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Abstract

Understanding train driver performance can provide valuable insights for the

development of automatic train operation systems. This study investigates

the visual perception of train drivers under different conditions using driving

simulator experiments. The 43 participating train drivers were instructed to

drive the train and react to stationary objects on the tracks of varying size

and contrast to the background. Two train protection systems (the German

intermittent train protection system PZB and the European Train Control

System with in-cab signalling ETCS) and on-sight driving were used. The re-

sults showed significant effects of size, contrast, and speed on reaction times.

The effects of the train protection systems and on-sight driving were incon-

clusive. The approach presented in this study, along with an understanding

of the relative impact of various performance shaping factors can serve as a

basis for defining the requirements for ATO systems.
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1. Introduction1

Digitalization and automation are driving fundamental changes in trans-2

portation systems. The introduction of Automated Train Operation (ATO)3

will transform railway operations across various levels of implementation.4

These levels of implementation, classified as Grades of Automation (GoA)5

in urban transit, have also gained traction in mainline railways [1]. GoA16

describes train driving without automation. From GoA2 onwards, different7

levels of automation are present. In GoA2, the safety responsibility remains8

with the train drivers as they remain in the cab and supervise the system9

driving the train automatically. GoA3/4 is defined as the train driving auto-10

matically with no train driver aboard. Thus, the safety responsibility shifts11

from train drivers to the system itself. Pilot projects for ”ATO over ETCS”12

in GoA2 are underway for mainlines. GoA3/4 specifications are currently13

under development at the European level [2].14

According to the common safety method of European regulations (CSM),15

regardless of the chosen level of automation, any new or significantly altered16

system must demonstrate that associated risks are justifiable [3]. One idea17

is to use human performance on tasks taken over by automation, such as18

obstacle detection, as a benchmark [4]. From this perspective, the onboard19

detection systems must at least reliably match the safety performance of20

human drivers [5]. This approach relies on two key considerations: first, the21
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fundamental assumption that existing systems incorporating human drivers22

currently meet established safety criteria—a safety level which must then be23

achieved or surpassed by the new automated system— and second, the need24

to evaluate functional requirements, such as reaction times, as specification25

parameters.26

Implementing a human-as-reference approach requires a comprehensive27

understanding of human performance capabilities and limitations in safety-28

critical tasks. Accurately describing train driver performance for safety-29

critical functions is challenging; it cannot be reliably derived solely from30

accident statistics [6], which are inherently limited and often fail to capture31

the frequency of crucial non-accident events like near misses. To address this32

challenge and obtain representative data on human performance, controlled33

experimental investigations utilizing driving simulators offer a promising and34

practical approach for obtaining large, structured datasets under controlled35

conditions. Drawing on this motivation, the present study set out to in-36

vestigate train driver performance under different driving conditions using37

simulator experiment studies.38

Critical to successful task performance in train driving is the effective39

utilization of train drivers’ senses. Train drivers utilize their senses to gather40

information, perceive the external environment, and monitor the correct func-41

tioning of the train. When analysing the tasks of train drivers, it becomes42

evident that one of their primary responsibilities is to perceive and process43

information from various visual stimuli [7]. Accordingly, the requirements44

for perceptual performance in obtaining a train driver’s license in Germany45

(TfV) primarily emphasise visual abilities [8]. Thus, the current study fo-46
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cuses on the visual perception of train drivers.47

Extensive research has examined the visual perception of car drivers (see,48

e.g., [9], [10]). In contrast, fewer studies have explored the visual behaviour49

of train drivers. One study analyzed gaze patterns of train drivers between50

signals, tracks ahead, in-cab, and environment [11]. Another study focused51

on the visual performance of urban train drivers in Australia [12]. Even fewer52

studies addressed the visual performance of train drivers under different con-53

ditions. These include investigating the effect of train speed and background54

image complexity on driving performance [13] and studying the effect of the55

visual field of view on signal detection [14].56

Given the critical role of visual perception in ensuring safe operations57

and its implications for the development of ATO systems, there is a need for58

more targeted research to enhance understanding of train driver performance59

across diverse operational modes, including different train driving models60

such as ERTMS/ETCS and on-sight driving. Therefore, this study aimed61

to investigate train drivers’ visual perception performance across different62

scenarios through simulator experiments. Visual perception performance was63

operationalized as the reaction time to visual stimuli, aiming to identify64

critical factors influencing the perception performance of train drivers.65

2. Background66

Reaction time to visual stimuli is a common measure of visual perception67

performance, influenced by various factors [15]. It is widely acknowledged68

that the physical properties of stimuli significantly affect reaction time. Stim-69

ulus intensity, such as the differences in brightness or colour between the70
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object and its background, influences reaction time [15]. Research shows71

