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Abstract

Modelling the profile of a city has been widely studied by the research community, particularly
in remote sensing. By using sensors located on airborne and satellite platforms, it is possible
to retrieve data such as optical/infrared images, radar and laser measurements, etc. Many of
these sensors can be used to compute the 3D profile of the scene. Radar and LiDAR are able
to measure the distance with high accuracy, but the reconstruction might be sparse, include
outliers and uses expensive technology. Images on the contrary are relatively cheaper and
capture geometric details, useful for a dense reconstruction. Nonetheless, the reconstruction
depends on the matching capabilities of the applied algorithm, as the depth has to be computed
from the displacement of corresponding pixels in the images.

Before the deep learning solutions, algorithms such as Semi-Global Matching or those based
on Structure from Motion used to lead the reconstruction benchmarks. These conventional
algorithms can be implemented on any set of images without any prior knowledge of the scene
and the refinement process, which benefit from geometric principles to detect inconsistencies and
occlusions, generate an accurate digital surface models with few remaining outliers. However,
conventional approaches fail in complicated areas such as those with poor texture, repetitive
patters, reflective surfaces, that are common in remote sensing imagery.

In contrast, deep learning approaches deal better with complicated areas and by using contextual
information, they are able to reconstruct a smooth 3D profile with few outliers and high accuracy.
Yet, learning based algorithms might fail if the differences between the training and testing
sets are large. In addition, neural networks require a large amount of quality data for a robust
training, which is not easy to collect for remote sensing platforms. What is more, ground truth
might still be obtained with laser but for smaller regions, leading to domain shifts.

Hence, the first step to set a reliable framework to evaluate reconstruction algorithms is to
provide high quality data. As this is expensive in a real scenario, this study proposes the use of
a pipeline to generate large amounts of synthetic data to train stereo matching and multi-view
stereo (MVS) networks. Since the data is rendered from software, accurate ground truth is
available. Moreover, as the software allows editions of the virtual scene, the urban growth can
be simulated, which helps to create data for additional tasks like change detection.

A reliable dataset allows to set up experiments to evaluate the quality of the reconstruction
algorithms. This dissertation considers two main research directions to design these experiments.
On the one hand, it is important to explore the advantages of both the conventional and the
learning based solutions, which are evaluated for the stereo matching case. On the other
hand, a comparison between the stereo and MVS algorithms is conducted. Intuitively, using
complementary information as MVS does might produce a more robust result, but stereo
methods have been more studied and have a simplified matching case. Therefore, conventional
and learnable, stereo and MVS algorithms are analysed with reliable datasets to assess how these
contribute to the 3D reconstruction task. Furthermore, an alternative case to fuse height values
into a final digital surface model is explored, where the confidence for the values predicted by
the neural networks is estimated and used to guide the fusion.
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Valuable insights into the urban 3D reconstruction were obtained from the carried out experi-
ments. The generation of datasets from real and synthetic scenarios facilitated the analysis
of the capabilities of the tested algorithms. Despite the well-known problem of the domain
gap, the networks trained on the generated datasets produced good reconstruction results in
complex regions. Buildings and man-made structures benefit from the synthetic models, but
for vegetation and natural elements the algorithms exhibit a lower performance because such

elements are simplified in the 3D modelling.

Among the methods tested, stereo matching approaches computed reconstructions that were
less prone to outliers, while the MVS was more robust for edge discontinuities. However,
learning algorithms estimate a value for each pixel in the input images, but the reliability of this
estimation should still be assessed. By pre-selecting the predicted values based on a confidence
estimation, the accuracy of the fusion was improved for the stereo matching case. Yet, this
fusion strategy needs to be further explored to generalize to MVS methods as well.
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Zusammenfassung

Die Modellierung des Profils einer Stadt ist in der Forschung, insbesondere im Bereich der
Fernerkundung, weithin untersucht worden. Durch den Einsatz von Sensoren auf Luft- und
Satellitenplattformen ist es moglich, Daten wie beispielsweise optische/Infrarot-Bilder, Radar-
und Lasermessungen zu erhalten. Viele dieser Sensoren kénnen verwendet werden, um das
3D-Profil der Szene zu berechnen. Radar und LiDAR sind in der Lage, die Entfernung mit hoher
Genauigkeit zu messen, die Rekonstruktion kann jedoch spirlich sein, Ausreiler enthalten
und teure Technologie verwenden. Bilder hingegen sind relativ kostengiinstig und erfassen
geometrische Details, die fiir eine dichte Rekonstruktion niitzlich sind. Dennoch héngt die
Rekonstruktion von den Matching-fahigkeiten des verwendeten Algorithmus ab, da die Tiefe
aus der Verschiebung der entsprechenden Pixel in den Bildern berechnet werden muss.

Vor den Deep Learning-Losungen fiihrten Algorithmen wie Semi-Global Matching oder solche,
die auf Structure from Motion basieren, die Rekonstruktionsbenchmarks an. Diese konven-
tionellen Algorithmen kénnen ohne Vorkenntnisse der Szene auf jeden Satz von Bildern
angewendet werden und der Verfeinerungsprozess, der von geometrischen Prinzipien zur
Erkennung von Inkonsistenzen und Verdeckungen profitiert, erzeugt ein genaues digitales
Oberflichenmodell mit wenigen verbleibenden AusreiBern. Konventionelle Ansitze versagen
jedoch in komplizierten Bereichen, wie z.B. solchen mit schlechter Textur, sich wiederholenden
Mustern und reflektierenden Oberflachen, die in Fernerkundungsbildern hdufig vorkommen.

Im Gegensatz dazu kommen Deep-Learning-Ansitze besser mit komplizierten Gebieten zurecht.
Durch die Verwendung von Kontextinformationen sind sie in der Lage, ein glattes 3D-Profil mit
wenigen Ausreiern und hoher Genauigkeit zu rekonstruieren. Allerdings konnen lernbasierte
Algorithmen bei groen Unterschieden zwischen den Trainings- und den Testsdtzen versagen.
AuBerdem bendtigen neuronale Netze fiir ein robustes Training eine groBe Menge an qualita-
tiv hochwertigen Daten, die fiir Fernerkundungsplattformen nicht einfach zu sammeln sind.
AuBerdem konnen die Ground-Truth Daten zwar mit dem Laser gewonnen werden, aber nur
fiir kleinere Regionen, was zu Bereichsverschiebungen fiihrt.

Der erste Schritt, um einen zuverldssigen Rahmen fiir die Bewertung von Rekonstruktionsalgo-
rithmen zu schaffen, besteht daher in der Bereitstellung hochwertiger Daten. Da dies in einem
realen Szenario teuer ist, schlidgt diese Studie die Verwendung einer Pipeline zur Erzeugung
groBer Mengen synthetischer Daten vor, um Stereo-Matching- und Multi-View-Stereo-Netzwerke
(MVS) zu trainieren. Da die Daten von einer Software gerendert werden, ist eine genaue
Ground-Truth verfiigbar. Da die Software auBerdem die Bearbeitung der virtuellen Szene
ermoglicht, kann das Wachstum der Stadt simuliert werden, wodurch Daten fiir zusitzliche
Aufgaben, wie die Erkennung von Verdnderungen, erzeugt werden kénnen.

Ein zuverldssiger Datensatz erméglicht die Durchfithrung von Experimenten, um die Qual-
itdt der Rekonstruktionsalgorithmen zu bewerten. Diese Arbeit beriicksichtigt zwei Haupt-
forschungsrichtungen, um diese Experimente zu konzipieren. Einerseits ist es wichtig, die
Vorteile sowohl der konventionellen als auch der lernbasierten Losungen zu erforschen, die fiir
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den Fall des Stereo-Matchings bewertet werden. Andererseits wird ein Vergleich zwischen dem
Stereo- und dem MVS-Algorithmus durchgefiihrt. Intuitiv konnte die Verwendung komplemen-
tarer Informationen wie bei MVS zu einem robusteren Ergebnis fiihren, Stereomethoden sind
jedoch besser erforscht und haben ein vereinfachtes Matching. Daher werden konventionelle
und erlernbare Stereo- und MVS-Algorithmen mit zuverldssigen Datensétzen analysiert, um zu
beurteilen, wie diese zur 3D-Rekonstruktion beitragen. Dariiber hinaus wird ein alternativer
Fall der Fusion von Hohenwerten zu einem endgiiltigen digitalen Oberflichenmodell untersucht,
bei dem die Konfidenz in die von den neuronalen Netzen vorhergesagten Werte geschitzt und
zur Steuerung der Fusion verwendet wird.

Die durchgefiihrten Experimente lieferten wertvolle Erkenntnisse {iber die 3D-Rekonstruktion
von Stddten. Die Erstellung von Datensitzen aus realen und synthetischen Szenarien erleichterte
die Fahigkeiten der getesteten Algorithmen zu analysieren. Trotz des bekannten Problems
der Dominenliicke lieferten die auf den generierten Datensdtzen trainierten Netzwerke gute
Rekonstruktionsergebnisse in komplexen Regionen. Gebdude und kiinstliche Strukturen profi-
tieren von den synthetischen Modellen, aber fiir Vegetation und natiirliche Elemente zeigen die
Algorithmen eine geringere Leistung, da solche Elemente bei der 3D-Modellierung vereinfacht

werden.

Unter den getesteten Methoden berechneten die Stereo-Matching-Ansdtze Rekonstruktionen,
die weniger anfillig fiir AusreiBer waren, wihrend das MVS robuster gegeniiber Kantenun-
terbrechungen war. Allerdings schitzen Lernalgorithmen einen Wert fiir jedes Pixel in den
Eingabebildern, aber die Zuverldssigkeit dieser Schitzung sollte dennoch bewertet werden.
Durch die Vorauswahl der vorhergesagten Werte auf der Grundlage einer Konfidenzschitzung
wurde die Genauigkeit der Fusion fiir den Fall des Stereo-Matchings verbessert. Diese Fu-
sionsstrategie muss jedoch noch weiter erforscht werden, um sie auch fiir MVS-Methoden zu

verallgemeinern.
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2 1. Introduction

The generation of digital surface models (DSMs) is commonly a starting point for other remote
sensing tasks such as building detection, semantic segmentation and terrain models creation.
However, there are many approaches in the research community for DSM generation and it is
difficult to assess which one performs best, particularly for urban reconstruction.

Height can also be estimated by direct measurement using instruments such as LiDAR, which
is highly accurate. However, in practice it is very expensive to scan regions with LiDAR and
if the measurements are not dense enough, the computed DSM will lack sharp boundaries.
Optical imagery on the other hand is relatively cheaper and contains all relevant geometric
information to reconstruct sharp edges.

Reconstructing the 3D profile of a scene from images is a widely studied topic in the computer
vision community. Based on the matching of features visible in two or more images and the
camera parameters, it is possible to estimate how far away are the objects from the camera.
Two main solutions have been addressed to tackle this task: stereo matching and multi-view
stereo.

Stereo matching takes two stereo rectified images as input and matches the common features,
which lay on the same epipolar line as the images are already rectified. The algorithms estimate
how many pixels the features have been shifted between the two images, where such a shift is
called disparity. If the parameters of the stereo array are known (namely baseline and focal
length), the distance to the object can be computed from the disparity.

In the multi-view stereo case (MVS), the input images have different locations and rotations
around the scene. Hence, the matching would be a computational demanding task in the image
domain. By using the homography matrix, the pixels are translated into the 3D domain and
the matching is applied for points in this space. As a result, we obtain directly the depth each
pixel represents in the image.

Furthermore, there are two main strategies to develop stereo and MVS algorithms: traditional
photogrammetry and deep learning. The former relies in the equations that describe the camera
systems and the projection of 3D scenes into the camera plane without previous parameter
training or prior knowledge of the scene. This has been the main strategy for many years and
is widely studied. Deep learning takes a large set of images as input data and learns through
multiple convolutional layers and iterations the relation between input and output. Although
subject to the domain similarities, neural networks lead most of the benchmarks.

Nonetheless, considering the fact that images in the remote sensing field are not set in a
controlled environment, the matching in any of the cases is a challenging task. Effects such as
seasonal changes, illumination conditions, construction works and textureless areas lead to
wrong disparity/depth predictions and affect all algorithms.

The particular point of construction works, while being a challenge for matching, it is also an
indicator for changes in the urban development. For cadastral databases and urban planning,
it is relevant to keep track of changes in buildings, either because of new constructions,
demolitions or building renovation works. As 3D data is valuable for this task, we consider it
within the scope of this thesis.
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1.1 Scope of the Research

In this thesis there are different aspects to be analysed in the task of 3D urban reconstruction.
Firstly, the quality of the existing data to assess stereo and MVS algorithms is discussed. Apart
from the input images, reference data is needed to evaluate the reconstructed DSMs. LiDAR
generated maps are a reliable source, but due to the expensive acquisition costs, only few
areas are surveyed with this sensor and where these maps are available, these are not regularly
updated. In other cases, the reference data is computed by merging the result from many
optical-derived DSMs, so the evaluation of new algorithms is subject to the accuracy of those
used to generate the reference data. Hence, developing synthetic data is a viable alternative to
compensate for the lack of accurate data and allows to simulate acquisitions that give more
insights of the reconstruction algorithms. Besides, it reduces significantly the costs as no real
flight campaigns or satellite missions are required. The pipeline to create synthetic data, the
generated images and ground truths, and the resemblance to reality of the samples is the
starting point for this thesis.

In addition, the 3D software provides a controlled environment which helps in the preparation
of data for the analysis of the detection of urban changes. It is difficult in reality to prepare
a dataset for change detection, as acquisitions with similar conditions in different times are
needed to compare the variations in the scene. In a virtual environment it is easier to modify
the scene and render with different conditions. Thus, a similar pipeline as for stereo data can
be applied to create data for change detection algorithms.

Once reliable data is available, performance analysis can be carried out. Traditional photogram-
metry and deep learning algorithms are compared for the stereo matching task. This highlights
the advantages and drawbacks of each case. The performance to reconstruct specific objects of
the scene is also studied.

Similarly, stereo and MVS algorithms are evaluated considering deep learning approaches.
This is an important evaluation, as the approaches are usually applied separately to study cases
and the performance on the same 3D reconstructed area has not been the subject of in-depth
research.

Last but not least, confidence estimation is also covered in this dissertation. While the median
fusion is a robust solution to merge multiple DSMs, a more sophisticated method could lead to
improvements in accuracy. The reconstruction algorithms generate disparity and depth maps,
where some pixels are derived from more confident estimations than others. A fusion based on
a confidence value assigned to each predicted pixel could be a more accurate solution.

Summarizing, the study objectives of this dissertation are:

* Develop a pipeline to generate synthetic data to be used for stereo and MVS algorithms.
It is important that the generated samples resemble features from real images in the
remote sensing field.

* Develop a different synthetic dataset oriented to the urban change detection, where the
city growth process is simulated.
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» Study the advantages and disadvantages of traditional and deep learning methods for
the stereo matching.

* Study the performance of stereo and MVS deep learning algorithms to reconstruct the
same urban areas.

* Analyse the benefits and limitations of using synthetic data for deep learning algorithms.

* Investigate the role of confidence predictions for the fusion of DSMs.

1.2 Dissertation Structure

This thesis is presented as a cumulative dissertation, which therefore is subject to the content
of peer reviewed publications. The chapters are organized as follows:

Chapter 2 provides an introduction to the nature of the images used in remote sensing, the
principles for stereo and MVS matching in both traditional photogrammetric and deep learning
approaches, and the studies related to confidence estimation.

Chapter 3 focuses on the pipeline to create synthetic data and its application for stereo matching,
where traditional and learning methods are compared. This is linked to the paper:

* Fuentes Reyes, M, d’Angelo, P., & Fraundorfer, F. (2022). SyntCities: A large synthetic
remote sensing dataset for disparity estimation. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 15, 10087-10098.

Chapter 4 is related to the generation of synthetic data for city change detection. The content
is described in the paper:

» Fuentes Reyes, M., Xie, Y., Yuan, X., d’Angelo, P., Kurz, F., Cerra, D., & Tian, ]J.
(2023). A 2D/3D multimodal data simulation approach with applications on urban
semantic segmentation, building extraction and change detection. ISPRS Journal of
Photogrammetry and Remote Sensing, 205, 74-97.

Chapter 5 analyses the differences between stereo and MVS learnable algorithms. This chapter
also deals with the confidence guided fusion for DSMs. This topic is in a paper still under
submission process.

Chapter 6 is a complementary study to chapter 5, where a similar set of experiments is designed
if only 2 views are available with synthetic data. This study was included in the conference

paper:
» Fuentes Reyes, M., d’Angelo, P., & Fraundorfer, F. (2023). An evaluation of stereo
and multiview algorithms for 3D reconstruction with synthetic data. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48,
1021-1028.

Chapter 7 includes general conclusions based on the findings from this thesis and looks into
pending research topics for future work.
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6 2. Theoretical Background

This chapter gives a brief introduction to the topics that will serve as the basis for understanding
the following chapters. Firstly, the description of the camera geometry, its parameters and
the configuration for stereo systems are addressed. Then, the principles applied for 3D
reconstruction algorithms are explained in both stereo matching and MVS with traditional and
learnable approaches. Later, some existing datasets for these tasks are reviewed. Finally, basic
concepts related to confidence estimation are described.

2.1 Camera and image principles

Images in remote sensing usually come from three different sources: satellite missions, manned
flight campaigns and unmanned aerial vehicles (UAVs). The last two sources use cameras that
can be simplified by the pinhole camera model to transform the 3D scene into a 2D image.
Satellites use a different principle that will be briefly described later in subsection 2.1.1.

Fig. 2.1 shows a basic diagram to explain
H Sensor how some parameters are related while ac-
width quiring the images. The camera is usually

Focal mounted on an aerial platform and follows
I ength (' the flight trajectory. The distance between
Pixel the camera and the ground is the altitude or
height of the flight (A) and depending on the
Altitude (A) focal length (f), the camera will cover a spe-
cific area on the ground that is the content of
the image. In addition, for digital cameras,
the acquisition sensor has a specific amount

of pixels that define the image resolution in

ol pixels (I,,). Such a sensor has a physical size

Ground sample defined by its width s,,. Each pixel covers a

| distance (GSD) | specific tile on the ground. The side of this
I Ground | tile is known as the ground sample distance
coverage

(GSD) and defines the resolution in terms of

. L. meters. For aerial acquisitions it is common
Figure 2.1: Image acquisition and related parame-

ters to use resolutions in the range of few centime-

ters, keeping a lot of details in the images.
These parameters are related as:

Sy X A

Iy X f

where A, s,, and f are given in centimeters (cm), /,, in pixels and the GSD in cm/pixels.

GSD =

(2.1)

For the present dissertation, it is important to differentiate some concepts. In Fig. 2.2 two types
of acquisitions are displayed. On the left, we show a nadir case, where the camera plane is
parallel to the ground which is hard to set in reality. On the right, the acquisition is oblique,
having the camera plane not parallel to the ground.
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Figure 2.2: Nadir (left) and oblique acquisitions (right) for an aerial acquisition, highlighting the
orientation of the camera and depth planes.

The reconstruction algorithms estimate the height of the objects on the scene (indicated by
the red arrow) based on the depth, which is the distance from the objects to the camera plane.
In a perfect nadir orientation: A = h + z where £ is the height of the evaluated point and z its
depth, or distance to the camera plane. However, in practice the camera takes oblique images
as shown on the right, where the camera parameters are known to properly convert the depth
into height. As this is a general case, a 3D point in the real world with coordinates U, V, W is
transformed into image coordinates u, v (¢ as column, and v as row) as:

u' ri1 ria2 ris 011 0 0 =X U
v’/ _ rog1 r9g 1ro3g offo 1 0 -Y %4 (22)
w rsy 13y 133 of{f0 0 1 -Z w
1 0o 0 0 11{0 0 0 1 ](1
u=(f=u"/w)+c
(f xu’/w') +cx ©.3)

v=(f*v/w)+cy
where X, Y, Z are the coordinates of the camera in the 3D coordinate system and c, and ¢,
are the principal point values. In many cases, both principal points are set to 0.

As mentioned before, depth and height can be computed from each other if the camera
parameters are known. Assuming that the depth values are known after a 3D reconstruction
algorithm was applied, the object coordinates can be found by solving the equation system:

“1rr(u=co)(=2)

U rn riz s 7 rin rig ris| (X

vV—=cC -z
Vi=lra1 roa ra % +|ro1 reg ra3| Y (2.4)
w r31 I3 I3 -z ran rsy raz| |Z

where z is the depth for the evaluated pixel to be converted to a 3D point.

It is important to remark that transformations between coordinate systems might be required
while transforming points from the real world into 2D images.



8 2. Theoretical Background

World/Blender OpenCV/COLMAP For example, in Fig.2.3 two coor

system system dinate systems are displayed. On

z Y the left side, the specifications are
X .

given for the case of the Blender sys-

q R, (TT) # 4\ tem and on the right, the one used

X z by OpenCV and by the COLMAP

pipeline[1]. A simple rotation, like
Figure 2.3: Image acquisition and related parameters. R (T1) is enough to go from one to

another.

Another important aspect to consider while dealing with remote sensing imagery is the large
size of the files and the available bands. Rasters might involve images that have dimensions
larger than 10k pixels. Cropping into smaller patches helps to reduce the computational costs
while processing, which is crucial for deep learning approaches. With respect to the available
bands, for stereo and MVS algorithms either panchromatic or RGB images are used.

21.1 Satellite imagery

For satellite technologies it is common to use linear pushbroom cameras. Unlike traditional
cameras, these sensors take one array (or line) of pixels at a time. Therefore, the image is
formed by many adjacent sensor acquisitions. Although the use of linear pushbroom cameras
might look more complicated, it is useful considering the orbit of a satellite, where the Earth
and the satellite are moving at the same time [2].

Satellite images taken as input for stereo or MVS algorithms are usually preprocessed and
aligned to cover neighbouring areas. Moreover, translating 3D point into images is not computed
with the previous equations, but with rational polynomial coefficients (RPC). Some satellite
images are even processed in a way to resemble the features of pinhole cameras as in [3]. For
the present dissertation, the preprocessing of satellite data will not be addressed, but some
satellite images will be used for the experiments.

Line of motion
»-

Image plane

i

Orthographic

axis
v
K -
Perspective
axis
Instantaneous

view planc

Figure 2.4: Geometry of a pushbroom sensor acquisition. Image taken from [2]
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2.2 Stereo reconstruction

The stereo array configuration assumes that two cameras with the same parameters but
separated by a distance B (called baseline) take a picture simultaneously, simulating the human
vision process. As elements in the image show a horizontal shift between the two images, the
human brain can estimate the distance of such elements.

A similar principle is applied in the computer vision community to estimate the distance from
objects to the camera, as illustrated in Fig. 2.5. There, a stereo array is set above the scene,
where the cameras are separated by the baseline B and both have a focal length f. To the side
of each camera an image is shown that can be acquired from that perspective (see image left
and image right, not related to the objects shown in the middle). As mentioned before, it is
noticeable that the objects show a shift between the images, which is called disparity (d).

G 4 Baseline (B
g \ Focal 4 Z7'\ /7\
L length (f) —— e A
Image left ,,:' NS Image right
Image left Image right / ,‘x:' Image left Image right
i Depthz [ /7 N\ | [
. ) [/ A Disparity d
Disparity d ”,, / \ | Depth Z parity

Disparity and
' depth are related

B
d=f§

Figure 2.5: Stereo vision principle, where disparity and depth are related.

Considering the top of the pine (marked with a purple point) and tracing a line between this
and the center of the cameras, a different position for the pine’s top is given in each created
image. The purple point at the "Image left/ Image right" diagram on the left illustrates the
disparity between the two images. Similarly, an analysis for the top of the pointed tall building
is shown in green. The disparity is related directly to the depth (Z) by using the equation:

a=f3

- (2.5)

Looking at the disparity-depth relation, the larger the disparity, the closer is the object to the
camera. This can also be observed with the green point, which is taller (therefore with smaller
depth) than the purple one. Hence, the disparity for the green point is larger.



10 2. Theoretical Background

If the disparity is known, using this value to generate a DSM is relatively easy. However,
estimating a reliable disparity value for each pixel in the image is a challenging task. Most of
the approaches (traditional and learnable ones) are based on a cost volume computation, as
shown in Fig. 2.6.

221 Traditional stereo matching

Having a set of left-right images, the algorithms look for the position of the same pixel in both
images along the same horizontal line. Corners or points with high contrast are easy to match,
but in reality, the images might also include occluded areas (not visible in both images), blurry
boundaries, textureless regions, illumination differences and noise from the acquisition, among
others, which pose a challenge for the matching. By using a matching algorithm that compares
the similarities between pixels a cost volume is generated. The cost volume approach first
creates a volume with size H X W x D, where H and W are the height and width of the image
and D the disparity range (commonly [0, 192] for learning algorithms), so there is a value for
each pixel in the image along the disparity range.

Disparity map

Figure 2.6: Disparity estimation based on a cost volume.

In the case of Semi-Global Matching [4], a cost that penalizes discontinuities in the disparity
estimation is applied, benefiting from using context information from neighbouring areas. The
SGM function in this algorithm is computed as:

E(D)= ) (C(p.Dy)+ ), PITIID, =Dyl =11+ ) PoT[ID, - Dyl >1])  (26)
P qEN) geNp,

where the objective function E(D) should be minimized for an optimal disparity map. The first
term of the sum is the direct cost based on the similarity of the pixels (for pixel p using the
disparity D) and an algorithm such as Census [5] can be used as suggested in [6]. The second
term penalizes small differences in the neighbourhood of p (where g is another pixel in the N,
neighbourhood) with a penalty value P;. The third term penalizes larger differences with the
parameter Po. T is a function to validate if the argument is true. SGM looks recursively along
different directions to reduce the computational burden of analysing the whole image to get
context information. Due to the good balance between accuracy and computational cost, SGM
is one of the most widely used methods and a reliable option for remote sensing data [7].
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Still, SGM is part of a pipeline for stereo matching, which encompasses matching cost computa-
tion, cost aggregation, disparity estimation and disparity refinement [8]. Additional steps such
as left-right consistency check [9] are applied to remove remaining outliers in the prediction.

2.2.2 Learnable stereo matching

As for many tasks in the computer vision community, deep learning has achieved remarkable
results and leads many state of the art solutions. This also applies to remote sensing tasks [10]
such as semantic segmentation, object detection, image pansharpening or 3D reconstruction.

For the specific work of stereo matching, there has been also a series of neural networks which
outperform traditional methods if the domain gap is not too large, being more robust to
textureless areas or occlusions, and generating smoother disparity maps.

One of the first architectures was MC-CNN [11], where the step of matching computation is
replaced with convolutional and fully-connected neural networks (CNNs and FCNs respectively).
Feature extractors are applied to each of the input images and these are later concatenated to
obtain a similarity score. The rest of the pipeline is based on SGM to enforce the smoothness
of the result. MC-CNN reduced the error and the presence of outliers significantly, encouraging
the research of more sophisticated solutions.

After that, the algorithms focused on including the whole stereo matching pipeline in a learnable
way. DispNet [12] did not only improve the training of the networks by releasing the SceneFlow
dataset, but developed an end-to-end strategy to estimate directly the disparity maps taking
the stereo pair as input. The network has an encoder-decoder architecture with multiple
convolutions, so context features can be learned in the coarse resolution and the details are
recovered while upsampling. As the image features are not always processed at full resolution in
all steps, this reduces the computational cost which makes real time inference possible. Another
valuable study is GC-Net [13], where 3D CNNs are added to the architecture. While this type
of convolutions improve the smoothness of the disparity map due to the 3D captured context,
it also increases the computational cost.

Another significant work was proposed by PSMNet [14], which added a spatial pyramid pooling
module that is able to learn the context at different scales, leading to improvements, especially
for the occluded areas. EdgeStereo [15] has an additional sub-network that estimates an edge
map, whose features are used for the disparity prediction, preserving edges and geometrical
details from the input images. AMNet [16] benefited from contextual information by adding
atrous convolutions at multiple scales and has an extended architecture that is fore- and
background aware.

