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Abstract—In application areas such as spacecraft guidance
and robotics, optimal control typically requires feasibility with
respect to motion constraints, in addition to optimality. In-
evitably, the question arises of how to manage uncertainty in
related task parameters. Via the Sensitivity Theorem, solutions
of a given parametric optimal control problem can be approxi-
mated through a fast online sensitivity-based update of a given
nominal solution for perturbed task parameter values. Using
the presented estimation of the neighborhood of validity of this
approximation, a region of task parameter space — called the
task workspace — can be developed, within which it is possible
to provide admissible solutions that are provably robust to task
uncertainty. The method is demonstrated in simulation for an
on-orbit robotic approach task, which precedes the capture of
a target satellite. The non-holonomic kinematically redundant
free-floating space robot executes the task under parametric
uncertainty of the final six-dimensional pose of the end-effector.
This simulation shows that the task workspace is a useful
real-world tool for space mission design. The computational
efficiency of the solution update within the approximated
neighborhood is also demonstrated.

I. INTRODUCTION

Trajectory planning and control of robotic maneuvers is
a rich and varied field. The robots come in many forms,
and various tactics are used in planning their motion -
including convex [1] and non-convex [2] [3] optimization-
based methods. In many situations, it is beneficial to track
a pre-planned trajectory, see [3]-[5] and sources within.
Invariably, the questions arise of how to robustify the solution
and execution of a motion plan to uncertainties in the system
and/or environment model upon which the plan is based [2]
[3], and how large the deviation from the motion plan may
provably be for the recovery to remain feasible [3] [6].

At the motion planning stage, these challenges are often
tackled using online replanning, supported by machine learn-
ing based warm starting [7] [8] or other optimal control based
methods [5] [9]. The chosen approach frequently involves the
sensitivity analysis (SA) of the solution space of a parametric
nonlinear program (NLP(p)), where p is the task parameter.
These problems are typically highly constrained, nonlinear in
nature, and non-convexifiable [1]. Existing online replanning
methods do not provide guarantees of feasibility relative to
the task uncertainty.

It was shown in [9] that, given a solution to the optimiza-
tion problem at some nominal value of a task parameter
P, it is possible to approximate a neighboring solution to
the problem within a “small” neighborhood of p, based
on the sensitivity of the nominal solution to changes in
p. This approximation can be used to re-plan a feasible

This is a preprint. This work which has been submitted to the IEEE
for possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible. ! Caroline Specht is a PhD
candidate. 2The authors are affiliated with the Institute of Robotics and
Mechatronics, German Aerospace Center (DLR), Miinchener Str. 20, 82234
Wessling, Germany, email: firstname.lastname@dlr.de

reference trajectory — to be tracked online by a tracking
controller — and drastically reduces the computation expense
of resolving an updated constrained motion planning problem
under perturbed conditions [6].

This robust control methodology, commonly referred to
in literature as open-loop, real-time optimal control via
sensitivity analysis [5], has been applied to several sample
problems. Motion planning for large and complex systems
are addressed in [10]-[12]. Consideration has been given
to robotics tasks in [6], [13], and [14], and to simplified
spacecraft maneuvers in [11].

Subsequent works [15] and [16] emphasized that the
alternative to the sensitivity-based update is to re-evaluate the
NLP at a given perturbed p. In this literature, an attempt is
made to circumvent excessive error in the updated trajectory
using iterative correction methods, but do not account for the
neighborhood of p in which the update is valid.

In [6], a method was proposed to estimate the size of the
neighborhood of the task parameter p within which it is valid
to use the sensitivity-based approximation. The proposed
estimate can be applied on a task parameter space such that
soft guarantees can be placed on the existence of feasible
and optimal solutions throughout it. Furthermore, unlike in
nonlinear regression-based methods [7] [8], the method of [6]
provides solutions with theoretically provable robustness.

The work presented here addresses the open questions
of the scalability of the method presented in [6] to a task
parameter space of greater dimension and to a greater number
of robot DOF, emphasizing its real-world applicability. The
motion planning for a realistic on-orbit robotic capture, based
on a realistic model of a seven-joint free-floating robot
as a demonstrator [2], is analyzed. This task involves the
resolution of a highly constrained NLP that depends on the
quality of in-situ target motion parameter estimation [3]. The
sensitivity-based method from [9] is used to approximate
optimal trajectories of the robot manipulator, operating in
three-dimensional space, to perturbed final end-effector pose
task parameters. For purpose of methodological analysis, the
target satellite is assumed in the presented simulation to
have angular velocity wr = 0 [rad/s], but the presented
theory applies generally for any wr. The method derived
in [6] is used to determine the neighborhood within which
the nominal solution of the given parametric NLP can be
used to approximate an updated trajectory with provable
feasibility as a result of changes in the task parameter. A
dynamic and efficient exploration of the task parameter space
is proposed - improving on the equidistant grid and static
neighborhood size approximation of [6]. A methodological
comparison of the sensitivity-based update to cold and warm
start optimization-based re-planning is then presented.