that reaction time decreases with larger stimulus size [16] as well as with72

increasing luminance of the stimulus [17]. However, the relationship between73

luminance and reaction time is complex, depending on the range or level of74

intensities [18] and other factors, such as task difficulty [16].75

Environmental characteristics also influence visual perception. Poor light-76

ing and visibility impair performance significantly [19]. Low environmen-77

tal complexity can cause tunnel vision, restricting the useful field of view78

(UFOV) to objects directly in the line of sight [20, 21]. Viewer state also79

influences visual performance: severe fatigue and alcohol can induce tunnel80

vision, while high cognitive workload reduces the UFOV due to limited pro-81

cessing capacities. Conversely, low workload conditions diminish the UFOV82

due to decreased attention levels[20, 22, 23, 21, 24].83

In driving tasks, the driver’s speed influences visual perception. People in84

motion look about three seconds ahead, shifting the fixation point forward,85

resulting in a deterioration of peripheral perception at close range [20]. In86

a simulated car driving task, higher driving speeds led to faster reactions to87

road markings [25] but narrowed the UFOV [26]. For train drivers, higher88

speeds were associated with more vertical and fewer horizontal gaze fixations,89

whereas lower speeds involved more horizontal gaze movements with a lateral90

sweeping motion [27], influencing the detection of visual stimuli. A study us-91

ing hazard perception test to simulate foreign objects appearing on railway92

tracks found that drivers’ response times decreased at higher speeds due to93

increased vigilance and visual tunnelling [28]. A study using a VR train driv-94

ing simulator found that at higher speeds, drivers’ reaction times to a visual95
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task (i.e., detecting non-target visual stimuli) decreased, but the accuracy of96

their detections was lower. The study indicates that higher vehicle speeds97

significantly elevate psychological pressure, as reflected in an increased heart98

rate and changes in heart rate variability [29]. In a simulator study, ap-99

proach speed significantly influenced drivers’ ability to detect and recognize100

signs/signals [30]. A negative non-linear relationship was identified between101

time to arrival after detection/recognition and train speed. An online study102

using reaction time tasks to cubes on the track found faster reaction times for103

faster speeds and higher object contrast and size [31]. Additionally, the allo-104

cation of attention between the driver’s cab and the outside area influences105

the detection probability of trackside hazards. The division of visual atten-106

tion in ETCS with cab signalling significantly reduces the time for observing107

the track compared to the operation with lineside signalling [32, 33, 34, 35].108

3. Materials and Method109

3.1. Study design110

This study aimed to determine how fast train drivers perceive visual in-111

formation while driving under various conditions. Driver perceptual perfor-112

mance was defined as the reaction time to perceived visual stimuli. Partici-113

pants were tasked with driving a train and responding to stationary stimuli114

placed on or near the tracks at irregular intervals by pressing the train horn.115

The study employed a partially crossed within-subject design, where partici-116

pants responded to stimuli varying in contrast (high vs. low) and size (large117

vs. small) while operating under three different train protection systems118

(ETCS, PZB, and on-sight driving) at various speed levels.119
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Two simulators were used to enhance the validity of the results. Con-120

sistent findings across both simulators could indicate a higher reliability of121

the findings. The driving simulators of the Department of Rail Operations122

and Infrastructure at the Technical University of Berlin (TUB) and the In-123

stitute of Transportation Systems at the German Aerospace Center (DLR)124

were used. From here on, these two phases of the experimental study will be125

referred to as DLR-study and TUB-study. Different routes were simulated126

using different software (VIRES and Zusi) in driving simulators. Track ge-127

ometry and driving surroundings provide essential visual cues that inform a128

driver’s visual behaviour [36]. For example, the optic flow of the visual scene129

significantly influences driver gaze behaviour [13], and external elements in130

driving surroundings can lead to visual distraction [37]. Additionally, dif-131

ferences in the physical setup of simulators, such as the location and the132

responsiveness of controls, could influence the motor reaction time. There-133

fore, another research question was formulated to examine to what extent134

using two distinct train driving simulators leads to statistically significant135

variances in train drivers’ reaction times.136

Stimuli were cubes of different sizes and colours, appearing at a distance137

of 800 m ahead of the train. Participants could view and respond to the138

stimuli from the moment they appeared until the train passed their position.139

Stimuli appeared either in the middle of the track (DLR-study) or next to140

the track right or left side counterbalanced) within a maximum distance of 3141

m from the track centre (TUB-study). This difference was due to the tech-142

nical capabilities of the simulator software, however, in both studies, stimuli143

appeared in the central field of view of drivers from the point of observation.144
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Participants were instructed to react to every recognized obstacle as quickly145

as possible without needing to evaluate their hazard potential. This approach146

enabled us to measure sensory perception time without considering further147

cognitive processing time. A within-subject design was employed, where148

each participant was exposed to all experiment conditions. This approach149

allowed for a comparison of their performance across different scenarios while150

controlling for individual differences.151

3.2. Simulation environment152

The TUB study was conducted in a driving simulator at TU Berlin; see153

Figure 1a. The driver’s cab of the simulator meets the requirements of the154

European Driver’s Desk. All relevant technical and operational information155

was displayed on several touch screens. The driving simulator was operated156

with the Zusi 3 Professional software [38], which provides various route mod-157

ules, realistic operating rules, and accurate driving physics. The simulated158

view was presented on a modern 32-inch UHD monitor (3,840 x 2,160 reso-159

lution, 60 Hz refresh rate, 2500:1 contrast ratio, 1500R curvature). Since the160

simulator was not located within a dedicated train cab mock-up, curtains161

were installed on the windows to minimize reflections and glare.162

The DLR study was conducted in the RailSET® (Railway Simulation163

Environment for Train drivers and operators, Figure 1b), a train driver’s cab164

simulator at the DLR Institute of Transportation Systems (for the simulator165

specifications, see [39]). The simulator was operated using an original control166

panel of a traction unit. The simulation environment is based on the VIRES167

software (VIRES Simulationstechnologie GmbH, Bad Aibling, Germany). A168

video projector shows the simulated view to the front, while the view from169
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(a) TU Berlin train driving simulator.