GA-Net [17] is an interesting approach, as it is based on a principle similar to SGM, where
the costs for context are evaluated along different directions. It computes a robust matching
cost using 3D CNNs and has an additional layer to refine thin structures. GA-Net is commonly
used as a baseline to evaluate the performance of newer architectures. Nonetheless, it is a
computationally expensive network and the inference times are slow. A solution to reduce the
memory consumption is a coarse to fine architecture as suggested in GA-Net-Pyramid [18],
which was tested for large remote sensing images.
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AANet [19] follows a different strategy by replacing the heavy 3D convolutions with an architec-
ture based on deformable convolutions instead. The cost volumes are handled in different scales,
which helps to reduce the memory demands without missing context information. AANet is
able to work on real time and its layers can be plugged into other architectures such as GANet,
improving memory and inference time with a slight decrease in accuracy.

Despite the robust architectures for cost matching and disparity refinements, deep learning
algorithms are in general affected by the domain gap problem. If the training and test datasets
show large differences, many algorithms might fail to generate a disparity map. DSMNet [20]
applies a "domain normalization” to the input images and uses a graph-based filter to capture
geometrical features which also helps to generalize data. With DSMNet it was possible to train
only on synthetic data and evaluate in real images to obtain a good quality disparity map.

Newer approaches use more sophisticated layers or features extractors to reduce the prediction
errors and alleviate the domain gap problem. RAFT-Stereo [21] uses gated recurrent units
(GRUs) [22], a type of layers that are able to keep or forget some features and are also
commonly used for language processing. RAFT shows a more robust result for textureless
areas, overexposure or fine structures. Its architecture can be adapted to work on real time
without a significant accuracy loss. Other cases use transformers [23], an attention mechanism
which transfers a sequence of data into another but without using recurrent networks. The
STTR architecture [24] benefits from using transformers, which helps to avoid the limitation
of having a fixed disparity range (as most of approaches use), handles better the presence of
occlusion and strongly focuses on constraining the matching to a single candidate.

2.3 MYVS reconstruction

The Structure-from-Motion (SfM) algorithms are commonly the first step for MVS, as these
are able to retrieve the camera parameters for a set of input images. The usual pipeline for
SfM algorithms follows these steps: detection of features in images, matching of the features,
construction of 2D tracks based on the matching, solving the SfM algorithm with the tracks as
input and using bundle adjustment to refine the SfM model [25].

Although the images were constrained to small changes in the early stages of SfM, methods
have improved to consider larger distances between the cameras and using data from different
acquisition times which is common in remote sensing. They also sort the images based on
similarity, a useful input for MVS to select feasible additional views while processing.

However, the reconstruction of the scene itself is sparse in SfM, but its outputs are useful for
the MVS algorithms that focus on creating a dense reconstruction. MVS can be seen as a more
general case of stereo view, where the images come from various points of view. Assuming
that the camera parameters are known, the matching of features between images is reduced
from a 2D to a 1D problem, as optical rays can be traced between the camera center and its
intersection in another image. Nonetheless, occlusions are a significant issue, since objects are
not visible from all directions.
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2.3.1 Traditional MVS

A widely used strategy applied for MVS is the plane-sweep algorithm [26]. It starts by assuming
one of the views will be considered as the reference (see Fig.2.7). Starting at the camera plane
of the reference view, a plane is swept along the camera frustum, creating a set of planes. The
additional views are reprojected onto each of the planes via homography and these reprojections
are compared to find the plane that defines the right depth for each pixel. This algorithm can be
efficiently implemented in a GPU [27], where the depth value is chosen with a "winner-take-all"
implementation from the computed family of planes. In this way, the set of depth hypotheses is
similar to the cost volume from the stereo matching algorithms.

COLMAP [1] is an open source pipeline for 3D recon-
Source struction from imagery. Both algorithms SfM and plane
camera 1 . . . . s
sweep are included in the pipeline. The reconstruction
is based on geometric principles and robust algorithms
are added to handle noise and inaccuracies. Hence,

reconstructions made with COLMAP are very accurate

I despite their relative sparseness. COLMAP is also used
; ~—

to retrieve SfM parameters for other algorithms such as

‘//I Reference

| camera camera extrinsics and it gives a score for the closeness

“\ C of the additional views.

s Another popular open source strategy is GIPUMA [28]
ource

camera 2 which follows the principle of PatchMatch [29] applied

for stereo matching. Here, the depth candidate planes
Figure 2.7: Sweep plane algorithm. A set

of depth plane hypothesis is defined in the
frustum of the reference camera.

are randomly initialized and the best-fitting ones are
propagated to refine the estimation. This showed a
good performance in terms of accuracy and used low

computational resources.

COLMAP and GIPUMA are still widely used in academia and industry as many steps have
been refined and designed to be more robust in the last years. As it is based on geometric
principles, algorithms for ray tracing, reprojections and occlusion detection help to remove
errors and outliers. Despite the success of learnable approaches, the physical interpretation of
the learned features is not easy to understand and many outliers might remain in the results as
these are hard to identify.

2.3.2 Learnable MVS

As for the stereo matching case, learnable algorithms have topped the MVS benchmarks. The
baseline for most of the approaches is MVSNet [30]. The main idea is to make the homography
in a differentiable way, so it can work in an end-to-end architecture. Hence, input images along
with the camera parameters are given as input and the depth is directly the predicted result.

Although the networks architecture differs in many elements, the creation of a cost volume for
depth candidates is usually present. In Fig. 2.8 we show the principle of learnable networks in
a very simplified way. A set of images, where one of them is used as reference (in this case view



14 2. Theoretical Background

N) are given as input. As the camera parameters are known, the candidate depth planes are
projected along the frustum. The homography (H), which is implemented in a differentiable
way is computed as:

(t1 —t;) - an

I-
d

H;(d) =K; - R; - RT K] (2.7)

where H;(d) represents the homography at depth d for the i*" view (i € [1, N]). K, R and t are
the camera instrinsics, rotations and translations respectively. n and I represent the principle
axis and the image of the reference camera (labelled as 1). By using this homography it is
possible to set the image features in a cost volume to be regularized. Unlike the usual plane
sweep algorithm, a fixed number of planes (D) is set since the beginning. The first and last
depth planes are also defined by the depth range which is included in the camera parameters.
For a reference image with dimensions H X W (where H is height and W is width), a volume
of depth candidates with dimensions H X W x D is created. In practice, many networks use a
downsampled version of this volume due to memory constraints. After that, the expectation
value is computed from the depth candidates as:

dmax
D= Z d x P(d) (2.8)

d=dmin

where P(d) is the probability of the estimation at depth d and D the output depth map.

Candidates in 3D space

b=, %
Depth candidates

| Depth map

Homography

Figure 2.8: Simplified representation of the depth prediction in MVS learnable architectures, where a
cost volume is used to match the features from the input images.

Of course, algorithms are not that simple and take many considerations into account, such
as robust feature matching or refinement steps for the predicted depth maps. MVSNet shares
weights for the feature extractors which are used to build the cost volume according to the
variance of the feature inputs. The input images are selected according to the sorting suggested
by processing the same images with COLMAP. Then a multi-scale set of 3D CNNs is applied to
refine the cost volume and generate an initial depth map. As many outliers are still present and
the result is not smooth in some regions, an additional depth refinement guided by probability
maps computes an improved final depth map. This network showed significant advances
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with respect to COLMAP or GIPUMA, especially in terms of completeness. Still, as for deep
learning solutions, it also performs well if the domain gap is not large.

The same authors from M-VSNet proposed R-MVSNet [31] as a design that can handle images
with larger sizes without the burden of heavier computational costs. This architecture regularizes
2D cost maps in the depth direction instead of the 3D cost volume by using GRUs. A cross-
entropy loss is applied, as the network considers the task as a classification problem. It achieves
slightly better accuracy and completeness than MVSNet.

CasMVSNet [32] proposes handling the cost volume in a coarse to fine strategy, where the
coarsest volume comprises the whole disparity range with a small block resolution and wider
resolutions only search in a narrower depth range for a finer estimation. The design can be
applied to existing networks such as MVSNet or R-MVSNet. Moreover, it can also be adapted
to enhance GANet or PSMNet for the stereo matching task. Fast-MVSNet [33] focused on an
architecture capable of processing the reconstruction in real time situations with a sparse to
dense initial depth prediction and a coarse to fine refinement using a Gauss-Newton layer.

AA-RMVSNet [34] proposes adding long short-term memory (LSTM) layers as an adaptive
aggregation. Two modules were added: one for improving challenging regions based on the
context and the second to prioritize the better-matching pairs from the inputs. A recurrent
network is used to refine the cost volume instead of 3D CNNs. Another interesting approach
is proposed in Vis-MVSNet [35] which addresses the problem of the pixel-wise occlusions for
matching areas. For each input pair, the algorithm does not compute only an initial depth
estimation but also an uncertainty map that selects which features are added to the fused cost
volume. Hence, this fused cost volume works with features less susceptible to be affected by
occlusions.

UniMVSNet [36] is a remarkable work where the depth prediction is considered both a regression
and a classification task. The classification part selects the closest depth plane to the expected
value and the remaining distance to this plane is estimated by the regression part. To achieve
this, the network includes a unified representation of the ground truth which helps during the
training to further refine the cost volumes. The results showed higher completeness and can
handle large resolution images, as the architecture uses a fine to coarse design.

Newer concepts in deep learning such as transformers can also be applied to the MVS task
as is the case for TransMVSNet [37]. The network firstly computes features with a pyramid
network which are later refined by an adaptive receptive field (ARF). The ARF modules ensure
that the original features can be passed to the robust feature matching transformer. These new
features are correlated in a common volume and with the guidance from a probability volume,
the depth map is computed. Again, this architecture is designed in a coarse to fine manner.

Recently, GeoMVSNet [38] focused on the geometry and included more structural features. In
a coarse to fine architecture, an additional geometry embedding volume is computed after each
cost volume refinement which is passed to the next stage to keep relevant geometric information.
Besides, a frequency domain filter is applied to reduce the effect of outliers.

One of the latest architectures is IGEV-Stereo [39], which is based on RAFT and encodes
additional geometric and contextual information to tackle difficult regions, such as ill-posed
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ones. Although its main application is for stereo matching, with some changes it is able to
work as a MVS algorithm. What is more, IGEV-Stereo is one of the leading solutions in both
stereo and MVS benchmarks.

2.4 Fusion of disparity/depth maps

The prediction of depth and disparity maps is not the final step in 3D reconstruction. The
estimated depth values can be converted into a point cloud, a height map or a voxel based
representation. For the present dissertation, the fusion of disparity/depth maps to get a DSM is
studied. As the camera acquisitions usually cover just a part of the region to be analyzed and
the algorithms might require even smaller tiles to work due to computational costs, a stack of
small DSMs have to be fused into a large one. Having a set of possible values for each pixel
also helps to reduce the influence of outliers and create a denser result.

If the data follows a stereo matching setting, the input images are processed to compute a
disparity map. However, this map has a meaning only in the 2D image domain as it defines
the relation between the two images. The disparities can be converted into depth as described
in equation 2.5, so the distance from the camera to the objects can be estimated. The next step
requires converting the depth into height values (the difference is explained in Fig. 2.2) and
height values can be computed with the Eq. 2.4.

Still, the height values have to be processed for a DSM and that affects the density of the result
on the ground level. To explain this in an easier way, look at Fig. 2.9 (left). When the depth
values are converted to height, these are still camera oriented, which means that for each pixel
we have a height value. For a DSM instead, the rasters are not in camera pixels, but each pixel
represents an area defined by the GSD. In the same figure (right) and focusing on the far left
building, we notice that the right side of such building is covered by three pixels, but all these
results are mapped into one area cell on the ground. Hence, the density of the DSM on the
ground depends on the visibility of the objects from the camera perspective.

If we start with a MVS algorithm and depth prediction, the translation to depth is not needed
and the rest of the process is the same as just described, so both stereo and MVS solutions
map their results onto a grid on the ground. As the grid is defined by the GSD, it is necessary
to merge the measurements (if any) that are above each cell. Facades or walls which are largely
visible in the image will have many measurements, while occluded areas get no measurements
at all.

For non-occluded areas, the measurements are stored in a raster. Some methods take the
maximum, minimum, mean or median from all the measurements over a ground cell to select
the value to store. While this is an efficient way, many areas remain with no defined values. It
is possible to use interpolation algorithms [40] that fill in the missing measurements reasonably
well and create smooth surfaces, such as the widely used inverse distance weighting (IDW) or
Kringing (known as Gaussian process regression in some literature). The implementation of
interpolation algorithms is a recurrent tool in DSMs generation.

Fortunately, it is also common to have more than one stereo pair or one pair of MVS images to
generate a DSM. Flight and satellite campaigns acquire enough data to reduce occlusions and
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Figure 2.9: Relation between pixel and GSD in an aerial acquisition. On the left side a set of depth
planes intersect the objects in the scene, which are defined by height planes. On the right, the sampling
discrepancy between camera pixels and GSD is highlighted.

allow the overlapping of measurements in some regions. Hence, measurements for one DSM
cell might be present in multiple disparity/depth map estimations. The easiest way to merge
multiple measurements is using the average or a weighted average from them. However, the
predictions are neither normally distributed nor free of outliers, which causes the averaging
to produce significant errors. Fusing the data by computing the median from the available
estimations is a more robust option [4], as it is less influenced by outliers. Median fusion has
already been applied to satellite data [41]. An additional weight average of values close to the
median can also be helpful. Strategies for a more sophisticated and robust fusion have also
been studied by the research community.

An extended survey in these methods can be found in [42], where the authors analyse the
main steps of Digital Elevation Models (DEM) fusion, namely: selection, pre-processing, fusion,
post-processing and quality assessment. For this dissertation, the object of study is only the
fusion process.

The most basic case is just applying the average of the measurements as in [43], where DEMs
are created for urban flood assessment. This might work well if the inputs are from the same
sensor or if no significant differences are expected in the measurements. Unfortunately, those
conditions are not common in practice and a weighted averaging is a more optimal solution.
DEMs are fused in [44] with weights related to the accuracy of the measurements and the
method is applied to different satellite sources. The weight averaging can be computed as:

po 2l wi (2.9)

LW
where h; are the height values from the i-available DSMs and w; the weight assigned to each of
them. In the case proposed by [44] each weight is computed using the given accuracy a; as
w; = 1/61,'.
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Fusion with sparse representations was introduced in [45], where the main idea is to get
information about the surface profile, such that values that are inconsistent with such shapes
are discarded. In another study [46], weighted averaging and fusion with sparse representations
are compared, showing a similar performance on the tested satellite data.

A medmean fusion is proposed in [47]. Here, values that are within a threshold (set empirically
to 2m) of the median are averaged to reduce the amount of outliers. The author also suggest
using Total (Generalization) Variation based methods (TGV and TV) which are denoising
models. These last algorithms can produce smoother surfaces, especially for rooftops, but
medmean is still very competitive in the metrics with a simpler operation.

A different fusion method was described in [48]. In this case, the reference and target DEMs
are swapped. Only the estimations that are similar remain, while the others are considered false
predictions. The method additionally gives insights of uncertainty in the geospatial domain.

The weighted fusion can also be benefited from learnable architectures if the weights themselves
can be learned as suggested in [49], where optical and SAR satellite data were fused. The
learned weights helped to improve the accuracy in comparison to normal weight averaging and
total variation methods. A fusion with k-means clustering was applied by [50], but it showed
that depending in the clustering parameters some noise can be generated, degrading the quality
of the final DEM.

A fusion with an adaptive 3D median filter was suggested in [51] to remove the outliers in flat
regions. It uses the color information from the images and the height values within a window
which is centered in the pixel to compute. The images help to to get spatial information for
consistency and smoothness.

2.5 Confidence/uncertainty estimation

Regardless of the advances in deep learning approaches, there is one more point that has an
impact on these algorithms: the confidence of the prediction. To understand this issue, observe
Fig. 2.10 where a pair of stereo images is given as input. Some regions in the image such as the
textureless sea and the parts of the facades that suffer from occlusions represent a challenging
matching task. The first presented disparity map, where a conventional method was applied
(SGM to be exact) produces a good result as most of the urban elements are reconstructed and
values were similar to the ground truth. Besides, the algorithm is able to discard areas where
the matching/refinement process is not reliable enough, although that reduces the amount of
result pixels.

On the other hand, deep learning solutions working in an end-to-end manner (which means
the refinement process is also learned) estimate a value for each input pixel, even if the values
in the cost volume do not show a clear best candidate. Hence, the produced disparity map has
no issues in terms of density, but many outliers remain. It is noticeable that estimated values
for the sea region are not consistent and values in the occluded areas may include significant
errors, despite the interpolation capabilities of the networks. Therefore, an algorithm able to
tell whether the predicted result is reliable or not would be helpful to remove outliers before
fusing the data for a final DSM.
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Figure 2.10: Differences between conventional and deep learning disparity estimation, where the latter
computes a result for all pixels.

This topic has been addressed more for stereo than for MVS algorithms. As for most of methods
nowadays, this can be computed with conventional and learnable algorithms. A review of
conventional cases can be found in [52], where six main categories of estimation algorithms are
discussed:

* Matching cost. These algorithms invert the cost to estimate the confidence. The idea
behind is that the lower the cost, the higher the confidence. As single values in the cost
volumes do not represent much information, this method performs poorly.

* Cost curve around the minimum. If the cost curvature is flat or sharp around the selected
candidate, this can be used as a confidence criteria.

* Presence of other minima in the local cost curve. If other strong candidates exist around
the chosen one, it has low confidence. Noise-ratio values are also commonly used.

* Behaviour of the whole cost curve. For these cases the cost curve is analysed as a
probability function. The position of the selected candidate within the function and the
number of inflection points are used among other criteria to set a confidence value.

* The consistence between the left and the right predicted disparity maps. One of these
algorithms is based on the left right consistency check (LRCC). If the two disparity maps
(left to right and right to left) are available, it is possible to warp a pixel to the other
image and back, observing the difference with respect to the original location. The lower
the discrepancy, the higher the confidence.

* Measures based on Distinctiveness. In an ideal case, salient points are easier to match
and thus more confident. Hence, pixels that are dissimilar to the neighborhood are more
confident. Input images, cost volumes and the predicted disparity maps can be given as
input for these algorithms.

SGM pipelines usually include the left right consistency check (LRCC) as a refinement step to
discard bad predictions. By warping the pixels with both disparity maps and comparing the
new positions with the original ones, it is easy to spot some of the big outliers present in the
result. Occlusion and false matches are thus removed from the predicted disparity maps, which
is the reasons why the pixel density is reduced in the final result.
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Learnable approaches for confidence estimation are also being developed by the research
community and a detailed review about them can be found in [53]. Similar to the non-learnable
cases, inputs are usually reference RGB images, predicted disparity maps, ground truth disparity
maps (required for the learning iterations) and cost volumes. Nonetheless, strategies based
only on the cost volume are not addressed, as deep learning benefits more from multiple
convolutions on 2D inputs and 3D inputs are computationally expensive. Still, parts of the cost
volume can be used as a complementary source of information.

One of the first proposed architectures was CCNN [54]. It used the predicted disparity map and
the ground truth to estimate the confidence, a strategy that is easy to apply as the cost volume
is not required. A set of CNNs and FCNs process the disparity map and the training works
with a Binary Cross Entropy loss (BCE), where there are two possible values (or labels): 1 for
confident and 0 for non-confident. The difference between the ground truth and the predicted
map is used to set the confidence condition. If the difference is larger than 1 pixel, the value is
non-confident and labelled with 0. This criteria to decide whether a pixel is confident or not
was a basis for newer networks. CCNN got better results than the conventional methods which
encouraged more sophisticated architectures.

A different architecture is used in PBCP, which even applied the results from MC-CNN. Thus,
a learnable algorithm was implemented to evaluate the confidence of the result of another
learnable algorithm. The predicted confidence map was added to the SGM pipeline and helped
to reduce the error prediction up to 1/3. It is important to mention that the detection of
non-confident pixels in the results from MC-CNN is easier than in more complex networks,
since wrongly predicted values from non-smooth regions are easy to spot.

PKRN+[55] proposed a CNN that further enhances the confidence estimation. By using the
results from any confidence algorithm (conventional and learnable ones), these are used as
input for a network that captures more local context and an enhanced confidence map is
computed as output. The purpose of this network is to generate a smoother confidence map
and reduce noisy predictions. Such architecture leveraged the performance of CCNN.

A more elaborated approach is UCN [56] where the cost volume is used as an additional input.
UCN includes two sub-networks, the first one processes the cost volume and the second one
aims to predict the confidence map. In the first part, the raw cost volume passes through a
series of convolutional layers with skip connections. However, the cost volume is a large size
block to be processed simultaneously with the disparity map for the second part. Therefore,
just the most relevant values of the cost volumes are selected with a top-K pooling layer which is
implemented in the most popular DL frameworks. The top-K volume along with the predicted
disparity map are used in the second part to estimate the confidence with another set of CNNs.
The test cost volumes were processed with Census and MC-CNN, showing a good performance
in both cases.

LAFNet [57] considered a more robust estimation by taking the predicted disparity map, the
reference image and the cost volume as inputs. The network extracts firstly the features of
the three inputs separately with a set of CCNs, the weights are not shared as each branch has
a different type of input data. After that, an attention inference network assigns a weight to
each feature block for a better concatenation than simply adding all of them with the same
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importance. A scale inference network helps to set the optimal receptive fields for better context
learning and at the last stage, a recursive network is used to refine the predicted confidence
map. This network outperformed the other approaches, but since it requires the cost volumes
as inputs, not all approaches for stereo matching can be used as a previous step if the cost
volume is not available. For example GANet creates a cost volume with multiple channels
H x W xC x D (where C are the channels) that cannot be directly used unlike MC-CNN that
outputs a regular one H X W x D.

The newer SEDNet [58] estimates both the disparity and the confidence map simultaneously at
multiple resolutions. The network uses GwcNet [59] as the algorithm for stereo matching and
this generates the cost volumes and disparity maps. Additional layers compute the uncertainty
(it can be seen as the inverse of the confidence) based on the error of the disparity prediction.
The result shows how SEDNet is able to detect non-confident pixels better than LAFNet trained
with GwcNet outputs.

In the case of MVS, some networks use the uncertainty or confidence estimation within the
network to generate a more robust depth map, although it has not been deeply studied yet.
VisMVSNet uses a uncertainty estimation as an indication for visibility . The depth map is
usually computed from a probability volume in MVS approaches and for this architecture, the
probability is considered an indication of the matching quality. An entropy map is computed
from the probability map and passed by a shallow CNN to estimate the uncertainty. The
training loss considers both the disparity estimation and the uncertainty, which are then fused
to create the volume that computes the final depth map. For UniMVSNet, the uncertainty is
also computed from the probability volume but was not used for the cost volume refinement.

In Fig. 2.11 a confidence map is shown to understand what it represents. For a stereo pair,
where the left image is 2.11c with corresponding disparity ground truth in 2.11a, a disparity
map is computed. Using AANet with a model trained on the SceneFlow datasets, a predicted
disparity map is obtained as shown in 2.11b. The confidence requires a predicted disparity
map to estimate which pixels have a better probability to be correctly computed. Hence, by
computing the difference between the ground truth and predicted disparity maps, a confidence
map can be created. In 2.11d the white areas show a confident region, where the difference
is less than 1 pixel. Regions in black have a difference larger than 1 pixel instead and are
labelled as non-confident. The displayed disparity maps have a scale of 50 to 120 pixels and
the reference image is "Artroom1" from the Middlebury dataset in its 2021 version [60].

2.6 Existing datasets and limitations

Since deep learning algorithms became a popular way to tackle computer vision algorithms,
the demand for large amounts of quality data has been increasing. Because of that, in this
section the available datasets for stereo and MVS are addressed, as well as the pros and cons
of their usage. Besides, a brief summary of datasets for change detection is included.
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(c) Reference image (d) Confidence ground truth

Figure 2.11: Confidence ground truth generation. For the reference image 2.11c, the disparity ground
truth is shown in 2.11a. Using a stereo matching algorithm, the predicted disparity map in 2.11b is
computed. From the difference between 2.11a and 2.11b, the confidence map 2.11d is created. White
is confident, which means the difference was less than 1 pixel. The reference image belongs to the
Middlebury 2021 dataset.

2.6.1 Datasets for stereo matching

Even before learnable approaches became the trend for stereo matching, some datasets were
used as a common reference to evaluate the performance of conventional algorithms. One of
the popular initial datasets is the Middlebury dataset 2001 [8]. This is a small but challenging
dataset, as the subsets of images are not similar to each other, include regions with repetitive
patterns, textureless areas and planar objects in oblique perspective.

The Middlebury dataset was enhanced in 2003 [61] with samples that are photographed using
a structured lighting technique to provide accurate ground truth disparity maps. More complex
3D objects were incorporated in the captured scene. Later on, the dataset was expanded in
2005 [62] and 2006 [63]. These datasets were provided in a format and size that for the first
time suited learnable algorithms. Their publication was also used for testing a Conditional
Random Field (CRF) to estimate disparity maps and to test different matching costs.

The Middlebury dataset was further expanded in 2014 [60] with an improved acquisition
technique for sub-pixel accuracy ground truth generation and a new approach for self-calibration.
Containing large resolution images and capturing more complex scenes, the dataset is more
challenging than previous versions. Finally, it was lastly updated in 2021 with samples taken
with the same technique as the 2014 version but the camera was replaced by a mobile device.
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The "torch” device light and its flash were used to create a variety of lightning conditions.

Despite the accurate ground truth and good quality images, Middlebury is usually used for
finetuning instead of training. The main reasons are its relatively small size (comparing to other
datasets with > 1k samples) and the domain gap when testing, as few real datasets resemble the
features in the included samples. Interestingly, RAFT-Stereo suggests using its model finetuned
in Middlebury for unconstrained samples.

Another significant dataset is KITTI in their 2012 and 2015 versions [64, 65]. KITTI is a
dataset created for autonomous driving tasks and includes images taken from a car perspective
around the German city of Karlsruhe. A stereo camera array was set on top of the car to
generate the stereo imagery and a LiDAR sensor to measure the distance to the objects. The
size of the dataset is 400 image pairs, which is enough to train deep learning architectures,
but it is also common to use it for finetuning.

One of the main features of KITTI is the complexity of their images because the scene is not
constrained. Difficult aspects for stereo matching such as illumination differences, occlusions,
reflective and transparent surfaces, wide disparity ranges, moving objects and repetitive patterns
are present, which made the dataset a challenging benchmark for many years. Nonetheless,
due to its relative small size, some algorithms might easily overfit to the training samples. The
2015 version included a denser ground truth, where 3D cars models were incorporated to fill in
the missing surfaces and moving objects were added. One of the disadvantages of this dataset
is the lack of a denser ground truth, which for moving objects is just an approximation, not a
direct measurement from the laser.

As an alternative to compensate the lack of large databases and considering the struggle of
creating more samples in a real scenario, synthetic datasets emerged as a feasible solution
to easily generate thousands of samples. Furthermore, in synthetic datasets it is easier to
manipulate the scene and retrieve an accurate ground truth, seeing that the 3D software has
all the geometric definitions required for it. Diversity of textures and geometrical shapes, and
modelling real camera parameters help to enhance the quality of synthetic data [66].

The Sintel dataset [67] is generated from the short film with the same name. Diverse conditions
were applied when rendering the same scenes, adding effects such as blurring, specular
reflections, illumination and atmospheric effects, which enhance the variety of the dataset. A
total of 1628 frames are provided as ground truth, larger than previous datasets, and it was
used as a benchmark for some years. However, models trained on Sintel showed a limited
performance in some real datasets. This raised awareness that the domain gap problem also
was significant for learning stereo matching architectures.

The release of the SceneFlow datasets [12] is known to have contributed to the development of
stereo matching architectures. With 35k training frames, this synthetic dataset is much larger
than earlier datasets. Besides, it includes a wide variety of textures and geometries. There are
three subsets included: 1) Driving, resembling the point-view of a car on a street level, similar
to the KITTI tiles with forward and backward driving perspective, 2) Monkaa, rendered from
the short film with the same name; this might not resemble natural scenes but the motion of
the objects is hard to track with optical flow; and 3) FlyingThings3D takes objects from many
categories (like chairs, cars, planes, furniture, etc., following random 3D trajectories. A large
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pool of objects and textures is used to generate the 3D scenes, creating also a large diversity of
content for the samples.