Finally, this work introduces the concept of a task pa-
rameter workspace, or task workspace. The task workspace



specifies the admissible task parameters which are utilizable
in the mission scenario and indicates where the robustness
guarantees provided by the method of [6] apply. The analysis
of the task workspace is demonstrated to be useful in space
mission operations design as well as in mission verification
and validation (V&V) procedures [17], expanding on the
discussions of requirement satisfaction and robustness of
optimal control-based planning methods in [18] [19] to
address non-convex methods.

The remainder of this paper is structured as follows: In
Sec. II, the theoretical basis for the proposed analysis is
reviewed. In Sec. III, the demonstration scenario is described
and the optimal control problem is formulated for a general
target angular velocity wr. In Sec. IV, the methodology is
demonstrated in simulation with wt = 0 and the results are
discussed. Conclusions are drawn in Sec. V.

Notation: Variable scalars are italicized (z or X); fixed
scalars are unformatted (x); vectors are in bold italics (a
or X); matrices are unformatted capital letters (X); and
doublestruck letters (X) are sets. Left superscripts indicate a
reference frame and the absence of one indicates the inertial
frame I. Right subscripts specify the body or quantity to
which the variable refers. A hat indicates a nominal value.
A rotation from reference frame a to b is indicated by P2 A(-),
A(z,) is the rotation of = deg about axis y, and the Cardan
angles parameterizing a given rotation matrix are indicated

by ¢321(')-
II. MOTION AND MISSION PLANNING VIA SA

Consider an NLP(p), which is: parametric in p € R®?; on
a given time interval to < ¢ < t¢, discretized into n uniform
steps, or via points, such that 0t = (tf — to)/(n — 1); and is
of the general form

Jnin  J(z,p) (1)

s.t. Gi(z,p) <0,i=0,...,n¢g
H;(z,p)=0,7=0,...,ngq,
where z is the solution in terms of a judiciously selected
parameterization of the robot state; J is the discretized
objective function; G; := [gir(2,p),k = 0 : n]" are
the discretized inequality constraints; H are the discretized
equality constraints; and ng and np are respectively the
number of inequality and equality constraints. The NLP(p)
possesses a set of admissible solutions S(p). Each admissible
solution z has a set of active inequality constraints A(z, p).
In the course of planning the robotic motion of a space
mission, it may be desired to know the optimal solution
for any value across a sampled range of p. It is very
computationally intensive to determine an optimal solution
for the problem in (1) for any given value of p, and is a
concern as the scale of the optimization problem grows [2].
The results permitting the approximation of the optimal so-
lution of the NLP under a perturbed parameter are discussed
in the sequel. First, a key property is defined for reference:
Definition 1: Strongly Regular Optimal Solution [5]
The solution z of the NLP(p) is a strongly regular local
solution if:
(a) the solution z is admissible,
(b) the gradients V,G;(z,p), i € A(z,p), and V, H;(z,p),

7 =1,...,np, are linearly independent,

(c) the Karush—Kuhn—Tucker (KKT) conditions are satis-
fied at (z, i, A), where p and X are the Lagrange multipliers
for G and H, respectively,

(d) the strict complementary condition

i —Gi(z,p) >0,Vi=1,...,n 2
holds, and a (z.p) G )

() d'L” (z,u,\,p)d > 0 for all d € Tc(z,p) with
d # 0,,, where L(z, 1, A, p) = J(2,p) + p' G(z,p) +
A'H (z,p) is the Lagrange function of the NLP(p) and
Te(z,p) = {d € R™
V.G (z,p) d<0, i € A(z,p), pi = 0;
V:G{(z,p) d=0, i € A(z,p), pi > 0;
V.H(z,p) d=0, j=1,.. nx}. (3)
Together, conditions (c) and (e) of Definition 1 are sufficient
for the optimality of solution z for fixed task parameter p.

A. The Sensitivity Theorem

Provided that the solution 2 to (1) at nominal task pa-
rameter P is a strongly regular locally optimal solution, the
Sensitivity Theorem allows the sensitivity of 2 with respect
to P to be easily determined [5] [9] [6]:

Theorem 1: Sensitivity Theorem [5]

Let J,G1,...,Gng, Hi, ..., Hy, be twice continuously dif-
ferentiable and let p be a nominal task parameter. Let Z be
a strongly regular local solution of NLP(p) with Lagrange
multipliers £+ and A. Then:

(@ (2(p), (D), A(p)) is continuously differentiable with
respect to p with

i () L, (GYT )] L,
@) =] AcL T 0 AG, |,
9 (p) H, 0 0 H,,
. . 4)
where A = diag(fi1, ..., fing ), I' = diag(Gy, ..., Gng), and

all functions and their derivative are evaluated at (2, 1, A, ),
and,
(b) there exist neighborhoods B.(p) and Bs(Z2, i, A), such
that the NLP(p) has a unique, strongly regular local mini-
mum

(ﬁ(i))’ ﬂ(i))a )‘(f))) € Bé('%a ﬂa )‘)
for each p € B.(p) and A(2,p) = A(2(p), D).

