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ABSTRACT
Boundary element methods are widely employed in engi-

neering and research to solve partial differential equations in
the form of boundary integral equations numerically. In hydro-
and aerodynamics, these methods provide fast solution to poten-
tial flow problems, especially useful in early design phases of
ships or aircraft, e.g. for the computation of ship motion and
added wave resistance or of aircraft loads and acoustic analyses.
However, the fundamental solution of the underlying boundary
integral equations as well as their derivatives are characterized by
an increasingly singular nature, so the assembly of the required
boundary integral operators is non-trivial. Therefore, suitable
treatment of the singular integrals is crucial for the boundary
element method, since it requires the evaluation of the singular
boundary integrals in the near- and self-influence regimes. In this
paper, we classify the different methods for singular integration,
detail the theory behind these techniques, give examples of exist-
ing approaches and sort them according to the presented classi-
fication. The present review for singular integration methods for
Laplace boundary element methods aims to give an overview of
existing frameworks and the related theory, intended as a start-
ing point for choosing appropriate methods by considering the
advantageous characteristics or identifying fields of further re-
search.
Keywords: Boundary Element Method, Hydrodynamics,
Aerodynamics, Singular Integration

1. INTRODUCTION
The boundary element method (BEM) is a numerical ap-

proach for solving boundary integral equations (BIEs). It has
been established as one of the classical computational methods in
engineering and applied across a wide range of industry levels in-
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cluding small engineering services as well as globally delivering
ship yards and aerospace corporations.

Specifically, for solving partial differential equations (PDEs)
in unbounded media (exterior problems), the BEM is attractive
because the behavior of the solution in the farfield can be treated
effectively, e.g. with suited radiation conditions. Also, the reduc-
tion of the dimension of the discretization domain by one order
compared to the domain of the underlying PDE is advantageous
in many applications. Furthermore, various choices in the rep-
resentation of solution and geometry, the formulation, and the
discretization can be made for the BEM allowing to derive tai-
lored methods for the targeted field of application. On the other
hand, the appearance of fully populated matrices, the limited
applicability to PDEs with fundamental solution and the require-
ment to evaluate singular integrals have to be addressed when
using BEMs.

In the framework of the BEM, two main discretization
methodologies exist, the Collocation and the Galerkin method.
The Collocation method enforces that the solution fulfills the
BIE exactly at the integration points, but not between these. The
Galerkin on the other hand minimizes the integral error of the
BIE. The occurrence of double integrals increases the computa-
tional effort for the Galerkin form, but the weighting of the BIE
allows to reduce the continuity requirements for the solution and
geometry approximation functions compared to the Collocation
approach [1–3]. Also the solution evaluation can be done in
different ways, by the direct or indirect method [4, 5]. The indi-
rect method evaluates jump relations of the quantities of interest,
whereas the direct formulation gives the physical quantities on
the boundary.

The use of BIEs for the solution evaluation of PDEs in BVPs
relies on the divergence theorem and the existence of a funda-
mental solution for the PDE. The divergence theorem gives the
basis for evaluating domain quantities by boundary values. The
existence of a fundamental solution for the PDE is a key property
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for the applicability of BIEs and is proven to exist for linear par-
tial differential operators with constant coefficients (see e.g. [5],
Malgrange-Ehrenpreis theorem).

Within the scope of this paper, we focus on the Laplace
equation

Δ𝜙 = ∇ · (∇𝜙) =
𝑑∑︂
𝑖=1

𝜕2𝜙

𝜕𝑥2
𝑖

= 0 , (1)

for the velocity potential 𝜙 with the Nabla operator ∇ denoting
the vector of partial derivatives (𝜕/𝜕𝑥) in the coordinates of 𝑥.
This equation can be used to model motions of waves, ships
and airplanes in an inviscid and incompressible fluid, and an
irrotational flow. The Green function for the Laplace equation,
e.g. [5, 6], is

𝐺 (𝑥, 𝑦) = −1/(2𝜋) log( |𝑥 − 𝑦 |) for Ω ∈ R2 (2)

=
1

4𝜋 |𝑥 − 𝑦 | for Ω ∈ R3 (3)

where the 𝑥 and 𝑦 denotes the source and target point coordinates.
Applying Green’s vector identities to the divergence theorem,

integral equations for the direct and indirect evaluation of the
quantity, its derivative or both can be derived. For direct version
and the Dirichlet BVP this reads [5]

𝜙(𝑥) =
∫
Γ

𝐺 (𝑥, 𝑦) 𝜕𝜙(𝑦)
𝜕𝑛𝑦

d𝑆𝑦 −
∫
Γ

𝜕𝐺 (𝑥, 𝑦)
𝜕𝑛𝑦

𝜙(𝑦) d𝑆𝑦 , (4)

where 𝜙(𝑦) represents the Dirichlet data given on the boundary
Γ. By differentiation with respect to the normal direction, the
corresponding representation for the Neumann BVP is derived as

