Trust is Good, Monitoring is Better: FPGA- & TEE-Based Monitoring for Malware-
Detection

Friederike Bruns*, Georg Gliser’, Florian Kogler’, Jonas Lienke®, Nithin R. Nanjundaswamy*, Gregor Nitsche?,
Behnam R. Perjikolaei®, Jorg Walter®

*Carl von Ossietzky Universitit Oldenburg, Germany, email: {first.last} @uol.de; 1IMMS Institut fiir Mikroelektronik- und Mecha-
tronik-Systeme gemeinniitzige GmbH (IMMS GmbH), Ilmenau, Germany, email: {first.last} @imms.de; $DLR Institut fiir Systems
Engineering, Oldenburg, Germany, email: {first.last} @dlr.de; §OFFIS e.V. Institut fiir Informatik, Oldenburg, Germany, email:
{first.last} @offis.de

Abstract Ensuring trustworthiness in electronic systems is crucial to maintain safety and data integrity. Safety prop-
erties of robotic components are rigorously validated during development and, similarly, security requires ongoing
monitoring during system operation as well. However, this monitoring must also safeguard its own components from
tampering. We propose a novel runtime monitoring approach using application-specific monitors within an FPGA-based
Trusted Execution Environment (TEE). To protect these monitors from supply chain attacks during design, fabrication,
testing, or packaging, the TEE is programmed as the final step before deployment. The monitors are directly generated
from formal constraint specifications established during the design and test phases. Our approach is demonstrated on a
RISC-V-based System-on-Chip (SoC) for robotic applications, featuring a force sensor and a CAN-bus interface. We
monitor the timing behaviour of hardware and software to detect malicious modifications affecting data transmission
to a control unit. In an FPGA prototype, the monitors successfully identified hardware and software tampering. In real
ASIC implementations, programming the TEE post-packaging ensures resilience against supply chain attacks.

This work was supported by the German Federal Ministry of Education and Research (BMBF) under funding codes
16ME0243K to 16ME0254.

1. Introduction

Ensuring the trustworthiness of electronic systems is increasingly critical due to risks from hardware faults, supply
chain tampering, and environmental changes, which can compromise both functional and non-functional properties,
such as timing or energy usage. Runtime verification can be implemented in software, hardware, or a combination of
both. Software-based approaches, such as those by Do Tran et al. (2020); Havelund (2008); Tabakov & Vardi (2010),
rely on finite-state machines or contract-based methods but introduce performance overhead by running alongside the
system software. To address this, hardware-based solutions have emerged. For instance, Tracy et al. (2020) translate
LTL formulas into FPGA automata, while Lu & Forin (2008) developed a compiler converting PSL specifications into
Verilog. Decker et al. (2018) proposed real-time hardware-based monitoring on MPSoCs, and Nanjundaswamy et al.
(2023) extended RISC-V to measure software execution time, though without considering execution time variability.
Hybrid approaches, such as Solet et al. (2018), combine lightweight software instrumentation with hardware trace
analysis but require variable mapping and incur significant overhead. Laurent et al. (2021) showed that hybrid tech-
niques effectively detect hardware faults and software anomalies, especially in fault injection scenarios. However, most
monitoring solutions neglect security threats like supply chain attacks or hardware Trojans, which Pan & Mishra (2022)
highlight as critical concerns—especially Al-based Trojans that evade ML detection. Moreover, while runtime monitor-
ing offers a way to detect deviations from nominal behaviour, it faces the same vulnerabilities as the systems it observes
such as FPGA-based solutions like Rahman et al. (2024). Attacks may be introduced early in the design phase yet
only manifest during operation, making detection challenging (Figure 1). This underscores the need for complementary,
software-independent monitoring strategies. Compared to existing methods, our solution uniquely targets both func-
tional faults and malicious modifications (e.g., HW-Trojans or firmware tampering), covers the full system lifecycle,
and supports secure updates. The logical and physical isolation of monitors ensures their integrity, even in compromised
environments.