(b) DLR train driving simulator.

Figure 1: Driving simulators used in the study.

the side windows is displayed on screens. An audio system in the cabin170

provides ambient sounds modelled on the interior of a real train driver’s cab.171

3.3. Independent variables172

The simulator experiments were designed to reflect the impact of selected173

influencing factors and to capture the range of human performance utilizing174

the sense of sight. Several influencing factors were chosen as independent175

variables, varying within the scope of the simulator study. This variation176
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allowed for exploring the relationships between these factors and reaction177

time, providing insights into how different conditions affect train drivers’178

perceptual performance.179

3.3.1. Operational parameters180

The operational parameters in the study included the train protection181

system (PZB, ETCS in-cab signalling and on-sight driving) and train speed182

(40 km/h, 100 km/h and 160 km/h) at the time of object appearance. Both183

ETCS and PZB routes included a speed level of 100 km/h, while 40 km/h184

was implemented for PZB and on-sight driving (OS). Only the ETCS route185

allowed driving at 160 km/h. On-sight driving refers to scenarios where186

train drivers cannot rely on a clear track indicated by signals; instead, they187

must visually identify hazards and, stop if necessary. Drivers choose their188

speed based on visibility and track conditions, not exceeding 40 km/h, while189

focusing primarily on observing the tracks. However, when a train safety190

system is used, additional attention must be directed towards the displays191

in the driver’s cab, thus dividing their attention. Although the routes used192

in the TUB and DLR studies differed, efforts were made to place stimuli at193

comparable locations, such as on straight, level track sections.194

3.3.2. Physical properties of the stimuli195

The study included two key variables related to the visual perception of196

stimuli: the size of the stimuli and their contrast to the background. In both197

simulators, the contrast was manipulated by varying the colour of cubes,198

with conditions of high and low contrast. For the high-contrast condition, a199

bright orange (HEX Code #f18e2a), similar to the colour of the safety vest200
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was used. The colour contrast between this high-contrast colour and an av-201

erage background colour were then calculated to determine the low-contrast202

condition. An orange-brown hue (HEX code #9d6830) was selected, offer-203

ing approximately half the colour contrast of the high-contrast colour. The204

colour contrast was calculated using the delta-E formula in RGB colour space205

proposed by [40]. The colour difference (∆E) is defined as the Euclidean dis-206

tance between points in the RGB colour space. The background colour was207

calculated based on the immediate surrounding colour of each stimulus. For208

example, the average colour difference between the stimulus and its imme-209

diate background in the TUB simulator was 222 for the high contrast and210

112 for the low contrast condition, which corresponds to an average contrast211

ratio of 50.4%.212

The stimuli varied in size based on cube edge lengths in both simulators:213

relative sizes of 90 cm (small) and 180 cm (large) within each simulator,214

approximating the heights of an adult and a child. To account for differences215

in display size and viewing distance between the simulators, the visual angle216

for each stimulus at the time of the stimulus appearance was calculated217

for comparability (Table 1). The angular size, measured in arcminutes (′),218

represents the visual angle subtended by an object at the eye, considering219

both the physical size of the object on the monitor and the viewing distance.220

To clarify these differences without relying solely on physical measurements,221

we coded the stimulus sizes as S1, S2, S3, and S4, with S1 representing the222

smallest visual angle and S4 the largest. This ensured consistent comparison223

of the size variable across simulator setups.224
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Table 1: Relative stimulus sizes and corresponding visual angle in arcminute

Stimuli Selected Size (cm) Apparent Size (arcminute)

TUB Small (S1) 90 3.78

TUB Large (S3) 180 7.56

DLR Small (S2) 90 6.72

DLR Large (S4) 180 13.43

In total, the combination of the independent variables resulted in 35 ex-225

perimental conditions, each represented by one stimulus. Differences in the226

number of stimuli between scenarios resulted from constraints imposed by227

the simulator setup, such as the limited availability of suitable route sec-228

tions for stimulus placement. Table 2 shows an overview of the experimental229

conditions.230
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Table 2: Experimental conditions. Angular sizes are given in arcminutes (′). Rows for

high-contrast conditions are in bold font.