𝜕𝜙(𝑥)
𝜕𝑛𝑥

=

∫
Γ

[︂ 𝜕

𝜕𝑛𝑥
𝐺 (𝑥, 𝑦) 𝜕𝜙(𝑦)

𝜕𝑛𝑦
− 𝜕2𝐺 (𝑥, 𝑦)

𝜕𝑛𝑥𝜕𝑛𝑦
𝜙(𝑦)

]︂
d𝑆𝑦 , (5)

where 𝜕𝜙 (𝑦)/𝜕𝑛𝑦 is specified as a Neumann BC on Γ.
By moving the quantities to the boundary, the BIEs can be

derived from the integral equations, Eqs. (4) and (5), and formu-
lated by means of boundary integral operators (BIOs) and trace
operators [4, 5]. The trace operators for the Dirichlet and Neu-
mann data characterize the approach to the boundary which is
referred to as limiting process. The BIOs are related to the fun-
damental solution and its derivatives and describe a mapping of
the quantities between function spaces (for BIEs Sobolev spaces)
related to the Dirichlet and Neumann data.

Based on the above, BEMs solve the BIE numerically by
discretizing the boundary of interest into elements. On these
elements, basis functions are used to approximate the surface
geometry and the solution on the surface. The characteristics
of the basis functions (e.g. continuity and order) determines
the approximation properties of the solver: For example, low-
order methods typically use linear geometry approximations and
constant singularity distributions, while iso-geometric methods
choose splines for both, see e.g. Beer et al. [7].

The integration over singular kernel functions, e.g. the inte-
grands in Eqs. (4) and (5), is crucial for solving BIEs and rep-
resents a mathematical challenge. Foremost, the singular nature
of the integrals complicate the evaluation in the near- and self-
influence regimes. Therefore, specifically for higher derivatives
and non-smooth boundaries careful treatment is necessary.

In this paper, methods for singular integral evaluation are
summarized and discussed. The focus is set on the Laplace equa-
tion, the governing PDE for potential flow, that have relevant
applications in aero- and hydrodynamics. After introducing the
mathematics related to singular integration, we classify the meth-
ods for singular integration, give an overview on representatives
of the groups, and compare the approaches by identified rele-
vant characteristics. Moreover, we discuss them in the context of
application and procedure, and identify advantageous character-
istics that lead to a favorable choice of the methods in view of
the application. The methods used in hydro- and aerodynamics
are detailed and references in the literature are given in Sec. 4.
Finally, we draw conclusions and close by outlining future topics
of interest.

2. SINGULAR INTEGRALS
In the following, we assume definite integrals which can be

subdivided into two sub-classes: proper and improper integrals.
The proper integrals are Riemann integrable, i.e. they can be
calculated by a finite sum of rectangular stripes over the entire
interval of the kernel function. If integrals have either unbounded
integration intervals or contain unbounded integrands, they can-
not be evaluated via the Riemann sum as no rectangular stripe
can be determined to the pole of the singularity. This class of
integrals are referred as improper (Riemann) integrals.

In the context of BIEs, the latter type of improper integrals
appear, also referred to as singular integrals. They can be cal-
culated by excluding a vanishing small neighborhood around the
singularity from the integration interval [a,b] which yields the
limits ∫ 𝑏

𝑎

ℎ(𝑥) d𝑥 = lim
𝜀→0

∫ 𝑐−𝜀

𝑎

ℎ(𝑥) d𝑥 + lim
𝛽→0

∫ 𝑏

𝑐+𝛽
ℎ(𝑥) d𝑥 (6)

with the function ℎ(𝑥) having an unbounded value at 𝑥 → 𝑐,
which is contained in the interval [8]. Apart from the singular
point ℎ(𝑐), the function is assumed to be at least bounded or even
continuous. If the limits in Eq. (6) can be determined, e.g. by
considering residual evaluation methods, the improper integral
exists and converges.

Considering a symmetric region with radius 𝜀 around the
singularity, introduces the concept of the Cauchy Principal Value
(CPV) and the Hadamard Finite Part (HFP). These integrals might
even converge if the limits in Eq. (6) do not exist. The Cauchy
Principal Value is given by [9]

c.p.v.
∫ 𝑏

𝑎

ℎ(𝑥) d𝑥 = lim
𝜀→0

[︂ ∫ 𝜇−𝜀

𝑎

ℎ(𝑥) d𝑥 +
∫ 𝑏

𝜇+𝜀
ℎ(𝑥) d𝑥

]︂
. (7)

The derivative of the CPV in the direction of the variable of
integration yield the Hadamard Finite Part

h.f.p.
∫ 𝑏

𝑎

𝑧(𝑥, 𝑡) d𝑡 =
𝑑

d𝑥
c.p.v.