SceneFlow datasets are widely used either to train a model and test directly in unseen samples,
or as a strategy to pre-train models that are finetuned with smaller real datasets. This last
strategy benefits from the complex geometry and texture cases present in the dataset aside
from the accurate available ground truth.

A demanding dataset for stereo matching algorithms is the ETH3D [68] in its low resolution
two-view case. Stereo rectified gray scale image pairs are provided together with the laser scan
ground truth. The images were taken in real-world scenarios with non-constrained laboratory
environments.

The previous datasets are oriented for general stereo matching or the autonomous driving task.
Yet, for the scope of this dissertation the remote sensing imagery is the final application. Since
not all the areas where imagery is available include LiDAR measurements, there are few large
datasets to train deep learning approaches.

One of the first remote sensing datasets covers the area above Catalonia in Spain [69]. Data
from the Cartosat-1, Worldview-1 and ALOS/PRISM satellites is processed to generate the
stereo pairs. Three different regions including urban areas, hills, steep mountains and forests
are included. The ground truth is derived from an airborne laser scanning campaign. Due to
the resolution of the satellite images (0.5m-2.5m) the reconstruction of the valleys and hills can
be achieved with good quality, but buildings face difficulties to get sharp edges.

The EuroSDR/ISPRS benchmark [70] was released to encourage the research for DSM gen-
eration. Two main areas are included: Vaihingen and Munich. The former includes a rural
landscape with small houses, crop fields and forests with a GSD of 20cm at a height of 2900m.
The images have an overlapping of 63% and 62% for flight and cross direction.The Munich
set is oriented to urban reconstruction with higher buildings, streets and complex man-made
structures with a GSD of 10cm and an overlapping of 80% and 80% for flight and cross directions.
While the terrain in this case is mostly flat, the dense of the buildings is very high. In the
Vaihingen case few buildings are present but the terrain height differences are up to 200m.
An enhanced version of the Vaihingen dataset for stereo matching learning architectures was
presented in [71], where an additional study for the impact of the B/A is included.

Another known benchmark is the US3D dataset [72], which was used for the Data Fusion
Contest (DFC) 2019 [73]. The images of the dataset cover an area of about 100km? over
the cities of Jacksonville, Florida and Omaha, Nebraska. The images are captured by the
WorldView-3 satellite in panchromatic, and visible and near infrared (VNIR) formats. The GSD
for panchromatic is 30cm and 1.3m for VNIR. The ground truth disparity maps are computed
from an airborne LiDAR source with a pulse spacing of 80cm. The imagery also include
semantic labels used for the contest task which aimed for a semantic stereo reconstruction.
With 4292 images included, it has been used to train deep learning models.

The WHU-Stereo dataset [74] provides 1757 images in panchromatic mode obtained with
the GF-7 satellite and covering parts of 6 Chinese cities. In total, the images represent an
approximate area of 900km?. The GF-7 satellite mission is equipped with a duel-line stereoscopic
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camera that samples a GSD of 0.8m and 2.6m for panchromatic and multispectral imagery
respectively. The ground truth is computed from airborne LiDAR measurements with a nominal
pulse spacing of 25cm. The released dataset contains the already epipolar rectified image pairs
with the corresponding ground truth, where urban and rural areas are represented.

2.6.2 Datasets for MVS

In a similar situation to stereo matching, some datasets have been created in the last years to
address the MVS task, few even considered benchmarks. As already mentioned, the format of
these datasets is different to the stereo ones, as they are designed for another kind of algorithms
and architectures.

One of the most widely used datasets is DTU [75]. It comprises 80 scenes, which are captured
from 49 or 64 positions each. By using an industrial robot arm and a light scanner, camera
positions and ground truth are both very accurate. The scanned objects are defined by dense
point clouds, with around 13.4 million points. However, the scans do not cover the whole
objects due to self-occlusions. The distances between the center of the scene and the cameras
are 35cm and 65cm. DTU has been used as a benchmark that evaluates two main parameters:

* Accuracy. Measures the distance between the estimated points and those from the
reference, it is an index of the quality of the reconstruction.

* Completeness. It also measures the distance between estimation and reference but
focusing on how much of the surface was reconstructed.

Many algorithms can achieve a very high accuracy by keeping just those points where the
estimation is considered reliable, but it has an impact on the completeness. A good performing
algorithm should get good results for both metrics.

Another dataset used as benchmark is Tanks and Temples [76], which includes indoor and
outdoor imagery with real conditions. The ground truth is generated with an industrial laser
scanner with a range up to 330m with high accuracy, having a noise of only 0.1mm at a
distance of 10.2m. The images come from high resolution video sequences. Two subsets are
released: intermediate and advanced. The intermediate one contains smaller objects with
outside-looking-in camera paths and the advanced is oriented to larger scenes, with a more
complex geometry and camera paths.

The ETH3D dataset comprises also a pair of MVS sets. The high resolution one includes
relatively few samples (454) that were recorded by a digital single-lens reflex (DSLR) camera
and the low resolution set has a large number of images (4796) taken with a multi-camera
rig. In the same way as for stereo matching, complex indoor and outdoor scenes are included.
The authors also evaluated conventional methods for MVS reconstruction observing a good
performance for COLMAP, where completeness and accuracy were the evaluated metrics.

With the advancement of deep learning solutions, the demand for data increased and some of
the presented datasets might be small to train a robust network. Therefore, and similarly to
the SceneFlow datasets, synthetic data was generated to create a large pool of MVS imagery
with accurate ground truth.
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The BlendedMVS dataset [77] contains 17k training samples which is enough to train archi-
tectures in a robust way. As for other synthetic datasets, a common strategy is to train in the
large amount of synthetic samples and then to finetune in the domain of application to have a
robust, yet domain adapted model. BlendedMVS is based on 113 images that resemble small
objects, buildings, residential areas, indoor environments, etc. The authors focused on a right
alignment between images and depth maps while rendering, and on simulating the effects of
lighting conditions that the scenes would have in a real setting. The released dataset provides
images with a resolution of 1536 x 2048 pixels, files with camera parameters and a suggested
depth range so it can be directly be used as input to train learnable MVS algorithms. Despite
its synthetic nature, R-MVSNet models trained on BlendedMVS showed better results when
tested on the Tanks and Temple dataset than models trained with DTU or ETH3D.

The remote sensing community has also created MVS datasets as such as WHU-MVS [78]. The
original images were acquired with an oblique five-view camera rig mounted on an UAV. These
images were processed via software to generate a 3D DSM. The covered area is located in the
Guizhou province in China, where elements such as forests, urban areas, industrial sectors
and nature landscapes are present. From the generated DSM, the released dataset is generated
in a synthetic way simulating the acquisition from a single-lens camera and retrieving the 3D
measurements for the same area. A total of 1776 images with the respective ground truth are
provided with a resolution of 5376 x 5376 pixels.

The US3D dataset was also adapted for MVS reconstruction by setting multiple stereo rectified
pairs for the same areas. Additional unrectified images are also given with the corresponding
RPC metadata and a normalized ground truth in height coordinates. All the required metadata
for rectified and unrectified images was shared by the authors. This data was used for the track
3 in the DFC 2019. A sorting of suggested additional views was implicitly required for a better
performance of the tested algorithms.

2.6.3 Datasets for change detection

A remote sensing application case where the 3D information is a valuable resource is the change
detection. However, the acquisition of real data for this task is difficult, as taking images from a
scene at two (or more) different times imposes significant challenges that make it hard to define
what change is, such as seasonal changes, construction works, moving objects, illumination
conditions, atmospheric conditions, point of view, etc. As this dissertation later discusses the
generation of synthetic data for change detection, we describe here some existing datasets that
have been designed/applied for this task.

One of the widely used datasets for semantic segmentation and building extraction is the ISPRS
Potsdam dataset’. It includes aerial orthoimages over the region of Potsdam (Germany) with a
GSD of ~ 5cm. Apart from the imagery, DSMs generated via dense matching are provided
with the same GSD. 24 tiles covering each an urban area of 300m x 300m are included. The
dataset is taken from a real area with remote sensing sensors and subsequently it has been
used as a benchmark, where the metrics to evaluate are precision, recall and the Fl-score.

ihttps:/www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
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Similar to Potsdam is the ISPRS Vaihingen dataset!! which is also a benchmark for semantic
segmentation. This covers a smaller area over the city of Vaihingen (Germany) with a GSD of
9cm. for both orthoimages and DSMs. Unlike Potsdam, this datset does not include the blue
band but green, red and infrared. The availability of bands is useful for vegetation detection
but affects many pipelines based on RGB imagery, like those for matching.

An alternative source is the LEVIR-CD dataset [79] which obtained images from Google Earth
with 0.5m GSD and a resolution of 1024 x 1024 pixels. The images were acquired between
2002 and 2018 and correspond to USA cities such as Austin or Lakeway. The images were
taken in different seasons to add this factor as an additional challenge to evaluate algorithms.
Nonetheless, the ground truth was manually annotated as this can not be retrieved directly
and requires expert knowledge to differentiate where the changes happened. The full dataset
contains 31333 annotated individual change buildings. Suburban areas, crop fields, parks and
warehouses are examples of the diverse content of the scenes.

The S2Looking dataset [80] focuses on side looking satellite images which were collected
between 2017 and 2020 with the GaoFEN, SuperView and Beijing-2 satellites A total of 5000
registered image pairs are available with a resolution of 1024 x 1024 pixels and a GSD of
0.5 ~ 0.8m. The number of present building changes is 64920, making it one of the largest
datasets. By including rural areas and side view images, the dataset represents a challenge to
new developed algorithms.

Another dataset is proposed in [81], named DSIFN-CD with 3940 pairs of images. This is a
complex dataset collected from Google Earth and taken over distinct cities, especially in China.
394 original images are augmented to obtain the total 3940 ones with a size of 512 x 512 pixels.
The authors randomly selected 90% of the samples for training.

A different case is the GVLM dataset [82] which stands for global VHR landslide mapping
and includes images from 17 landslides around the world, with a surface of 163.77km?. Such
landslides were caused by various factors such as earthquakes, rainfall or glacier melting.
Considering the illumination conditions and the effects caused by landslides, this is a very
challenging dataset. The labels were manually annotated by experts.

A different strategy to deal with the difficulties of acquiring real data is the usage of synthetic
data. The Synthinell dataset [83] starts from 3D models created in the CityEngine suite, a
software that creates virtual cities by following the Computer-generating Architecture (CGA)
programming language. Cameras with a nadir and oblique view are simulated to create optical
imagery. Since the content of the scene is known by the software, masks for building/no-building
are also accurately generated. The authors used the dataset to augment the training data in
the conducted experiments showing an improvement in the performance. However, the ground
truth is limited only to two categories and no 3D additional information is provided.

The ParallelEye dataset [84] includes a pipeline using OpenStreetMap, CityEngine and Unity3D
to get the map, generate the buildings and rendering respectively. With this procedure, it is
easy to generate a large dataset resembling the street distribution from real places, although
the buildings do not match with the real ones. Nonetheless, this dataset is not oriented to tasks

iihttps:/www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
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from aerial/satellite perspective but for autonomous driving, rendering images from the driver
point of view, similar to KITTIL

The authors of ChangeAnyhwere [85] proposed a distinct idea, where a dataset with no changes
is used as input for a diffusion model that learns how to simulate the change and generate
new samples where the content has been modified, creating in that way a paired dataset that
resembles two acquisition times. The networks learns that a change can be interpreted as
an assignation to a new semantic category, but that the nong-change might present small
differences that do not mean a new semantic label has to be assigned, as in a more realistic
scenario, where a building might have a different color but is still a building. With this approach
the authors created a dataset of about 100k samples. The original samples were extracted
from the OpenEarthMap dataset [86], where 5000 images are included from aerial and satellite
sources with 8 different semantic classes. As the original dataset covers 97 regions across all
continents, it is a robust input to avoid a large domain gap.

Additional datasets and experiments for change detection algorithms can be found in some
review papers. A collection for satellite data is described in [87] which provides a large overview
of existing datasets classified according to the application task. It also includes some relevant
solutions to address each of these tasks. Besides, a description of current satellite mission with
their sensor capabilities is supplied.

The MLCNet architecture [88] which is designed for semantic ground truth detection applies
the Levir-CD, S2Looking and the later described SMARS [89] datasets in its evaluations. The
method has modules to keep edge details and achieves a good performance in all datasets.
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In this chapter, the content related to the journal paper [90] is addressed. A pipeline to
generate synthetic data for stereo matching was designed to create a large dataset resembling
remote sensing aerial imagery. Experiments to show the benefit of using this dataset for deep
learning approaches are conducted, and a comparison between deep learning and conventional
algorithms for stereo matching is also discussed.

3.1 Background

Disparity estimation algorithms aim to find the correspondence between two rectified images
and retrieve the shift for the pixels location along the epipolar line. From this shift, it is possible
to compute depth values for the captured objects and reconstruct the 3D scene. Generally, the
pipeline for conventional algorithms include: matching cost computation, cost aggregation,
disparity estimation and disparity refinement [8].

3D reconstruction is also relevant in the remote sensing community, where the input images
are processed to generate data such as Digital Surface Models (DSM). Seasonal changes,
atmospheric and illumination conditions, urban redevelopment, among others, modify the
appearance and content of the captured scenes, making the matching a challenging task.
Additional difficulties for a successful matching are imposed by the presence of texture-less,
patterned and non-Lambertian surfaces. Moreover, a large range of disparity values might be
required depending on the height profile of the scene, which can include mountains or tall

buildings.

Conventional approaches like Semi Global Matching (SGM) [4] perform well to estimate
disparities for many scenes, but recent deep learning algorithms are now the state of the art,
outperforming in complicated areas [11, 17].

Nevertheless, the improved performance offered by deep learning algorithms demands a large
amount of samples for training, which is sometimes limited or incomplete in remote sensing.
Due to its nature, aerial/satellite-borne data is expensive and its acquisition requires planning to
avoid bad weather conditions. Also, the ground truth for disparity estimation is usually obtained
from LiDAR, that produces a sparse result and makes it difficult to define sharp boundaries
or detect small objects. Additionally, LIDAR shows different behaviour in vegetated areas,
especially trees, and needs to be captured simultaneously to avoid systematic differences due to
scene changes such as vegetation growth and building activities. 4D light fields and plenoptic
cameras are also a resource to generate high quality 3D models [91], but this technology cannot
be used during aerial and satellite data acquisition.

Because of all these difficulties to collect large amounts of real data, we propose a new synthetic
dataset for disparity estimation. Since the rendering is obtained via software, dense ground
truths with sharp boundaries and sub-pixel accuracy are generated. Additionally, we simulate
different illumination conditions, ground sample distances and baselines for the stereo system.
One of the novelties of the proposed dataset is its remote sensing oriented application by using
models that resemble urban areas to reduce the domain gap.
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We train different state of the art networks on our generated samples and test the models on real
satellite and airborne data. Besides, we compare the results by training with the widely used
SceneFlow [12] datasets, where the disparity maps are oriented on close-range applications.

Our main contributions in this paper are the following:

» We present SyntCities, the first (to the best of our knowledge) large synthetic dataset to
train disparity estimation focused on remote sensing imagery. Ground truth maps are
dense and offer sub-pixel accuracy.

* We conducted a set of experiments on recent neural networks to analyse the advantage
of performing data augmentation with our generated samples.

* By comparing with other datasets, we reduce the estimation error and improve the 1-pixel
accuracy, which is of crucial importance for the generation of DSMs.

* We show how SyntCities has good generalization capabilities to be used even on unseen
data for inference of disparity maps.

» We share the data in formats that can be further processed (like point for cloud generation)
and include multi-class semantic maps.

SyntCities can be downloaded at: https://tinyurl.com/77e3n6m9

3.2 Related Work

In this section we discuss firstly the existing work oriented to the generation of synthetic
datasets, its applications and limitations. Secondly, we mention some studies related to possible
usage of both disparity estimation and semantics segmentation, since we provide these maps
in our dataset and might encourage the research community to conduct further experiments in
this direction. For our own experiments, we focus only on the disparity estimation part.

3.2.1 Synthetic datasets

Deep learning has helped to outperform many algorithms related to computer vision recently,
but it also demands a large amount of data to train models that can generalize for testing
on images from different sources. However, such large amount of information is not always
available or is expensive to acquire. Therefore, the application of synthetic datasets is an option
that can compensate the lack of real data for the training process. In many cases, these datasets
are used for pretraining stages and smaller sets of real data are applied to finetune the models
and reduce the domain gap.

One of the first available synthetic options was the MPI Sintel Dataset [67], where frames
are taken from an open source movie and rendered to evaluate optical flow algorithms. The
samples were extended to facilitate other tasks such as semantic segmentation, camera motion
and stereo matching. In the same way, the SceneFlow datasets [12] were proposed to train
neural networks for optical flow, but increasing the number of samples to 34K (instead of 1K
as Sintel). Due to its large size and variety of objects and textures, SceneFlow has been one of
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the main references to pre-train networks for different tasks. It includes scenes from a movie,
random objects and resembling a car perspective on the streets.

Autonomous driving has also benefited from the synthetic imagery. While real images are
part of available datasets, these are limited in size and might lead to the overfitting of the
models. The KITTT 2012 [64] and KITTTI 2015 [65] datasets include images from cameras
with a driver’s perspective, where elements like streets, cars, houses or vegetation are part of
the scene. They also include a ground truth from a laser scanner, providing accurate values
for depth. Additionally, files for odometry or semantics ease their application for other tasks.
However, the number of samples (around 400 pairs) limits its implementation for deep learning
architectures and the sparse measures from the depth sensor provide an incomplete disparity
map. As a feasible solution to balance the amount of required data, SceneFlow can be used
to pretrain the models for disparity estimation, while the SYNTHIA dataset [92] is a suitable
option for the semantic part. SYNTHIA also focuses on autonomous driving and is similar in
terms of content and geometry to the KITTI datasets. In contrast, it consists of more than 13K
samples and dense ground truth maps. Another similar approach is the ParallelEye dataset [84]
based on a pipeline of the CityEngine and Unity3D software suites. It also includes information
for object detection and tracking.

Nonetheless, the alternatives described above are oriented to close range applications, which is
not suitable for remote sensing, where large areas are covered and small errors in the disparity
estimation lead to significant inaccuracies in the DSMs. The Urban Semantic 3D (US3D)
dataset [72] was proposed for the Data Fusion Contest 2019 (referenced as “grss_dfc_2019” for
the contest itself, but we keep it as US3D in the current paper) and included a stereo matching
track. Although the number of samples enables the training of deep learning architectures,
the disparity maps are not complete (with a default value assigned to many pixels) and do
not archive sub-pixel accuracy, which imposes a significant error when computing the depth.
Additionally, a multi-year difference between image and ground truth LiDAR acquisition causes
many inconsistencies due to vegetation, building and infrastructure changes. Using multidate
imagery also affects the vegetation measurements, since it has visible seasonal changes in terms
of color and density. Despite the fact that training with this data might affect the performance
of the networks, testing on such imagery is still one of the few options for real large areas.

Developing synthetic datasets within the remote sensing environment has also been studied,
although only few publications deal with it. The WHU dataset [78] is based on real aerial
images and then merged on a DSM. After that, images are rendered via software from the
generated DSM and it produces a synthetic output in form of disparity maps. Ground truth is
obtained as dense maps, but the accuracy of the DSM is constrained by the algorithms of the
ContextCapture software.

Under these circumstances, we have developed a new synthetic dataset. Considering that the
3D software has detailed information of the geometric content of the scenes, dense and accurate
ground truths can be achieved. Furthermore, expanding the dataset for additional views or
different simulated conditions can be easily done, reducing costs and time.



3. SyntCities: A Large Synthetic Remote Sensing Dataset for Disparity Estimation 33

CityEngine Blender BlenderProc Scripts

Figure 3.1: Simplified pipeline used for the proposed dataset generation

3.2.2 Approaches to use both disparity and semantic maps

Although the present work focuses on the disparity estimation, the provided semantic maps
can be a helpful resource for research making use of both data sources, since these exploit the
geometric information from the scene. This idea was recently addressed on the Data Fusion
Contest 2019 [93-95], where semantic and disparity maps are predicted and evaluated for the
same regions on one of the tracks.

Real datasets for semantic segmentation such as US3D have incomplete semantic maps, with
noisy buildings and many elements without an assigned category. On the contrary, synthetic
datasets avoid expensive manual annotations and provide sharp dense maps. An existing
synthetic example is the Synthinel-1 dataset [83], where models from the CityEngine software
are rendered to create segmentation maps with the labels building/no-building. While the
pipeline is an efficient way to generate the data and resembles real imagery, the ground truth is
limited to two classes and depth information is not included.

Some publications have already studied the usage of both input sources. In SegStereo [96] the
semantic information is embedded in the network and also being learned as an intermediate
step to refine the disparity map. GIO-Ada [97] learns to reduce the domain gap by creating
intermediate samples with a more realistic appearance and later estimates both semantic and
depth maps. DispSegNet [98] proposed an architecture similar to SegStereo but using the
semantic embedding for the disparity loss and created an enhanced cost volume to improve
the accuracy. RTS?Net [99] focused on real-time efficiency and followed a coarse to fine
design. SSPCV-Net [100] considered pyramid cost volumes to describe semantics and geometry.
CorDA [101] used the depth estimation as an intermediate step to retrieve the disparity maps
and with this information reduced the domain gap.

Many of these methods achieve good quality results, but at least for the disparity estimation,
they do not compete with the state of the art solutions in terms of accuracy. By releasing this
dataset, we intent to facilitate further research in the integration of 3D reconstruction and
semantics.

3.3 Dataset Generation and Description

The generation of the dataset makes use of different 3D software suites and scripts for modelling,
rendering and postprocessing. In figure 3.1, a simplified description of the adopted pipeline is
shown. The detailed steps are explained in the following paragraphs.
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3.3.1 City Modelling

CityEngine is a software that allows to build cities in a 3D environment and follows the CGA
Shape Grammar Language. Large models can be created from Open Street Map (OSM) and
user defined rules for the city architecture and its distribution. In the current paper, we started
from the example models for New York, Paris and Venice that are publicly available on the
Esri platform.

Empty areas from the examples were replaced with parks and buildings to set content in all
the regions of the scene. Vegetation was changed to textured ellipsoid models instead of the
intersected planes to have a more natural distribution of depth values. Additionally, we used
the script option within the CityEngine environment to separate the buildings according to the
rooftop type, this is done to provide the additional semantic maps.

A model including only the buildings belonging to each roof type and a full model including
all elements in the scene are exported. All cases were exported in Wavefront (.obj) format.
CityEngine consumes approximately 17GB of RAM memory to manipulate the full models,
and requires few minutes to export the whole scene.

3.3.2 Model refinement

The models were later imported in the Blender software, which is an open source for 3D
modelling, animation and rendering. Here, the objects were split into different categories,
which are represented in the ground truth segmentation maps. The objects were created by
separating the faces of the complete 3D scene according to the image file used as texture. This
does not apply to the buildings, which were previously separated by roof type in CityEngine. A
single file in COLLADA (.dae) format is exported with the merging of all objects.

INlumination conditions and camera properties are studied in the 3D environment to set the
appropriate values for each city. The light is set to the Sun mode to have a homogeneous
brightness in the whole area. A vertex located close to the center of each model is used
as a reference to set the camera positions. Apart from that, changes are applied on the
reflection properties of the surfaces as well as on the noise distribution for textures. Minor
editing was also conducted to avoid empty regions that might lead to the presence of outliers.
Furthermore, we set a 3D plane below the models as background, which avoids infinite depth
while rendering for not defined regions.The manipulation and edition of the models in Blender
requires approximately 8GB of RAM memory.

3.3.3 Rendering

Once the models were complete, we utilized the BlenderProc pipeline [102] to render within
the Blender environment. BlenderProc requires a detailed configuration file to set properties
such as camera positions, camera parameters, stereo configuration, illumination conditions,
output resolution, etc.
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Our approach wraps BlenderProc, so we can define externally the main parameters for our
dataset. Here we also set the camera positions according to the size of the city model and the
desired overlapping between samples. The stereo rig configuration is computed from the base
to height ratio and allows different baselines. The configuration file required by BlenderProc is
then built with the specified parameters.

Additionally, we manipulated the antialiasing filters to produce smooth borders in the RGB
samples but sharp edges for the depth maps. For each camera position we rendered a pair of
RGB images, their depth maps and their segmentation maps.

We also experimented the option to produce instance maps (where each building would
be assigned a label), but the computational cost is too high even for one camera position.
Rendering a pair in instance segmentation mode requires around 200x longer than the semantic
case. The rendering process for SyntCities takes a bit more than 5 days using a NVIDIA
Quadro P1000 graphics card with 4GB memory and Blender 2.93.

3.3.4 Postprocessing

RGB images and semantic maps were directly obtained from the rendering process. In contrast,
the depth map has to be translated into a disparity map. Since the depth is measured in a radial
way from the center of the camera, we transformed it into distance to the camera plane first.
After that, the distance is used with the known camera parameters to compute the disparity as
follows:

a=12 (3.1)
Z

where d is the disparity, f the focal length, b the baseline of the stereo rig and z the distance
to the plane. The disparity values are then transformed into pixels. As a result of the different
baselines applied to create the dataset, occlusions are present in many samples. Therefore, we
also created left-right check consistency maps to mask pixels that are not visible in both views.
The threshold for consistency is set to 1 pixel.

Homogenization of categories between different models and rendering conditions is also applied,
so the labels remain coherent amid all the samples. For users requiring the camera extrinsic
and intrinsic matrices, we also provide these in separate files for each camera position and
view. Such matrices are usually expected for multi-view stereo (MVS) neural networks.

3.3.5 Description

The presented dataset includes a total of 8100 image pairs with the following features:

* 3 city models: New York, Paris, Venice.

* 3 ground sampling distances (GSDs): 10cm, 30cm and 1m.

3 azimuth angles (150°, 180°and 210°) and 3 elevation angles (20°, 50°and 70°) for the
simulated Sun light.

* 4 base to height ratios (BH) per city: 0.1, 0.3, 0.5 and 0.9 for Paris and Venice; 0.03, 0.07,
0.10 and 0.12 for New York.
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(a) RGB - left view  (b) RGB - right view (c) Depth map

Figure 3.2: Samples from the SyntCities dataset. Optical imagery used for input is shown in (a) for the
left and (b) for the right view, with the respective depth and disparity maps for the left view in (c) and
(d) (Samples for the right view are also available, but not shown in this image). In (e) we illustrate the
left-right consistency masks, where the region in white is not visible in both views.

Categories:
M Background
W Trees
- Streets
Roof mansard
M Roof gambrel
M Roof gable
" Roof hip
Roof flat
M Facade
M Garden
WPiazza
I Foundations
Cars

(a) RGB - left view (b) RGB - right view (c) Segmentation map (d) Segmentation map
left right

Figure 3.3: Additional samples from SyntCities. Optical imagery used for input is shown in (a) for the
left and (b) for the right view, with the respective segmentation maps in (c) and (d). Colors for each
category are displayed in the list at the right.

* For each combination of the previous parameters 20 pairs are available for training and
5 for testing. This split is fixed for all cases.

* Disparity values are mainly in the range of [0,192]. This facilitates its direct usage in
deep learning frameworks, where the cost volumes usually use such range to estimate the
disparities.

On the figure 3.2, we show samples from the dataset for a small region on the simulated Paris
model. The 8100 pairs include a similar subset of images, camera parameters and rendering
conditions. All images have a resolution of 1024x1024 pixels.

3.3.6 Semantic categories

As mentioned before, semantic maps are also included. There are 13 categories available:
vegetation, streets, rooftops (mansard, gambrel, gable, hip and flat styles), facades, gardens,
landmarks, cars and background. The figure 3.3 shows an example of the semantic maps for
the same patches represented in figure 3.2. Samples for both left and right view are available.
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3.3.7 Data for point cloud generation

Taking advantage of the available rendered maps and known camera parameters in SyntCities,
we explored the possibility of generating point clouds based on the depth and semantic maps.
We utilized the Open3D library [103] for this purpose.