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

We identify three core requirements: (i) monitoring both hardware and software behaviour, achievable only with
hardware-based monitoring; (ii) updateability to adapt to changing system software; and (iii) logic isolation to ensure
monitors cannot be detected or compromised by the system under observation. Potential threats considered include tro-
jans that manipulate the software or hardware implementation and will lead to unexpected behaviour such as leaking
internal data over communication links or executing additional functions, which will inevitably lead to different execu-
tion timing. While this work focuses on timing behaviour, approaches that observe the functional behaviour could be
integrated in a similar way. We propose a dual-domain monitoring approach in Section 2. Lightweight hardware moni-
tors are automatically generated from timing constraints, while firmware is observed using Statistical Timing Monitors
(STMos), which compare execution time against learned timing profiles. To counter supply chain attacks, we embed
an on-chip FPGA-based Trusted Execution Environment (TEE) for secure, out-of-band monitoring in Section 3. Our
method is validated on a System-on-Chip with a RISC-V CPU and a manipulated CAN subsystem, where our monitors
successfully detect malicious modifications and restore system integrity. Moreover, we compare our approach against
existing techniques. Lastly, we discuss our results in Section 4.

2. Monitor Definition & Integration

We propose a runtime monitoring approach based on formally specified system behaviour, such as assume-guarantee
contracts for timing properties using the MULTIC Timing Specification Language (MTSL) Bode et al. (2019). However,
other specification languages or temporal logics could be used in a similar manner to express contracts, for example to
adress functional behaviour. These constraints define the expected behaviour and are checked by monitors running
inside a TEE, ensuring integrity even in compromised systems (Figure 1). One concern is the corruption of the monitors
themselves, because a typical production flow consists of many supply chain participants, which can all be attack
vectors. Figure 2 shows how our monitors are deployed post-production. Unlike conventional supply-chain-integrated
monitors, ours are deployed post-production, enabling detection of tampered timing behaviour. This resides on two
underlying assumptions: the trusted execution environment always executes monitors correctly, and there is a secure
deployment/upgrade path for the monitors themselves. This is addressed via secure boot and cryptographic signatures.

1L

I Subcontractor 'f‘>{ Design House |

Inputs *
o | l - v
| :

Process Monitor

(HW|SW) (HW|SW) *
o | Test + SW ':>{ Test House |

nputs U Packaging

Sys. Integration l D — Monit Sys. | ti
AT ; onitors s.In aton
(HWISW) Monitor y

! tegr.

v (BWISW)BEIE @cc0 0000 l B

Runtime (Ops) ATrandy | [[Troan | ol 5
manipulated Behaviour T @al Monitors <

Figure 1. Monitoring (e.g. timing-fingerprints) to identify trojans that

could be introduced at any stage of the supply chain.

observable Behaviour

" Months/Years
After Attack J§ Before Attack

Dev

Ops

Figure 2. Integration of monitors at the
end of development, bypassing multiple
attack vectors (crossed swords).

Moreover, we distinguish between hardware and software monitoring, due to their differing timing characteristics:
For hardware, monitors operate at full clock speed to detect even single-cycle violations. Hardware IP-Monitoring
(left Figure 3) includes event-specific observers that forward relevant signals to monitors, which verify compliance

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

with MTSL constraints. Depending on the hardware, observers are combinatorial or sequential (considering different
signals) and, thus, it is impossible to give a generic definition of event observers and their logic. They are design specific.
The MTSL verification algorithm within each hardware monitor includes a violation detection mechanism. Monitoring
starts at event-triggered such as system startup or environmental stimuli at time # = 0 (representing physical time in clock
cycles). Then, proceeds through Idle and Active states, where each subsequent request in the Active state resets the time
to indicate the start of a new monitoring cycle. After evaluation of the timing condition and upon a detected violation,
the monitor decides how to proceed. The monitors can handle recoverable (e.g., noisy input) and unrecoverable (e.g.,
critical violations) failures. This high-resolution, out-of-band monitoring enables low-overhead detection of rare timing
anomalies, maintaining reliability. Consequently, Deviations from expected behaviour can be addressed promptly.

Bus Parameters

Input data, Address, write enable/ackknowledge, .. Events

]
Observer
Interface
Observer IP Components Observe Firmware
_______ 1
Receive Select Relevant Data ! Timed Event
Measured Data Based on Contract-Specification Sensor System | Event Filter Generator

| LI L[] LL..[

o2 tn

Relevant
Data

Observer-
Monitor

Monitor IP Component

Interface

MULTIC Timing Specification Language (MTSL)
Contract Specification

v v

| Evaluate |

Statistic Timing Monitor (STMo) for Firmware

Escalation
Event N Event N Assessment
Synchronizer Processor

| (Request) Controller | | Event Handler | [1...] [1...1

e 0 12

Figure 3. Monitoring hardware (left) and software (right).

