 8. Median and 95% quantile of inflated sigma estimates: GPS L1 (left) and Galileo E1 (right).

Finally, since the CDF overbound provides both the sigma estimate and a bias, the
models including the bias are given in Figure 9.

8
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Figure 9. 95q and median sigma estimates of all subsets with bias: GPS L1 (left) and Galileo E1 (right).

5. Conclusions and Future Work

In conclusion, in this paper, we have presented the methodology for a conservative
error multipath model, considering time correlation for permanent train GNSS multipath
error. Although it is arguable whether physical multipath effect can be decomposed in this
way, this allows us to develop a practical methodology to model the total multipath error in
post-correlation. In other words, because of the varying nature of multipath, decomposing
the total multipath error contribution into two parts allows us to model separate parts of
the multipath error, which is otherwise still challenging to model.

The methodology implies gathering static data in open-sky scenarios, assessing sam-
ple independence, creating subsets of independent samples, elevation binning and CDF
overbounding of every subset of independent samples, and accommodating potential limi-
tations in sample numbers. This reference model is important for deriving fault detection
strategies and subsequent models tailored to the railway environment. Nonetheless, it
is imperative to acknowledge the operational constraints imposed by this methodology,
notably the necessity of collecting specific datasets over extended time periods. For that
reason, future work entails deriving guidelines on collecting static measurements for refer-
ence multipath error model derivation, most notably its length, as well as further analysis
into selecting the overbounding sigma.
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