40 km/h 100 km/h 160 km/h

Angular size Contrast Angular size Contrast Angular size Contrast

OS

13.43 High

7.56 High

3.78 High

13.43 Low

7.56 Low

3.78 Low

PZB

13.43 High 13.43 High

7.56 High 7.56 High

6.72 High 6.72 High

3.78 High 3.78 High

13.43 Low 13.43 Low

7.56 Low 7.56 Low

6.72 Low 6.72 Low

3.78 Low 3.78 Low

ETCS

13.43 High 13.43 High

7.56 High 7.56 High

3.78 High 3.78 High

13.43 Low 13.43 Low

7.56 Low

6.72 Low 6.72 Low

3.78 Low 3.78 Low

3.3.3. Other independent variables231

In addition to the independent variables previously presented, further232

data were collected that may have a possible influence on the participants’233
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visual perception performance, namely gender, age, work experience, and234

prior experience with PZB and ETCS. However, these variables were not235

manipulated in the experiment. Participants’ alertness was assessed before236

the first trial and after each experimental block using the Karolinska Sleepi-237

ness Scale [41].238

3.4. Dependent Variables239

In this study, the dependent variable was the reaction time to a stimu-240

lus. Reaction time was measured as the duration from the appearance of the241

stimulus at a visible distance of approximately 800 meters until the recogni-242

tion of the stimulus. Participants were instructed to activate the train horn243

in response to seeing the stimuli. This action aligns with a behaviour com-244

monly practised in reality after recognizing an object on the track. Thus,245

the recognition of the stimulus was measured by the activation of the train246

horn.247

3.5. Procedure248

First, participants completed a demographic characteristics questionnaire249

and the Karolinska Sleepiness Scale (KSS) [41] on a tablet. Subsequently,250

participants completed three experimental trials (ETCS track, PZB track,251

and on-sight driving). The PZB or ETCS tracks were always completed first,252

with the sequence balanced among participants. Due to technical limitations253

of the simulator software, the on-sight driving scenario was consistently the254

final experimental block. Participants were instructed to press (pull or push255

in the TUB study) the train horn upon seeing an orange or brown cube.256

Participants were informed that there was no risk of collision or need to257
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alter the train’s operation due to the displayed objects. Each participant258

required approximately 3 hours to complete the three experimental blocks259

and questionnaires.260

3.6. Participants261

Qualified train drivers were recruited to participate in the simulator study.262

In the TUB study, 17 male and 1 female active train drivers participated,263

with an average age of 33.4 years (age range of 22-57 years). The participants264

had on average 7.3 years of professional experience (age range of 1-28 years).265

None of the participants had prior experience with the TUB simulator setup.266

Participants rated their familiarity with different types of train safety systems267

on a scale from one (not familiar at all) to ten (very familiar). Familiarity268

with the PZB system was rated at an average of 8.3, while familiarity with269

the ETCS system averaged 2.2, with only 2 participants with a rating of 5270

or above.271

In the DLR study, a total of 25 professional train drivers participated,272

with an average of 9.92 years of professional experience (range: 1-39 years).273

All participants were male, with an average age of 33.7 years (range: 22-57274

years). None of the participants had previously taken part in a study with275

DLR’s simulator setup RailSET. Participants rated their familiarity with276

the train safety system PZB at an average of 9.8, while familiarity with the277

ETCS train safety system was rated at an average of 2.0. All except two278

participants rated their familiarity with ETCS as less than five.279
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3.7. Data Analysis280

Timestamps for each stimulus occurrence and the activation of the train281

horn were extracted from the simulator logs. Reaction times were calculated282

as the difference between these timestamps. Deviations between specified283

and actual speeds were calculated to ensure train speed matched the inde-284

pendent variable levels (i.e., 40 km/h, 100 km/h, or 160 km/h) at the time285

of cube appearance. The interquartile range (IQR) of the actual speeds was286

computed, and data points with deviations exceeding three times the IQR at287

the time of stimulus appearance were excluded from the analysis (six cases288

in the DLR study, five cases in the TUB study). After data cleaning, a total289

of 690 observations from 43 participants remained.290

A descriptive analysis of reaction time data was conducted before apply-291

ing inferential statistics. Reaction times typically exhibit a positively skewed292

distribution characterized by a minimum bound at just above zero seconds293

and a long tail of longer reaction times. This pattern was observed in both294

simulator studies. To address this skewness and facilitate statistical analy-295

sis, reaction times were logarithmically transformed, a standard method to296

normalize data distributions and mitigate the impact of outliers [42, 43].297

The impact of independent variables on the log-transformed reaction time298

was analysed using a linear regression model. A mixed-effects model, incor-299

porating participants nested within simulators (TUB and DLR) as a random300

effect factor, was employed for the analysis. This model accounts for potential301

systematic differences between the simulators, enabling the examination of302

both overall effects of independent variables and variations across simulators303

[44]. For the linear regression, mixed-effects modelling with the restricted304
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maximum likelihood (REML) approach was employed.305