The result of the Sensitivity Theorem is that for a per-
turbed task parameter p # P, in some neighborhood B, (p)
of the nominal parameter p, there exists a perturbed solution
z(p) which is also a strongly regular local solution. The the-
orem indicates that the neighborhoods B, (p) and Bs(2, i, A)
exist, that a differentiable vector function [z(p), u(p), A(p)]
which satisfies Def. 1 can be determined in a neighborhood
B.(p) of p, and that there exist uniquely defined functions

(Z(')7 l"’()’ A(')) : Be(i)) — 35(27 lj'ﬂ >‘)
Important facts which come as consequence of this are that
these mappings are required to be continuously differentiable
(therefore Lipschitz continuous), and that the application of
the theorem requires that the index set of the active inequality
constraints is fixed within B.(p).

The above leads to a method which allows the approx-
imation of an optimal solution when the task parameter p



is perturbed: Part (a) of Theorem 1 yields the sensitivity
j—; from the linear equation (4); Part (b) indicates the
continuous differentiability of z(p) while p remains in some
neighborhood of p, where [5]

) i= 2(0) + (D)o - D) ®)
provides an approximation of the optimal solution of the
perturbed task parameter.

Equation (5) forms the basis for open-loop real-time
optimal control via sensitivity analysis [5] [9], which allows
for an online approximation of the NLP(p) based on a
predetermined optimal solution to a nominal NLP(p). The
calculation of z requires only a matrix-vector product and
two vector summations. The time taken to compute (5) is
therefore negligible in comparison to that of the computation
of NLP(p), and the update rule is real-time-capable.

B. Uncertain Task Parameter Neighborhood Approximation

The approximation based on (5) suffers from the conse-
quence that it is only valid locally - for task parameters p in
some neighborhood B, (p) of p. The Sensitivity Theorem as-
sures that this neighborhood exists, but neglects to provide a
clear description of its size. A conservative approximation of
the size of this neighborhood has been developed [6], which
is based on the requirements that the resultant approximated
solutions remain Lipschitz continuous and are within a radius
of the nominal solution wherein the set of active constraints
does not change.

A consequence of Def. 1 and Thm. 1, is that the solution
z(p) and the mappings p — z(p), z — G(z(p),p), and
p — G(z(p),p) are continuously differentiable, and there-
fore locally Lipschitz continuous, within the neighborhood
B.(p) of p. A similar statement can be made about z(p) —
H (z(p), p). However, equality constraints are always active
for solutions belonging to S(z(p), p), while the set of active
inequality constraints A(z(p), p) can vary across S(z(p), p).
As only the inequality constraints affect a change in the local
active constraint set A(z(p), p), the equality constraints need
not be considered in the remainder.

Exploiting Lipschitz continuity, and the dependence of
G(z(p),p) on z(p) and its possible dependence on p, the
relationship of the constraint space to the solution and task
parameter spaces can be written as

1G(z(p), p) — G(2(p), D)l
< Lclz(p) = 2@)ly + Lo lp = Plly» (©)
where |-, denotes any g-norm, with ¢ € NU{oo}; Lg is the
Lipschitz constant (LC) corresponding to the mapping z —
G(z,p); and L,, corresponds to the mapping p — G(z,p).
A general g-norm is indicated as the Lipschitz properties
hold for any norm, so long as the norm is used consistently.

The first right-hand term of (6) describes the relationship
of the constraint space to the solution space. Through proper-
ties of Lipschitz continuity, this relationship can be extended
to indicate that of the solution space to task parameter space

1G(2(p), p) - G(2(P), D)l

< LoL;|lp—pllg+ Ly llp — 2l » @)
with L, being the LC corresponding to the mapping p —

z(p). For the ith constraint, this implies

Gi(2(p),p) = Gi(2(P), P)| < (LaL, + L) [p =Pl ®)
Imposing on (8) the invariance requirements of A(2(p), )

within B, (p) and requiring that 2(p) and z(p) be strongly

regular in the neighborhood of the p, and that they are

therefore feasible, with G;(z(p), p)<0 and G;(2(p), p)<0

for i & A(2(p), D)), it follows

Gil=(p).p) < Gi(2(p). D) + (LaLs + Ly) |p —

Lo R

<0,i & A(2(p). D). ©)
It is then finally possible to describe a conservative upper
bound of B.(p) by

1
—-p|ll < ———+  min —-Gi(z2(p),p))}. (10
lp—pll, < Tal, ¥ Ly igaiin A){ i(2(p),p))}. (10)

Note: in the absence of at least one inactive inequality
constraint dependent on p, L, = 0.