Due to their large file sizes, we do not include these outputs in the dataset, but this can be
easily generated from the provided images.

Although we did not conduct any experiments in this direction, we consider this would be
helpful for deep learning strategies applied to point clouds, specially because the type of
rooftops and other geometries can be learned.

3.4 Disparity Estimation Experiments

We have conducted a series of experiments to analyse the advantages of training architectures
on SyntCities for the disparity estimation. Aside from our proposed dataset, we also worked
with samples from SceneFlow, US3D and an aerial 4K dataset processed by DLR [104].

SceneFlow is the main reference to train networks for disparity estimation due to its large
size, but as we have previously mentioned it is oriented to close-range applications. Hence, we
want to compare how networks perform while training with both synthetic options SceneFlow
and SyntCities, to investigate if the domain gap with respect to real satellite/aerial imagery is

reduced.

On the other hand we also consider two real datasets. First, we take samples from US3D
covering areas above Jacksonville, Florida and Omaha, Nebraska. The images are captured
by the WorldView3 satellite with 30cm GSD for the panchromatic case. The ground truth is
obtained from an aerial LiDAR sensor and almost 4000 pairs are available for training.

Secondly, we use a 4K collection of aerial imagery covering the area of Gilching, Germany
with 6.9cm GSD. The reference disparity map for these samples is obtained by an SGM
implementation for multi-view stereo matching, where a high-quality DSM is cropped to match
the location of the images. Because of the size of this dataset (we consider only 16 images where
urban and semiurban areas are covered), we use the samples only to test the algorithms.

3.41 Stereo Matching Algorithms

Semi-Global Matching (SGM) has been the main algorithm for stereo matching in the last
decades. Its compromise between accuracy and computational cost makes it a feasible option
for many applications and is used in open source pipelines for 3D reconstruction like S2P [1].
Unlike deep learning architectures, SGM does not need to be trained on the target domain.
Nevertheless, the computation of the aggregated cost requires parameters that are set empirically
and have to be adapted to the features of the input images. Those parameters limit the
performance of the algorithm and might lead to incomplete disparity maps as outputs.
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Deep learning approaches on the other hand require large volumes of data. Even when recent
state of the art architectures outperform SGM and traditional methods, the models are not able
to handle easily changes in the target domain. For example, a network that has been trained on
data for autonomous driving might have a poor performance when applied for remote sensing
imagery. Moreover, the training process frequently takes days and a high computational cost in
terms of memory and GPU usage.

Despite the drawbacks mentioned above for deep learning, it performs better than traditional al-
gorithms having enough data and a reliable ground truth. Since the publication of MC-CNN [11],
where a cost volume is generated with convolutional neural networks, many architectures have
achieved outstanding performance for benchmarks like KITTI or Middlebury [8].

Some other remarkable approaches include the first end-to-end architectures Disp-Net [12]
and GC-Net [13], where postprocessing steps such as SGM are removed and the refinement
of the disparity maps is embedded in the learning process. A significant improvement was
later presented with the design of PSMNet [14], which includes a pyramid pooling model to
recover more context information and makes use of 3D convolutions to regularize the cost
model, a strategy used in many further architectures. Based on a similar principle to SGM,
GANet [17] evaluates the costs along different directions to refine the cost volume and avoid
discontinuities. To reduce the domain gap presented in the previous networks, DSMNet [20]
applies a domain-invariant normalization which benefits of the synthetic imagery. Nevertheless,
its performance is not as good as GANet when using the same training dataset. A different
concept is presented in AANet [19] to reduce both memory consumption and inference times,
while slightly decreasing the accuracy. More recently, strategies consisting of gated recurrent
units (GRUs) have been introduced to computer vision tasks with an outstanding performance.
This has been applied to the disparity estimation problem, where RAFT-Stereo [21] includes
a series of GRUs to estimate maps at full resolution and with high accuracy. In a different
strategy, SMAR-Net [105] includes a GAN to compensate for sparse ground truths by warping
the left image with the disparity map.

For this paper, we train our models in two networks: GANet and AANet. The reason to select
these networks is the accuracy for GANet and the reduced computational cost of AANet, being
both also a common framework to compare other architectures.

GANet includes two types of novel layers named Semi-Global Guided Aggregation (SGA) and
Local Guided Aggregation (LGA). SGA is based on a principle similar to SGM by considering
four directions for the cost aggregation step and LGA recovers information from thin structures.
The parameters that are empirically set in SGM are adapted in the model to be learned while
training. GANet outperformed the PSMNet (which had the best result for KITTI back then)
and generates accurate results on subpixel level. However, the training process might take
many days and is computationally demanding.

To reduce the memory and time consumption we conduct experiments with AANet as well.
AANet introduces two adaptive aggregation approaches in an intra- and cross-scale manner.
The intra-scale aggregation is similar to deformable convolution [106, 107] and adds an offset
to the convolutional filters to improve the quality of the result around boundaries and thin
structures. The cross-scale aggregation shares information between different scales. Its based
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on the idea that correspondences in the coarsest scale are more discriminative in textureless
regions and this can guide the algorithm in the finer scales.

3.4.2 GANet experiments

We trained the GANet network with different samples and tested on real aerial and satellite data.
The configurations for training are listed in table 3.1. For each training, we show the percentage
of each available dataset that was used as input. From this point on, we use SF and SC as
acronyms for SceneFlow and SyntCities respectively, specially to describe the experiments and

results based on this data.

Table 3.1: Composition of the input data for the proposed experiments with GANet. The GA-SCd case
corresponds to the “deeper” version in the GANet paper. Values are expressed as percentages.

Datasets
Training model | SF | SC | US3D
GA-SF 100 | 0 0
GA-SC 0 | 100 0
GA-SCd 0 | 100 0
GA-US3D 0 0 100
GA-955C 0 | 9 5

The SceneFlow model was trained only for 10 epochs due to its very large size (more than 35K
pairs are included) and took more than 6 days. For the other cases we trained for 27 epochs,
resulting on 2 days of training time and 4 days in the GA-SCd case. GA-SCd corresponds to
the “GANet deep” model presented by the authors in the original paper and includes more
layers than the basic model. Here, 6480 image pairs are taken as input, corresponding to all
the training samples (80% out of the 8100 available). For the GA-95SC instance, we want to
observe the performance of the training when a real but small dataset is available and we can
mix the samples with the synthetic ones to compensate the lack of data. We used 4750 samples
from SyntCities and 250 from US3D. The GA-US3D model had 4000 samples for training.

Training was conducted on 4 GeForceRTX 2080 GPUs with 12GB memory each, a batch size
of 4, patches with 432x432 pixels size, a disparity range of [0,192] and the other parameters
have the default values of the GANet implementation.

3.4.3 AANet experiments

Similarly, we trained AANet with different configurations. Because of the reduced memory
consumption and faster training, we conducted an extensive set of experiments. The table
3.2 shows the configurations for the different training models, following the same description
system as explained for table 3.1. The AA-SF model was trained for 64 epochs as suggested
in the AANet paper. For the other models we adapted accordingly the number of epochs to
have a similar training time (around 48 hours each). AA-SF is trained again with more than
35K pairs, AA-SC is trained with 6480 pairs for 350 epochs, AA-US3D with 4000 pairs for 560
epochs and the other models with 5000 samples for 450 epochs. Many cases with mixed sources
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Table 3.2: Composition of the input data for the proposed experiments with AANet. Values are
expressed as percentages.

Datasets
Training model | SF | SC | US3D
AA-SF 100 | 0O 0
AA-SC 0 | 100 0
AA-US3D 0 0 100
AA-80SF 80 | 0 20
AA-80SC 0 | 80 20
AA-95SF 95 | 0 5
AA-955C 0 | 95 5
AA-99SF 9 | 0 1
AA-99SC 0 | 99 1

are trained to observe the advantages of data augmentation from synthetic imagery. For all
these options we used both SceneFlow and SyntCities. Again, we trained on 4 GeForceRTX
2080 GPUs with 12 GB memory each, a batch size of 24, patches with 288x576 patch size and
a disparity range of [0,192]. Other parameters are kept with the default values.

3.5 Disparity Estimation Results

The trained models were tested on the US3D and the aerial 4K datasets. We evaluated four
metrics to assess the quality of the results. For the statistical metrics, we use the median-
based values instead of the mean-based ones because of their robustness to outliers and their
capabilities to summarize skew distributions better [108]. First, we compute the median of the
difference between the ground truth and the generated disparity maps. For this metric we did
not consider the median of the absolute difference to use it as an indicator of a possible bias.
This is computed as:

Mediangg = median(Xgg), Xqg =X — X (3.2)

where X is the ground truth, X is the generated result and Xq is the difference between both.
Second we compute the median absolute deviation (MAD) of the difference as:

MADygir = median(| Xgir — Xaier 1), Xair = median(Xyr) (3.3)

The absolute value is used in this occasion to analyze the precision of the disparity values. We
also consider the 3 pixel accuracy, where the percentage of pixels whose difference with respect
to the ground truth is below or equal to 3. Likewise, we estimate the 1 pixel accuracy. While a
margin of 3 pixels for errors in the disparity map is acceptable for applications like autonomous
driving, it would represent a large error when the depth is estimated from the aerial/satellite
camera. For that reason, we also consider pertinent to analyse how this metric performs.
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Table 3.3: Results of GANet for the US3D dataset. Mediang;y and MADy;s are defined in terms of
pixels, while the accuracy is expressed as the percentage of all the pixels below the specified error
threshold. Best result is indicated in bold font and underlined, second best just underlined.

Algorithms
Metrics SGM | GA-SF | GA-SC | GA-SCd | GA-US3D | GA-95SC
Mediang;s 1.40 0.94 0.33 0.28 0.61 -0.05
MAD g 3.27 1.92 1.45 1.27 1.10 0.98
3pix-acc(%) | 57.0 62.3 69.3 72.3 78.3 79.7
1pix-acc(%) | 32.3 28.9 36.9 38.7 36.3 43.8

Table 3.4: Results of GANet for the 4K aerial dataset. Mediang;s and MADy;g are in defined terms
of pixels, while the accuracy is expressed as the percentage of all the pixels below the specified error
threshold. Best result is indicated in bold font and underlined, second best just underlined.

Algorithms
Metrics SGM | GA-SF | GA-SC | GA-SCd | GA-US3D
Mediangg -0.02 | -0.01 -0.13 -0.12 0.56
MADg;g 0.29 0.33 0.31 0.28 0.60
3pix-acc(%) | 86.3 92.2 94.1 94.3 84.1
1pix-acc(%) | 80.4 80.5 83.2 84.0 55.1
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Figure 3.4: Results from the GANet for the US3D dataset. The disparity reference (a) is compared
to the disparity maps obtained by SGM (b) and the models GA-SF (c), GA-SC (d), GA-95SC (e) and
GA-US3D (f). The range for the disparities is set from 90 to 192. Error maps for the reference RGB
image (g) are shown for the same models SGM (h), GA-SF (i), GA-SC (j), GA-95SC (k) and GA-US3D
(). The error range is clipped to 0-3 pixels.

3.5.1 GANet results

In table 3.3 we observe the results of using the GA-SF, GA-SC, GA-SCd, GA-US3D and GA-95SC
models for the US3D dataset. Additionally, we also compared the results with the traditional
SGM algorithm. It is important to mention that SGM does not produce a complete result,
but has values only for those pixels where the estimation achieves the quality accepted by the
algorithm. However, we evaluate the metrics in the whole image since completeness is a desired
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Figure 3.5: Results from the GANet for the 4K aerial dataset. The disparity reference (a) is compared
to the disparity maps obtained by SGM (b) and the models GA-SF (c) and GA-SC (d). The range for
the disparities is set from 20 to 70. Error maps for the reference optical image (e) are shown for the
same models SGM (f), GA-SF (g) and GA-SC (h). The error range is clipped to 0-3 pixels.

feature as well.

Considering the 3 pixel accuracy, we can observe that all the trained models outperform SGM by
a significant margin. If we compare only GA-SF and GA-SC we notice already an improvement
of 7% despite the shorter time that was used to train on the SyntCities dataset. GA-SCd has
even more accurate results, but it also required a larger training and might not be a suitable
option if the computational resources are limited. The model GA-US3D is even better by 6%,
which is also expected since the domain gap does not play a role for this case. Interestingly, the
GA-95SC model is the one that performed best, although it does not rely only on samples from
the US3D dataset. While the improvement for the 3 pixel accuracy metric is slightly higher, the
case for 1 pixel accuracy increases more than 7%. By comparing the results on the GA-95SC
model and GA-US3D, the former had issues to estimate some areas, but produced sharper
results than the latter. The training process augmented with the synthetic data seems to benefit
from the accurate ground truth available on SyntCities. It is also important to remark that this
strategy could work for datasets with reduced volume as well.

Focusing now on the 1 pixel accuracy, SGM has actually a better result than GA-SF but worse
than GA-SC. In this way we can notice how SC boosts accuracy to a finer detail. As mentioned
before, this metric has special attention from the remote sensing community for a correct 3D
reconstruction. The values for Mediang;s and MAD 4 follow a similar trend to the accuracy.

Images to show the performance of the algorithms are presented in figure 3.4. The first row
illustrates the disparity maps obtained and the respective reference. The second row shows the
error maps, where all values > 3 are in yellow. We can observe how completeness is obtained
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by all deep learning algorithms, which is not the case for SGM. However, the valid values
obtained by SGM show good accuracy. Now, if we compare only the GA-SC and GA-SF cases
for the disparity map, we can notice a better estimation for building areas and vegetation on
GA-SC as illustrated with the red rectangles. The model GA-95SC is of course the one with the
best reconstruction, since it was partially trained on the test domain.

We can also study the performance for the error maps, where the presence of large areas in
blue (error < 1 pix) is desired. This is already achieved for many building and street sections
on the GA-SC model as shown in the red rectangles. Difficult areas to solve for the model
remain mostly for vegetation and vehicles, which in some cases were not present on the right
view. In any case, the significant reduction of the error range would lead to a superior quality
for DSM generation, crucial for remote sensing.

With regard to the results shown in table 3.4 for the 4K aerial data we have a similar behaviour.
All models show a better accuracy for this dataset in comparison to US3D, this might be a
result of the quality of the data referenced as a ground truth. Again, the neural networks
outperform SGM, also for 1 pixel accuracy in this case. The GA-SCd model has a slightly
improvement with respect to the normal GA-SC. We did not compare the GA-95SC model
because it would be challenging to evaluate the individual benefit of each of the two sources of
the mixed dataset.

Nevertheless, we made inference on the GA-US3D model as this case is trained on real data as
well. A 10% decrease in the 3 pixel accuracy of the result shows that training a model only on
US3D data can not be used for a different set of images, while the SF and SC datasets have
a better generalization to estimate disparities in different domains. Moreover, the accuracy
in terms of 1 pixel is lower than any other case, including SGM that is not defined for all the
pixels.

Visual results for the experiments on the 4K aerial dataset are displayed in figure 3.5. Similarly
to the US3D dataset, we notice more complete buildings and detection of vegetation on the
GA-SC model. This is highlighted with the red rectangles. The effect is similar when analysing
the error map, where a significant part of the constructions is within 1 error accuracy and a
larger number of trees is retrieved.

In all the illustrated cases, vegetation is still a challenging element in part because of seasonal
changes, but we also think that a more realistic 3D representation on the synthetic models
could improve the performance.

3.5.2 AANet results

Results from the implementation of the AANet architecture for the US3D dataset are shown
in table 3.5. Accordingly to the findings explained for the GANet, the deep learning models
also outperform SGM. The highest accuracy is achieved by AA-US3D, which is an expected
outcome taking into account that it is trained and tested on images of the same domain. Again,
the AA-SC model got a better result than AA-SF and demonstrates the benefits of SyntCities
for the training process.
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Table 3.5: Results of AANet for the US3D dataset. Mediangg and MADyg;g are defined in terms of
pixels, while the accuracy is expressed as the percentage of all the pixels below the specified error
threshold. Best result is indicated in bold font and underlined, second best just underlined.
Algorithms (All but SGM, AA-)

Metrics SGM | SF | SC | US3D | 80SF | 80SC | 95SF | 95SC | 99SF | 99SC
Mediangiy 140 | 0.72 | 0.08 | 0.10 0.09 | 010 | 011 | 0.04 | 0.09 | -0.09
MAD gt 327 | 182|172 | 0.89 1.08 | 1.05 | 1.25 | 1.09 | 142 | 1.23
3pix-acc(%) | 57.0 | 63.2 | 64.3 | 85.3 785 | 796 | 748 | 77.7 | 709 | 74.7
lpix-acc(%) | 32.3 | 29.3 | 32.6 | 49.8 417 | 424 | 375 | 414 | 346 | 384

Table 3.6: Results of AANet for the 4K aerial dataset. Mediang;g and MADg;¢ are defined in terms
of pixels, while the accuracy is expressed as the percentage of all the pixels below the specified error
threshold. Best result is indicated in bold font and underlined, second best just underlined.

Algorithms
Metrics SGM | AA-SF | AA-SC | AA-US3D
Mediangg | -0.02 -0.07 -0.06 0.29
MAD g 0.29 0.39 0.28 0.50
3pix-acc(%) | 86.3 90.5 92.7 87.8
1pix-acc(%) | 80.4 74.8 82.6 66.8
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Figure 3.6: Results from the AANet for the US3D dataset. The disparity reference (a) is compared to
the disparity maps obtained by SGM (b) and the models AA-SF (c), AA-SC (d) and AA-US3D (e). The
range for the disparities is set from 90 to 192. Error maps for the reference RGB image (f) are shown
for the same models SGM (g), AA-SF (h), AA-SC (i) and AA-US3D (j). The error range is clipped to
0-3 pixels.

There are also many cases presented with a mixture from the input data. Models with SceneFlow
and SyntCities are compared at different rates of shared data. Nonetheless, the options where
SyntCities is involved perform better than those with SceneFlow. This can be noted in both 3
and 1 pixel accuracy. Due to image size limitations not all the cases are illustrated.

Once more we appreciate the advantages of mixing the data with real samples. US3D has
enough samples to be trained on its own imagery, but this might not be the case for other



3. SyntCities: A Large Synthetic Remote Sensing Dataset for Disparity Estimation 45

(c) Disparity AA-SF (d) Disparity AA-SC

e - _ N J§ "ih,;,, v o 2o ] i 0.0
(e) Optical - Left view (f) 3pix error SGM (g) 3pix error AA-SF (h) 3pix error AA-SC

Figure 3.7: Results from the AANet for the 4K aerial dataset. The disparity reference (a) is compared
to the disparity maps obtained by SGM (b) and the models AA-SF (d) and AA-SC (d). The range for
the disparities is set from 20 to 70. Error maps for the reference optical image (e) are shown for the
same models SGM (f), AA-SF (g) and AA-SC (h). The error range is clipped to 0-3 pixels.

small datasets. Even by adding only 1% of real data to the training process we can reduce the
domain gap as exhibited in the last two columns of the table (comparing only with AA-SF and
AA-SC).

Visual results related to these experiments are shown in figure 3.6. AA-SC generates sharper
buildings and finer forest sections as remarked in the red rectangles. The range for disparities in
the ground level is also more consistent with less generated discontinuities. Similar conclusions
can be derived from the error maps displayed in the second row where values for buildings and
streets are more uniform on the AA-SC model. This is a congruous result for as much as the
3D models were largely defined for these regions. Although there is room for improvement
on the simulated urban scenes, the current quality of the synthetic samples suggests that its
usage for training and pre-training is a feasible strategy. The vegetation is still a difficult area
to address even for the AA-US3D model.

Turning to the results of the 4K aerial view dataset shown in table 3.6, the AA-SC model
performs the best for both 1 and 3 pixels accuracy. An interesting point is the 1 pixel accuracy
of SGM, which surpasses the one from AA-SF. This has also been observed in tables 3.3, 3.4.
It seems that SyntCities raises the subpixel accuracy.

Images related to this experiment are on display in figure 3.7. In the selected sample vehicles
are also present (see the largest red rectangle on the disparity maps) and finely estimated
with the AA-SC model, where sharper boundaries are visible. AA-SC also has an improved
representation for vegetation areas. The constructions have a similar performance to the other
training experiments, exhibiting the benefits of the AA-SC models. Similarly to the results
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from GANet, the disparity maps generated on a model trained only on US3D data have larger
errors than those trained on the synthetic data. Furthermore, the 1 pixel accuracy is again
lower than the other compared methods.

An interesting point to mention for both GANet and AANet is the sensitivity to the disparity
distribution of the training dataset. From the conducted experiments, we observed that the
large range covered by the synthetic datasets adapts easier for inference in unseen data. On
the other hand, US3D has a narrower range and this would lead for a lower performance if the
images are not preprocessed before inference on this model. We shifted the left image of the
4K aerial samples to obtain a disparity distribution similar to the one of the US3D dataset to
have a fair comparison. Without this preprocessing, a large systematic disparity offset has been
observed. However, this behaviour could cause worse results for other experiments if the data
is directly feed into the networks without previous knowledge of the disparity distributions
used in training. This will especially affect hilly or mountainous areas with larger disparity
differences.

3.6 Discussion

A reliable digital surface model (DSM) is a valuable resource for applications such as city
planning, updating of cadastral data, transport and flight simulation, autonomous driving or
prevention and response to natural disasters, among others. Considering that, we presented
in the current paper the SyntCities dataset, which is to the best of our knowledge, the first
large synthetic dataset for disparity estimation with focus on remote sensing. The generated
samples include different illumination conditions and stereo configurations and benefit from
the simulation model to generate a dense and accurate ground truth.

Experiments made for the disparity estimation demonstrate that the accuracy is improved by
using our proposed dataset in comparison to models trained on the Scene Flow dataset. This
was observed for both aerial and satellite data. A significant outcome is the boost for 1 pixel
accuracy, which is desired for remote sensing applications where a single pixel might represent
a large distance on the ground.

We also observed that our samples can be used as an augmentation strategy to compensate the
lack of data in small real sets. Furthermore, models training on SyntCities without finetuning
achieved a good performance on unseen data such as the US3D and the 4K aerial samples.

For future work we want to upgrade the quality of the 3D models by including not only urban
areas but features from natural landscapes too, a more realistic vegetation representation
and an expanded variety of buildings and architecture. We would also like to conduct some
experiments to benefit from both disparity and semantic maps, since their information might
be complementary. An algorithm able to create a labelled DSM would enhance many spatial
databases.

Apart from that, the dataset could be enhanced with additional viewpoints to allow the training
of multi-view-stereo algorithms.
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In this section, a part of the journal paper to release the SMARS dataset [89] is described. The
full article was a contribution from few colleagues to tackle the change detection, semantic
segmentation and building detection task. Yet, the contribution of this dissertation focuses on
the dataset generation part, so the data creation pipeline and features of the generated samples
are the part from the article to be discussed.

4.1 Background

Large datasets for computer vision tasks have been created to address many tasks and study
fields for years. Some known ones are for object class recognition like PASCAL Visual Object
Classes (VOC) 150 [109], or KITTI [110] and Cityscapes [111] for autonomous driving. However,
deep learning methods require a large variety of samples to avoid problems such as overfitting,
domain gap, incorrect annotations and unbalanced data. The number of datasets that can be
used then for deep learning is then reduced.

The field of remote sensing and Earth observation has also benefited from deep learning
methods for many applications [112, 113]. What is more, it has also been observed that using
multimodal data can help to supplement the information from each input sensor, like for the
tasks of building detection [114], image segmentation [115] and change detection [116, 117].

Nonetheless, acquiring remote sensing data from many sensors is expensive, and this data is
usually not collected simultaneously, leading to differences in illumination conditions, present
objects, viewing angles, among others. Apart from that, the resolutions from each sensor vary
and the data has to be aligned and/or resampled to be used together as input for processing
algorithms. Because of these difficulties and the limited data available for training deep learning
approaches, providing a 2D/3D dataset with reliable ground truth is a helpful resource to
develop and evaluate newer architectures.

Synthetic datasets have emerged recently to fill this gap and provide a large number of samples
for a reduced cost. These have been applied for the medicine field [118], for complex physical
models [119, 120] and already remote sensing [78, 84]. However, modelling the complexity of
urban and nature environments is a demanding job and the domain gap between the synthetic
and real data should be narrow.

Considering the generation of DSMs in a 3D environment, this retrieves highly accurate results
as presented in Fig. 4.1 (a), exhibiting sharp edges around the buildings without any occlusions
or gaps. Such precise DSM can be hardly achieved using real data with the currently available
optical acquisition and stereo matching techniques, as results obtained from photogrammetry
pipeline are characterized by blurred boundaries and contain outliers (Fig. 4.1 (b)). In order
to reduce the gaps between rendered and real data, we aim at defining a novel approach
generating synthetic DSMs with the same limitations of real ones, as for the DSM reported in
Fig. 4.1 (c), which more closely resembles the level of detail in Fig. 4.1 (b) with respect to the
generation using directly rendered samples.

On the basis of all the above points, we propose a novel synthetic photogrammetric data
generation pipeline with a particular emphasis on the use of 2D/3D multimodal urban segmen-
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Figure 4.1: Quality differences between synthetic and real data. Elevation scale for the DSM is in
meters.

tation, building detection and 3D change detection. The main contributions of the paper that
contribute to this dissertation are the following:

» A workflow to produce synthetic data resembling urban areas at different growth stages.
* A 2D/3D multimodal remote sensing dataset, which we name the Simulated Multimodal
Aerial Remote Sensing (SMARS).

4.2 State of the art

4.2.1 Existing real 2D/3D multimodal benchmark datasets

Because of the acquisition costs and the aforementioned complications, the number of available
2D/3D multimodal benchmark datasets is limited. The ISPRS Potsdam dataset’ is a widely
used and popular public benchmark for 2D/3D semantic labeling, also applied to test and
validate building extraction methods [121]. This dataset includes airborne orthoimages and
corresponding DSMs generated via dense image matching. GSD for both images and DSMs is
approximately 5cm. The original training set comprises 24 pairs of tiles, each having a size of
6000 x 6000 pixels (300300 m).

Another case is the ISPRS Vaihingen'! airborne benchmark, which also contains 2D images
and DSMs. However, the blue band for RGB images is not available, so it can not be applied
for many existing algorithms, but it is useful for vegetation analysis as a near-infrared band is
included. DroneDeploy' is a 2D/3D multimodal dataset comprising UAV imagery but provides
irregular mosaics and separated training/test subsets. Thus, it is barely applied by the research

community.

Regarding the change detection, there are few single modal benchmark datasets available [122—
125]. As far as we can tell, 3DCD is presently the only benchmark with 2D/3D multimodal
data for remote sensing change detection suitable for deep learning frameworks [126, 127].
Nonetheless, GSD and acquisition times for LiDAR differ from the optical acquisition, poten-
tially affecting their paired use in multimodal algorithms. Aside from undefined pixels in the
DSM, changes are for general land use, not only building modifications. Moreover, the dataset
focuses on the landscape of Valladolid, Spain, leading to significant domain gaps.

ihttps:/www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
"https:/www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
iiihttps:/github.com/dronedeploy/dd-ml-segmentation-benchmark
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4.2.2 Synthetic data in remote sensing

Curating real 2D/3D multimodal datasets is a time consuming task that relies on the costly step
of manual annotation. Thus, synthetic data generation is a feasible solution if real imagery
is unavailable or hard to collect. Hyperspectral data was simulated in [128] and the authors
of [129] replicated SAR for change detection. A different case was presented in [130] to model
the geometrical shapes present in the forest canopies, like for conifers. For the creation of
multi-temporal datasets there are additional obstacles, such as a complex annotation, having
limited public benchmarks. One of the few cases is presented in [131], which is rather small
and with low resolution images.

The described constraints in curating the mentioned multi-temporal datasets can be mitigated
by reliance on synthetic data. For instance, [132] simulated a set of varying mis-registrations
degrees to study their impact on vegetation change detection. Another proposed dataset can
be found in [133] but the scene includes a simplified geometry with artificial generated noise.

A real LiDAR point cloud is used in [134] to generate a Level of Detail 2 (LoD2) model as a
pre-event dataset. By manually adding and removing buildings in the model, the city growth
process can be reproduced. Yet, as only buildings were model in the 3D scene, the results have
a large domain gap with real urban 3D models.