3.8. Research Hypotheses306

To evaluate the effect of independent variables on reaction time, several307

research hypotheses have been determined. The research hypotheses are308

formulated based on the beta coefficients (β) of the underlying regression309

model. These coefficients represent the impact of the independent variables310

on the dependent variable. Research hypotheses can be defined as follows:311

It was expected that lower contrast and smaller size would decrease stim-312

ulus salience. Therefore, smaller stimuli were expected to be detected slower313

than larger ones, and slower reactions were expected for low-contrast stimuli314

compared to high-contrast stimuli.315

• H1: Reaction time is longer for small stimuli: β1.1, β1.2, β1.3 > 0.316

• H2: Reaction time is longer for low-contrast stimuli: β2 > 0.317

Since stimuli appeared on or near the tracks, increased attention focused318

on the track area at higher speeds would lead to faster reactions to stimuli319

appearing at higher speeds than those at lower speeds. Additionally, due320

to optical effects, objects visually enlarge more rapidly at higher speeds,321

facilitating recognition.322

• H3a: Reaction time is longer at slower driving speeds (40 km/h) com-323

pared to higher speed conditions: β3.1 > 0.324

• H3b: Reaction time is longer at a driving speed of 100 km/h compared325

to 160 km/h: β3.2 < 0.326
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It was expected that the use of a train safety system (PZB or ETCS)327

would lead to longer reaction times compared to on-sight driving, as drivers328

focus more on track monitoring during on-sight driving. Furthermore, it was329

expected reaction times would be longer with ETCS cab signaling than with330

PZB, due to the higher attention demands on the control panel in ETCS331

compared to PZB.332

• H4a: Reaction time is longer when using a train safety system (PZB)333

compared to on-sight driving: β4.1 < 0.334

• H4b: Reaction time is longer when using ETCS compared to PZB:335

β4.2 > 0.336

Below is the notation of the mixed-effects linear regression model. The337

reference level is as follows: largest visual angle (13.43’), high contrast, driv-338

ing speed of 100 km/h and PZB scenario.339

Log(Reaction Time) =β0 + β1.1 · angular.size3.78 + β1.2 · angular.size6.72

+ β1.3 · angular.size7.56 + β2 · contrast low

+ β3.1 · speed(40 km/h) + β3.2 · speed(160 km/h)

+ β4.1 · tpcos + β4.2 · tpcetcs + usimulator:subject + ϵ

(1)

The term angular.size represents the dummy variable for three levels of340

stimuli size, with the largest stimuli chosen as the reference level. The term341

tpc represents the variable for the train protection system. β0 represents the342

intercept or base value of the logarithmic reaction time at the population343

average, assuming all other variables are at their reference values.344
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The model includes two random components: within-group residual er-345

rors (ϵ) and random effects for the covariates (usimulator:subject). The residual346

errors for the same group are independent of the random effects. The random347

factor accounts for the differences in the intercepts between the participants,348

clustered within two simulators, due to inherent differences or unobserved349

factors. In the random part of the model, the estimated parameters are the350

variances of the random effect (σ2
u) and the residual error (σ2

ϵ ). The vari-351

ance of the random effect captures the variability in reaction times that can352

be attributed to differences between participants, considering the clustering353

within simulators, while the variance of the residual error captures the vari-354

ability in reaction times that cannot be explained by the fixed effects or the355

random effects [45].356

4. Results357

4.1. Descriptive Analysis358

The distribution of reaction times, depicted in Figure 2, confirms the359

typical non-normal pattern of reaction time data, with a lower bound just360

above 0 seconds and a long tail on the right. Given this distribution, the361

median and the geometric mean are more suitable measures of central ten-362

dency than the mean, as they are less influenced by outliers. Reaction times363

were transformed on a logarithmic scale. The histogram of log-transformed364

reaction times (Figure 2) and the cumulative distribution function (CDF) of365

the transformed data indicates near-normality (Figure 3). Figure 4 presents366

the reaction times for various experimental conditions with their geometric367

mean values. Black points represent the recorded reaction times, while the368
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orange and brown points indicate the geometric mean of reaction times for369

each specified condition. To establish causal relationships, a thorough ex-370

amination using linear regression analysis was conducted. Table 3 shows the371

geometric mean and standard deviation of reaction times for the examined372

experimental conditions.373
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Figure 2: Histogram of raw and log-

transformed reaction times

Figure 3: Empirical and theoreti-

cal CDF of the transformed reaction

times

Figure 4: Reaction time at different speed and size conditions and geo-

metric means for different contrast levels
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Table 3: Geometric means and standard deviations of reaction times for the examined

experimental conditions. Angular sizes are given in arcminutes (′). Rows for high-contrast

conditions are in bold font.

40 km/h 100 km/h 160 km/h

Angular size Geo. mean (SD) Angular size Geo. mean (SD) Angular size Geo. mean (SD)

OS

13.43 1.36 (1.58)

7.56 6.35 (6.34)

3.78 9.92 (6.80)

13.43 1.51 (1.93)

7.56 7.25 (8.89)

3.78 13.44 (6.97)

PZB

13.43 2.90 (8.73) 13.43 1.22 (0.68)

7.56 7.02 (5.77) 7.56 5.99 (2.17)

6.72 12.68 (11.77) 6.72 3.18 (1.96)

3.78 10.80 (5.41) 3.78 5.60 (4.95)

13.43 6.42 (15.46) 13.43 1.56 (2.64)

7.56 8.51 (4.34) 7.56 6.80 (3.90)