Typically, these LCs must be approximated - a commonly
non-trivial and costly task [20]. Endeavors have been made to
compute these constants more efficiently [21] [22] - however
the time and computational effort increase drastically with
problem size and complexity. Therefore, a conservative but
effective (see Sec. IV-C) compromise [6] [12] is made to
approximate the LCs to the maxima of the discretized func-
tions governing the respective Jacobians G (z, p), g—;, and
G, (2z,p) on each discretized active constraint set A(z, p).

)

C. Analysis of the Workspace of a Robotic Manipulator in
a given Mission

In the early stages of mission planning, the particular prop-
erties of the workspace of the robot with respect to a given
optimal control problem - e.g. where and how constraint
boundaries will be approached or a best approach corridor -
may not be clear. Understanding these properties allows the
uncertainty to be handled appropriately, and can also be an
invaluable tool in the planning stages of a given mission. In
such an analysis, only the task parameters p which admit a
solution to S(z,p) need be considered. This is termed the
task workspace and is of dimension n;,. By expanding a grid
on the task workspace, such that the neighborhoods of the
neighboring grid points overlap, the guarantee of existence
of a strongly regular solution is provided throughout it.

Algorithm 1, in similar fashion to [6], considers an
equidistant grid of points which can be used as an initial
coarse parameterization of the task parameter space. The
grid points at which the resolution of the NLP results in
a strongly regular solution yields a discretized form of the
task workspace. At each grid point of the task workspace,
the sensitivity of the solution to p is determined, and the
neighborhood of validity at that grid point is estimated. The
result is referred to here as an initial neighborhood map,
which gives a first indication of the robustness distribution
on the task workspace.

If, in a given active constraint set, each grid point is not
contained within the neighborhoods of its neighboring grid
points, the grid on this set can be refined to include new grid
points between the already-evaluated grid points to produce
a refined neighborhood map. In contrast to the equidistant
grid method adopted in [6], the method outlined in Alg. 2



Algorithm 1 Task space grid analysis

Algorithm 2 Grid refinement within a given A(z, p)

Require: Discretized grid of task parameters p;,7 = 1 :
total number of grid points
for all ¢
Resolve NLP(p,)
if NLP(p,) yields strongly regular solution, then
Conduct Sensitivity Analysis for solution 2;
Sort set of strongly regular solutions 2 into sets A;(Z, )
for all j
Approximate Lg, L,[, L]
for all ¢
Estimate neighborhood size of p, using (10)
Qutput: Neighborhood map

leverages the varying neighborhood size across the active
constraint set, which results from the proximity of a grid
point to its nearest constraint boundary (see (10)). Only if
P, adjacent to a given p, does not lie in the neighborhood
of p;, a new grid point p; located between the grid points
p, and P, is selected from within the neighborhood of p,.
This method ensures that the neighborhood of p; overlaps
with that of the existing p; by definition, while extending
the neighborhood map coverage in the direction of p,,. The
refinement can occur iteratively - adding new points until the
desired neighborhood overlap is achieved.

IIT. MISSION DESCRIPTION

In this section, the 7 DOF free-floating robotic task,
motion planning NLP, and SA are formulated.

A. The 7 Degree of Freedom Free-floating Robot Task

The robotic task to be considered in this paper is taken
from the DEOS [23] On-Orbit Servicing scenario, see Fig. 1.
Two satellites are involved - a free-floating chaser, consisting
of a 7 DOF robot arm mounted to an unactuated base body,
and a non-cooperative tumbling target positioned to be within
reach of the robot gripper.

Specifically, the approach of the robotic arm from an
initial approach joint configuration (IC) to a grasping joint
configuration (GC) is considered, similar to the scenario in
[2]. In this GC, the end-effector (EE) of the robot arm will
be in a relative pose which is suitable for grasping the target
satellite at a pre-defined point, termed the grasping point
(GP), which is located at a position Trep that is fixed in
the body-frame of the target satellite.

The free-floating robot begins at rest. In Sections III-A-C,
the target satellite has a general angular velocity wr. The
ultimate position of the GP at the end of the maneuver,
and subsequently the necessary final pose of the EE, is
determined based on the estimated rotational motion of the
target. The energy-optimal motion of the robot required to
move from its IC to the GC in a fixed time is determined
through the solution of a constrained NLP in joint space [2].

It is possible for the goal GP to be positioned at any
point on the sphere with radius ’Trgp’ and centered on the
center of mass of the target object. A given estimated initial
target satellite pose and angular velocity are inputs to the
optimization problem. The position of the GP in the inertial
frame evolves from these initial parameters following the

Require: p,,i = 1 : total number of grid points; initial
neighborhood map
for all ¢
for all k grid points adjacent to p;
if p;~p; ¢ Be(p;) then
Select a new grid point p; € B (p;)
Resolve NLP(p,)
if NLP(p,) yields strongly regular solution then
Conduct Sensitivity Analysis for solution Z;
Estimate neighborhood size of p; using (10)
Output: Refined neighborhood map

”L"'/%%/end-effector
K grasping point

A\

Fig. 1. The target satellite and a chaser spacecraft with attached robot
manipulator [23]. The translucent capsules indicate the collision geometry
of the chaser M and target M.

rotational dynamics of the target and assuming that there is
no translational relative motion. The trajectory resulting from
the resolution of the NLP with this input will be nominally
optimal to this GP. However, if there is an uncertainty in
the estimated pose and angular velocity of the target, and
therefore in the position of the GP, the resolved trajectory
will need to be departed from [4]. The new trajectory will
be obtained using the methods of Sec. II, for the NLP and
p described in the following.