∫ 𝑏

𝑎

𝑧(𝑥, 𝑡) d𝑡 (8)

where the integrand 𝑧 has to be 𝐶1,𝛼 in [𝑎, 𝑏] and Leibnitz rule
is considered for integration [10]. In the CPV, the values in the
singular neighborhood cancel out each other due to the point
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symmetry of the kernel function O(𝑟−1). In contrast, in the HFP
a remaining term ∝ 𝜀𝛼+𝑛, also referred as finite part, is employed
to cancel exactly the values in the singular region considered in
the improper integral parts of the HFP. This can be seen from
expressing the HFP as

h.f.p.
∫ 𝑏

𝑎

1
𝑚

d𝑥 = lim
𝜀→0

[︂ ∫ 𝜇−𝜀

𝑎

1
𝑚

d𝑥 +
∫ 𝑏

𝜇+𝜀

1
𝑚

d𝑥 + 𝑝(𝜀)
]︂

(9)

with 𝑚 = (𝜇 − 𝑥)𝛼+𝑛+1 and the singular point 𝜇 ∈ [𝑎, 𝑏]. On the
right-hand side, the last function 𝑝(𝜀) represents the contribution
that cancels out the singularity of the two first improper integrals.

The mathematical frameworks of the CPV and the HFP reg-
ularize strongly and hypersingular singular kernels, respectively,
to weakly singular integrals. These can be treated by standard
numerical integration methods and are used in various methods
detailed hereafter.

3. METHODS FOR SINGULAR INTEGRAL EVALUATION
In this section, an overview over four classes of singular

integration is given by presenting methodologies of representa-
tive examples from literature. Namely, these are the analytic,
semi-analytic, and numeric integration as well as regularization
methods. The common target of the methods is to remove or
reduce the singularity of the kernel functions so that standard
methods can be used for integration.

3.1 Analytic integration
For the three-dimensional Laplace equation, analytical in-

tegration of the potential kernels is possible but generally re-
stricted to simple geometries, most commonly planar polygons.
Additionally to yielding exact results, analytic integration is of-
ten computationally more efficient than numeric integration [11].
The singular self-term integration is commonly treated by spe-
cial case paths in the implementation, usually by computing these
explicitly as Cauchy Principle Values. This section concentrates
on the description of methods for the three-dimensional Laplace
kernel. Although most integration methods mentioned here are
linked to specific panel method implementations, details about
the implementations are not given here but in Sec. 4.1.

Hess and Smith expressed integrals for constant source dis-
tributions over planar quadrangels by a superposition of indepen-
dent integrals over the edges of the quadrangle [12]. In a later
extension of the work, integrals for constant vorticity distribu-
tions have been added. This extension allows for the computation
of lifting bodies [13].

Webster published an extension which allowed the integra-
tion of linear source distributions over triangles [14]. A decade
later, Newman generalized this to linear distributions for doublets
and sources for planar quad- and triangular elements [15]. He
defined sectors from infinite extensions of the edges in a way
that the differences between these sectors yields the panel. The
integral is then evaluated for each vertex in terms of the included
solid angle. After rearranging the resulting equations, the inte-
gral can effectively be evaluated as a sum of integrals over the
panel edges again. Hence, his results for constant distributions
are consistent with prior derivations, e.g. by Hess and Smith.

Results were given explicitly for potential integrals up to linear
distributions. Furthermore, Newman proposed an approach how
the more general case of high-order distributions could be de-
rived, but did not carry out the derivation or give the resulting
equations. Another method proposed by Fata breaks down inte-
grals of linear potentials over flat triangles into generic integrals
over their edges [16]. This work includes integrals up to what
is labeled as "quadruple-layer". Carley solved the integrals for
linear sources and doublets on triangular elements utilizing a lo-
cal coordinate system in the panel plane with the projection of
the field point in the origin [11]. Subsequently, sub-triangles are
formed by combining each edge of the original triangle with the
field point projection. The basic integrals are then solved on these
sub-triangles using polar coordinates, where the singular case of a
field point in the panel plane is treated explicitly as a special case.
All of the aforementioned methods work in component-notation
in a coordinate system in the panel plane and, hence require a
coordinate transformation of the actual panel and field point and
- in case of velocities - an additional transformation of the result.
In contrast, a method for planar triangles and quadrangles up to
linear distributions published by Suh uses vector notation so that
no coordinate transformations are required [17]. This method is
based on applying Stokes’ formula and vector operations on the
integrand to decompose the panel integral into line integral over
panel edges. It is worth noting that most methods presented here
are algebraically equivalent, since they solve the same integrals
analytically and should give exact and, hence, equivalent results.
However, they differ in the algorithmic execution, especially in
the special cases arising and being treated [11].

Integration of high-order potential distributions is much
more complicated, particularly on curved surfaces. For this rea-
son, analytical integration methods proposed for these cases gen-
erally contain some form of approximation of the actual integral
over the curved surface elements. Some methods approximate
the curved geometry by piecewise flat sub-elements and then per-
form an analytical integration of quadratic distributions over these
sub-elements [18, 19]. Alternatively, the high-order integration
method presented by Hess uses a truncated expansion form of
potentials for which analytical integration can be performed on
curved elements [20]. Wang proposed to map the curved panel
onto a flat panel by projection of the vertices into a tangent plane
[21]. Although the edges of the triangle projected into the tan-
gent planes are generally curved [22], this method is based on a
linear connection between the projected vertices. The integration
is then performed analytically, where polynomial approximations
are utilized for terms linked to the geometry-mapping in the re-
sulting integral.