To produce more realistic samples [135] proposed an artificial data generation pipeline guided
by expert knowledge to control the automatic image and label generation. However, with more
complex background information, urban change detection is difficult to simulate and control.

Other studies explore the radiative transfer models as an option to simulate remote sensing
data [136, 137]. A remarkable work is the Discrete Anisotroipc Radiative Transfer(DART)
model [138], which accurately simulates vegetation properties such as chlorophyll fluorescence.
It can also reproduce the vegetation reflectance even for complex canopy geometries [139].
Nevertheless, urban scenarios are not easily modelled with DART because of the complexity of
the parameters that have to be added.

On the other hand, software for 3D rendering like Blender, Unity or Unreal Engine offer an
interface where the modelling of more complex geometry and retrieval of parameters such as
distance to a simulated cameras are easier to process. It is also possible to import 3D models
from other suites, render additional images for ground truth and add material properties [140—
142]. Besides, a detailed and realistic model for urban elements such as buildings and vegetation
is needed, which is feasible with 3D rendering software, where even the simulation of physical
processes is possible.

4.2.3 Virtual city synthetic data

Generating data from a virtual model is currently becoming more popular in computer vision
due to the capabilities of modeling software and the reduced cost compared to using sensors
for real scenes. However, the application of synthetic data is rather limited if the domain gap
with the real data is too large.
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A virtual model can contain anything from a small object to a large city. For example, building
models can be used to create indoor based point clouds [143], or depth and semantics, as in
Hypersim [144]. Autonomous driving algorithms have also benefited from the developments of
synthetic data creation. A widely known example is the SYNTHIA dataset [92] that provides
synthetic images of urban scenes labeled for semantic segmentation. Such scenes are rendered
from a virtual New York City 3D model with the Unity game engine. The dataset includes
segmentation annotations for 13 classes including pedestrians, cyclists, buildings, and roads.
Another approach is used in CARLA [145], an open source simulator that supports the
training, prototyping, and validating of autonomous driving models. CARLA facilitates the
data acquisition from street view for the generation of segmentation and depth maps. Similarly,
the ParallelEye dataset [84] generates images from the CityEngine software with depth and
optical flow as part of the ground truth.

A similar setting can be considered for the simulation of aerial or satellite imagery. The
Synthinel-1 dataset [83], also based on CityEngine, targets the building/no-building classifica-
tion from an airplane perspective. The authors also addressed the advantages of synthetic
imagery by ablation studies. The VALID dataset [146], focuses on panoptic segmentation and
depth estimation for urban infrastructure. Furthermore, the SyntCities dataset [90] provides se-
mantics and disparity maps, making the data suitable for stereo reconstruction. The STPLS3D
dataset [147] provides point clouds, and semantic and instance maps built on open geospatial
data sources. Authors in [148] simulated LiDAR acquisition for an urban environment and
delivered the dataset as point clouds.

However, further applications of synthetic data are limited by the large differences with respect
to the real testing data. A remarkable example is the much higher quality of the DSM obtained
from the virtual 3D models in comparison with the one generated from photogrammetric
matching. Edges are usually sharper in the simulated data, and the occlusions are absent in
the generated ground truth. In addition, images from real scenarios show imperfect textures,
light reflection, seasonal changes, the presence of temporary objects (cars, pedestrians, street
advertisements, etc.), atmospheric effects, and other elements that cannot be easily modeled
in software. Hence, the simulation is mostly limited to the geometry of the scene, textures,
and camera properties. Still, the rendered images can visually resemble real cases and help to
compensate for the limits of real sensors (such as sparsity) and reduce the costs to generate
ground truth.

4.3 Methodology on synthetic data generation

To close the gap between synthetic data collection and remote sensing applications we combine
two techniques, airborne data collection from virtual cities and photogrammetric stereo data
preparation. In this section, we propose a novel workflow to generate a 2D-3D multimodal
dataset. A diagram to summarize it is shown in Fig. 4.2. It consists of three parts: 3D virtual
city design, imagery simulation, and data processing.
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Figure 4.2: Basic description of the pipeline used to generate the SMARS dataset.

4.3.1 3D virtual city design

In order to produce a realistic change scenario we used a 3D virtual city as a starting point
to simulate the scene growth process, instead of directly generating artificial images. We
built the 3D scenes based on the CityEngine software", a suite facilitating the modelling of
urban environments based on the computer-generated Architecture (CGA) shape grammar
language. The software was also used to develop the above-mentioned ParallelEye and Synthinel-
1 datasets [83, 84]. CityEngine supports building a city model from land cover maps, such
as Open Street Map, or a manually designed base map. However, designing a virtual world
with carefully customized features would require relevant expert knowledge and would be
time-consuming. Therefore, we selected two predefined city models from ESRI and further
refined them accordingly.

In this paper, we chose two typical European cities: Paris and Venice. Subsequently we refer to
them as SParis and SVenice, respectively. The selected city models have a variety of textures
and architectures resembling the original cities, as well as a large surface allowing the inclusion
of many buildings in the subsequent rendered images. The buildings are defined in terms of
roof type, roof angle (if any), height, number of floors, floor height, and size of the parcel. In
order to have a lifelike view, we further edited the 3D model of the cities by modifying the
streets in order to have a more realistic topography, as the original version had streets with the
shape of letters. The trees were replaced with textured ellipsoids instead of the original ones
represented with a uniform color. Additionally, some areas were manually corrected in order
to ensure that any parcel in the area included urban content.

A large pool of 219 textures has been used in the provided models for buildings (rooftops
and facades) and 87 for vegetation. For the latter ones, we edited the default textures of the
ellipsoids by creating a dense representation of leaves in order to resemble canopies. While
still limited in terms of the full diversity of the real world, these refinements helped to create a
scene with sufficient variability.

As the dataset is mainly intended for change detection applications in urban areas, each city
model was generated with two versions, simulating the city’s growth:

» A case where around 50% of the parcels are covered by buildings. This is seen as the
model before changes happen and we call it pre-model in the remainder of the paper.

iVhttps://www.esri.com/ en-us/arcgis/products/esri-cityengine/overview
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(a) Pre-model (b) Post-model (c) Change ground truth

Figure 4.3: Rendered samples from the pre- and post-models with associated ground truth for change
detection. The pre-model has lower building density and different illumination conditions. Black regions
in the ground truth exhibit no change, gray indicates new buildings and white removed buildings.

* A case with approximately 70% of the parcels covered by buildings. Some areas defined
previously as gardens are replaced by constructions, while some buildings have been
removed and substituted with green areas. This model contains the changes to be detected,
and is therefore named post-model.

In Fig. 4.3, we show samples for both the pre- and post-model, respectively 4.3a and 4.3b. The
central image exhibits a higher number of buildings and less vegetation cover. Also, some of
the original buildings have been replaced with lawns or vegetation.

According to the requirements described above, we adapted a total of four city models (two
cities, two epochs) and exported all cases in Wavefront (with extension .obj) format for further
editing. The edition of the scenes in CityEngine demands about 17GB of RAM memory.

Subsequently, we loaded the Wavefront files in Blender, an open source tool for modeling,
simulation, and rendering. We applied the BlenderProc pipeline [102] to render the images.
Our rendering approach is based on the one described in SyntCities [90] and we created for
this case the colored images (we refer hereafter to them as “optical”) and the semantic maps.

Within Blender we split the geometry of the scenes according to their textures, separating all
the surfaces into the required semantic labels. The available categories include: vegetation,
streets, rooftops (mansard, gambrel, gable, hip and flat styles), facades, grass, landmarks,
cars, and background. We combined them into five typical land cover classes used for urban
mapping, including buildings (all rooftops, facades and landmarks), streets, high vegetation
(trees), grass (lawns) and others (cars, water, bare soil or background).

We simulate different illumination conditions by setting an artificial Sun in two specific positions
for the pre-/after-event models, reproducing two different times for data acquisition. The selected
angles were 70°for elevation, and 217°(pre-model) and 160°(post-model) for azimuth. The
same conditions were applied to both cities. Finally, we added a homogeneous plane under
the ground level of each scene to avoid undefined regions (no value pixels) in the rendering
process, which is assigned to the “other” category. Without it, distance would be considered to
be infinite if there is an empty region in the objects. This plane guarantees a color and depth
value for each rendered pixel.
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Figure 4.4: Simulated stereo configuration. (a) Stereo rig, where the converge distance and baseline
have been adapted to cover the same area on the ground. (b) The path of the simulated camera above
the scene. (c) Overlapping between adjacent samples is 50% for both horizontal and vertical directions.

4.3.2 Airborne stereo imagery simulation

SMARS is designed to resemble aerial imagery and the simulated camera is constrained by a
stereo rig, which helps to later generate a digital surface model (DSM). In this part, we provide
more details on the simulated data acquisition and camera parameters.

Firstly, the simulated camera is located 2km above the origin of the scenes. Since we used
synthetic models that are not georeferenced, the origin of the coordinate system assigned by
City Engine is used by default. An arbitrary point located at the center of the model and on
the terrain level is taken as a reference for the rendering process.

In Fig. 4.4(a), we show the configuration of the stereo rig. In order to simulate the stereo
imagery acquisition procedure, two cameras are located at the same distance from the rig
center with a baseline of 200m in all cases. Both cameras follow the pinhole model and have
the same focal length. As image resolution plays an essential role in transfer learning, we aim
to provide this image dataset in two GSDs, namely 30cm and 50cm. Following Eq. 4.1, we set
the focal length of the cameras to 234.37mm and 140.62mm, respectively.

_ height - sensor_width

f=

(4.1)

covered_area

where f is the focal length, Aeight = 2000m as described above, sensor_width = 36mm for the
simulated camera and covered_area = 1024 x GSD, being 1024 the size in pixels of the output
image. The converge distance is set to 2km (same as the height) with an off-axis camera,
which allows us to cover the same area on the ground from two different points of view. This
configuration is modeled with the offset of the principal point in the camera intrinsic matrix.

In Fig. 4.4(b) we illustrate the trajectory of the simulated camera above the scene. We rendered
images at 100 positions within a regular square grid, with strides set as 153.6m and 256m for
30cm and 50cm GSD, respectively. The center of the grid is set to be close to the one of the
scenes, so most of the content is included. In order to simulate a real-world airborne data
acquisition campaign, the pair of stereo-cameras are moved from the lowerleft to the upperright
corner with a constant stride. The points belonging to the grid represent the location of the
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center of the stereo rig (see the arrow with blue extremes). This means that the cameras are
located symmetrically to the left and right side of each point.

Overlapping between adjacent samples is set to 50% in both the horizontal and vertical directions
of the grid. A visual representation of the overlapping is given in Fig. 4.4(c), where the camera
pairs along the simulated flight direction are also included. The images are rendered with a
size of 1024 x 1024 pixels.

After rendering, a semantic segmentation map to be used as ground truth (GT) is delivered
with the categories described previously (buildings, streets, vegetation, lawns and others). For
the building extraction GT map, we combine all categories except building to no-building,
enabling binary semantic segmentation. With the pre-/post-event building extraction GT maps,
we calculate the building change detection map by taking only the building class for comparison.
Three change classes are included:

* No change: buildings or no-buildings have the same semantic label pre/post-event images.

* Construction: pixels labelled as building in the post event images are no-building in the
pre-event images.

* Demolition: pixels labelled as building in the pre-event images are replaced by the
no-building label.

The change detection ground truth is directly rendered from the 3D model with an orthographic
view. Labels for the semantic categories are also directly rendered from Blender, as BlenderProc
generates a category for each object in the scene. The building masks are a simplified version
of the category maps considering a binary building/non-building case. For the change detection
mask, building masks are compared and labelled according to their difference. In this case,
all generated ground truth is generated in the rendering step, and therefore perfectly matches
the original images. Due to the orthorectification process described in subsection 4.3.4, the
alignment will not be perfect as this simulates the quality obtained from a photogrammetric
pipeline.

4.3.3 Stereo matching and DSM generation

Although very precise 3D point clouds and DSMs can be directly delivered with the rendering
software, the quality of these data for all cases will be higher than the real-world 3D point clouds
generated by stereo matching techniques, where many mismatching errors and occlusions occur.
Thus, in this work we only take the synthetic stereo image pairs and generate the orthophotos
and 3D point clouds with a traditional approach. First, we assign a fake UTM projection
to all synthetic airborne stereo images, in order to enable the photogrammetric processing.
Concretely, we assign the tiles to the UTM zone 31N coordinate system (EPSG:32631), even
though the simulated model does not match any region on a real map, this area corresponds
to the city of Paris. Additionally, for the photogrammetric pipeline we enter the camera
extrinsic and intrinsic matrices, including focal length, principal points, and camera rotation
and translation parameters. The extrinsic and intrinsic parameters of the synthetic data are
precise and there was no artificial noise added. We assume that the deviation of the positional
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accuracy is negligible, as the relative accuracy of real-world aerial images used for stereo
matching is better than 0.2 pixels.

A DSM is generated from all tiles by using the CATENA pipeline [149], which is used for
multiple tasks related to the processing of satellite imagery. The disparity estimation, which
is the first step, is computed via Semi-Global Matching (SGM) [4], an algorithm widely used
for stereo matching due to its good balance between accuracy and computational costs. SGM
takes a rectified stereo image pair as input and estimates a disparity map. We apply the
implementation of SGM described in [150], which takes satellite data as input, set the penalty
parameters P; = 400, Py = 800 and the window size for the Census transform [5] to 7 X 9.

After the matching and the use of the camera parameters to determine the 3D location of each
pixel, we retrieve a georeferenced DSM for each stereo pair. We subsequently merge all the
stereo pair DSMs by using the median of all values belonging to the same location, resulting in
one final DSM for each virtual city.

As a real DSM generation procedure, gaps are present due to matching failures or occlusions.
We apply an inverse distance weighted interpolation in order to fill the remaining holes [151].

4.3.4 Orthophoto and reference data

The orthorectification process for the rendered optical tiles is implemented in a GPU as
described in [152], considering as input the generated DSM, and the intrinsic and extrinsic
parameters of the optical images. The outputs are take into account occlusions by buildings
and vegetation. Bilinear interpolation is used to resample the orthorectified images to a given
ground sampling distance.

We merge all the tiles into a single large image with the warp utility from the GDAL library [153],
getting as result a complete orthorectified optical image, aligned to the DSMs at pixel level.

4.4 Experimental Design

In this section we describe some additional details of the generated SMARS dataset and the
delimitation of the regions used for training and testing in the deep learning algorithms for
both cities. Additionally, we explain the tasks to be addressed with our generated data to show
the advantages and constraints of SMARS. The details of the experiments and their results are
the main work of the coauthors an therefore out of the scope of this dissertation.

441 SParis and SVenice multimodal data structure

The pre- and post-event DSMs and orthophotos are generated using the workflow described
in Section 4.3. All the datasets are projected to the UTM zone 31N coordinate system and
cropped in order to cover the same regions. Fig. 4.5 reports examples of the generated DSMs.
Buildings appear well delimited and easy to identify in most cases, while other elements such
as streets or vegetation appear incomplete or blurred. There is a clear difference between the
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(c) DSM SVenice 30cm (d) DSM SVenice 50cm

Figure 4.5: Example regions of the DSMs generated for SMARS besides the paired orthorectified
images. All samples are taken from the pre-event models. Elevation scale for the DSM is in meters.

models obtained using 30cm and 50cm GSD respectively, as the former exhibits sharper edges
with individual trees easy to identify, while the latter exhibits some blobs merging different
objects. Despite some artifacts or the presence of outliers, the DSMs still have a high quality in
all cases due to their synthetic nature.

The final dataset splittings are summarized in the diagram below. We list all possible subsets
but report the names for only three of them for each city in order to simplify the diagram, with
the remaining cases following the same nomenclature. For each subset, we have available optical
images, DSMs, semantic maps, and building masks for both pre- and post-event scenarios.
Additionally, we have building change detection masks for the difference between pre- and
post-images. All these cases are shown in Fig. 4.6.

Train  Paris_30cm_pre_train Train  Venice_30cm_pre_train
Pre4 Val Paris_30cm_pre_val Pre4 Val Venice_30cm_pre_val
30cm Test Paris_30cm_pre_test 30cm Test Venice_30cm_pre_test
SParis Post {... SVenice Post{...

Pre{... Pre{...
50cm 50cm

Post {... Post {...
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Figure 4.6: Available information for each tile in pre and post-events scenarios. For each case, an
optical image, a DSM and semantic and building masks are included. For the change detection, the
difference between the two events is used for the ground truth mask. Scales are given as a reference for
displayed information. The elevation scale for the DSM is in meters.

4.5 Discussion

This paper proposed a novel workflow for synthetic data generation filling the gaps in the
available 2D/3D multimodal data for building extraction, multi-class semantic segmentation
and 3D change detection. Our data analysis looks at the effects of the domain gap when the
models trained on our synthetic data are tested on real data. The discussion is limited here to
the parts related to the dataset creation and observations from experiments. For a detailed
explanation of the experiments and results themselves, please read the full paper.

4.5.1 OQuality of the synthetic dataset

This subsection discusses the main advantages and disadvantages of the rendered images
described in section 4.3. The proposed SMARS dataset meets our expectations in most of the
reported experiments. Nevertheless, it also presents some limitations. Both will be discussed
below for each of the available semantic categories in SMARS.

4511 Buildings

The buildings generated by CityEngine exhibit good quality in terms of geometry, architectural
appearance, and textures. They can be favorably compared to models with LoD2 and LoD3,
as some rooftops have additional features such as chimneys. Moreover, the buildings resemble
the expected distribution of a city in terms of size and arrangement and contribute to creating
realistic scenarios. Taking into account the options to manipulate the building properties, it is
easy to simulate the city growth as required for the change detection task. Furthermore, as
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buildings achieve a very good reconstruction in the DSMs, they can be easily detected by the
algorithms considered in this article.

Nonetheless, the pool of textures to generate the buildings is limited and might lead to overfitting
in the learning process. Besides, no construction sites are part of the dataset, as would be the
case for real images; these regions represent a challenge for change detection depending on the
progress of the constructions. Another constraint is given by the generation of mostly residential
buildings, as facilities such as commercial buildings, parks, sports centers, or transport stations
are not included in our dataset.

In the experiments, we notice that the discrepancy in height between the two city models leads
to errors for prediction in the learning models, as the DSMs values have different ranges. With
traditional approaches, the similarity in height between trees and buildings can also increase
the challenges of classification, especially when they are close to each other. In the SMARS
dataset, the building roofs are generally well visible and do not suffer from occlusion problems
as in real data, making the task of building extraction easier.

4.51.2 Street

A major difference between the two models is the street category. In SParis the streets match
the common design with sidewalks, concrete material, and broken and solid lines. Besides,
streets in this model are wide and have a height profile different from all other elements, with
the exception of lawns.

SVenice is more difficult in this category. In the same way as the real Venice, the streets are
designed for pedestrians, and are therefore narrow, causing sidewalks to be absent and are not
marked either by broken or solid lines. Additionally, the width of the streets is comparable to
the one of the multiple canals crossing the city. This problem is aggravated by the similarities in
terms of height between the “others” (where canals and sea are included) and street categories.
Because of that, it was observed the semantic segmentation task that cross-domain experiments
drop significantly in performance for this category. For learning models trained with SParis,
the canals of SVenice are considered streets and the lawns are predicted as “others”. Likewise,
for learning models trained with SVenice, the streets of SParis are many times wrongly labeled
as “others” and only a few streets are actually detected.

As width and height are within the expected ranges for streets, a suitable solution would be to
enhance the available categories in order to incorporate canals, squares, roundabouts, alleys,
and other elements that could be confused with roads.

4.51.3 Vegetation and lawns

Representation of shapes and structures of trees and bushes in 3D is a critical issue. A detailed
representation requires a complicated geometric definition leading to high computational costs.
A common simplified case with only two intersected vertical planes reduces substantially the
memory requirements but exhibits poor visual quality in the models. Due to the trade-off
between memory and appearance, we used textured ellipsoids. This allows the inclusion of a
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large number of trees and bushes in the virtual scenes. We include many textures, but these
are limited to a specific number of plant species.

Yet, the vegetation regions largely suffer from the domain gaps between synthetic and real data.
Real scenes have no simplified geometry (with the exception of man-trimmed trees) and cannot
be easily modeled. Using only ellipsoids makes the learning biased towards this shape, and
cannot adequately lead to correct predictions of other types of vegetation. Also, seasonal effects
(such as leave colors, snow covering, or fallen leaves) are not considered.

On top of that, the lawns category has been simplified too. Actual grass has a non-negligible
height (even if this is relatively small in comparison to the other objects), no uniform texture,
and can include small vegetation such as low bushes. For the simulated cities, the lawns are
simplified by a flat area with grass-like texture, which appears realistic enough in the orthophotos.
Without the texture, the lawns would be similar to the roads or bare soil category, as the height
information of lawns is set close to 0.

In DART, trees are defined by tree species, various attributes of trunk and crown, and are
simulated using turbid voxels or isosceles triangles [138]. Tree crown shapes can be chosen
from ellipsoidal, ellipsoid-composed, truncated cone, trapezoid, and cylinder with truncated
cone. In addition, branches and twigs can be added. However, the tree modeling requires
many manual input and is still not realistic as desired. Nevertheless, there is still potential to
improve the quality of the frees class by using existing detailed 3D tree models. For example, the
RAdiation transfer Model Intercomparison (RAMI) experiments derived detailed and realistic
3D models of various tree species by in situ measurements. The 3D models have been exported
to DART, and can be edited in Blender as well. But those tree models do not include enough
typical urban tree species to represent the urban tree scenario. For the reasons described above,
we did not adopt these accurate tree 3D models.

4.51.4 Water

Water is not an annotated category in our SMARS dataset. However, it is an important land
cover type in the SVenice scene. In the provided Venice city model of CityEngine, the water
bodies are actually covered by a real low-resolution satellite image, exhibiting shadows that
might not correspond to the simulated sun conditions. In addition, elements present in the water
(such as boats and bridges) do not have an above ground height, so the captured multi-view
images do not present a meaningful disparity in the epipolar image pairs. Therefore, in the
generated DSMs the surface of water bodies is rather flat and smooth. In reality, the elements
present in the water would have a height value larger than zero.

On the other hand, the SParis model has no water, so these are absent in the ground truth for
either city, an aspect which can lead to errors in the semantic segmentation task, especially for
cross domain experiments. It is particularly complex for the algorithms to separate water from
streets in the SVenice model, where the canals have similar contextual features as the streets in
SParis. The collection of a larger number of samples with labeled water coverage might help
solve this issue.
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Finally, since we use an aerial photo as the source for the water areas, these do not change
between the pre- and post-models and remain also constant within the simulated flight campaigns.
In reality, the waves and tides produce an irregular surface, causing the matching algorithms to
yield poor results. Usually, the DSM pipeline would fail to reconstruct such regions, while our
DSM has a constant value. As discussed above, a physical simulation of water would lead to
enhanced realism in the scenarios. Since our work focuses mainly on buildings, this is currently
left out of our studies.

4.5.2 General observations

In this chapter we introduced SMARS, a synthetic large and accurately annotated 2D/3D multi-
temporal earth observation dataset, as an effort to meet the demand for multimodal benchmark
data suitable for change detection applications in urban areas. In addition to 3D change
detection, we provide orthorectified images, DSMs and ground truth for semantic segmentation,
along with a pipeline to generate similar synthetic images resembling the characteristics of real
aerial acquisitions, including their limitations. By modifying the scenes within the pipeline,
it is easy to set and adjust the changes between two simulated acquisition times, which is a
difficult task when using real data. As a result, the pipeline has the potential to create larger
samples with high variability.

The ground truth associated to the dataset is free from wrongly annotated labels or confusion
between classes, being generated during the rendering process. This aspect propagates its
advantages to the change detection applications, where a large number of modifications can be
handled and are ensured to be correct in the change mask to be used as reference. The quality
of the presented synthetic data has been investigated in several experiments, which yielded
results similar to what would be expected using real data. The quality of SMARS data is high
in terms of coregistration, orthorectification and ground truth quality.

In addition to testing segmentation and change detection approaches, the presented synthetic
data can be adapted to train a valid building extraction or semantic segmentation model that
can be applied to real datasets. For instance, building extraction shows a good performance
on the ISPRS Potsdam dataset, even without a fine-tuning step. In general, the synthetic
data represent a feasible option for training neural networks for building detection, semantic
segmentation, and change detection tasks, despite expected constraints due to domain gaps.
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In this chapter, we refer to the third article contribution (under review process), where the
stereo matching and MVS strategies are compared in a similar setting to analyse the benefits
of each one to reconstruct a 3D urban scene. We describe qualitatively and quantitatively the
performance of the compared cases. Data from synthetic and real acquisitions is used in the
experiments to get more insights. The used real data, which corresponds to the city of Dublin,
has been released to be used by the research community.

5.1 Background

The task of generating DSMs is a first step in many remote sensing pipelines. Data from
different sensors and platforms (usually aerial or satellite) can be used as input for this task, like
images from traditional cameras, LiDAR or synthetic aperture radar (SAR). For this chapter,
we focused on the case where a DSM is created from optical imagery only, as this is often
cheaper than the other sensors and offers sharp geometry for the reconstruction.

Currently deep learning based algorithms are state-of-the-art, however, many of these depend
on supervised learning methods and a requirement for that is the availability of ground truth
for training, which is still measured with LiDAR. This data acquisition is expensive and the
quality of the ground truth depends on the density of the generated point cloud. Despite this
issue, learning models have the advantage of being trained on a subset of data and tested on
many other samples, so the ground truth is just required for the training step, allowing the
model to predict in many unseen samples, as long as the domain gap is not too large.

After obtaining a good dataset capable of training deep learning models, most existing network
architectures are oriented towards either stereo matching or MVS approaches. While both are
suitable for generating a DSM, they are based on different principles and therefore require
different input data and network architectures.

The stereo algorithms expect data that has undergone epipolar rectification, which means that
the points to be matched are along the same epipolar line and we only consider candidates
in one dimension. To calculate the height of objects in the scene, the baseline between the
two images, the focal length of the camera, the position/orientation of the stereo array and the
computed disparity map are needed.

MYVS on the other hand does not need stereo rectified images, as it supports images from
different points of view. Nonetheless, the correct relative position/orientation between the
cameras is required for a homography warping. The algorithms estimate a depth map that can
be converted into a height map based also on the reference view position and rotation.

As deep learning architectures have evolved and achieved the best performance in the bench-
marks, the differences between the two algorithms have become more pronounced. Datasets
are designed separately for each case, as well as metrics and benchmarks. We already set the
first experiments to evaluate both stereo and MVS algorithms in stereo paired images in our
previous work [154], but we now explore multiple views and also test all the algorithms on real
data. We use the available datasets SyntCities [90] and Dublin 2015 [155], where synthetic and
LiDAR ground truth is available respectively. The aim was to make the comparison as fair as
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possible. This would highlight the differences between the algorithms. Metrics for all cases and
discussions are presented for all the obtained results.

In the traditional pipelines for DSM generation, a set of candidate values is available for each
pixel/location, which are later fused by using the median to determine a robust final value [41].
In practice, stereo methods are more widely used for remote sensing data as they have been
studied longer, just few pre-processing steps are needed and the matching works only along
one dimension. MVS methods require less pre-processing steps and might benefit from the
information provided by additional views, but they have been less studied.

We explored beyond the traditional fusion, by using a confidence estimation which could help
to pre-select the best candidate values before fusion. The confidence estimation responds to
one of the remaining issues of deep learning, the fact that there is a prediction for each pixel,
whether this is a reliable one or not. The confidence estimation aims to give a value related to
this certainty, which we use to sort the available height values used to be fused in the DSM.
Although the improvement in the DSM accuracy is small, the experiments show that there is
potential for further research in this direction.

Summarizing, our main contributions are:

* A fair comparison of learning-based stereo and MVS methods while using multiple
views/stereo-pairs for the same region.

* We evaluate the algorithms in synthetic data, where the ground truth is highly accurate
and on the real images, as an application case with challenging regions.

* We explore an alternative way to fuse the height values into a DSM by using the confidence
associated to each prediction made by the neural networks.