B. Equations of Motion

The configuration of the space robot can be described by
joint positions q with base pose o = [r] ¢ ] . The pose of
the EE is defined by e, = [r). ¢L.] . Their time derivatives
are q, ©o = [vg wg]', and xee = [v), wl]T. Note that
[rdes bl = [TA(dT) rap, ds21(A(180y) TA(ér))]T,
where A(180y) ensures that the EE frame z-axis points
toward the target (see Fig. 2).

As the space robot is initially set at rest and free-floating
dynamics are assumed, the CoM of the system does not move
and the total momentum is constantly zero. The conservation
of linear P and angular L momentum relates the velocity of
the chaser base body to the joint velocities through

[P LT]" =Hoio +Hom q (11)
where Hy is the locked inertia of the multi-body system and
Hop, is the dynamic-coupling inertia matrix.

In the case of the robot and scenario described above, the
system is kinematically redundant and non-holonomic. The
time derivatives of the pose of the EE and the configuration
of the robot are related through the generalized Jacobian J*,
seen in the inertial frame as

Tee =J7 q. (12)
The free-floating system’s generalized Jacobian J* is there-
fore a [6 x 7] matrix, and depends not only on the kinematics



of the robot, but also on the configuration-dependent inertia
of the robot.

The resulting generalized equations of motion for the free-
floating robot are given by

H*(q) §+C"(q,q) ¢ =, 13)

where H*(q) € R7™*7 is the generalized inertia matrix,
C*(g,q) € R™7 contains the nonlinear and Coriolis terms,
and 7 € R™*! includes the manipulator joint torques [24].

C. The Parametric Optimization Problem

The path to be followed in the joint space of the robot is
parameterized by a set of order-4 uniform b-splines - one for
each joint - with fixed boundary conditions, except for the
final position, and with one free b-spline vertex to determine
the intermediate curve. The pair of these free parameters
for all of the robot joints comprises the set of optimization
solution parameters z € R,

Let ¢;(t) € R,i = 1 : 7, denote the position of one of
the robot joints on a given discretized time interval, as in
(1). The pose xe and torques T are obtained at each via
point from the joint positions and derivatives sampled from
the b-splines using (11), (12), and (13).

The NLP is then formulated as

min J = 3(r - q)? (19
s.t. Cposition(q(2),t) <0,
Cvelocity( (z) ) <0,
q(z),t) <0

Ctorque(q(z)v ] Z),
(

Chinalpose (4(2), ©0(q(2)), Pr, dr(tr)) = Tee(tr),
for t=0,...,n

The constraints cpesition> Cvelocitys ad Ciorque are box con-
straints which limit the motion of the robot joints. Collision
of the robot with itself and collision of the robot with
the target are mitigated through ceonision. The presence of
collisions is evaluated using ODE [25], following which
Ceollision 1S computed as a penetration depth of the geometries
M; and M, [3]. The geometry M, consists of capsules fit
over the chaser base and each link of the robot, while the
target geometry M is comprised of capsules which encap-
sulate the central cylinder and each of the two solar panels
which protrude perpendicularly from the central body (see
Fig. 1). The geometry is chosen to avoid the sharp corners
of more tightly fitting rectangular polytopes. This does result
in slightly oversized geometry. To prevent spurious collision
detections, the collision constraint is relaxed to ignore the
protruding endcaps of the capsule polytopes. The equality
constraint Cgnalpose indicates the final pose of the robot
EE @ (t¢). The required pose ®qc(tf) is defined by the 3
angles describing the orientation of the target ¢, the fixed
Trap, and the position of the CoM of the target rp. The
NLP has been solved using the slsgp algorithm provided
by NLopt [26], utilizing SpaceDyn [27] for dynamics and
kinematics computations.

D. Sensitivity of Solutions to End-Effector Pose

Assuming a fixed relative distance between the CoM of
the spacecraft (see above), the minimal set of parameters

defining the task in question is py, = ¢1(tr) € R3. For the
purposes of analysis, the remainder of this section addresses
the parametric sensitivity for the condition wt = 0 [rad/s].