3.2 Semi-analytic integration
The combination of analytic treatment and numerical inte-

gration appears typically in methods where the limiting process is
explicitly considered. In the region of the singularity, e.g. Taylor
series expansion of the relevant quantities around the singular
point can be used for the numerical evaluation. In addition with
regularizing transformations up to hypersingular kernels can be
treated.

The series expansion is usually performed on the discrete
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level by an adding-and-subtraction procedure. Performing the
limit process after the discretization allows to take the basis func-
tions for solution and geometry (including curved boundaries)
approximation explicitly into account for the derivation of the
regularized integrals.

In the framework of the Collocation BEM, semi-analytic
methods have been developed for strongly singular integrals in
3D by Guiggiani & Gigante [23]. For hypersingular kernels
in Collocation BEM, a method for 2D has been proposed in
Guiggiani [24] and the extension to 3D has been presented by
Guiggiani et al. in [25].

For 3D Galerkin BEM and piecewise smooth surfaces,
Hackbusch & Sauter [1] have considered a series expansion of
the singular integral kernel. They treated its polynomial part
analytically and the singular part numerically by a regularizing
transformation. To reduce the singular order, the triangular ele-
ments have been mapped to a parametric reference element. The
resulting weakly singular integrals have been treated with tensor
product Gauß quadratures after transformation with Duffy coor-
dinates. The tools used in their work have been pioneering steps
for other approaches that applied regularizing quadratures to the
Galerkin discretization, see Sec. 3.3.

Bonnet & Guiggiani [2] have applied the semi-analytic ap-
proach to 2D Galerkin BEM for hypersingular kernels and curved
boundaries. The integration of the double integrals have been per-
formed simultaneously on the inner and outer integral. On the
weighted BIE (continuous level), a (first) Taylor series expan-
sion of the density functions has been used to extend the integral
equation that allows to separate the singular integration domain
from the region of regular integration. After introducing the dis-
cretization, the self and adjacent case specific regularization for
the singular integration domain part have been derived by consid-
ering the (second) Taylor series expansion of the kernel around
the singularity and regularizing coordinate transforms. Due to
the applied limiting process, additional free terms appear. These
free terms can be bounded or unbounded and require special
analysis, see [2, 26]. Their occurrence depend e.g. on surface
discontinuities and for their treatment, explicit derivation of the
Green function specific terms as well as cancellation conditions
for the unbounded terms are required, and have been analyzed for
the 2D Galerkin BEM in [2].

3.3 Numeric integration
Integration rules, also referred to as quadratures (or cuba-

tures if dimension of integration domain is larger than one), are
the key tool for performing numerical integration. By providing
integration weights at specific integration points on a reference
element in parametric space, integral values can be found by
multiplying with function values at the integration points. Davis
& Rabinowitz [9] have summarized techniques for numerical in-
tegration including examples of corresponding algorithms. In
the context of singular integration, regularizing quadratures are
widely used as their application is practical: The mathematical
complexity of computing singular integrals is quasi hidden and
their implementation should be straight forward (as the set of
weights and points for specific cases can be integrated theoret-
ically in any algorithm), see e.g. [27]. Also, the convergence

behavior with ℎ- and/or 𝑝-refinement can be derived explicitly
for these purely numeric methods.

The basic idea of regularizing quadratures is the use of suited
transformations on a reference element that result in weakening
the kernel singularity. The transformations are usually based on
a CPV and/or HFP formulation of the singular kernel functions.
The obtained at most weakly singular analytic kernels on 2D
(Collocation approach) or 4D (double integrals in Galerkin ap-
proach) can be numerically evaluated by applying Duffy or polar
coordinate transformations and tensor products of standard (1D)
quadratures, see Sec. 3.2.

The use of the CPV and HFP concept indicates that the sin-
gular region is extracted from the integration domain instead of
performing the limiting process (e.g. by TSE in local coordinates
around the singular point) explicitly. In consequence, no addi-
tional unbounded free term appears due to the limiting process
but the assumptions on domain and kernel functions are relatively
strict and allow less possibilities in the adaption to specific cases,
e.g. surface discontinuities.

Schwab & Wendland [28] and Kieser et al. [29] have in-
troduced relevant methodologies for the numerical evaluation of
singular integration in 3D Collocation BEM (also relevant for in-
ner integration for Galerkin BEM) and error estimates have been
derived for the different singularity orders and weakly singular
integration methods, in [28] for the ℎ-version Collocation BEM
and in [29] for the ℎ𝑝-version of the Collocation BEM.