On the other hand, timings for software on a modern CPU core are not necessarily fully deterministic, therefore we
use a statistical approach. The developed Statistical Timing Monitors (STMo) system (Figure 3) effectively identifies
modifications such as tampering that can affect functionality and security. Any modification (e.g., trojan insertion) will
invariably change timing, which is captured as a shift A¢ from the normal execution time #y,,,,. Rather than relying
solely on each single execution time, which can be influenced by factors like memory hierarchy, branch prediction,
and I/O operations, STMo compares run-time timing statistics to a pre-defined histogram specification allowing for
precise detection of software modifications. Here, an observer (integrated with a RISC-V core) timestamps software
events using a synchronised clock. These timed events represent significant value- or state-changes of the software are
filtered and passed to the STMo unit for synchronisation. The STMo builds a runtime histogram of execution timing
and compares it to a reference histogram representing the expected behaviour within the assessment block. Deviations
signal potential tampering and the assessment block triggers alerts or developer-defined recovery actions. All data is
logged for traceability, enabling the back-tracing of any issues that may arise within the STMo system.

3. Case Study: Demonstrator ASIC

We present a RISC-V-based ASIC (Figure 4) designed for accurate force measurement in robotics, enabling collision
detection via a Wheatstone bridge frontend and CAN interface. The chip includes a 32-bit RISC-V core, 16 kB SRAM,
external QSPI NOR flash for program memory, and an eFPGA-based TEE attached via internal GPIOs for flexible
runtime monitoring. The FPGA, built using the OpenFPGA toolchain Tang et al. (2019), features 200 LUTs to monitor
processor activity. The FPGA bitstream is stored within the internal memory, allowing for rapid prototyping and testing.

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

For secure applications, access to the FPGA would need to be restricted —- either through JTAG or ROM-preloaded
bitstreams. Fabricated in 180nm CMOS, the chip uses 155 886 standard cells (8.72 mm?), with the FPGA accounting for
70816 cells (1.5 mm?) and 54% chip utilization. Estimated power consumption for the digital logic is 8 mW. A *"dummy
Trojan’ in the CAN-Controller demonstrates the monitor’s capability to detect security threats effectively. We developed
a custom firmware that retrieves and pre-processes data from a sensor before send to the robotic demonstrator’s control
unit via CAN, serving as a testbed for both hardware and software attack vectors.

RiscV Core »
¥ Memory
TEE g |) | In each jumping window of length 100, with tolerance 0%:
i M | GPIO 2 reaction (RISC-V.GPIO.port[0]-port[7].0b00000001, RISC-V
FPGA Area e .GPIO.port [0]-port[7].0b00000010)
e 3 occurs within 39.08us with symmetric jitter-distribution
D 12¢/ of {100% in [+Ons; -Omns]}
| Q5P 4
CAN 5 symmetric jitter-distribution of {15% in [-1.5ns to -1.0
HW-Trojan g ns];
Sensor 6 20% in [-1.0ns to -0.5ns]; 30% in [-0.5ns to +0.5ns];
l 5{ T > 7 20% in [+0.5ns to +1.0ns];15% in [+1.0mns to +1.5ns];}

_ _ Listing 1: STMo specification for untampered firmware.
Figure 4. ASIC demonstrator with

attack vectors (crossed swords) and
monitors (Ienses).

Signals

Time
00000001
100

1954

8 clictb

& resetn_tb

W Event 00000001

101

1977

Figure 6. Traces for a CAN IP transmission process where
the data transmitted by cs_can2 trojanises cs_can in order
Figure 5. Untampered (top) vs. tampered (bottom) to start an un-acknowledged sending process (tx-i).
firmware.