To determine the sensitivities d using (4), it is necessary
to evaluate the RHS of (4). The derlvatlves with respect to
z, i.e. L7, G/, and H),, are provided by the result of the
optimization. The derivative L’z’p requires J , G;, and H;, -
which also provide the remaining RHS terms:

First, given the cost function J of the NLP defined in (14),

,_0J _Q 0q Oxee (15)
Per B 8¢T B 8q 6wee 8¢T
N 7
0 0q O0%ee
:Z —[m2¢3] +2Z Z 7'1 7i4iG;]
k=0 | i=1 dq i=1 = ’L+1 83’3 ol
as % =0; g—g =0, given (13); and (4, j, and k as above)
oT 0
or _ 9 iy .. W/ ey
9 aq[ (@) a+C*(q,q) 4
0 9.9 OTi .5
—|r7q;7] = 27;
8q[ 1 q’L] aq qz
0

..7571' .. 5Tj..
%[Tiquin] = %quiqj + Tiatiij-

For small variances, 0o, = J*dq. To determine a— the
inverse of J* is needed. As the robot is redundant and J*
is not square, the pseudoinverse J# is employed to derive
G = J#xeo + (I — J#J)qg,, where g, is a [7 x 1] vector. In
should be minimized, so that the objective is
also minimized. Solutions are therefore chosen such that the
second term tends to zero, and 0q/0Te. ~ J7#.

The sensitivity of the solution with respect to p, - depends
on the associated sensitivity with respect to the final pose of
the EE, as shown in (15). Consideration of the sensitivity
of the cost J, and by extension the sensitivity of (14), to
changes in @ (tf) requires less computational effort and
provides a more intuitive insight to a prospective operator in
the selection of a trustworthy motion plan (see Sec. IV-B).
In the remainder of this work, the uncertainty is therefore
parameterized in terms of p, ... = Teo(tr) € RS, and the
template of (15) is suitably adjusted.

The above gartlal derivatives are glso used in determining

aq 9o and H’ = ‘gI; 9o » Which are compar-
atlv 1lﬂy trivial to derive and further discussion is neglected
here. Note: the derivatives of c.olision Must be determined

acmn jon — OCcollision _ 99
numerically, but it is noted that “=glsion = ZCeef 0 D

/

IV. SCENARIO SIMULATION AND ANALYSIS

In this section, the scenario described in Sec. III will be an-
alyzed using the methods described in Sec. II. Additionally,
the efficacy of the sensitivity-based update as a foundation
for online re-planning is explored.

A. Simulation Framework

The solution to the NLP in (14) describes the motion of the
space robot. The base is initially located at [0 0 0] m, with the
x-axis oriented towards the CoM of the target, see Fig. 1. The
target CoM is located at [0.928 0.1 0.057] m. In the IC, the
joints are set to [0,—0.1745,0,1.0472,0,—1.2217,0] rad,
and the EE of the robot is located at [0.74 0.1 1.04] m
with orientation [0, /2, 0] rad.



The set of all possible GP positions is described as a
function of the target orientation by a sphere centered at
the CoM of the target with a radius of 0.52 m. For practical
reasons, the investigated task parameter sub-space is limited
to those corresponding to orientations of the target where the
GP is located on the hemisphere closest to the initial position
of the chaser base. For purpose of methodological discussion,
wt = 0, without loss of generality to the demonstration. The
set of task parameters [P for the subsequent analysis is then
defined by discretizing the subset of possible grasping posi-
tions and determining the corresponding possible EE poses
at each of these discretized points, where the orientation
of the EE is required to be perpendicular to the sphere at
the GP (see Fig. 2), fixing ¢ee,1 and ¢ec 2. Multiple target
orientations produce GP at the same location, for different
values of ¢ee 3, but the geometry of the target will alter the
motion requirements to satisfy motion constraints, see Fig. 3.

For this analysis, 25266 target satellite orientations were
selected at regular intervals on the range of orientations
for which corresponding p,e = Tee Was determined to
lie in the region of interest. Then, for each given p,,..
on this task parameter space, a Monte Carlo search was
conducted to determine the near-globally optimal solution
to the NLP, which was then selected as the nominal solution
for this p, ... Finally, the sensitivity of the solutions with
respect to P, Was obtained using (5) and Sec. III-D.
The neighborhood of each nominal pose was estimated as
described in Sec. II.

B. Task-Workspace Analysis

This section analyzes the resulting task workspace with
the goal to suggest which of its regions may provide suitable
options for the GP in a mission context.

First, the activity of the constraints of the problem is
analyzed. The set of active inequality constraints A(2, P, o)
was determined for the solution at each p,... The grid
points were then sorted into active constraint sets, where
the solutions of each neighboring grid point have the same
set of active constraints. Of the 2062 tallied sets A(2,Psc)
on the task workspace, approximately 10% of the sets each
contain at least 200 of the sample p,, . on the regular grid.

The neighborhoods B.(p,,.s.) across the task workspace
were then estimated. Using the constraint values and gradi-
ents obtained from the resolution of the NLP(p,,..) at each
grid point and the associated sensitivities of the solutions, the
LCs Lg and L, were approximated by the largest respective
gradient present in each active constraint set. Note: in the
presented scenario, L;, = 0. For the estimate (10), the 2-
norm was selected [28].