The expansion of up to hypersingular integrals and its treat-
ment as HFP integral has been described in Kieser et al. [29]. An
asymptotic expansion for general hypersingular kernel functions
and the related assumptions has been introduced. Based on this
expansion, the HFP have been defined. The regularizing transfor-
mation of the analytic finite part have been explicitly evaluated by
using Taylor series expansion and local coordinates. Additional
1D integrals have to considered in the kernel expansion if the
boundary is not smooth or if the source point is on the boundary.
This might be seen as analogy to the free terms arising from the
first TSE applied on the continuous level in the semi-analytic
approach of [2].

Schwab & Wendland [28] have applied quadrature meth-
ods for the expanded and discretized kernel without deriving an
explicit regularized analytic expression for the strongly singular
case but instead choosing separate quadrature rules for the radial
and circumferential direction. Moreover, the authors state that
"For weakly singular integrals it is shown that Duffy’s triangular
coordinates lead always to a removal of the kernel singularity"
([28], p. 343).

Sauter & Lage [30] have extended the cubature methods for
Galerkin BEM to hypersingular BIOs by introducing regulariz-
ing transformations and suited decomposition of the integration
domains. This contribution have completed the set of previous
works on regularizing cubatures for Galerkin BEM up to strongly
singular integrals, see [27, 31, 32], to a "fully implicit" and "black-
box method" and "with respect to the order of the rule", the meth-
ods are "exponentially convergent" and "uniformly stable" ([30],
p. 224). The transformation rules aim to map the curved sur-
face triangles to reference domains in parametric space on that
the order of singularity is at least reduced to weakly singular or-
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der. For the resulting kernel function, analytic formulations are
accessible and modified Gauß tensor rules can be employed for
numerical integration. The domain decomposition of the kernel
functions allows a proper application of the transformations to
avoid degenerating of the reference domains for elements with
strongly varying size (high aspect ratio). The method makes use
of an expansion of the hypersingular kernel function, for which
regularized forms in the three adjacent cases can be derived.

For ℎ, 𝑝- and ℎ𝑝- version of the Galerkin BEM in 2D, Dili-
genti & Aimi [33] and Aimi et al. [34, 35]) and in 3D Aimi &
Diligenti [36] have introduced methods for hypersingular kernel
evaluation. For the kernel and case specific treatment, various
methods have been used: foremost modified, high-order weights
for 1D quadrature based on Gauß Legendre quadrature have been
derived by using the three term recursion relation. The basic
assumption in [36] have been the regular triangulation for the
geometry and basis functions up to arbitrary degree for solution
approximation, as well as a linear mapping to a reference triangle
in parametric space. With the expansion of the hypersingular
kernel function and its formulation in the HFP sense, the finite
part has been derived in local coordinates explicitly. Singular-
ity smoothing and coordinate transformation have been used for
further regularizations.

3.4 Regularization techniques
Regularization methods convert singular integrals into a

more regular form by application-based approaches. The re-
sulting integrals are at most of weakly singular order and can be
integrated by applying transformations and standard quadrature
methods or treated analytically. Contrary to other singular inte-
gration techniques, regularization methods are typically applied
on continuous functions, i.e. on BIE level and before discretiza-
tion. In what follows, we summarize some of these techniques
with focusing on applications in the framework of the Laplace
equation.

The simple solutions are application-specific assumptions
(e.g. rigid body motion [37, 38], hydrostatic pressure mode),
usually based on physical constraints, that allow to exclude certain
singular cases from the numerical treatment.

In the context of hydrodynamic applications, the desingular-
ized BIE methods [39], for a review see Cao & Beck [40], have
been applied, specifically suitable for BEMs in that the standard
Laplace Green function is considered including the ones using the
mixed-Eulerian-Lagrangian (MEL) method, see Sec. 4. The non-
singular BIEs are derived by using two sets of boundary layers,
the original water and body boundary, and an auxiliary bound-
ary, on that the integration and solution evaluation points are
distributed separately from each other ensuring that the singular
cases cannot occur. The BEM implementation is realized by us-
ing two meshes with a certain spacing. The comparatively lower
accuracy and possible convergence issues due to ill conditioned
BIOs can be regarded as disadvantages. The ill conditioned BIOs
might appear because the spacing between the surface meshes is
not adapted to the discretization (can be improved by using a
definition of the distance depending on the discretization) or be-
cause the BIOs are less dominated by the diagonal entries, which
increase the condition number so that more solver iterations are

required [40].
The intersection of body and free surface meshes is treated by
considering both the free surface and body collocation points at
the intersection points/curves. This method is referred as dou-
ble node technique, see e.g. [41], and gives higher stability and
accuracy, see e.g. [42].

The singularity subtraction method was applied by Hwang
& Huang [43] in the context of hydrodynamic applications and
for smooth body geometries and coinciding collocation and in-
tegration point locations. A modified BIE has been obtained by
adding the conventional BIE for the total velocity potential and
adding a second BIE obtained from the Gauß flux theorem multi-
plied with a constant velocity potential value, see also Landweber
& Macagno [44]. In this new BIE formulation and assuming a
continuous Dirichlet/Neumann datum of the velocity potential in
2D/3D, the integrand becomes zero in the self-influence case and
the singularity vanishes. The obtained desingularized form of the
BIE contains only regular integrals, evaluable by standard quadra-
tures, so that implementation effort and computational costs can
be reduced.