6.72 15.73 (16.16) 6.72 4.74 (4.81)

3.78 11.05 (8.45) 3.78 7.77 (2.50)

ETCS

13.43 1.46 (2.07) 13.43 1.14 (0.85)

7.56 4.61 (5.51) 7.56 2.09 (2.99)

3.78 4.88 (3.68) 3.78 4.60 (1.17)

13.43 1.52 (1.13) 13.43 1.53 (1.03)

7.56 3.41 (1.01)

6.72 5.78 (4.65) 6.72 2.32 (2.51)

3.78 6.74 (6.95) 3.78 4.78 (2.66)

4.2. Regression Analysis374

This study examined the factors that influence reaction time through a375

mixed-effects linear regression model. The R package lme4 was used for the376

analysis [46]. The model was applied to a dataset of 690 observations, with377

log-transformed reaction times as the dependent variable. Fixed and random378

effects were analyzed to assess their influence on reaction time.379
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The estimates and model statistics are presented in Table 4. Each fixed-380

effect coefficient represents the expected change in the log-transformed re-381

action time for a unit change in the predictor variable. The standard error382

(SE) estimates the uncertainty of the coefficient, while the t-value and the383

p-value assess the statistical significance. One-sided p-values were calculated384

using the Satterthwaite method.385

Table 4: Fixed Effects (*p<0.05)

Variable Est. (β) S.E. t val. CI low CI high

(Intercept) 0.34 0.11 3.13 0,13 0,55

angular size 3.78* 1.45 0.14 10.42 1,18 1,72

angular size 6.72* 1.07 0.07 14.52 0,92 1,21

angular size 7.56* 1.09 0.14 7.54 0,81 1,37

contrast low* 0.22 0.06 3.92 0,11 0,32

speed 40 km/h* 0.86 0.08 10.54 0,70 1,02

speed 160 km/h* -0.34 0.09 -3.82 -0,51 -0,17

os* -0.64 0.09 -7.00 -0,82 -0,46

etcs -0.07 0.08 -0.85 -0,24 0,09

The conditional R2 was 0.58, indicating that the model explained ap-386

proximately 58% of the variance in reaction time. The positive and negative387

signs denote increases or decreases in reaction time compared to the baseline388

level, respectively. Exponentiated coefficients reveal the multiplicative effect389

of a unit change in predictor variables. For example, the expected reaction390

time at a speed of 40 km/h is 136% higher than at a speed of 100 km/h,391
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whereas at 160 km/h, it is 29% lower than at 100 km/h. This confirms the392

hypotheses H3a and H3b.393

Results indicate that the stimuli size had the largest effect on reaction394

time. Smaller stimuli led to longer reaction times compared to the largest395

stimulus (H1), with the smallest stimulus size (S1) causing the biggest in-396

crease. The two mid-sized stimuli (i.e. S2 and S3 with 6.72 arcmin and397

7.56 arcmin, respectively), differing by 12.5% in size, had nearly identical398

effects on reaction time compared to the largest stimulus (i.e. 197% and399

192% increase). A post-hoc Sidak test confirmed that this small difference400

between the levels of 6.72 and 7.56 was not statistically significant (p=0.99).401

Low contrast stimuli resulted in a 25% increase in reaction times, supporting402

hypothesis H2.403

On-sight driving resulted in 47% faster reaction times compared to driving404

under PZB. Contrary to the expectations, the ETCS scenario showed a 7%405

decrease in reaction times compared to the PZB scenario, but this difference406

was not statistically significant. Thus, all hypotheses were confirmed except407

for the relationship between ETCS and PZB, with stimulus size having the408

most substantial impact on reaction time and contrast having the least (Table409

5).410
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Table 5: Summary of hypothesis testing results

Hypothesis Result

H1 Confirmed: Reaction time is longer for small stimuli.

H2 Confirmed: Reaction time is longer for low-contrast stimuli.

H3a Confirmed: Slower driving speeds (40 km/h) resulted in longer reaction times.

H3b Confirmed: Reaction times at 100 km/h were longer than at 160 km/h.

H4a Confirmed: Reaction time was longer at PZB than at OS.

H4b Not confirmed: ETCS did not show an increase in reaction times compared to PZB.

The likelihood ratio test with 10000 simulated values suggested that the411

model with random effects provided a better fit than the fixed-effects-only412

model (RLRT = 97.7, p < .01). This indicates that incorporating random ef-413

fects helps account for variability in the data due to the grouping structure.414

The random intercept variance for participants grouped within simulators415

was 0.14, with an estimated standard deviation of 0.38 on the log-transformed416

scale (Table 6). The intra-class correlation coefficient (ICC) for this grouping417

variable was 0.22. The intercept given in the Table 4 represents the popula-418

tion average. One intercept value per subject can be calculated to account419

for the differences between participants.420

Table 6: Random Effects

Groups Variance Std.Dev.