To evaluate the STMo system, we tested firmware designed to send two-byte sensor data via CAN. A tampered version
appended two extra bytes, simulating data exfiltration. The STMo system uses a baseline timing profile, derived from the
untampered firmware, as a reference. Timing specifications are defined using Statistic Time Monitoring Specification
Language (STMoSL), a domain-specific language for histogram-based constraints. While this paper does not provide
a full overview of its syntax and semantics, yet, its features are exemplified by the specification of the untampered
firmware. For instance (Listing 1), a jumping window of 100 executions with 0% tolerance captured consistent execu-
tion times of 39.08 us (1954 clock cycles). This means, that after every 100 measurements the STMO system compares
the measured run-time histogram with the STMoSL specification. STMoSL can also be used to specify timing distribu-
tions, e.g. due to jitter, using percentages of the number of measurements, and lower and upper interval-bounds relative
to the previously specified mean. Characteristic events are specified by the port- & value-tuples in the reaction-phrase,
referring to the RISC-V GPIO ports [0:7], and generated by the firmware using software annotation. Simulation with

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

both firmware versions showed STMo correctly validating the untampered case with verdict TRUE (top of Figure5)
after 100 executions and flagging deviations in the tampered case with verdict FALSE (bottom of Figure5), proving its
effectiveness in detecting timing discrepancies.

Hardware monitors and observers are implemented on the ASIC SoC FPGA Core (TEE), using GPIOs to capture
CAN-Controller events. The objective is to avoid altering the original source code of the CAN-Controller in the ASIC
design. We tested detection of a Hardware Trojan (HW-Trojan) integrated as a separate entity into the original CAN-
Controller IP and controllable via a trojan_en input. Thus, Trojan logic can be bypassed when trojan_en is set to ’0’
without modifying the original CAN-Controller source code. The HW-Trojan listens on the CAN interface and, when
triggered by a magic CAN packet, transmits previously recorded secret data (e.g. a cryptographic key) without autho-
risation or intervention by the software. Aging Monitors check timing and causality between request (event f) and send
(event e). If a send occurs without a preceding request, the monitor flags a violation because of an MTSL aging pattern
that specifies the backward delay: Whenever EventExpr occurs then EventExpr has occurred within Interval. Note
that the interval detected by the pattern initiates upon the observation of the final element of an EventExpr. A waveform
(Figure 6) shows two transmissions from cs_can2 to cs_can (tx2_i), where the second includes a Trojan activation code
(8’h56) in register 8’d12. In the waveform, send_data_o and observer_go_tx are inputs to the cs_can monitor, while its
outputs are o_pass and o_fail representing the monitor’s verdict. To transmit the two sets of data the cs_can receives the
send requests send_data_o2. With the trojanised data packet, cs_can transmits data (tx_i) without a proper send request.
The monitor detects unauthorised transmission — send action (observer_go_tx = ’1’) occurs without a corresponding
send request (send_data_o = ’0’) — and signals a violation (o_fail = ’1’). This validates the monitor’s ability to catch
hardware-level threats.

Our runtime monitoring approach distinguishes itself from the related work by addressing multiple system vulnera-
bilities, including both hardware Trojans and malicious firmware, going beyond traditional software-focused solutions
in terms of target attacks such as those by Tabakov & Vardi (2010); Havelund (2008). Unlike prior methods that
primarily detect software faults, our solution provides comprehensive protection across hardware and software layers.
Regarding the time point of monitoring, traditional approaches often focus solely on runtime monitoring, which can
introduce latency and overlook hardware-level threats. In contrast, FPGA-based monitors allow us to use a uniform
formal A/G contract specification across the entire life cycle. This ensures threats are detected early and reliably in both
hardware and software domains, without incurring significant performance penalties. A major strength of our solution
lies in the security and flexibility of the monitoring infrastructure: Isolation via TEE ensures the monitor’s integrity, even
if the main system is compromised. Dynamic updatability allows our monitors to evolve with emerging threats -— an
advantage over fixed-function monitors such as those by Tracy et al. (2020). Automated monitor generation from con-
straint specifications accelerates deployment while maintaining correctness and security. Our monitors can observe both
timing and data behaviour securely within the TEE (based on the constraint specification). Since individual participants
of the supply chain are unaware of what’s being observed, the risk of tampering is minimised enhancing security. This
logical separation protects the monitor even in compromised environments. Our hybrid approach offers comprehensive
runtime verification that ensures secure, flexible, and efficient monitoring, strengthening system resilience against both
hardware and software vulnerabilities.