In 2D and 3D Galerkin BEMs, integration by parts can be
used to reduce the singular order before discretization effectively.
In contrast to other regularization approaches, integration by parts
can be regarded a relatively general approach that has been applied
for different applications e.g. plasticity and elasticity as indicated
in the review on symmetric Galerkin BEM in Bonnet et al. [45].
As one example of application, the use of integration by parts
in addition to Stokes’ theorem leads to a representation of the
hypersingular boundary integral operator in bilinear form by the
surface curl and the weakly singular kernel, see e.g. [5] and [4].

3.5 Discussion
After presenting the methods and diving into the approaches,

we now aim to compare the different classes of methods for sin-
gular integration qualitatively. We evaluate the methods based
on their accuracy, computational cost, and implementation ef-
fort. Furthermore, we take into account, whether they have any
restrictions concerning applicability to certain problems, e.g. con-
cerning geometries or singularity orders and summarize the main
outcomes in Tab. 1.

The analytic methods for singular integration in principle
yield exact results and are computationally highly efficient. Usu-
ally, the computational costs are mainly driven by evaluation of
trigonometric functions linked to the geometric configurations.
The identification and treatment of special cases can be challeng-
ing for some algorithms and influences the implementation effort
considerably. Compared to other methods, these additional cost
are regarded as moderate. However, analytic integration is only
available for relatively simple geometries, i.e. planar polygons,
and up to quadratic order of elemental potential distributions.

More flexibility in the application for different problems is
achieved by employing semi-analytic approaches due to their
partly numerical treatment of the integral. In addition with trans-
formations and series expansions, this causes more implementa-
tion effort in particular for singular cases. In general the methods
offer high accuracy as the limiting process is performed explicitly
so that the values in the self and near regime can be captured ac-
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curately. Nevertheless, free terms that can appear due to the limit-
ing process, are often sensitive, e.g. with regard to discontinuities
in function spaces, and require special treatment. In comparison
with analytic integration, these methods are algorithmically more
complex and, hence, computationally more expensive.

The purely numeric treatment of singular integrals is the
most general approach of the here presented methods regarding
application to different classes of geometries and potential dis-
tributions. In addition to quadratures themselves, which are rel-
atively simple to apply, other lower-level functions are required,
e.g. transformation and case specific treatment which affect the
implementation effort directly. The implementation effort can be
reduced considerably by using available implementations, e.g. li-
braries, for these lower-level functions. Usually, error estimates
with ℎ- and/or 𝑝-refinement are available for the numeric inte-
gration methods. Note, that for weighted quadratures applied to
Galerkin formulations, the interdependency of inner and outer
integral can have a negative impact on the overall accuracy, see
[4]. The quadrature order primarily influences the efficiency and
the accuracy of the numeric integration methods and an appro-
priate choice of the number of integration points allows to find a
sweep point of these opposite features. In Galerkin BEMs, the si-
multaneous integration over test and trial function space possibly
improves the efficiency in numeric and semi-analytic approaches
in comparison to analytic integration. Beyond the scope of this
paper, it is worth noting, that semi-analytic and numerical inte-
gration methods offer the additional advantage that they can also
be applied to other, non-Laplace, kernel types.

The regularization approaches are comparatively efficient,
due to not using computationally more involved singular inte-
gration methods. These methods are usually tailored to specific
problem and assumed to be easier to implement compared to other
singular handling methods. Either because complicated singu-
lar cases are avoided, or because resulting weak singularities
can be treated by standard approaches, e.g. Duffy transforma-
tion and standard quadratures. Usually, the methods are applied
before discretization and thus have only a limited dependency
on the geometry. Compared to the singular integration meth-
ods, the method depending approximation error can be high. For
some methods, additional simulation parameters might be used
to control the convergence of the error (e.g. distance parameter
in desingularized BIE for hydrodynamics).

4. APPLICATIONS IN HYDRO- AND AERODYNAMICS
In this chapter, the application of BEMs in the fields of

hydro- and aerodynamic engineering are outlined and reviewed
according to the techniques used for singular integration.

4.1 Aerodynamic applications
This section gives a brief overview over the history of BEM

methods in aerodynamics concentrating on three-dimensional
panel methods, i.e. methods which incorporate bodies with a
thickness. During the history of these methods, the development
of singularity handling initially was closely linked to the devel-
opment of panel methods as well as special software solutions.
Hence, focus will be put on the advances in panel methods here,

while more detail concerning the singularity handling was given
in Sec. 3.1.