* We share the processed Dublin dataset [155] to have a large dataset compatible with
stereo and MVS algorithms .

5.2 Related Work

In this part we describe some of the main algorithms and neural networks applied to the tasks
of stereo matching and MVS highlighting also their differences. Besides, we introduce some
available algorithms for the confidence estimation in the stereo matching case.

5.2.1 Stereo Methods

Prior to deep learning solutions, stereo algorithms were mostly based on a cost volume
generation pipeline and its refinement to produce smooth results. Usually the steps for stereo
estimation are matching cost computation, cost aggregation, disparity estimation and disparity
refinement [8]. A widely used algorithm for stereo matching is Semi-Global Matching (SGM) [4],
which can be implemented also to work in real-time due to its compromise between efficiency
and accuracy. As it is the case with non-learning algorithms, it can be applied to any pair of

iThe processed Dublin dataset can be downloaded at: https://tinyurl.com/2hmmc4z2
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images without prior knowledge and produce a good quality result. Nonetheless, the tuning of
the penalty parameters has a strong influence on the performance of the algorithm.

Recently, deep learning solutions have been the leading approaches for stereo matching. MC-
CNN [11] replaced the cost matching part with a neural network and included the refinement
of SGM, showing a good performance. Later on, end-to-end networks were developed to
predict the disparity maps from the stereo images, learning also the refinement steps. The
first approaches were DispNet [12] with an encoder-decoder architecture and GC-Net [13] that
incorporated 3D convolutions. Among the architectures that are widely known and used as a
baseline to compare performance, we can mention GANet [17], AANet [19] and DSMNet [20].
GANet is a learning-based implementation similar to SGM, where the penalty parameters are
learned and 3D convolutions are used to refine thin structures. AANet produces smooth results
and avoids the expensive 3D convolutions using less memory than GANet with a slight loss
in accuracy. DSMNet on the other hand, tried to reduce the domain gap by using a domain
normalization.

Newer architectures benefit from more complex architectures. RAFT-Stereo [21] adds gated
recurrent units (GRUs) for a robust result in difficult areas, like textureless sections. Besides, it is
less affected by the domain gap problem. A different strategy is STTR [24], where transformers
are included and the network also alleviates the constraint of a fixed disparity range.

In our study, we will use only AANet as it requires less time for training/inference than other
networks, produces a good quality result, and is a common baseline to compare new methods.

5.2.2 MVS Methods

The multi-view networks do not require the input images to be on the same epipolar line and
therefore allow the reconstruction to be based on multiple points of view. Such a reconstruction
takes place directly in the 3D space, so the predictions represent the distance from the camera
plane to the objects as in the traditional sweep plane algorithms. In contrast to stereo methods,
the MVS approaches require a estimated depth range as well as the relative camera positions
and rotations values.

Non-learnable photogrammetric algorithms have been developed for this task. COLMAP [156]
reconstruction benefits from multi-view geometric consistency, and its algorithm to sort the
additional views (with respect to a reference view) is used also by deep learning solutions as a
starting point. GIPUMA [28] applies an iterative process in the 3D space which is computed
efficiently by using GPU resources.

Deep learning architectures have also been leading the MVS benchmarks in the last years,
especially in terms of completeness. MVSNet [30] is a pioneering work that implements the
plane sweep algorithm in a learnable way. R-MVSNet [31] includes GRUs which help to
slightly improve the results. Another strategy is CasMVSNet [32], that follows a coarse-to-
fine architecture reducing the memory consumption and allowing higher image resolutions.
VisMVSNet [35] incorporates information related to the occluded pixels to rely on visible pixels
for a more robust reconstruction. UniMVSNet [36] has a depth representation that allows
the network to consider both a classification and a regression task simultaneously, leading to
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significant improvements in the performance. On top of that, computational resources are less
demanding than for other networks. Therefore, we select UniMVSNet for the experiments in
this chapter.

5.2.3 Confidence estimation

The confidence estimation is a research area that has already been explored in the task of
stereo matching. Given a disparity map, which is predicted with a neural network (or a
photogrammetric algorithm), the confidence estimation aims to give a value that is related
to the certainty of the prediction for each pixel in the result. This would be similar to some
post-processing steps applied in the stereo matching, such as left-right check consistency, where
according to the bilateral reprojection of the images using the disparity maps, some disparity
predictions are discarded due to inconsistencies.

As with the disparity and depth estimation tasks, the confidence can also be estimated by
learnable and non-learnable algorithms. Regarding the latter ones, one of the first quantitative
evaluations is shown in [52]. Most of the evaluated algorithms are based on the cost volume
used to estimate the disparity values. Confidence for each pixel can be computed directly from
the cost, by evaluating the curvature of the cost curve, analysing the presence and distribution
of the local minima, the behaviour of the whole cost curve or by using the left-right consistency
as already mentioned.

With respect to learned-based algorithms, a quantitative evaluation can be found in [53].
These algorithms take as input the input reference image, the predicted disparity maps and/or
the cost volume, although the latter increases significantly the memory consumption in the
implementations. CCNN [54] was one of the first architectures designed to predicted confidence
maps by using Convolutional Neural Networks (CNNs) and Fully Connected Networks (FCNs).
Since this method did not use the cost volume as input, it is more flexible to test in other
stereo matching algorithms. PBCP [157] used a patch based solution on maps predicted by
SGM and significantly reduced the confidence prediction error. PKRN+ [55] included layers
able to capture not only the information for the computed pixel, but local context to estimate
the confidence. In this way, regions with similar confidence values are smoother. A different
architecture [56] proposed to use not only the disparity map, but the cost volume as input
for the network. To reduce the high computational cost required to handle the whole cost
volume, only the highest costs are selected using the “top-k” operation from PyTorch. Finally,
LAFNet [57] takes reference image, disparity map and cost volume (with the same preprocessing
as [66]) as inputs and includes convolutional spatial transformers in the architecture, leading to
a remarkable performance between the state of the art solutions. Hence. we selected LAFNet

for our experiments related to the confidence-based estimation.

Since LAFNet requires the cost volume as input, we had to select a neural networks that are
based on a cost volume approach. The previously selected networks for disparity and depth
estimation, namely AANet and UniMVSNet were also chosen because their cost volumes can
be exported to be used as input for LAFNet. Although LAFNet has been designed exclusively
for disparity maps and no for the MVS case, we explored using the depth maps with their
respective cost volumes as input a in a similar manner to stereo data.
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5.3 Methodology

In the following paragraphs we describe the process used to fuse the data (with and without
confidence guidance), the nature of the data used for our 3D reconstruction experiments
including preprocessing steps as well as the training conditions of the applied stereo and MVS
networks. For the MVS network, we considered two cases, applying it as a stereo matching
algorithm (which means many input stereo pairs) and as a full multi-view algorithm (where
many views are taken simultaneously as input). Hence, we analysed three cases, namely: Stereo,
MVS_Stereo and MVS_Full. The datasets to be used are SyntCities for the evaluation on
synthetic data and Dublin for real applications.

5.3.1 Predicted maps fusion

Different methods can be used to estimate the disparity/depth maps as a first step to generate
a DSM. Since the images are usually cropped into tiles due to memory and computation
restrictions, we end up with a stack of smaller DSMs to be fused. To merge these results into a
DSM, steps are different for stereo and multi-view cases.

The pipeline to fuse predicted disparity and depth maps is shown in the Fig. 5.1. We represent
here a case to fuse 6 images of SyntCities, but the principle is the same for the Dublin data.

Starting from the stereo cases, which are Stereo and MVS_Stereo, we have a total of 15 possible
combinations, and we always consider the disparity map from left to right to get positive
values, which is a restriction for the estimation of the networks. The 15 disparity maps are then
converted into height using the camera parameters along with the baseline and subsequently
georeferenced using the camera positions. Nonetheless, the transformation of the disparity
maps to height maps is still influenced by the acquisition perspective, having an oblique view.
Hence, it is necessary to orthorectify the images to have the geometry required for the DSM.

We also have the MVS_Full case. Using the algorithms for MVS estimates the depth for only
one of the views at a time, which is considered to be the reference view while the additional
views provide complementary information. This means, we obtain 6 depth maps as a result
of giving the same number of input images if we use the rest as additional views. Although
the number of results may seem smaller than in the stereo case, the same number of images is
used within the algorithms. After estimating the depth for each view, we transformed this into
height using also the camera parameters. Similarly to the stereo case, the height map is still
oriented to match the camera perspective and required orthorectification as well.

Having all the results as orthorectified height maps, it is now possible to fuse the results into
a single DSM, benefiting from all single estimations. We considered two basic yet widely
used methods: mean and median for each pixel/location. The former provides insights of the
distribution of the predicted results. The latter is more effective and makes a robust fusion by
avoiding the influence of outliers, being the most common strategy.
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Figure 5.1: Pipeline used to fuse the results of the predicted disparity/depth maps. In the case of
the Stereo and MVS_Stereo methods, more results are available but they use the same available
information as the MVS_Full case. All results then follow the same steps which include height conversion,
orthorectification and fusion.
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Figure 5.2: Pipeline for confidence-based fusion. After estimating confidence maps along with the
height maps obtained from the reconstruction algorithms, a stack of height maps is sorted based on the
respective confidence values and then we compute the median to get the final DSM.

5.3.2 Confidence based fusion

We also analysed the case of fusing the depth and disparity maps using a confidence based
fusion. A diagram to explain the process is shown in the Fig. 5.2, but we describe here the
steps in detail. The confidence maps help to fuse the depth and disparity maps, so we need to
process all the data simultaneously.

First, disparity/depth maps are converted to height maps using photogrammetric algorithms. For
this step, LAFNet is not required, just the results from the Stereo, MVS_Stereo and MVS_Full
algorithms. In parallel, the same depth/disparity maps along with the cost volume (which has
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to be upsampled) and the RGB images are used as input to LAFNet, generating a confidence
map as a result.

After that, both height and confidence maps are orthorectified. Since these are obtained for the
same regions, the orthorectified maps cover the same pixels/areas. If we apply these two steps
to all input depth/disparity maps, we end up with a stack of height and confidence maps.

In the above fused cases, we would only apply the median to all the candidate height values for
each pixel to obtain the fused height. We do propose a different strategy to fuse the height
values by using the corresponding confidence values. We sort the stack of confidence maps
according to the values for each pixel from higher to lower, and based on this sorting, we
re-arrange the stack of height values as well. Afterwards, we remove the less confident height
values according to a removal percentage (remsy). For example, if we have 10 height values for
a certain pixel and set remy = 50, only the 5 candidates with higher confidence remain. We
compute the median from the remaining values to generate the DSM.

5.3.3 Data Preparation

As mentioned in the introduction, datasets for stereo and MVS algorithms have been designed
separately for each task, making it difficult to establish a common dataset to assess the
performance reconstruction of both approaches. To overcome this obstacle, we decided to
prepare two datasets for our experiments. First, we used SyntCities as in our previous work [154],
but instead of using only two views for all cases, we selected additional views and different
baselines. Second, we also evaluated the performance of the algorithms on real data, so we
processed the Dublin dataset [155] to be compatible with both approaches and generated the
required ground truth. Detailed information is given in the next sections.

5.3.3.1 SyntCities

The SyntCities dataset is a synthetic dataset that was developed to compensate for the lack of
stereo paired data in the remote sensing field. Since these images are generated directly from
the 3D software Blender by using BlenderProc [102], the ground truth is accurate and dense,
which means we have a reliable reference value for all pixels. The images have been rendered
at a ground sample distance (GSD) of 10cm, 30cm and 1m. In the original setting, 4 pairs are
given for the same area with different baselines. For the new experiments, we benefit from the
fact that despite having different baselines, all tiles with the same naming number (based on
the SyntCities file organisation) are on the same epipolar line. The SyntCities dataset assumes
that the camera follows a flight track over the scene and acquires the images at 25 locations; as
those points act as the center for the stereo arrays, we generated the stereo pairs by simply
increasing the baselines. Hence, for each location we have 8 images along the epipolar line
considering the left and right views (4 baselines x 2 views). The selected testing samples have
a GSD of 30cm and 1m and belong to the Venice and Paris samples, as height differences are
not so large in these cities.
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Figure 5.3: Selected geometry for SyntCities samples. All images lie on the same epipolar line with
different baselines. There are 6 available views for each region on the surface. Baseline distances are
given with respect to V1.

In our experiments, we used a maximum of 6 views for each location. Due to the camera
parameters of the stereo pairs, all images cover approximately the same area on the ground,
as shown in the Fig. 5.3, where all the cameras are pointing to a common area. Assuming
that we select Vy (N € [1,6]) as the reference view, we have 5 additional views to help for the
reconstruction of V. The distance between the cameras is given in the image as baselines
with respect to V1. The cameras were not rotated nor displaced out of the epipolar line. As
SyntCities included ground truth only for the default stereo pairs, we generated the missing
disparity maps from the depth maps (available for all views) and the camera parameters. Apart
from that, no additional data is required.

5.3.3.2 Dublin dataset

The Dublin dataset! is a collection of data acquired on 2015 over the downtown of Dublin,
Ireland. The campaign had a flying altitude of 300m and retrieved LiDAR data (as point
clouds and full waveform), oblique images, geo-referenced RGB and infrared imagery, and the
respective acquisition metadata.

As a first step, we downloaded all the point clouds and merged them to create a single DSM,
as the ground truth was later computed from it. The DSM was created with a GSD of 10cm
and is shown in Fig. 5.4. Due to the sensor acquisition not all the pixels will have a ground
truth, but for those where the value is defined, this is computed from a dense measurement,
offering a good quality ground truth.

We selected the georeferenced RGB imagery as input for our experiments. The original images
had a size of 9000 x 6732 pixels with a GSD of 3.4cm. We downsampled the images by X9,
changing the images to a size of 1000 x 748 pixels with a GSD of 30.6cm, similar to the one in

fiThe original Dublin dataset can be downloaded at: https://geo.nyu.edu/?f%5Bdct_isPart0f_sm},5D%5B%
5D=2015+Dublin+LiDAR


https://geo.nyu.edu/?f%5Bdct_isPartOf_sm%5D%5B%5D=2015+Dublin+LiDAR
https://geo.nyu.edu/?f%5Bdct_isPartOf_sm%5D%5B%5D=2015+Dublin+LiDAR

72 5. Generation of urban DSMs using stereo and multi-view deep learning algorithms

Figure 5.4: Dublin digital surface model obtained by merging all provided point clouds and used as
ground truth .

SyntCities. With the downsampled size, it is also easier to use the images as input for the neural
networks without additionally cropping and merging the tiles for pre and post processing.

The data was further processed for the two input cases: Dublin_stereo and Dublin_MVS. A
diagram for the applied pipeline is shown in Fig. 5.5, where we have K input images. In the
case of the Dublin_stereo dataset, we selected a pair N of the K downsampled images, the pair
had to be epipolarly rectified for stereo matching. For each image, we selected the 5 closest
acquisitions (based on the Euclidean distance of the positions) to set the pairs. The epipolar
rectification is done with the compact implementation described in [158]. Once the pair has
been rectified, we use a photogrammetric algorithm to convert from the DSM to a disparity
map, which is aligned to match the “left” image of the pair (so the disparities have a positive
range as required for the networks). Hence, the stereo dataset includes pairs of rectified images
with the respective disparity ground truth. A pair examples of the Dublin_stereo dataset are
shown in Fig. 5.6.

With respect to the Dublin_MVS dataset, after downsampling the images, we processed the
camera values for positions and rotations from the metadata to be compatible with the format
required for the camera files in the MVS approaches, which includes camera extrinsics, intrinsics
and an estimated depth range where the scene is located. The depth range is computed from
the DSM, with a range that includes y + 407, being 1 and o the mean and standard deviation of
the depth values according to the camera parameters. This range is different for each image.

The depth ground truth is obtained in a similar way to the stereo case, where we used the DSM
and photogrammetric relations to convert the DSM into the depth map for each image. As the
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Figure 5.5: Pipeline used to generate the Dublin dataset for both cases: Dublin_stereo and Dublin_MVS.
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Figure 5.6: Dublin_stereo dataset samples. (a) and (d) are the left views for the corresponding (b) and
(e) right views, (c) and (f) are the ground truth aligned with the left views. Bar scale for disparities is in
pixels.

depth map does not depend in the additional views, it is always the same for a specific image
and we do not need to provide ground truth for different image pairing. Therefore, the MVS
dataset includes the RGB images with the respective depth map and camera file. An example

of the images included in this dataset are shown in the Fig. 5.7.
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Figure 5.7: Dublin MVS dataset samples. (a) and (c) are the reference views for the corresponding (b)
and (d) ground truth. Bar scale for depth is in meters.

The Dublin dataset acquisition track has a different geometry to the one presented for SyntCities.
For the Dublin campaign, images were taking with a single camera along the flight path.
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Therefore, the images cover different areas with some overlapping between adjacent acquisitions.
In the Fig. 5.8 we show a simplified diagram of the camera positions and ground coverage. A
distance of approximately 100m is given between two consecutive images, leading to a side
overlapping of ~ 70%.
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Figure 5.8: Selected geometry for Dublin samples. Images lay on a flight path with an approximate
baseline of 100m, but not in the same epipolar line.

Unlike the SyntCities case, in the Dublin dataset some regions are not visible in adjacent input
views, which makes the matching more challenging than for the synthetic data. Moreover, the
density of objects and textures in the Dublin dataset is larger, posing additional difficulties for
the reconstruction algorithms.

5.3.4 Stereo training

We train AANet for stereo matching in both SyntCities and Dublin (stereo dataset), training
from scratch with SyntCities and used this model to finetune on the Dublin data. We followed
this strategy as the ground truth for SyntCities is dense and accurate, so the finetuning would
help to reduce the domain gap for the testing area. For SyntCities, from the original 5400
images from the training subsets, we removed 300 cases with large baselines, keeping 5150 for
training. 22 samples from the test subsets with 5 views each, so 110 samples were used for
testing. In the case of Dublin, from the available tracks, we selected the subset 150326_122941
for finetuning and the subset 150326_120403 for testing.

The training for SyntCities takes different views along the epipolar line as explained previously
for Fig. 5.3. We used a batch size of 20, trained the model for 370 epochs and called this model
Stereo_SC. The finetuning is done with the Dublin stereo samples for additional 500 epochs.
We reduce the maximum disparity to 96 as this range is enough for these samples. We call this
model Stereo_Du. Training was conducted on 4xNVIDIA GeForce RTX 2080 Ti GPUs.
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5.3.5 MVS_Stereo and MVS_Full training

Similarly to AANet, we train firstly on SyntCities and then finetuned the model on Dublin
samples. However, we apply two different training models for UniMVSNet: as a stereo matching
case and full multi-view, which means 2 and 6 views as inputs respectively. The first case will
help to study the performance of UniMVSNet with conditions very similar to AANet, and we
call this case MVS_Stereo. The full multi view is intended to give data to compare the impact
of having more views as input and if this is beneficial for the reconstruction. We named this
case simply MVS_full.

In the MVS_Stereo based instance, we train UniMVSNet on SyntCities for 40 epochs with 2
input views, a batch size of 2 and the image pairs are loaded with the same pairing order as for
AANet. Afterwards, we finetuned the model for additional 270 epochs. We call these models
MVS_Stereo_SC and MVS_Stereo_Du for SyntCities and Dublin respectively.

Similarly, we train the MVS_Full case with UniMVSNet by applying a number of views of 6
for 160 epochs. The number of iterations is larger as there are less possible combinations of
input images as for the stereo case. For the finetuning we applied additional 600 epochs. These
models are named as MVS_Full SC and MVS_Full_Du. Finetuning models had more epochs
due to the relatively fewer samples in Dublin comparing to SyntCities.

5.3.6 LAFNet training

LAFNet requires the cost volumes as inputs along with the RGB images, the predicted
depth/disparity maps and the depth/disparity ground truth maps. While using algorithms
such as SGM or MC-CNN, the whole cost volumes are easy to identify and export as additional
files, providing also information for each pixel. However, neural networks usually use structures
where the volumes are downsampled to reduce computational resources. Moreover, the volumes
in the coarsest resolutions generally offer a better overview of the matching, as they take into
account the full disparity range. The finer volumes mostly refine around a certain disparity
range, not the full one. Hence, we used the coarsest cost volumes from AANet and UniMVSNet,
in both cases after the aggregation steps to reduce the presence of outliers.

We adapted both networks to export the cost volumes as described above. Besides, LAFNet
applies a pre-processing step to the input cost volumes as mentioned in [56], where the values
are normalized to improve the discriminative power of the network and the “top-k” function
selects the main cost candidates only. This helps also to reduce the memory demands of the
algorithm. In order to also reduce the storage space required for the cost volumes, we apply
this processing step before exporting the cost volumes. It also avoids additional processing
each time the LAFNet is loading the data.

Nonetheless, using the coarse cost volume makes the input data to be mismatched in terms of
resolution. We solved this by interpolating the stored coarse cost volume to match the input
image. A more sophisticated upsample strategy based on learning parameters might provide a
better result, but we keep that out of scope as our purpose is not to design a new confidence
learning network.
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We also observed that LAFNet uses a binary cross entropy loss to segment the confidence mask
into the ideal case of confident and non-confident pixels. Still, we would like to study the effect
of using L1-loss based on the error instead. The confidence estimation is based on an error
threshold (common values for disparity threshold errors are 3 and 1 pixels) and is computed
from the difference between the predicted and ground truth disparities as:

diff = |disp — dispy| if |disp — dispy| < err; (5.1)
erry if |disp — dispy| > err,
d.
conf =1— Lf (5.2)
erry

where err; is the error threshold, disp the predicted disparity value, disp,; the ground-truth
disparity value and conf the confidence value used as ground truth for LAFNet. Due to the
clipping of the disparity difference (diff), the confidence values are restricted to 0 < conf < 1.

Since the real data is more challenging and the confidence can help to distinguish bad predicted
areas, we trained only on the Dublin dataset. We trained LAFNet for 250 epochs, with patches
of 494 x 494 pixels and a batch size of 4. The LAFNet models were trained on one NVIDIA
GeForce RTX 2080 Ti GPU and we call this model Conf_Stereo. The original input cost
volumes, which were obtained with AANet, were upsampled by X3 to match the images input
size. For the results coming from UniMVSNet, we upsampled x4 the input cost volumes, and
these models were trained for 350 and 1000 epochs for the MVS_Stereo and MVS_Full cases
respectively, naming them as Conf_MVS_Stereo and Conf_MVS_Full. The latter had more
epochs as the number of input depth maps is lower than the former.

5.4 Results

In this section we present the qualitative and quantitative evaluation of the fused models in
comparison to the ground truth DSM. For the three applied algorithms (Stereo, MVS_Stereo and
MVS_Full) we used both SyntCities and Dublin sets, with a total of 6 DSMs to be evaluated.

541 Metrics

We consider three metrics to evaluate the accuracy of the fused models, which are:

e Median Absolute Deviation (MAD). Since the median based metrics are more robust to
outliers [108] we apply MAD, which can be derived from the median of the difference
(Medgirr). The median of the difference is computed between the ground truth and the
fused DSMs. This is computed as:

Medgig = median(Xgig), Xqig =X — X (5.3)
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where X is the ground truth, X is the compared DSM and Xgig is the difference between
both. Second we compute the MAD as:

MAD i = median(| Xair — Xair |) (5.4)
where ?diff = median(Xg;g)

* Error rate 3 meters (e3m). This metric is similar to the error rates for stereo matching
algorithms, but using meters instead of pixels. From all evaluated pixels, we compute the
percentage of them where the error is larger than 3 meters.

 Error rate 1 meter (elm). This metric works the same way then e3m, but for a stricter
margin of 1 meter.

5.4.2 Results SyntCities

We do analyse first the results for the SyntCities. As the data has a synthetic nature, the
networks faced a simplified case where a controlled environment was used to render the scenes.
Nonetheless, as the ground truth is very accurate, these experiments provided insights about
the matching capabilities of the algorithms.

We evaluate the models Stereo_SC, MVS_Stereo_SC and MVS_Full_SC, which were trained
on SyntCities and applied the median to fuse all height maps into the final DSM. The results
are shown in Table 5.1. A total of 22 scenes were evaluated and the results are averaged from
individual results.

Table 5.1: DSM generation metrics, based on the fusion of stereo and MVS results for the SyntCities
dataset

Metrics
Network Fusion | MAD (]) | e3m (|) | elm (])
Steren SC Mean 1.553 11.385 | 26.224
ereo_ Median | 0.390 9.385 | 22198
Mean 0.320 13.049 | 26.022
MVS_Full SC 1\ redian | 0.299 10.558 | 22.308
Mean 0.395 91.933 | 37.992
MVS Stereo SC | \rodian | 0994 | 12970 | 94.477

From the presented metrics, we can observe the algorithms achieve a similar performance in
the reconstructed DSMs. We show both mean and median in the results, as the mean provide
information about the presence of outliers in the estimated heights and the median provides a
more robust result. The best performing of the three selected algorithms is Stereo_SC, which is
based on AANet. If we analyze e3m, Stereo_SC shows an error rate of 9.385%, which is 1.2% and
2.9% less than MVS_Full SC and MVS_Stereo_SC respectively, containing less outliers. For the
stricter elm rate, Stereo_SC is again best, with differences of 0.2% and 2.3% in comparison to
MVS_Full_SC and MVS_Stereo_SC respectively, showing that MVS_Full_SC has a competitive
performance in this metric. With respect to the MAD metric, the results benefit the MVS
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algorithms. This shows that MVS can achieve a more accurate result for a well matched pixel
but the outliers are larger than in the stereo method for areas difficult to match.

In the Fig. 5.9 there is a visualization for the performance of the evaluated cases. In the upper
row, the generated DSMs are compared along with the ground truth, while the lower row shows
the absolute error map clipped to a threshold of 3 pixels. The RGB image helps to visualize
the texture and geometry of the features to match.

As mentioned for the table analysis, the MVS methods present more outliers in areas difficult
to match like the texture less areas in the rooftop and ground of the shown building. The
Stereo_SC method has less error regions and performs better for the difficult areas. However,
around the church domes, the Stereo_SC method is less accurate, especially around boundaries.
It is also noticeable how the error regions vary smoothly in the stereo case, whereas for the
MVS cases the values vary significantly from one pixel to another. Focusing only on the two
MVS results, MVS_Full_SC is better than MVS_Stereo_SC, with a small difference in MAD
but a better performance in e3m and elm.

(a) DSM - Ground Truth (b) Stereo_SC

-/ 7’
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(e) Reference image (f) elm-Stereo_SC

Figure 5.9: DSMs and error maps for a SyntCities sample. For the reference image (e) with ground
truth (a), we show the DSMs computed by using the models Stereo_SC (b), MVS_Full SC (c) and
MVS_Stereo_SC (d). The respective 1m-error maps (elm) for the same models are shown in (f), (g)
and (h). Scale bars for the DSMs and error maps are given as a reference and use meters as unit. Errors
are clipped to a maximum of Im. Regions in black correspond to undefined pixels by the algorithms.

A 3D visualization of the computed DSMs is shown in Fig. 5.10 for the same area as Fig. 5.9.
There we can observe how the Stereo_SC method produces smooth areas and the MVS cases
suffer from outliers, especially MVS_Stereo_SC, where the values are not even similar to the
height range of the scene.
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(a) GT (b) Stereo_SC (c) MVS_Full_SC (d) MVS_Stereo_SC

Figure 5.10: SyntCities computed DSMs, 3D view. For the same perspective given for the ground truth
(a), we show the results for the models Stereo_SC (b), MVS_Full_SC (c) and MVS_Stereo_SC(d). It
covers the same area as the Fig. 5.9.

5.4.3 Results Dublin

For the experiments applied to the Dublin dataset, we show the obtained results in Table
5.2. We compare now the models Stereo_Du, MVS_Full Du and MVS_Stereo_Du, which were
finetuned with the Dublin dataset. As this dataset reflect the complexity of real-world scenes,
the performance is lower than the one observed for SyntCities.