4. Conclusion

Unintended runtime behaviour in embedded systems, such as data leakage or malfunctions, can result from hardware
Trojans or malicious firmware which can be introduced during design or manufacturing but which are often detected
much later. We address this by a monitoring approach covering both hardware and software, and using TEEs for secure,
out-of-band monitoring. The key features include comprehensive monitoring across hardware and software, updateabil-
ity through automated constraint-based monitor generation, and logic isolation to ensure security even in compromised
systems. Lightweight hardware monitors, isolated within FPGA-based TEEs, focus on timing behaviour, while STMoS
handle software anomalies. The approach was successfully validated in an SoC with a RISC-V-based CAN-Controller,

IMA International Conference on Modelling in Industrial Maintenance and Reliability - MIMAR2023

detecting hardware and software tampering, including data exfiltration and altered data streams. This hybrid solution
offers robust, real-time system integrity protection.

Future work could expand on this approach regarding the detection capabilities to cover more sophisticated threats,
such as Al-based hardware Trojans or multi-vector attacks that combine both hardware and software vulnerabilities.
Moreover, scalable deployment of these hybrid monitors could be addressed considering highly distributed systems,
such as in automotive networks or industrial control systems, where centralised monitoring may not be feasible.

References

Bode, E., Damm, W., Ehmen, G., Frinzle, M., Griittner, K., Ittershagen, P., Josko, B., Koopmann, B., Poppen, F,, Siegel,
M. & Stierand, 1. (2019), MULTIC-Tooling, in ‘FAT-Schriftenreihe 316, Forschungsvereinigung Automobiltech-
nik e.V. (FAT).

Decker, N., Dreyer, B., Gottschling, P., Hochberger, C., Lange, A., Leucker, M., Scheffel, T., Wegener, S. & Weiss, A.
(2018), Online Analysis of Debug Trace Data for Embedded Systems, in ‘Design, Automation and Test in Europe
Conference and Exhibition (DATE)’.

Do Tran, D., Walter, J., Griittner, K. & Oppenheimer, F. (2020), Towards Time-Sensitive Behavioral Contract Monitors
for IEC 61499 Function Blocks, in ‘IEEE Conference on Industrial Cyber Physical Systems (ICPS)’.

Havelund, K. (2008), Runtime Verification of C Programs, in ‘20th International Conference on Testing of Software and
Communicating Systems’, Springer-Verlag, Berlin, Heidelberg.

Laurent, J., Deleuze, C., Pebay-Peyroula, F. & Beroulle, V. (2021), ‘Bridging the Gap between RTL and Software Fault
Injection’, J. Emerg. Technol. Comput. Syst. 17(3).

Lu, H. & Forin, A. (2008), ‘Automatic Processor Customization for Zero-Overhead Online Software Verification’, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 16.

Nanjundaswamy, N. R., Nitsche, G., Poppen, F. & Griittner, K. (2023), RISC-V timing-instructions for open time-
triggered architectures, in ‘53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN)’, IEEE, Porto, Portugal.

Pan, Z. & Mishra, P. (2022), Design of Al Trojans for Evading Machine Learning-based Detection of Hardware Trojans,
in ‘Design, Automation & Test in Europe Conference & Exhibition (DATE)’.

Rahman, M. M. M., Tarek, S., Azar, K. Z., Tehranipoor, M. & Farahmandi, F. (2024), ‘The road not taken: efpga ac-
celerators utilized for soc security auditing’, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems .

Solet, D., Pillement, S., Béchennec, J.-L., Briday, M. & Faucou, S. (2018), HW-based Architecture for Runtime Verifi-
cation of Embedded Software on SoPC systems, in ‘NASA/ESA Conference on Adaptive Hardware and Systems
(AHS)’.

Tabakov, D. & Vardi, M. Y. (2010), Optimized Temporal Monitors for SystemC, in H. Barringer, Y. Falcone,
B. Finkbeiner, K. Havelund, 1. Lee, G. Pace, G. Rosu, O. Sokolsky & N. Tillmann, eds, ‘Runtime Verification’,
Springer-Verlag, Berlin, Heidelberg, pp. 436—451.

Tang, X., Giacomin, E., Alacchi, A., Chauviere, B. & Gaillardon, P.-E. (2019), OpenFPGA: An Opensource Framework
Enabling Rapid Prototyping of Customizable FPGAs, in ‘29th International Conference on Field Programmable
Logic and Applications (FPL)’.

Tracy, T., Tabajara, L. M., Vardi, M. & Skadron, K. (2020), Runtime Verification on FPGAs with LTLf Specifications,
in ‘Formal Methods in Computer Aided Design (FMCAD)’.