Pioneering the solution of three-dimensional panel methods
problems in the late 1960s, the so-called Hess-Code allowed the
computation of flow around non-lifting bodies using elementwise
constant sources and Neumann boundary condition at element-
central collocation points of quadrangular elements [12]. This
work was then extended to flows around lifting bodies with con-
stant vorticity on panels [13]. It is worth noting that in this method
the vorticity resides on the surface of the lifting bodies, while vor-
ticity or doublets were usually distributed body-internally on the
camber-plane of the wing at the time, see e.g. [19, 46]. Fur-
thermore, singularity distributions were integrated over planar
quadrangles, but the quadrangles connecting nodes in a water-
tight mesh are usually bilinear and not planar. While this sounds
problematic at first, Hess clarified that the boundary conditions
are only enforced in the panel centers, i.e. collocation points, and
hence, he body will "leak" elsewhere [12]. Later, the SOUSSA
code also used constant source and doublet distributions. How-
ever, it introduced and popularized the so-called Morino bound-
ary condition, i.e. a Dirichlet boundary condition [47].

During the 1980s different approaches for panel methods
with high-order singularity distributions have been developed,
which can be considered a second generation of the development
[6]. PAN AIR [18], as well as the European counterpart HISSS
[19], used an approximation of curved geometry by piecewise flat
sub-elements for geometric modeling. Singularity distributions
with up to quadratic basis functions were integrated exactly on
these elements, which resembles an approximate integration over
the underlying curved panel. These codes offered the solution
of Dirichlet and Neumann boundary conditions. The high-order
Hess II code utilized a truncated expansion form of potentials
for which analytical integration can be performed instead [20].
While methodically different, this also resembles an approximate
solution of the singular integrals of quadratic potential distribu-
tions over curved panels.

High-order codes offer multiple advantages, such as better
convergence and a more accurate local fulfillment of boundary
conditions. The improvements of boundary condition fulfill-
ment are caused by the continuous potential distribution. More-
over, it was show that they can applied to supersonic problems,
e.g. [18, 48]. However, the derivation of the required singular
integration methods are more involved. In addition, the software
development proved considerably more complex.

VSAERO [49] was one of the first developments stepping
back to constant distribution low-order codes. Also due to the
advances in computer technology at the time, this code allowed
smaller companies to utilize panel methods commercially [6].
Consequently, low-order codes became popular again especially
for subsonic applications and remain so to this day. The main
reason for this popularity is that they are methodically relatively
simple and, hence, require only moderate implementation effort
in comparison. They yield results, which are widely consid-
ered accurate enough for their applications. The presentation
of low-order methods in textbooks, e.g. [6], further influenced
the development of codes, e.g. [50]. As another example in use
today, UPM [46] is a panel method specifically tailored for sim-
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TABLE 1: CHARACTERISTICS OF METHODS (+: ADVANTAGE, ◦: NEUTRAL, -:DISADVANTAGE) WITH RESPECT TO SEC. 3.5 AND RELATED
EXEMPLARY REFERENCES (SEE ALSO SEC. 3.1-SEC. 3.4).

Method Implementation effort Applicability Accuracy Efficiency Exemplary references
Analytic ◦ - exact + [11, 12, 15]
Semi-Analytic ◦ + + ◦ [1, 2, 25]
Numeric + + + ◦ [29, 30, 36]
Regularization + - ◦ + [40, 43, 45]

ulation of helicopters and works similar to the low-order version
of [19]. Nevertheless, research and development of high-order
methods using linear panels [51] and also curved panels [22] is
still ongoing.

4.2 Hydrodynamic applications
The BEM in hydrodynamics is used in the framework of

the potential flow assumption, modeled by the Laplace equation
Eq. (1), for the analysis of wave-body and wave-wave interaction
in the view of linear and nonlinear dynamics. By converting
the water-body interaction problem into a BVP, the BEM can
be efficiently used and the advantage of dimension reduction is
significant.

The BIEs related to Eq. (4), Eq. (5) or combinations of both
can be used to determine the main quantities of interest, the
velocity potential and the velocity at the body surface, and (when
solving for the free surface) the velocity at the free surface. In
this regard, the boundary conditions at the free surface (𝑧 = 𝜂)
are essential to capture the dynamics of waves. It reads in linear
(nonlinear) form, see e.g. Mei et al. [52],

𝜕𝜙

𝜕𝑡
= −𝑔𝜂−1

2
(∇𝜙)2 and

𝜕𝜂

𝜕𝑡
=

𝜕𝜙

𝜕𝑧
−𝜕𝜙

𝜕𝑥

𝜕𝜂

𝜕𝑥
− 𝜕𝜙

𝜕𝑦

𝜕𝜂

𝜕𝑦
(10)

with the velocity potential 𝜙, the surface elevation 𝜂 and the
gravitational acceleration 𝑔.

In the linear regime of dynamics, the superposition principle
is valid, see e.g. Clauss et al. [53]. This allows to analyze the wave
and body dynamics frequency-wise and using spectra to represent
the correlated energy of wave and body motion in frequency
domain.

For nonlinear wave-body interaction, the superposition prin-
ciple is not valid as nonlinear interactions between the wave com-
ponents appear and time domain methods have to be considered
for resolving the nonlinear motions.