simulator:subject (Intercept) 0.14 0.38

Residual 0.52 0.72

Marginal predictions estimate the average response time across all levels421

of random effects, while conditional predictions take into account the specific422
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random effects associated with each case [47]. Assuming that the subject423

sample in the study is a representative random sample of the real world, the424

marginal model for the predictions can be used to provide an estimate for425

those who do not belong to one of the clusters used in the study [48]. The426

geometric mean of the observed data and the model estimations are shown427

in Figure 5.428

Figure 5: Comparison of the model prediction with the corresponding indicator of the cen-

tral tendency across conditions. Y-axis: reaction times in seconds. X-axis: Experimental

conditions as a combination of angular size and contrast levels.
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Sleepiness was assessed using the Karolinska Sleepiness Scale (KSS) before429

the experiment and after each experimental block. The scale points range430

from 1 - extremely alert to 9 - very sleepy, great effort to keep alert. Over the431

course of the experiments, the participants’ self-reported sleepiness remained432

at a similar level, around Alert (3) and Fairly Alert (4), without a discernible433

pattern.434

5. Discussion435

Ensuring the safety of increasingly automated railway systems, such as436

Automatic Train Operation, necessitates robust methods for defining and val-437

idating performance requirements. As outlined in the Introduction, a promis-438

ing approach in safety assurance frameworks is to use the established safety439

performance of human train drivers as a reference system against which auto-440

mated capabilities can be benchmarked [4], [5]. Implementing this approach441

requires a detailed characterization of human performance capabilities and442

limitations in tasks designated for automation, such as obstacle detection.443

This study contributes directly to this essential step by providing empirical444

data on train driver reaction times in perceiving and reacting to target visual445

cues under various conditions.446

This study set out to test the influence of different object properties and447

operational parameters on train drivers’ reaction times to objects on the448

track. Significant effects were observed for object size, background contrast,449

and driving speed, with object size having the largest impact. Reaction450

times were longer for detecting small stimuli compared to large ones. Higher451

stimulus-background contrast reduced reaction times, consistent with the452
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concept that stimulus intensity, such as size and the differences in brightness453

or colour between the object and its background, influences reaction time.454

Driving speed was another significant factor, with faster reactions at higher455

speeds, which may support the assumptions regarding the upward gaze shift456

at higher speeds. Additionally, objects appear to increase in size more quickly457

at higher speeds and are therefore recognized more swiftly.458

The findings supported the hypothesis that on-sight driving leads to459

shorter reaction times compared to PZB and ETCS L2 incab signalling, due460

to the increased track monitoring during on-sight driving.In this study, al-461

though the order of the experimental blocks for PZB and ETCS was equally462

randomised, on-sight driving was always the last block. Although fatigue463

did not have a significant effect on reaction times, the order of experimental464

blocks should be fully randomised to minimise the potential effect of fatigue465

on one particular system. However, the hypothesis of having longer reaction466

times at ETCS, compared to PZB, was not supported. The results regard-467

ing a comparison between the two train control systems PZB and ETCS L2468

were likely influenced by other factors, such as variations in track design be-469

tween ETCS and PZB routes in the simulator study [49]. Nonetheless, these470

variations in track design reflect realistic differences in environments where471

these systems are deployed in the real world. Thus, there is a need for fur-472

ther research into the relationship between reaction time and train protection473

systems, accounting for various underlying factors e.g. in the track design.474

Although separate analyses of both simulators’ results revealed similar475

patterns, a random effect analysis showed a significant clustering effect among476

participants within simulators. Overall, the model accounted for 58% of the477
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variance in reaction times, explained by both the fixed effects and the ran-478

dom effects (Psuedo-Rˆ2=0.58). Relative validity between simulator results479

can be shown by independent variables having the same direction of effects.480

Additionally, the variability in reaction times caused by using different sim-481

ulators was considered by the random effect structure. It was found that482

approximately 22% of the total variance in the outcome variable is due to483

differences between subjects within simulators (ICC= 0.22). The remaining484

78% of the variance is due to the residual variability within subjects. This485

suggests that there is some clustering effect, but most of the variability is486

within subjects rather than between subjects. Although standardizing vari-487

ables like apparent object size using arcminutes helped capture some variance488

between simulators, factors which were not captured in this study such as489

route geometry could have contributed to the variability between simula-490

tors. Nevertheless, this study demonstrated how to account for differences in491

the simulators resulting from visual setup using a standardization procedure,492

showing how studies from different simulators can still be compared. Further493

studies should focus on developing standardization methods for other factors494

like track design to further delineate which variability results from the par-495

ticipants vs. the simulator setup. Moreover, this study provided valuable496

insight into the effectiveness of simulator-based research in examining the497

visual performance of train drivers, providing a basis for future studies to498

enhance validity through replication.499

It is crucial to evaluate the applicability of these findings, before apply-500

ing them to the development of requirements for future ATO systems. The501

transferability of results to real-world rail operations depends on personal502
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influencing factors, operational parameters, and physical properties of the503

stimulus. In simulators, participants knew stimuli would appear, which likely504

increased visual search behaviours beyond real-world levels. Conversely, one505

of the central tasks of drivers on a real journey is to monitor the track envi-506