A neighborhood map for two of the largest active con-
straint sets on the task workspace is developed here. No
constraints are active in set A;. A sample trajectory is
provided in Fig. 2(a). In set A, the collision constraint
governing the capsules for robot link 7 and the target body
are active over the last four via points. This does not mean
that the bodies are in collision, but rather that the optimizer
is actively steering the solution to avoid the condition. The
motion resulting in this active constraint is depicted in Fig. 3.
The neighborhood map, which provides a first indication
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(a) (b)
Fig. 2. The approach trajectory (a) in pink of the robot end-effector (EE)
to enable grasp at GP (b) for a sample grid point in active constraint set Aj.
The orientation of the EE is indicated at via points by the corresponding
EE frame depicted in (b).
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Fig. 3. The approach trajectories for two sample grid points from active
constraint set A with the same end-effector final position, but differing
target satellite orientations. The blue capsules correspond to the geometry
depicted in Fig.1, oriented to the target orientation query.
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Fig. 4. Task workspace and neighborhood map: Estimated neighborhoods
for grid points on the discretized task workspace of the two largest active
constraint sets in (a) position and (b) orientation. These maps provide an
indication of the robustness distribution on the task workspace.
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Fig. 5. (a) Initial neighborhood map: Estimated neighborhood sizes for
set Ag on the initial grid using Alg. 1. (b) Refined neighborhood map:
Estimated neighborhood sizes for set A on the grid discretizing the task
workspace, which has been refined using Alg. 2. This refinement extends

the guarantees of robustness on the task workspace, as discussed in Sec.II-
C

of the robustness distribution on the task workspace, is
presented in Fig. 4.

The task parameter grid is now refined using Alg. 2, with
the goal of maximizing the task workspace. Fig. 5 indicates,
as an example, the achieved refined neighborhood map for
set A,. For ease of reading, only the projection on the trans-
lational dimensions is depicted. This grid refinement, which
introduced sample points between the existing grid points as
described in Alg. 2, required approximately factor 5 fewer
new points than would be required under a uniform grid

Y [m]/O/



refinement to achieve the same neighborhood coverage. Note
that it is expected for all of the new grid points to belong to
Ao, as they are selected from within the neighborhoods of
the existing grid points.

The variance in neighborhood size across the task
workspace reflects the proximity of the grid point to a
constraint boundary. The refinement of Alg. 2 also highlights
the boundaries of the connected sub-sets within the same set
of active constraints, see Fig. 5(b).

The subsets of the task workspace which could be targeted
in a mission for the EE pose are P; = {p € P|0.4 < ree x <
0.5,=0.1 < Teey < 0.4, 0.2 < ree, < 0.4, |Pee1| <
0.47, |peea] < 7} and Py = {p € Plree, > 0.2},
where there are a large concentration of no-active-constraint
solutions and the neighborhoods are largest, see Fig. 6.

C. Statistical Analysis of Re-planning Methods

While planning the motion for the approach task under
nominal conditions is a good starting point, re-planning
as efficiently as possible when the nominal conditions are
departed from is necessary. A statistical comparison of the
presented method to cold and warm-started local searches is
conducted in this section.

A statistical analysis of 1000 random query points selected
from within the estimated neighborhoods of grid points
belonging to A, for optimization time and cost is presented
in Table I. The results in the column ‘Cold Start’ refer to the
case where a locally optimal solution was obtained for each
random online query from a global search; “Warm Start’ uses
the nominal solution of the grid point of the neighborhood
within which the random online query lies as the initial guess
for obtaining a locally optimal solution; and ‘Sens.-based
Update’ uses the sensitivity-based approximation outlined in
Sec.II-A.

Note that, while the trajectories obtained using the ap-
proximation (5) are sub-optimal compared to the other two
methods, the solutions for all of the online queries selected
within the neighborhood of the nominal grid point were
feasible, in accordance with Thm. 1. These trajectories were
also obtained in a fraction of the time required by the
optimization-based methods. For comparison, the cold start
had a 39.7% convergence rate.

A similar analysis was conducted at larger distances from
the nominal grid point. For each of 10 selected nominal
grid points, 100 random sample queries were selected from
spherical shells of 0.2 neighborhood radius thickness and an
inner radius ranging from one neighborhood radius to 4 radii.
The sensitivities of the grid point were used to approximate
solutions at the sample query using (5). The feasibility
of the approximated solution was evaluated, see Table II.
Thm. 1 provides guarantees of feasibility only within the
neighborhood of the task parameter, but the neighborhood
estimation (10) is conservative. It is therefore possible for
feasible solutions to lie near, but outside of, the range of one
neighborhood radius from the grid point. This is reflected in
the overall 11.4% query feasibility up to the boundary of the
shell with inner radius of 1.6 neighborhood radii (Table II).
When combined with the 100% feasibility of the approxi-
mations analyzed from within the neighborhood, this would
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Fig. 6. For the purpose of mission analysis, two potential regions P1 (blue)
and P2 (red) have been derived from the task workspace (see Figs. 4 and
5), from which the final end-effector (a) position and (b) orientation could
be selected.