It follows the specification of the, in our opinion, three main
variants of BEMs for hydrodynamic applications. Supplemen-
tary, the reviews in [54–57] can be used as additional sources.

Free surface Green function (FSGF) methods use tailored
Green functions. These fulfill the free surface (see Eq. (10))
boundary condition, as well as the radiation condition by con-
struction, see e.g. [58–60]. Consequently, only the discretization
of the body surface needs to be considered (except for QTF anal-
ysis). Linear wave-body interaction problems analyzed in fre-
quency domain for the evaluation of hydrodynamic coefficients
are in focus and typically, (low-order) panel methods have been
employed whose development had been significantly influenced
by the aerodynamic codes described in Sec. 4.1. The singular
integration is usually treated with analytic integration or regular-
ization methods.

Rankine source (RS) approaches are used for the modeling of
both linear and nonlinear wave-body interaction, see e.g. [61–64].
Contrary to FSGF methods, the free space Green function and its
derivatives require the explicit consideration of the free surface
BCs, i.e. the equation is solved on body and water surface requir-
ing the discretization of both domains. Crucial for these methods
is the radiation condition (see e.g. Dawson’s methods [65]). In
addition to body surface desingularization, the singularities at
the free surface have usually been treated by regularization tech-
niques, e.g. by defining the evaluation points in a distance to the
boundary.

Boundary integral equation methods for marine hydrody-
namics (BIEMH) represent high-order BEMs for the analysis of
nonlinear wave-wave and wave-body interaction and typically
considered for numerical wave tank modeling, see e.g. [66–71].
For the analysis of e.g. overturning waves, the MEL approach,
[72], is used and allows to track the water particles due to con-
sidering the Lagrangian form of the boundary condition in an
Eulerian BIE frame work. For the treatment of singularities in
the neighborhood of the intersection of water and body surface,
the double node technique has been employed in the hydrody-
namic regularization methods. Here, the methods suited for inte-
gration over trimmed surfaces in isogeometric BEMs, see for an
overview Marussig & Hughes [73], could be considerable choices
and alternatives e.g. for the double node technique.

4.3 Singular integration in hydrodynamic softwares
The singular integration for some selected 3D FSGF codes

are shortly outlined hereafter. These programs are used for the
hydrodynamic analysis of ships and offshore structures in the
maritime industry and research sector and have been continu-
ously developed over the past thirty-five years. For the low-order
method in WAMIT [74–77], the analytic integration of Newman
[15], see Sec. 3.1 is applied in addition with the method pro-
posed in [75] for logarithmic expansion terms occurring in the
FSGF formulation. The integration in the high-order method of
WAMIT [74] is done separately for the test and trial function
space. For the inner integration, the strong singularity related
terms are treated either in the CPV sense in the self-influence
case or by patch subdivision in the near-field regime. The outer
integration and all regularized integrals are numerically inte-
grated by the Gauß-Legendre quadrature. The panel method
panMARE [50] uses analytic treatment for singular integration.
In HYDROSTAR [59], the approximation of the singular kernels
by Chebyshev basis polynomial have been used for singular inte-
gration. In NEMOH [60, 78], the singular integration is treated
by the method of Delhommeau [79]. Pre-computable basis inte-
grals have been identified to reconstruct the singular FSGFs, and
the application of Lagrange interpolation to the tabulated data
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has provided an efficient method for non-far-field integration. In
[54], the methods of Delhommeau and Newman with other sin-
gular integration approaches and have shown that the efficiency
is comparable, but the accuracy varies between the methods.

5. CONCLUSIONS
In this paper, we provided an overview on approaches for

singular integration in BEMs used in the context of hydro- and
aerodynamics. After detailing the mathematical background of
singular integrals, we classified the singular integration methods
and used exemplary references to outline the group specific con-
cepts. Subsequently, we compared them qualitatively according
to efficiency, accuracy, feasibility and applicability, indicating
the advantageous characteristics as well as the drawbacks of the
methods. In the following, we analyzed the singularity handling
within well known BEM software solutions for hydro- and aero-
dynamics. This analysis clearly indicates that mainly analytic and
regularization approaches are used within the considered commu-
nity codes. Furthermore, it was shown that panel methods remain
relevant and are widely applied for industry related research and
development. These methods are relatively easy to implement
and offer sufficient accuracy at low computational cost, which is
an especially useful combination for early design phases. Nev-
ertheless, nonlinear dynamics can be regarded only with limited
accuracy by this methods. To capture the nonlinear phenomena
of the underlying physics with an improved consistency, high-
order methods are required. In this context, the use of alternative
techniques for singular integration shortly outlined in this paper,
could be reviewed concerning possible improvements induced
by their advantageous characteristics. In future work, a quan-
titative comparison of selected methods for relevant test cases
could prove to be valuable, specifically regarding computational
efficiency and accuracy. To achieve this, the implementation of
these methods within a unified test framework would be required.
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