ronment. Therefore, attentive visual monitoring of the infrastructure should507

also occur during an actual journey. However, the absence of natural risks508

in simulator settings in the event of inattention may diminish the perceived509

urgency of visual search tasks.510

The study employed a simple reaction task where participants responded511

to each stimulus without distinguishing whether the object represented a512

danger. In real-world operations, drivers’ responses can vary from emergency513

stop to activating the train horn or no reaction at all, depending on the situ-514

ation. Thus, reaction times in practical settings would likely be longer due to515

the additional time needed to process information and determine an appro-516

priate response. However, at higher speeds, particularly when an obstruction517

is detected at 800m, such as in this study, the options for intervention be-518

come limited. Future research could employ sensitivity analysis or explore519

different distance ranges to develop a more comprehensive benchmark aligned520

with safety criteria at higher speeds.521

Other influencing factors include journey duration and route familiarity.522

The short driving periods in the studies minimized the negative effects of523

fatigue or vigilance loss. However, during extended real-world journeys, such524

as a seven-hour shift, reaction times could be adversely affected compared to525

those observed in our studies [50]. Lack of route knowledge may also have526

hindered effective visual search strategies. In real-world driving, familiarity527
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helps drivers anticipate and react more effectively to objects in expected528

locations, such as level crossings.529

For evaluating the applicability of these operational boundary conditions530

to real-world scenarios, it is crucial to consider the complexity of the tasks531

and the route geometry. Participants focused solely on driving, unlike real532

operations, which include additional tasks like dispatcher communication,533

timetable checks, and diagnostic monitoring. Theoretically, auditory or ver-534

bal tasks such as communication are not expected to negatively affect visual535

performance [51]. On the other hand, other visual tasks, such as monitoring536

fault displays or timetables, could impair the driver‘s performance to monitor537

the infrastructure effectively.538

Stimuli were always placed under ideal visual conditions - on straight539

routes with little or no gradient, with minimal obstructions, allowing partic-540

ipants to detect the objects from 800 meters away. In real-world operations,541

the drivers often face compromised views due to curves, gradients, or vege-542

tation.543

Visual stimuli represent a reference without explicitly defining parame-544

ters such as shape and pattern, which might influence reaction time. The545

decision to use a cube was a compromise between using a human-sized ob-546

ject and maintaining an abstract form to prevent traumatic experiences. The547

influence of specific shapes and patterns of the stimuli on reaction time is548

outside the scope of this study. At higher speeds, the distortion of visual549

cues—such as motion blur—can impede the driver’s ability to quickly and550

accurately detect these objects. This raises the question of whether there is551

a threshold speed beyond which faster detection becomes impractical due to552
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perceptual limitations and object characteristics. Future studies should ex-553

plore this aspect by testing different object characteristics at a higher range554

of speeds. The colour difference in RGB colour space was used to calculate555

the colour contrast between the stimuli and their background. Differences in556

luminance, glare, and contrast between simulator screens and actual condi-557

tions can further impact object perceptibility.558

The analysis produced average reaction time estimations between 1.51559

and 15.73 seconds across different conditions. The least favourable conditions560

in terms of reaction times were small and low-contrast objects at 40 km/h561

under the PZB system.562

This study focused on operationalizing a critical aspect of human percep-563

tion performance relevant to tasks designated for automation: driver response564

quantified as simple reaction time to visual stimuli. The complex process of565

formally deriving, validating, and applying these performance characteristics566

as definitive safety benchmarks for ATO systems constitutes a significant567

area for future research. The empirical reaction time values obtained in this568

study provide a foundational dataset that can be directly utilized in future569

work to derive specific human-referenced benchmarks or parameters for such570

risk criteria. For instance, by combining these human reaction times with571

factors like train speed and available stopping distance, metrics such as safe572

detection range, minimum required obstacle size detection capabilities, or573

collision probabilities based on human limits could be estimated.574

In summary, this study provided insights into specific aspects of visual575

perception. Future research could benefit from exploring additional param-576

eters such as more complex tasks and driving situations, dynamic objects577
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or longer travel times on familiar routes to comprehensively assess drivers’578

visual perception performance.579

6. Conclusion580

This paper presented findings from two simulator studies investigating581

factors influencing train drivers’ reaction times to objects along the track.582

The results revealed significant effects of object size, object contrast, and583

train speed on train drivers’ reaction times. Larger and more contrasting584

objects were associated with faster reaction times, while stimuli were detected585

more quickly at higher speeds. The study produced average reaction time586

predictions between 1.14 and 15.73 seconds across different conditions. The587

least favourable condition based on observed values was small low-contrast588

stimuli (S1 and S2) approached at 40 km/h while using the PZB system. The589

visual performance values obtained in this study may be used for deriving590

safety metrics that can serve as a benchmark for developing future automated591

train operation systems, taking into account the limitations described above.592

The results provide insights into factors shaping train driver performance593

and guide future studies for establishing criteria for effective implementation594

of ATO systems.595

Conducting such experiments on actual tracks is impractical and haz-596

ardous, highlighting the invaluable role of simulator studies in understand-597

ing parameters influencing train driver performance. The study provides598

information about aspects influencing the comparability of results obtained599

from different simulators in similar experiments while demonstrating a way600

to standardize differences between simulator setups.601
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