Again we observe the results to be in a similar range, demonstrating that all alternatives have
reasonable capabilities for the 3D reconstruction. Nonetheless, there are differences to show
which one performs best in real data. We observe here that in this case MVS_Full_Du is the
leading algorithm followed by Stereo_Du and finally MVS_Stereo_Du. The change about Stereo
not leading these results might come from the dataset configuration, as SyntCities was designed
to work in a stereo matching framework, rendered already with epipolar geometry.

Table 5.2: DSM generation metrics, based on the fusion of stereo and MVS results for the Dublin
dataset.

Metrics

Network Fusion | MAD (]) | e3m (|) | elm (])
Stereo D Mean 2.49 47.06 72.68
ereo_u Median 0.56 15.18 36.76
Mean 0.60 13.97 35.51

MVS_Full Du | dian 0.55 13.26 33.25
Mean 1.1 21.20 54.27

MVS _Stereo Du | \ogian | 075 1552 | 42.31

For the e3m rate, MVS_Full_Du leads the table with an advantage of 1.92% and 2.26% over
Stereo_Du and MVS_Stereo_Du respectively. A similar trend is observed for the stricter elm
rate, with improvements of 3.51% and 9.12%. The difference in the latter metric is high between
both MVS solutions, showing MVS_Full_Du is better than MVS_Stereo_Du by a good margin.
Although MVS_Full_Du is also better than Stereo_Du, the difference with respect to stereo is
not large, especially for MAD. Focusing on MAD for the median of each algorithm, Stereo_Du
and MVS_Full_Du have only a change of 0.01%, and 0.2% to MVS_Stereo_Du.

In Fig. 5.11 we show the results for the computed DSMs. The upper row includes the DSMs
and the lower one the error maps, in this case with a threshold of 3m as the reconstruction is



80 5. Generation of urban DSMs using stereo and multi-view deep learning algorithms

less accurate than for the synthetic data. Still, we observe some similarities to the performance
described for SyntCities. The quality around the edges is again better using the MVS algorithms
as we can see for buildings and trees. Interestingly, for the trees themselves Stereo_Du achieves

a better estimation, as for MVS these areas show errors larger than 3m.

(e) Oblique close image (f) e3m-Stereo_Du (g) e3m-MVS_Full Du (h) e3m-MVS_Stereo_Du

Figure 5.11: DSMs and error maps for a Dublin sample. For ground truth (a), we show the DSMs
computed by using the models Stereo_Du (b), MVS_Full_Du (c) and MVS_Stereo_Du (d). The respective
1m-error maps(elm) for the same models are shown in (f), (g) and (h). Scale bars in meters for the
DSMs and error maps are given as a reference. Errors are clipped to a maximum of 3m. Regions in
black correspond to undefined pixels by the algorithms. The corresponding orthorectified RGB is not
shown, as this was not provided in the original dataset for this region. Instead, we show an oblique
image captured close to this region in (e). This image is not aligned with the results.

A 3D visualization of the DSMs is displayed in Fig. 5.12. Rooftops are smoother and include
less outliers in the Stereo_Du result. Besides, the vegetation is better represented as most of
their surface is above ground level comparing with both MVS results. On the other hand,
MVS_Stereo_Du and especially MVS_Full_Du compute a better estimation for pixels on the
ground level, but they reduce significantly the expected surface for vegetation.

(b) Stereo_Du

£ e

(a) GT (c) MVS_Full_Du (d) MVS_Stereo_Du
Figure 5.12: Dublin computed DSMs, 3D view. For the same perspective given for the ground truth (a),
we show the results for the models Stereo_Du (b), MVS_Full_Du (c) and MVS_Stereo_Du(d). It covers
the same area as the Fig. 5.11.
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5.4.4 Results Confidence

In a separate section, we want to discuss the results of using the confidence values for the
fusion method presented in 5.3.2. We evaluated the three DSM generation algorithms, namely
Stereo_Du, MVS_Full Du and MVS_Stereo_Du with the same approach, although LAFNet
was designed only for stereo data and disparity maps. We studied only the case for the Dublin
dataset, as it is more challenging and it has more candidate values for each pixel.

For each of the algorithms we analysed the following cases:

* Optimal: We select the best candidate for each pixel based on the difference with respect
to the ground truth. Methods cannot achieve such accuracy, but we use it as a reference
of the ideal best performance.

* Mean: We compute the mean of all candidate values to set the height of the pixels.

* MeanN: We remove the N% less confident values for each pixel and then we compute the
mean. N € {25, 50}

* Median: We compute the median of all candidate values to set the height of the pixels.

* MedianN: We remove the N% less confident values for each pixel and then compute the
median. N € {25,50}

Since the mean and the median without removal are the same algorithm as in the previous
sections, these values are also found in table 5.2. Despite being the median more robust than
the mean, we include both to give insights about the distribution of the candidate values.

With regard to the Stereo_Du case and the mean fusion, we observe that using the confidence
values reduces significantly the presence of outliers. We see that for Mean25 and Mean50 the
e3m rate drops to 18.33 and 15.33 respectively from the original 47.06. For the stricter elm
rate, the values drop to 43.03 and 38.69 instead of 72.68. This shows that large outliers were
assigned a low confidence value. Considering the median values, the error rates decrease as
well by approximately 2% in both e3m and elm. By removing significant outliers from the
distribution, the median of the remaining values gets closer to the ground truth. Hence, the
confidence based fusion helps to refine the computed DSM for the stereo case.

Nevertheless, the confidence values do not seem to help in a similar manner the results from
MVS_Full_Du and MVS_Stereo_Du. If we focus on the MVS_Full_Du case, we observe that
the higher the percentage of removed pixels, the higher the error rate as well. Although the
difference is very small (~ 1%), we note that there is no trend towards improvement. Addressing
the MVS_Stereo_Du case, we notice for both mean and median a slightly better performance
by using remy = 25 in all metrics. By setting remy = 50 the error rate is not decreasing. As
LAFNet was developed for a distinct input data, many aspects should be taken into account to
redesign the network to handle depth maps as well. Some of these aspects include:

* Disparity maps and images are both in pixels and work in a 2D domain, while depth is
meters and represents a 3D space, which is harder to correlate with the input images
without the homography matrix information. Besides, depth and disparity ranges are
inversely proportional and span different numerical ranges.
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* Cost volumes used in UniMVSNet have a downsampling rate of x4, which means the
number of pixels is 1/16 of the original image size, missing details while upsampling
the cost volume to be used by LAFNet. Nonetheless, the memory demands of the MVS
algorithms limit the size of the cost volume to be computed.

» The learned features for the cost volumes vary from those for stereo matching. Especially
for the MVS_Full_Du case, where many views are taken into account, the features for a
reference image contain information from many additional views, where not all pixels
are always visible. MVS_Stereo_Du seems to suffer less from this effect.

* MVS algorithms already make a fusion from different views based on the learned weights.
Hence, the confidence might not be so discriminative to filter bad candidates in the
estimated map.

The design of a new confidence network is out of our scope, but after studying the effect on the
stereo data, we see potential to use the confidence based fusion as a strategy to create DSMs.

We show visually the results of the stereo case by using different rems, rates. In Fig. 5.13 the
images show the impact of the confidence based fusion. For the mean cases, we see a significant
reduction of the error rate, particularly between no confidence guidance and Mean2), it also
improves the fusion around edges for the Mean50 result. The median is more robust and as
shown in (d) is less influenced by outliers. By using the confidence values, the fusion improves
again mostly around building edges. As observed for the results of the stereo method, these
areas are challenging for AANet, but with this guided fusion we can improve the accuracy of
the computed DSM.

A 3D representation for the same area is shown in Fig. 5.14. Improvements are mostly in
the edges of buildings (smoother in the median cases with confidence), less artifacts on the
ground level (excluding cars). Regions highlighted in Fig. 5.13 can also be compared for the

3D representation to observe changes.

(a) Mean (b) Mean25 (c) Mean50 (d) Median (e) Median25 (f) Median50

Figure 5.13: Dublin DSMs created with confidence based fusion - Stereo case. We show cases for mean
fusion without confidence (a), with remy =25 (b) and with remy = 50 (c). Similar cases are presented for
the median in (d), (e) and (f). Scale bar for the error is given in meters. Yellow rectangles highlight
areas with significant differences.
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Table 5.3: DSM generation metrics, based on the fusion of stereo and MVS results for the Dublin
dataset. In this case, the confidence was used for the fusion process.

Metrics
Network Fusion MAD (]) | e3m (|) | elm ()
Optimal 0.06 4.00 10.47
Mean 2.49 47.06 72.68
Mean25 0.67 18.33 43.03
Stereo_Du Mean50 0.59 15.33 38.69
Median 0.56 15.18 36.76
Median25 0.53 14.57 34.88
Median50 0.53 13.79 34.12
Optimal 0.14 6.04 14.82
Mean 0.60 13.97 35.51
Mean25 0.60 13.98 35.45
MVS_Full_Du Mean50 0.64 14.43 37.01
Median 0.55 13.26 33.25
Median25 0.57 13.40 33.98
Median50 0.56 14.00 37.00
Optimal 0.09 1.89 6.58
Mean 1.10 21.20 54.27
Mean25 0.80 16.12 43.08
MVS_Stereo_Du | Mean50 0.97 18.93 49.96
Median 0.75 15.52 42.31
Median25 0.75 15.48 41.77
Median50 0.77 15.97 43.10

(a) Ground Truth (b) Median (c) Median50

Figure 5.14: Generated DSMs for a Dublin region in a 3D representation - Stereo case. Region is the
same as for Fig. 5.13. We show three DSMs: ground truth, median fusion (no confidence based) and
median fusion remy = 50. Changes are highlighted in the white rectangles.

5.5 Discussion

We presented in this chapter a comparison between stereo and multi-view stereo (MVS) deep
learning algorithms. From the presented results, we show how all solutions (Stereo, MVS_Full
and MVS_Stereo) were able to compute a reliable DSM and preserving most of the geometric
information. Stereo produces smoother results and is less prone to outliers, facing challenges in
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areas adjacent to edges. On the other hand, MVS_Full and MVS_Stereo provide a better height
estimation for those areas where the matching is not so challenging, but it also suffer from
larger outliers where the matching fails, including textureless areas. We consider MVS_Full
to be the most robust solution, also due to the low MAD values. Stereo also shows a good
performance and benefits more from context information to compute a similar estimation for
regions belonging to the same object, presenting errors mostly on edges instead. MVS_Stereo
showed the lowest performance between the three approaches, leading to larger outliers and
less accuracy for the strict elm rate. Between the two basic fusion algorithms, we find median
to be superior to the mean in all cases, so we do not recommend the mean fusion, especially
for DSMs where the distributions are not normally distributed.

Regarding the confidence based fusion strategy we adopted, the results for the Stereo method
showed an improvement, particularly for areas adjacent to the edges where the matching
algorithm is prone to errors, compensating this flaw. However, the same method did not lead
to more accurate DSMs for the MVS_Full and MVS_Stereo algorithms. We described some
factors that could explain this issue, such as the discrepancies between depth and disparity
maps, and the cost volumes sizes.

We additionally provide a processed version of the Dublin dataset to be applied in stereo and
MYVS algorithms, encouraging the community to continue the experiments in this direction or
to easily apply the new architectures in the remote sensing field.

To inspire future work, we observed that the confidence based fusion lead to good results
in the height maps estimated by the stereo algorithm. We would like to explore adaptations
to the network to obtain also a good performance for the MVS cases. Additionally, a more
sophisticated algorithm using the confidence values to fuse the DSM should be explored, not
only the removal of bad pixels and the median of the remaining values. An architecture using
both height and confidence maps as input for fusion could be an appealing research topic.
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This chapter describes an additional contribution from a conference article [154], which is a
complementary research to chapter 5. Here, a previous study focusing on the generation of
DSMs using only 2 views is considered and in this case only for synthetic data. Nonetheless,
conventional and deep learning algorithms are included for this evaluation, providing useful
insights of the differences between both. As the background and related work are similar for
this and the previous chapter, these sections have been reduced to show only the information
that has not been addressed yet.

6.1 Background

The research for 3D reconstruction has been a recurrent topic in the computer vision community.
By having two or more images from the same scene, the task is to reconstruct a 3D representation
of such scene based on the matching of corresponding points between the images. Most of
the algorithms use either the stereo matching or the multi-view stereo (MVS) approach. For
stereo matching, pairs of epipolar rectified images are given as input to compute a disparity
map. Contrarily, MVS algorithms deal with two or more views and directly work in 3D space.
A common strategy for computing the depth is the plane sweep algorithm, where a plane is
swung in the 3D space in front of the camera and depth is computed at each location from the
different views based on the 2D projections of such plane.

Lately, deep learning algorithms are leading in terms of accuracy and completeness. However,
the stereo matching and MVS architectures have been studied separately due to differences in
algorithms and input data. In addition, learning models require large amounts of data and
ground truth, which is hard to acquire and the ground truth is often incomplete. Hence, using
synthetic data is an option to evaluate the performance of the networks, as we can generate
data in different formats and retrieve all the required parameter.

In this chapter, we present an evaluation of stereo and MVS deep learning algorithms applied
to the same scenes. We train both algorithms in common datasets to set a fair comparison,
for which the datasets have been properly adapted. We utilise the SyntCities dataset from our
previous work [90], as this resembles remote sensing aerial imagery and provides all necessary
input data for the selected algorithms and the SceneFlow [12] datasets, which have been widely
used for training. Non-learning algorithms are considered as well for a comparable baseline.
As accuracy is crucial in remote sensing applications, such as the generation of Digital Surface
Models (DSMs), we evaluate the prediction error with a margin of 3 and 1 m.

Our main contributions are as follow:

* We prepared synthetic data to be compatible with stereo and MVS frameworks, setting
similar training conditions.

* We trained different models and evaluated the performance in terms of the accuracy for

the predicted depth.

* We study the effect of the baseline and occlusions in the depth predictions.



6. Evaluation of stereo and MVS algorithms for 3D reconstruction with paired data 87

6.2 Related Work

In this section we describe some of the existing reconstruction algorithms as well as the related
datasets, some of which are also used as benchmarks. Detailed differences between stereo and

MVS frameworks are also discussed.

6.2.1 Stereo networks

In the conventional stereo matching algorithms, a cost volume is created for the disparity
candidates and those disparities with the smallest cost are selected and refined for the final
disparity map. A well known algorithm derived from this principle is Semi-Global Matching
(SGM) [4] thanks to its trade-off between accuracy and computational cost. SGM computes
the cost along different paths and penalizes large disparity changes. Similarly, More Global
Matching (MGM) [159] takes into account more than one direction for the cost computation
and achieves higher performance than SGM, with slightly more computational resources.

For the deep learning part, MC-CNN [11] was the first architecture used in the stereo matching
and conceived only to replace the cost volume generation part, while the refinement was still
conducted with no-learning algorithms such as SGM. Some end-to-end networks were designed
to encompass the whole stereo pipeline and generate directly the disparity map as output like
DispNet [12] and GC-Net. PSMNet [14] additionally introduced a spatial pyramid pooling
module to collect information from different scales. GA-Net [17] incorporated layers which are
a differentiable form of SGM and AANet [19] replaced 3D convolutions, reducing significantly

the computational costs, inference times and with little impact on the accuracy.

For our experiments we selected GA-Net and AANet due to its accuracy and reduced computa-
tional cost respectively. They are also a common framework to compare with new architectures
and both are based on a cost volume network.

6.2.2 Multi-view networks

Multi-view stereo algorithms take two or more views into account while estimating the depth of
the objects in the scene. Normally, the views are sorted according to the camera position and
orientation, so views close together are preferred as input for the algorithm. For a reference
image, n-additional views are selected to estimate the depth map of such image. A known
algorithm for MVS is COLMAP [156], that selects the views according to the geometric and
photogrammetric information, and then computes the depth estimation through multi-view
geometric consistency and further refinement.

In a similar way to stereo matching, deep learning has also achieved an outstanding performance
for MVS. MVSNet [30] proposed to create a depth volume approach based on the plane
sweep algorithm and its principles are the base for the development of newer architectures.
CasMVSNet [32] improved the efficiency in terms of computational costs by using a coarse
to fine scheme. In VisMVSNet [35] an additional uncertainty estimation is computed for the
visibility of each pixel, including in that way the information related to the occlusions. Another
case is UniMVSNet [36], where a coarse to fine scheme similar to CasMVSNet is enhanced by
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a unified representation that deals with the prediction as a regression and a classification task
simultaneously. UniMVSNet did not only show a very good performance, but can handle the
computational resources efficiently.

Another two important cases are R-MVSNet [31] and PatchMatchnet [160], although these
two are not based on a depth-volume strategy as the previous cases. R-MVSNet applies a
regularization through a GRU network sequentially, reducing the memory requirements with a
higher performance than MVSNet. PatchMatchNet follows an idea based on PatchMatch [29]
similar to GIPUMA, leading to both good performance and efficient memory. In our analysis
we decided to use UniMVSNet because of its accuracy and memory efficiency. Besides, it is
based on a cost volume strategy as GANet and AANet.

6.2.3 Datasets

Deep learning strategies are not only known for their performance, but also for being data
demanding. In the autonomous driving field for example, the KITTI 2012 [64] and KITTI [65]
datasets are regularly not enough to train a neural network model because of their size and
the incomplete ground truth. To help overcome this, synthetic data can be generated with
thousands of samples and accurate ground truth. Hence, it is a common strategy to pre-train
the model in a extensive synthetic dataset and later apply a fine-tuning stage to compensate
for the domain gap. A notable example of synthetic data is the SceneFlow dataset, the main
reference to train stereo networks. The dataset comprises more than 35k stereo pairs with
corresponding ground truth and a large variety of shapes and textures.

In parallel, datasets have also been developed for the MVS architectures. The DTU dataset [75]
made use of a robot arm to take pictures of small objects from different directions. Another
remarkable case is the Tanks and Temples (T&T) dataset [76] with images taken from real
indoors and outdoors environments, making the 3D reconstruction a challenging task. Both
DTU and T&T are a common benchmark to evaluate the performance of MVS architectures.
However, the ground truth is not accurate for all the pixels due to the sensor and scene
properties. Same as for stereo matching, the synthetic data also represent a solution to train
or at least pre-train the models. In this context, BlendedMVS [77] is a computer generated
dataset with a large variety of textures, shapes and points of view that is compatible with MVS
frameworks, being a common reference for training as SceneFlow is for stereo frameworks.

Still, available large datasets have a format not compatible for the two studied frameworks.
Stereo datasets would require additional views from the same scene and the respective camera
parameters to be used in a MVS algorithm. Contrariwise, MVS datasets would require epipolar
rectification to be applied to a stereo algorithm, which might affect the quality of the ground
truth due to the rectification process. Given this situation, we refer to the SyntCities dataset, as
the stereo pairs include the camera parameters, enabling both stereo and MVS applications.
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6.3 Methodology

In the present section we describe how the datasets have been processed to be compatible with
the selected neural networks, as well as the series of experiments and considerations aiming to
carry out a fair comparison of the algorithms.

6.3.1 Data preparation

As discussed above, available datasets in their current formats cannot be directly implemented
in both stereo and MVS architectures. Therefore, we have selected only two cases, SceneFlow
and SyntCities to be processed in a compatible format.

6.3.1.1 SceneFlow preparation

The images included in the SceneFlow dataset are already paired and fulfill the epipolar
constraints. To apply them for a MVS algorithm we require to include the camera parameters,
which can be derived from the information provided by the authors. Focal length, as well as
the principal points and the baseline (defined as 1 in Blender units) are provided for all the
images, which helps to create the intrinsic matrices. For the extrinsic matrices, we simplify the
parameters to a basic position and rotation. Since the images are taken originally form a video
sequence, two pairs of images do not show the exact same scene. Thus, the camera translation
between frames is not relevant, as a full reconstruction from the scene is not even possible. For
the rotation part, both left and right views can be assumed to come from a camera that has no
rotations, as the camera planes are co-planar. Therefore, we can use as extrinsic matrices:

1000 100 -1
0100 010 0

(6.1)
0010 001 0
0001 000 1

for the left and right images, respectively. To generate the depth ground truth, we compute the
depth maps from the provided disparities with the formula:
z=fxb/d, (6.2)

where z = depth, f = focal length, b = baseline and d = disparity. MVS approaches make use of
a pre-defined depth range for each image, which is usually given by the sensor and acquisition
conditions. For SceneFlow, we take the depth map values of each image and we set the depth
range to 2th percentile as minimum and u + o as maximum, being u and o the mean and
standard deviation respectively. This helps to focus on objects closer to the camera.

6.3.1.2 SyntCities preparation

SyntCities is a dataset to train stereo matching networks with patches resembling remote
sensing scenes and under controlled simulated conditions. The samples are given for ground
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sample distances (GSD) of 10cm, 30cm and 100cm and provided with training and testing
subsets. Although not originally designed to work in a MVS framework, the camera parameters
are available and samples along the same epipolar line can be used as the additional views. For
the current article, we do not use the additional views simultaneously for the reconstruction,
but we use the views to create diverse stereo pairs and study the effect of the baseline, which

also implies differences in terms of occlusion.

In Figure 6.1 we can observe how the samples are selected for both the stereo and MVS
implementation. Within the SyntCities dataset, many samples are rendered with the same
conditions but different base height ratios (B/H), which helps us to study the effects of the
baseline. By default, SyntCities images are given in pairs, which are represented for simplicity
by the legends Baseline 1, Baseline 2 and Baseline 3. From there, we take the left sample from
the largest baseline as a reference (R) and use the other images as additional views (V) for
stereo pairing. The base height ratio determines the baseline b from the height / as b/h, where
h =2000m for all cases. B/H values are 0.1, 0.2, 0.3, 0.4 and 0.5 (with baselines of 200m, 400m,
600m, 800m and 1000m respectively) for the Paris and Venice models. For a B/H = 0.5, the
simulated camera resembles an acquisition field of view (FOV) around 28°. Images from the
New York samples were not used, as these have a smaller baseline. In Figure 6.2, examples for
Paris are given for a reference image with its respective 5 additional views. As expected, bigger
changes in the images occur at larger baselines, which also implies larger occluded areas.

) Baseline 3 .
) Baseline2
: Baseline 1
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Baseline _om 200m 400m £00m 800m 1000m

Figure 6.1: Selected geometry for SyntCities samples. All images lie on the same epipolar line with
different baselines. For a reference view (R), 5 additional views (V) are available. Baseline distances are
given for each view.

6.3.2 Conducted experiments

We utilized few well-known algorithms to test stereo pairs from SyntCities with different
baselines. Both learn-based and traditional algorithms were considered. For the traditional part
we selected SMG and MGM, as these are a common reference to compare other algorithms.
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(a) Ref. Image (b) B/H=0.1 (c) B/H=0.2 (d) B/H=0.3 (e) B/H=0.4 (f) B/H=0.5

Figure 6.2: Examples of paired images from SyntCities along a common epipolar line. For the reference
image (a), images with 5 different base height ratios (b-f) are given.

The used SGM implementation is the one in the CATENA pipeline [149] and for MGM we
utilized the one provided by the author . We used P1 = 400 and P2 = 800 with 16 directions
and a Census-cost [5] for SGM. In the case of MGM, we used P1 = 8 and P2 = 32. Both SGM
and MGM were given [-10, 192] as disparity range. Disparity maps are computed before and
after applying the left-right consistency (LRC) check. Similar to the neural network results, the
case before LRC check produces values for most of the pixels, so we used these results for the
comparison. The results after LRC are also relevant, as these show the refinement effect.

We trained all the selected networks (GANet, AANet and UniMVSNet) on the SceneFlow
dataset, as this is a common practice for stereo algorithms and it has a large pool of images.
Testing, on the other hand, was done on SyntCities images. By avoiding training and testing on
the same domain, we do not give additional advantage to the learning algorithms. We trained
UniMVSNet with 2 views, so all models are based on the same training dataset with the paired
images. GANet was trained for 27 epochs with a disparity range of [0,192] in 4 x GeForce
RTX 2080 GPU. AANet was trained with the same conditions but 350 epochs, having a similar
training time. UniMVSNet was trained for 16 epochs with 192 depth planes in 1x GeForce
RTX 2080 GPU.

An important point to note here is to differentiate between the disparity and depth ranges.
From the equation 6.2, we can see that disparity and depth are inversely related. The deep
learning MVS frameworks already perform in the 3D space based on the plane sweep algorithm,
where the planes hypotheses are uniformly distributed in the space of the camera. Contrarily,
the stereo networks search for the disparity candidates in a uniform sampling, which is later
non-uniform when the disparities are converted into depth values. This relation also discussed
in detail in the CIDER [161] network.

Because of this non-linear relationship, stereo and MVS algorithms are affected by the distribu-
tion of the depth values in space. In the figure 6.3, such relationship is displayed for an image
of the SceneFlow dataset with f = 450 and b = 1 for the disparity range [0, 192]. As we can
see, the depth values are sparsely sampled for the low disparities and densely sampled for high
disparities in stereo algorithms. We have adapted the depth ranges of the images to cover most
of the content and alleviate the problem given by the depth - disparity range inconsistencies.

https://github.com/gfacciol /mgm
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Figure 6.3: Non-linear relationship between disparity and depth values for an image of the SceneFlow
dataset. The disparity range was set to [0, 192], which is common for many implementations.

6.4 Evaluation

To asses the results in terms of accuracy, completeness and effect of the baseline, we tested the
algorithms:

SGM: SGM result before LRC check.

SGM w/LRC: SGM result after LRC check.

MGM: MGM result before LRC check.

MGM w/LRC: MGM result after LRC check.

* AANet: result of AANet converted to depth.

* GANet: result of GANet converted to depth.
UniMVSNet: UniMVSNet result directly as depth map.

The first metric used to analyze the results is the Median Absolute Deviation (MAD), as this is
a robust metric for skew distributions [108]. This is computed as:

MADgig = median(| Xqir — Xair |), (6.3)

where fdiﬂ = median(Xgg), and Xqig = X — X, being X the ground truth, X the generated
result and Xg;r the difference between both.

Similarly to disparity maps evaluations, we also compared the error rate of the prediction but in
this case oriented to the depth values. We computed the error rate 3 meters (e3m), which is the
percentage of pixels where the prediction error is larger than 3 meters. Similarly, we compute
the error rate 1 meter (elm) following the same principle. The latter is critical for remote
sensing, where accuracy within 1 meter is expected for applications such as DSM generation.
The thresholds are based also on the influence of the disparity - depth relationship. We took an
image with 600m baseline, its respective camera parameters and d = 1, 2. The corresponding
depth values were z = 1999.01,1998.01, having a difference of 1m. In any case, considering
that the objects are located at 2000m from the camera, 1m error is a strict margin, so we also
evaluate for 3m.
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With occluded pixels Non-occluded pixels

Method | B(m) | elm(]) | e3m(]) | MAD(]) | V.pix(T) | elm(]) | e3m(]) | MAD(]) | V.pix(T)
200 24.86 11.58 0.50 99.53 23.26 10.04 0.48 97.08

400 22.18 14.33 0.28 98.63 15.79 9.25 0.25 89.31

SGM 600 25.91 19.38 0.24 97.53 14.71 9.85 0.18 82.29
800 30.77 24.76 0.23 96.76 15.19 10.52 0.16 76.39

1000 35.52 29.62 0.27 95.83 16.14 11.40 0.14 70.82

200 23.67 9.03 0.49 99.76 21.86 7.20 0.48 97.05

400 | 21.90 13.45 0.30 99.71 15.00 7.60 0.26 89.31

MGM 600 28.23 21.53 0.27 99.67 14.97 9.06 0.20 82.31
800 34.54 28.50 0.29 99.67 16.27 10.64 0.17 76.41

1000 40.53 34.57 0.39 99.67 18.47 12.45 0.16 70.85

200 32.43 12.71 0.54 100.00 31.37 11.95 0.52 97.11

400 30.93 14.88 0.43 100.00 25.57 10.28 0.37 89.36

AANet 600 32.41 17.30 0.43 100.00 23.37 9.25 0.33 82.35
800 34.27 20.25 0.45 100.00 22.57 10.08 0.31 76.45

1000 38.18 23.62 0.55 100.00 23.65 10.67 0.31 70.88

200 36.04 12.32 0.68 100.00 34.80 11.22 0.66 97.11

400 24.78 13.02 0.41 100.00 18.25 7.42 0.36 89.36

GANet 600 24.95 15.87 0.36 100.00 13.81 6.37 0.28 82.35
800 27.16 18.91 0.36 100.00 1311 7.06 0.25 76.45

1000 29.90 21.75 0.36 100.00 | 13.07 7.54 0.23 70.88

200 26.94 12.00 0.42 100.00 25.50 10.95 0.40 97.11

400 26.52 14.21 0.35 100.00 20.09 9.14 0.31 89.36

Uni- 600 29.83 17.66 0.37 100.00 19.01 8.69 0.28 82.35
MVSNet | 800 34.52 21.87 0.43 100.00 20.36 9.72 0.29 76.45
1000 39.52 26.80 0.55 100.00 21.87 10.82 0.29 70.88

200 20.81 7.86 0.46 93.35 20.15 7.39 0.46 92.24

400 12.86 6.51 0.23 85.52 10.81 5.37 0.23 82.45

SGM 600 11.69 7.11 0.17 78.05 8.21 4.57 0.16 73.83
w/LRC 800 11.64 7.65 0.14 71.16 6.73 3.59 0.13 66.12
1000 12.31 8.73 0.13 65.00 6.18 3.43 011 59.42

200 19.47 5.32 0.45 92.54 18.95 4.95 0.45 91.63

400 10.82 4.06 0.24 82.81 9.52 3.41 0.23 80.70

MGM 600 9.80 4.76 0.17 74.60 7.71 3.18 017 72.13
w/LRC 800 11.02 6.65 0.15 67.85 7.33 3.40 0.14 64.39
1000 13.08 8.82 0.13 61.63 7.63 3.72 0.12 57.22

Table 6.1: Experiments results for Paris and Venice images. MAD represents the Median Absolute
Deviation, e3m the 3 meters error rate, elm the 1 meter error rate and V.pix the percentage of pixels
with a valid value generated by the algorithm. Underlined bold numbers show the best result (cases
w/LRC excluded) for MAD, e3m and elm. B stands for baseline.