]

TABLE I
STATISTICAL ANALYSIS OF RE-PLANNING METHODS
Cold Start | Warm Start | Sens.-based Update
Computation | mean 14.053 0.6583 1.42e — 6
Time [s] std 2.0765 0.4892 2.36e — 6
Cost mean | 0.0008508 | 0.0024451 0.0085806
std | 0.001472 | 0.004359 0.002572
TABLE II

STATISTICAL ANALYSIS OF TASK PARAMETER PERTURBATIONS
BEYOND NEIGHBORHOOD SIZE

Radial distance [radii] 1-12(12—-14[(14—-16] >1.6
Warm Cost 0.0011 0.0023 0.0057 | 0.0075
Start | Comp. Time [s] 1.41 1.62 1.82 2.63
Sens.- | Feasibility [%] 25.8 8.2 0.32 0
based | Cost deviation | 0.0036 0.0059 0.077 -
Update | Comp. Time [s] | 1.4e —6 | 1.4e —6 | 1.4e — 6 -

suggest that the neighborhoods have been conservatively, but
well estimated.

For comparison, the updated solution was used to provide
an initial guess to warm start re-plan the maneuver. The cost
and time statistics of the warm start derived motion plan and
the RMS deviation of the cost of the approximated solution
from the warm start solution are included in Table II, which
suggests that, even if the approximated solution is not itself
feasible, it does provide a good initial guess for determining
feasible solutions.

D. Discussion

Open questions from the work presented in [6] are those
of the scalability of the SA task parameter space and the
scalability of the robotic system to which the presented
methodology is applied. SA has been conducted above for the
6 dimensional robot end-effector pose - a sensitivity parame-
ter space which is 3 times larger than the 2 dimensional joint
angle task parameter space explored in [6]. Additionally,
the robot for which the motion is planned in this paper
has 5 more joints and a free-floating base compared to the
2 link fixed-base planar arm discussed in that paper. The
neighborhood estimation methodology has been shown to be
scalable in both task parameter space and robot complexity.

When conducting the sensitivity-based updated at p, it is
necessary to select the nominal p upon which to base the
update such that p resides within the estimated neighbor-
hood of P, as the resultant trajectory is only guaranteed
to be feasible within this neighborhood. The outcome of
the failure to do so was shown in Table II. It should be
noted that, provided this requirement is upheld, under no



circumstances does the neighborhood approximation for p
cross a constraint boundary. If it is determined that p belongs
to a different active constraint set, and therefore lies outside
of the neighborhood of p, a more appropriate p should be
selected.

The interval on which the functions and mappings dis-
cussed in Sec. II are continuously differentiable is, neces-
sarily, bounded. Conversely, boundaries are imposed on the
task workspace when any requirement of Thm. 1 breaks
down. For example, the assumption of Lipschitz continuity
for robotic arms is strong, as it does not hold in the presence
of Jacobian singularities. As such, it has been assumed in
the preceding that Jacobian singularities can be avoided. A
method for computing a Jacobian singularity map for a 6
DOF free-floating robot is presented in [29]. The singularity
map is expressed in the robot joint space, with guarantees
of completeness, and can be used to treat the singularity
avoidance problem as a trivial collision avoidance problem.
The involvement of such a singularity map in the analysis
of a task parameter space therefore becomes trivial and the
overall assumption of Lipschitz continuity remains valid.

V. CONCLUSIONS

This paper introduced the concept of a task workspace,
which indicates where in the task parameter space a feasible
solution can be found efficiently and provably robustly. A
method to estimate the neighborhood of validity of the
Sensitivity Theorem was presented and used to form neigh-
borhood maps on a discrete grid of the task parameter space.
In light of conservative Lipschitz constant approximations,
these neighborhood maps indicate where in task parameter
space soft guarantees of the existence of an optimal solution
to the task can be provided - forming the task workspace. A
dynamic exploration of the task workspace was presented
which substantially reduced the requisite number of grid
points compared to [6]. A methodological comparison of
the sensitivity-based update to state-of-the-art optimization-
based re-planning was presented.

The development of a task workspace and its analysis
are important tools for real-world mission planning. The
usefulness of these tools in analyzing a robotic task, under-
standing constraint boundaries of the robot, and to suggest
reasonable relative approach directions and grasping points
was demonstrated through the approach maneuver of a 7
DOF free-floating robotic arm to a target satellite. A 3
dimensional task parameter space was considered, but was
expressed in 6 dimensions for a more intuitive mission
analysis.

Future work will apply the presented method to the capture
of a tumbling target and explore the use of the neighborhood
estimation as a bounded uncertainty definition for use in
robust control.
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