Completeness is also a desired feature for the reconstruction algorithms. Non-learning based
approaches like SGM or MGM routinely refine the predicted disparity map with LRC to retrieve
only the pixels where the disparities are more reliable and thus shortening the presence of
outliers. However, this refinement might reduce significantly the density of the result, creating
a lot of no defined regions in the disparity maps. Neural networks on the other hand estimate
a value for each pixel in the image, but this allows the outliers to remain in the predicted
disparity map. Hence, we report the percentage of pixels that were used for the metrics.

We also study the performance with and without occluded areas. As we have a dense ground
truth for disparities, we also created LRC masks from them to identify the occluded areas.
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Such masks apply to pixels that are only visible in one of the images. While it is expected that
the algorithms cannot estimate the correct depth value in such areas, the prediction can still be
satisfactory due to the neighbouring context. For instance, deep learning approaches gather
contextual information to smoothly interpolate on the occluded areas. Besides, we want to
observe how large is the error in the non-occluded areas, where this is assumed to be low.

We selected 20 images for our study from two virtual cities: 15 from Paris and 5 from Venice.
For all the test images, we selected 30cm as GSD and 5 additional views with different baselines
As the images of Paris and Venice have the same baselines, these are averaged for the metrics.

6.5 Results
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(e) SGM (f) SGM w/LRC (g) MGM (h) MGM w/LRC
Figure 6.4: Error maps for a Paris sample. For the reference image (a), we show the error maps for the
algorithms AANet (b), GANet (c), UniMVSNet (d), SGM (e), SGM w/LRC (f), MGM(g) and MGM

w/LRC (h). Scale bar for the errors given as a reference. Errors are clipped to a maximum of 3m.
Regions in black correspond to undefined pixels by the algorithms.

From the set of experiments and metrics described above, we present all our results in Table
6.1. We split the SGM and MGM results depending on whether we used the LRC refinement or
not, having the former at the end of the table. In all the remaining cases, the generated results
covers most of the pixels. In the figure 6.4 we have visual results for the e3m metric in all tested
algorithms for one of the tested images, which corresponds to a 200m baseline case.

We analyse first the results considering occluded areas. In terms of density, all cases (excepting
those w/LRC refinement) achieve almost a complete depth map having at least 98% coverage.
Looking at MAD, SGM and MGM have the best performance, although it is important to
remember that some pixels have no defined values. For e3m the traditional methods perform
better than the learning ones in the small baselines such as 200m, similar for 400m and worse
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for 600m, 800m and 1000m. Hence, non-learning algorithms still outperform neural networks
but only for small baselines. Nonetheless, non-learning algorithms have the advantage that
no training time is required, just fine-tuning of the parameters to enhance the result. If we
compare elm the trend is similar, where good results for large baselines are given for learning
algorithms. Interestingly, GANet is the approach with the best performance in this metric for
baselines of 600m and above.

Taking into account the results w/LRC refienement (which applies only to SGM and MGM)
we notice much better values in e3m, elm and MAD. However, this also has a costly price as
large sections of the images become undefined. For real applications on the other hand, it is
helpful to have an algorithm that delivers only those areas where the estimation offers a good
quality, so SGM and MGM are a valuable resource.

For the non-occluded results, in all cases the density is below 100% as expected and for SGM
and MGM even lower, as some additional areas are discarded. MAD is better for SGM and
MGM, while for neural networks GANet and AANet perform best and worst respectively.
Considering e3m, MGM is the best for a small 200m baseline but GANet outperforms in all
the other cases. AANet and UniMVSNet behave similarly. For the strict elm, MGM achieves
the best result for the small 200m and 400m baselines and GANet for the rest of the cases. In
this part, we notice that UniMVSNet overcomes AANet for larger baselines.

Having analysed the dense results, we focus on the SGM w/LRC and MGM w/LRC cases.
Accuracy is very high as can be seen from e3m and elm values being mostly below 10%. This
may be misleading as accuracy has increased while density has decreased. In fact, for the large
baselines the depth maps cover less than 60% of the image.

If we look at the LRC check effect more in detail, we can notice that the removed pixels between
the before and after results belong mostly to the occluded areas, thus dismissing efficiently the
unreliable predictions. For instance, if we compare the case for the 1000m baseline, we notice
that elm for SGM goes from 16.14% to 6.18%, while the percentage of valid pixels goes from
70.82% to 59.42%, close to 10% for both values. A similar trend is observed for MGM, where
elm values for the 1000m baseline are reduced from 18.47% to 7.63% and the percentage of
valid pixels from 70.85 to 57.22, having differences of 10.84% and 13.63% respectively. In figure
6.4, we can easily notice how most of the pixels with an error larger than 3m are removed by
the LRC check, although these regions become undefined outputs.

Comparing only SGM and MGM we notice a similar performance, being MGM slightly better
for small baselines and SGM for the large ones. Cases with or without occlusions, as well as with
or without LRC check show a similar behaviour between these two methods. Fine-tuning of the
penalty parameters P; and Py might improve the performance, but these are set empirically.

Between the two learning stereo methods, namely AANet and GANet, we notice how GANet
has the best metrics for all cases except for the 200m baseline, where AANet leads for the elm
metric. In general, both show a competitive reconstruction result. In addition, the conversion
from disparity to depth, which would represent sparsity in the depth space does not have a
strong effect when compared to the UniMVSNet results, being even similar.
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With regard to the main objective of this paper, we also study the performance differences
between the stereo (GANet and AANet) and MVS (UniMVSNet) frameworks. The obtained
results show that:

* In general, all cases have a comparable performance and are suitable for 3D reconstruction,
as e3m considering occlusions are between 12% and 27% depending on the baseline

* Overall, for e3m the performance degrades when the baseline increases if occluded areas
are also counted.

* If we focus only on the non-occluded areas, algorithms tend to perform best for e3m in
intermediate baselines, while for elm all but the smallest case have a similar performance.

* UniMVSNet is the best for all cases where the baseline is 200m, highlighting its focus on
close range views.

* GANet is the best for e3m and elm in all baselines except 200m, which shows the
best accuracy and is particularly good for elm in the non-occluded regions having a
significantly difference with respect to the other algorithms. The matching itself of visible
pixels performs the best in this case.

* The prediction for occluded areas in all learning approaches yields better results than
the non-learning cases, which shows good capabilities to interpolate from the reliable
pixels. Predicted depth maps tend to include smooth regions with sharp boundaries,
specially if the baselines are not that large. Such interpolation effect is superior in the
stereo networks as the e3m scores are lower.

Last but not least, we note the domain gap effect of training and testing in the different datasets.
Due to such gap, the performance of the networks is not as high as it can be when it is fine-tuned
in the same domain. It is of interest that the non-learning algorithms have a similar performance
to the learning ones when the domain gap is present. Thus, for unseen data both options are a
valuable resource.

6.6 Discussion

In the present chapter we conducted a lot of experiments to compare the performance of
learning-based stereo and multi-view approaches on a similar setting. We noticed that stereo
networks lead to a better reconstruction, especially GANet. Despite a slightly lower performance,
MVS networks are also competitive and are even better for small baselines than stereo networks,
but the accuracy drops for the large baselines.

We evaluated first considering also occluded areas in the stereo pairs to observe the robustness
of the methods in this challenging regions, observing that the interpolation capabilities to
predict these values works reasonably well and is slightly better for the stereo networks. In
non-occluded areas we noticed a good performance for most of the cases, which shows that the
matching itself is not an issue. Besides, we included non-learning algorithms in our study, which
yielded good results but reduced the number of valid pixels in the predicted depth maps.
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The reconstruction of 3D urban areas is a challenging task with many aspects to analyse that
help to enhance either the input data or the applied algorithms. These enhancements lead
to significant accuracy improvements, some of which have been discussed in this dissertation.
Creating and modifying datasets, comparing conventional and learning based solutions and
evaluating stereo and MVS approaches are part of the discussed aspects.

7.1 Creation of synthetic data for stereo matching and comparison between
traditional and learnable algorithms

A pipeline was proposed to simulate remote sensing data and generate thousands of samples
required for a robust training. Starting from a 3D city model, it was possible to render optical
images as stereo pairs with their respective depth and disparity maps. As all the geometrical
definitions are included in the 3D software, the ground truth is very accurate and changes to
acquire imagery with a different perspective are easy to implement.

Another benefit of the developed pipeline is the easy manipulation of the stereo array, as
baselines can be increased or reduced to simulate different occlusion levels which is difficult
to achieve in reality for a common area. Besides, illumination conditions can be modified to
provide more diversity and include difficult areas with darker regions. Through our experiments,
we observed that the generated SyntCities dataset is a feasible option to train stereo matching
networks. Moreover, compared to other synthetic datasets, SyntCities helped to reduce the
domain gap as sharper boundaries are estimated after training with this data. Testing in
images even without finetuning produced good quality results in aerial and satellite imagery,
which is useful in cases where the testing dataset is small or no ground truth for fine tuning is
available.

However, we also noticed that the domain gap still played a significant role. Areas representing
natural elements such as trees, crop fields, forests or water bodies are insufficient in the synthetic
data and struggle to reconstruct the 3D shapes of the true objects. In addition to that, cities
around the world offer a large variety of construction and architecture styles. As the SyntCities
dataset was based on the distribution and design of European cities, its performance is lower
when tested on images acquired in other regions.

Remote sensing images are also not always taken directly with a stereo array, but images from
close acquisitions can also be used as input, as long as the overlapping is enough to allow the
features matching. An extended case where the synthetic data is captured in a similar setting
would be useful as well.

Since the release of the dataset, SyntCities has been used by the research community to conduct
some experiments or as a reference to generate new datasets. In [162], the dataset was modified
with an image-to-image translation network that helps to reduce the domain gap. SyntCities
and US3D were used as input (the former as source and the latter as target domain) and the
created samples showed different textures and illumination effects. Models trained on the new
samples showed a better performance when tested on unseen US3D samples. The last two
publications described in this work used SyntCities for the conducted experiments, too.
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SyntCities was applied in this dissertation to study the performance of conventional and
learnable algorithms for the stereo matching task. The conventional methods showed a good
performance without any prior knowledge of the images and generated an accurate estimation,
where the refinement steps effectively removed most of the outliers. This, however, significantly
reduced the density of the data and the algorithms are not designed to compensate this by
applying interpolation while estimating. Learnable algorithms on the other hand produce a
dense result and values for all pixels. Their interpolation capabilities help to fill in the occluded
and challenging areas with good performance but outliers of large occluded regions remain in
the results. Yet, the metrics for all cases highlight better results of deep learning solutions if the
domain gap is not significant and the predicted disparities recover even small and thin objects.
Sophisticated designs such as GA-Net are able to get a higher accuracy (specially the deeper
version of the architecture) than other networks like MC-CNN, AANet or PSMNet, but they do
require more memory for training and longer inference times which hinders its usage for real
time applications.

Depending on the final requirements, the balance between the accuracy and computational
cost has to be selected to define which method should be applied. For images with rich texture,
real time applications in a low memory system or tasks where the accuracy (not completeness)
is the main criteria, conventional algorithms are sufficient. For a more complex case such as
autonomous driving or matching of complicated areas, learnable algorithms are the best choice.
This also applies for cases where the amount and quality of annotated data is sufficient.

7.2 Creation of synthetic data for urban change detection

The creation of the SMARS dataset is a relevant contribution from this thesis, too. It focused
on change detection but can be used further for building and semantic segmentation. The
applied pipeline starts from the design of the 3D city, where it was viable to manipulate the
density of the building distribution and simulate the city growth process with demolitions
and new constructions. The rendering framework helped to generate not only the optical
imagery but accurate semantic labelling. For the 3D part, a photogrammetric algorithm was
used, so that the provided DSM present blurry boundaries and smooth thin structures, as it is
usual in the real DSMs. The experiments included in the respective publication showed that
models training with SMARS performed well on real datasets like the Potsdam benchmark.
Buildings were detected with sharp boundaries and the segmentation networks achieved good
performance, with some difficulties to label vegetation or streets, particularly on cross-domain
testing.

Nonetheless, the domain gap constraints were noticeable in the experiments. The main issue
is the similar height of some categories in the available DSMs, such as buildings and trees, or
streets and canals, which are mislabelled if only the DSMs are used as input. The generated
3D shapes, especially for trees, are simplified for the purpose of rendering. But canopies are
very different and diverse in practice, so models trained with SMARS struggle with this point.
Additionally, using labels that are distinct to other datasets limits the option of pre-training
with SMARS and of finetuning with another dataset. Yet, this is a common problem that affects
other datasets, as there is no uniform standard for labelling.
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After releasing SMARS to be used for the community, some articles have already benefited
from the dataset. The authors of [163] used it to train a multimodal co-learning framework
that showed good performance on real WorldView-2 data for the building change detection
task. A different case was presented in MLCNet [88], where a multi tasking network with an
edge, binary and semantic ground truths is trained to produce a more robust change detection
mask on three datasets including SMARS.

7.3 Study of stereo and MVS approaches for urban reconstruction

The last two publications mentioned in this thesis concern the 3D reconstruction from two
main strategies: stereo matching and multi-view stereo. As these are usually handled separately
in the literature, we studied the capability reconstructions from both.

In a first instance, we analysed the behaviour of conventional and deep learning solutions only
in synthetic data, where the ground truth is very accurate and allows to observe a direct effect
of the used baseline. Interestingly, conventional methods show a competitive result and as
mentioned before, they can effectively discard a large percentage of bad estimations. Still, as
these results are less dense and suffer from limited interpolation capabilities, the learnable
method outperforms them. Considering only the learnable stereo and MVS (with only 2 input
views) approaches, the former ones offer a better performance for large baselines and occluded
regions, while the latter one is more efficient for close acquisitions.

After that, a more comprehensive study was conducted where multiple stereo pairs and MVS
with 6 input views are compared. This study used two data sources: SyntCities for accurate
evaluation with synthetic data and an enhanced version of the Dublin dataset [155] (adapted
for stereo and MVS networks) as a real application case with challenging scenes. This setting
is a study case that reconstructs the digital surface model of Dublin’s downtown.

Based on the performance metrics, the result of using a MVS framework with multiple input
views is the one that generates the most accurate DSM, followed by the multiple stereo pair
cases. Using a direct stereo matching network performs leads to a better result than a MVS
network with only 2 views as input, as the latter is prone to generate large outliers in occluded
or textureless areas. On the other hand, MVS with many views is able to estimate a good height
of ground pixels, define sharp boundaries and reduce the presence of outliers.

The impact of using the confidence to fuse the generated small DSMs into the final Dublin
DSM was also analysed. The stereo case, which has already been investigated in this direction,
offers some alternatives to measure the confidence. We used LAFNet to create a confidence
map for each predicted disparity map and then applied this information to guide the DSM
fusion. The DSM created in this way showed to be more accurate and helped to reduce the bad
estimations around boundaries, a problem affecting rather the stereo networks than the MVS
ones. Hence, the confidence based fusion proved to be a feasible option to refine the DSM.
However, this strategy was not suitable for the MVS methods that have a different data nature
and this still has to be explored.

Considering all the experiments conducted in this thesis, we observed a better performance
for 3D reconstruction when using learnable algorithms. MVS with multiple inputs generates
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the most accurate result, with a slight difference to the performance that stereo networks can
achieve. Nevertheless, the performance of these algorithms highly depends on the amount and
quality of the input data and is subject to domain gaps.

7.4 Future work

Although this thesis has explored some topics related to 3D reconstruction in detail, many
aspects can be further studied to improve the quality of current methods. Some ideas to
continue with the research in this field are listed below.

Regarding synthetic data:

» Extend the amount of cities in the synthetic datasets, with special focus on cities resem-
bling other continents. This means, include larger variations in building height, rooftop
styles, density of buildings and streets, settlements on hilly terrain, green areas, parking
lots and industrial estate.

* Consider a more realistic representation of vegetation with a richer variety of textures
and geometrical shapes for canopies and trunks.

* Model physical effects that are common during the acquisition, such as surface reflectivity,
presence of clouds, scattering by aerosols or camera distortions.

* In the change detection case, adding buildings under construction process where the
change is ambiguous, would be a more realistic framework.

 Using Venice as a reference model also sets a biased learning in SMARS, as many canals
are present instead of streets. Further models that resemble the majority of the cities
have to be included, especially cases with more height profiles.

* So far, SMARS addresses change detection only for the building class. A more general
case where changes for streets, parks. etc., are resembled would be more challenging and
advantageous to develop new algorithms.

Referring to the reconstruction algorithms:

* The comparison between stereo and MVS networks is still affected by the non-linear
relation between disparity and depth. Developing a MVS framework that creates the depth
planes with non-regular sampling would help to make a fairer comparison. Moreover,
the captured objects might be reconstructed with higher accuracy, as more planes would
focus on the depth region where such objects are located.

* The confidence estimation helped to refine the Dublin DSM but it required two networks:
one to compute the disparity map and one for the confidence. A multi-task network that
can estimate a reliable confidence map on top of the disparity map is a more robust
solution, as the information from the whole matching cost volume would be available.
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The confidence guided fusion did not contribute to improve the DSM obtained by the
MVS networks, although the applied confidence network was adapted to handle depth
ranges. Still, it seems that a network has to be specifically designed for this data type, as
not only the depth range is distinct when dealing with MVS networks but the matching
features as well.

Another way to benefit from the confidence values is to design a network that can learn
to properly fuse disparity and confidence maps instead of the sorting process considered
in this work. Learning the way to assign weights to the input data might create a more
robust DSM.

So far, this study targeted urban areas where dense man-made objects are present. Future
cases should also contain complex natural elements such as mountains, water bodies,
cliffs or dense forests should be analysed as well, because specific methods (conventional
and learnable ones) may handle this type of remote sensing data more efficiently.

New strategies are dominated by Neural Radiance Fields (NeRF), a technique that
achieves a good quality 3D reconstruction and that can also create new views from the
reconstructed objects. NeRF networks were not analysed in this work but studies to
compare them with MVS and stereo is a pending research topic.
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APPENDIX

The publications associated with this dissertation involve the release of three datasets. Basic
information on how to download and use these datasets is briefly described here.

A1l SyntCities dataset

The SyntCities dataset [90] is stored in Zenodo and can be downloaded from the site: https:
//zenodo.org/records/6967325. The files are stored according to the following structure:

City
LCity_pC_bhr_O_W_h2km_rXcm_Ye_Za/
— cameras_view/
L—N_cam.txt
— depth_view/
Ltraining/ or test/
L N_depth_view.tif
— disparity_view/
Ltraining/ or test/
LN_disparity_view.tif
— view_RGB/
Ltraining/ or test/
L N_view_RGB.png
— LRC_mask/
Ltraining/ or test/
LN_lrc_mask.png
— segmap_view/
Ltraining/ or test/
LN_segmap_view.png

L pair.txt

Notes:

e City can be the simulated New-York, Paris or Venice model

* pC refers to pivot Central, which is the way the stereo rig has been set within Blender

* bhr refers to baseline-to-height ratio. Parameters are related as baseline = bhr - height,
where bhr= W/100, being W the value in the folder name


https://zenodo.org/records/6967325
https://zenodo.org/records/6967325
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h2kn describes a height of 2km in the simulation models for the camera location

* X defines the ground sample distance for points located at 2km

¢ Y and Z are the simulated sun elevation and azimuth

 camera files are not in the training/test subfolders, but one per sample and per view is

provided

* N is used to represent a sample between 0-24

* view can be left or right

A.11 File formats

» Camera parameters are stored in .txt files with extrinsic and intrinsic matrices, depth

information is also included.

* Depth images are stored as TIF files with Int32 accuracy to reduce memory. Values are

stored in m. To obtain real values, apply: depth = depth_stored / 100

* Disparity images are also stored in TIF files with Int16 accuracy to reduce memory. To

obtain real values, apply: disparity = disparity_stored / 32
» Left_ RGB, right RGB, segmap_left and segmap_right are all PNG files with three channels
* LRC masks are stored as PNG files with one channel and only binary values.

A1.2 Camera parameters

The extrinsic matrix includes both the rotation matrix and the translation vector:

ro
s
rs
0

r3
76
r9
0

as E = [R]t] to convert from the 3D model coordinate system to the camera coordinates. The

values for the translation are given in m and rotations in radians. For a point P = [X,Y, Z]

in the 3D model coordinate system, its rotation and translation w.r.t. to the camera position

coordinates [X,,Y., Z.] is computed as:
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To convert then the 3D point in the camera reference system to the 2D image plane, we use

the intrinsics matrix which includes the focal length (fy, fy) and the principal points (py, py)

described in pixels. The conversion from [X.,Y., Z.] to [x,y] is given as:
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x = X,/Z,, y= y,/Z,
NOTES: The image coordinate system is the same as COLMAP, where X points to the right, Y

to the bottom and Z to the front of the image. This is a right-hand system.

Parameters in the last row of the camera file describe the depth in terms of m as:
[MIN_DEPTH INTERVAL_DEPTH NUMBER_INTERVALS MAX_DEPTH]

And these can be related as:
MAX_DEPTH = MIN_DEPTH + (INTERVAL_DEPTH * NUMBER_INTERVALS)

A.1.3 Categories

Class RGB value | Class RGB value
Background 41, 120, 142 | Roof (flat) | 253, 231, 36
Trees 68, 1, 84 | Facades 32, 144, 40
Street 72, 35,116 | Garden 64, 67, 135
Roof (mansard) | 189, 222, 38 | Piazza 30, 157, 136
Roof (gambrel) | 68, 190, 112 | Underwalls | 53, 183, 120
Roof (gable) 34,167, 132 | Cars 73, 223, 120
Roof (hip) 121, 209, 81

A.1.4 Overlapping

In the cases where the models were large enough, the overlapping was avoided to provide
different scenes. However, there are some cases where this did not happen. The following table
(left) shows the existing overlapping for adjacent samples in terms of pixels. The same value
applies in both vertical and horizontal directions. Samples within each subset follow the spatial
distribution to identify adjacent samples (based on the index) as shown in the table (right).

Training Test
City/GSD | 1m | 30cm | 10cm 419114 (19| 24
New York | 896 | 512 0 3|18|13 |18 | 23
Paris 768 0 0 21711217 | 22
Venice | 512 0 0 16|11 16| 20
0151015 | 20

Note: Samples included in the ’training’ subsets do not overlap with those in the ’test’ subsets.

A1l5 Usage for MVS

In each folder there is a pair.txt file which follows the same structure as that used by MVS
networks (like MVSNet). Due to the overlapping differences, we suggest to use only those
subsets where overlapping exists. The pairs are specified within the same view (left or right)
but can be also complemented with the other stereo views.
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Additionally, keeping the same values for GSD allows to use the samples with a different bhr
to add even more views. These samples actually share a lot of content. It is recommended
to use the same illumination conditions between samples. A case where patches share more
similarities can be created manually by giving other images with the same resolution and
sample number but a different bhr value as input.

A.2 SMARS dataset

The SMARS dataset [89] is stored in the ISPRS server and can be downloaded from the
site: https://www2.isprs.org/commissions/comml/wg8/benchmark_smars/. The files are
stored according to the following structure:

City

— GSD/

Lchange_map/

— Subset/
tCity_GSD_Subset_change_map_?classes.tif

City_GSD_Subset_change_map_3classes.tif
— City_GSD_change_map_2classes_building_gt.tif
L- City_GSD_change_map_3classes_gt.tif

— Event/

Loriginal/

— City_GSD_Event.tif

| City_GSD_Event_building_gt.tif
— City_GSD_Event_dsm.tif

L City_GSD_Event_gt.tif

L splitting

— 5_class_gt/

LCity_GSD_Event_Subset_gt.tif

— building_mask_gt/

LCity_GSD_Event_Subset_building_gt.tif

— train/

tCity_GSD_Event_train.tif
City_GSD_Event_train_dsm.tif

— val/
tCity_GSD_Event_val.tif
City_GSD_Event_val_dsm.tif

— test/
tCity_GSD_Event_test.tif

City_GSD_Event_test_dsm.tif

— Coor

L City-splitting-range.xlsx


https://www2.isprs.org/commissions/comm1/wg8/benchmark_smars/
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Notes for naming:

e City can be the SParis or SVenice model

* GSD means ground sample distance, which is either 30cm or 50cm

o If the map is either in a ‘‘Subset’’ folder or has a ‘‘Subset’’ term in its name, this means
it has been cropped for train, test or validation (val)

* Event can be the pre- and post- event case

* Maps with two categories are designed for building detection (building, no-building)

 Three classes maps are applied for change detection (No change, demolition, construction)

* “6 class gt’’ are the ground truth with the 5 available semantic classes

o Files without ‘‘dsm”’, ¢‘gt’’ or ‘“map’’ in the naming are the optical images

A.21 File formats

* All files are provided as GeoTIFF rasters

* Class maps are files with discrete values

* DSM files are stored with float precision

* Change maps represent the transition between pre- and post- events and therefore are
located in a different folder

* coor files include the coordinates corresponding to the corners of the available Subsets

* City-splitting-range.xlsx is the same as coor but in .x1sx format

A.3 Dublin dataset

The processed Dublin dataset is stored in Zenodo and can be downloaded from the site:
https://zenodo.org/records/12772927.

The Dublin dataset processed for Stereo and MVS is organized as follows:

* DSM: DSM raster used as GT, it has a 10cm GSD. It is obtained from merging all point
clouds into one raster

* Images: RGB images organized according to the acquisition tracks with camera parame-
ters for each image as txt. The parameters are the extrinsic and intrinsic matrices and a
depth range for MVS estimation. The images were downsampled from the original by a
x9 ratio (getting a GSD of 30.6cm) and the camera parameters were adjusted accordingly.

* Stereo: Dataset for stereo pairs. Within each subfolder, left and right images are available.
Images are paired as X_Y.png and Y_X.png The disparity maps are stored with a factor
of 256 and can be converted with: gdal_translate -scale 0 65535 O 256. Disparity
maps are obtained based on the camera position, left image perspective and the ground
truth DSM.

* MVS: Dataset for MVS. Depth maps are included in a scaled version and can be converted
with: gdal_translate -scale O 65535 220 476. Within each folder, a pair.txt file
is included, which can be used for MVS to select the closest views. These files are in the


https://zenodo.org/records/12772927
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format used by COLMAP. The depth maps are obtained based on the camera position,
the image perspective and the ground truth DSM.
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