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Abstract

The integration of Internet of Things (IoT) technologies into islanded microgrids has in-
creased their vulnerability to cyberattacks, particularly those targeting critical components
such as power converters within an islanded AC microgrid. This study investigates the
impact of False Data Injection (FDI) and Denial of Service (DoS) attacks on various power
converters, including DC-DC boost converters, DC-AC converters, battery inverters, and
DC-DC buck-boost converters, modeled in MATLAB/Simulink. A dataset of healthy and
compromised operational parameters, including voltage and current, was generated under
simulated attack conditions. To enhance system resilience, a deep learning-based detection
and classification framework was proposed. After evaluating various deep learning models,
including Deep Neural Networks (DNNs), Artificial Neural Networks (ANNSs), Support
Vector Machines (SVMs), Long Short-Term Memory (LSTM), and Feedforward Neural
Networks (FNNs), the final system integrates an FNN for rapid attack detection and an
LSTM model for accurate classification. Real-time simulation validation demonstrated
a detection accuracy of 95% and a classification accuracy of 92%, with minimal compu-
tational overhead and fast response times. These findings emphasize the importance of
implementing intelligent and efficient cybersecurity measures to ensure the secure and
reliable operation of islanded microgrids against evolving cyberattacks.

Keywords: islanded microgrid; power converter; cyberattack; FDI; DoS; LSTM; FNN

1. Introduction

Islanded microgrids have emerged as highly effective solutions for ensuring reliable
power supply, reducing energy losses, and minimizing maintenance requirements in re-
mote or isolated locations without access to standard electrical grids. By enabling localized
generation and distribution, microgrids significantly reduce transmission and distribution
losses, address global energy challenges, and promote the integration of renewable energy
sources. This approach contributes to cutting carbon emissions, lowering operational costs,
and reducing large-scale land use associated with conventional grid infrastructure. Conse-
quently, islanded microgrids are increasingly deployed in critical sectors, such as hospitals
and private enterprises, where continuous and stable power supply is essential. Their role
in enhancing energy efficiency and supporting sustainable development underscores their
growing importance in the global energy landscape [1].

Electronics 2025, 14, 3409

https://doi.org/10.3390/ electronics14173409


https://doi.org/10.3390/electronics14173409
https://doi.org/10.3390/electronics14173409
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0003-5076-5271
https://orcid.org/0000-0003-3767-8280
https://orcid.org/0000-0003-4371-6108
https://doi.org/10.3390/electronics14173409
https://www.mdpi.com/article/10.3390/electronics14173409?type=check_update&version=1

Electronics 2025, 14, 3409

20f19

However, the growing adoption of the IoT in the control and security management of
islanded microgrids has increased their vulnerability to cyberattacks during operation [1,2].
In particular, power converters, which are pivotal in maintaining stability and power qual-
ity within microgrids, have become prime targets for malicious intrusions. Cyberattacks
targeting these converters can cause severe operational disruptions, leading to system insta-
bility, considerable economic losses, and reduced reliability. Given that islanded microgrids
often serve critical applications, such as defense installations, healthcare facilities, and other
high-security environments, such disruptions can have profound consequences, affecting
energy management, demand response, and economic dispatch, ultimately resulting in
energy waste and substantial recovery costs [3].

Historically, critical energy infrastructure has been a frequent target of cyberattacks,
exposing significant vulnerabilities and raising concerns about power system resilience
worldwide. Recent high-profile incidents exemplify this threat landscape. The May 2021
Colonial Pipeline ransomware attack disrupted fuel supplies across the eastern United
States, illustrating the susceptibility of critical infrastructure to cyber extortion [4]. In 2010,
malware identified by Kaspersky Labs (Woburn, MA, USA) [5] showcased a sophisticated
architecture capable of targeting industrial control systems, human-machine interfaces,
electrical devices, and SCADA systems, thereby posing significant threats to power infras-
tructures. The 2020 Mumbai power outage investigation revealed Trojan horse malware
infiltration within the city’s electrical grid, causing extensive service disruption. In De-
cember 2015, Ukraine’s power grid was severely impacted by the Black Energy malware,
which incapacitated control center operations and left thousands without electricity [6].
These cyber incidents are accompanied by notable operational failures, such as Austria’s
2013 network congestion due to software faults, Switzerland’s information overload in
2005, and the 2003 North American blackout caused by a status estimator malfunction [6].
Collectively, these events highlight the persistent risks posed by both cyber and technical
failures, resulting in widespread outages, service disruptions, and potential damage to
critical infrastructure [7].

Cyberattacks on islanded microgrid data are generally classified into three categories:
attacks targeting data availability, data integrity, and data confidentiality [8]. Attacks on
data availability aim to disrupt legitimate access to networks or data-sharing systems, often
through overwhelming traffic such as DoS attacks [9-11]. Data integrity attacks involve
unauthorized modification or manipulation of information within the system, with FDI
attacks being a prominent example. Attacks on data confidentiality focus on unauthorized
access to sensitive information [12].

The effective classification of cybersecurity attacks plays a vital role in proactive
mitigation strategies. As attack methods continue to evolve and diversify, categorizing
these threats enables a deeper understanding of their characteristics, which is essential
for establishing strong defensive measures [13]. Traditional security systems often strug-
gle to detect novel or sophisticated attacks; however, advanced classification techniques
have proven successful in uncovering hidden patterns, thereby improving detection accu-
racy [14]. Furthermore, a standardized framework for attack categorization facilitates the
optimal allocation of cybersecurity resources by prioritizing threats based on their type and
severity [15].

Considering the increasing cyber vulnerabilities of islanded microgrids, this study
develops a deep neural network-based framework to detect and classify cyber attacks
targeting power converters within islanded microgrids [16]. An islanded microgrid model
was created in MATLAB/Simulink R2022b, incorporating essential components, such as
DC-DC boost converters, DC-AC converters, DC-DC buck-boost converters, and battery
inverters. A cyberattack model was simulated by mathematically representing various
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attack scenarios. Operational data reflecting both normal and compromised conditions,
including input and output voltages and currents were generated and collected. These
datasets were employed to train deep learning models to effectively detect and classify
cyberattacks. Multiple deep learning architectures were evaluated, with LSTM networks
and FNN emerging as the most effective for classification and detection of cyberattacks,
respectively. A summary of the performance of these different deep learning models is
presented in the accompanying Table 1.

The research expands the current understanding of microgrid cyberattacks by con-
centrating on the classification of FDI and DoS attacks within an islanded AC microgrid
environment. Unlike previous studies, which primarily focus on localizing attacks within
the microgrid, this work includes a comprehensive set of power converters [17]. Prior
research has largely emphasized grid-connected or DC microgrids, leaving islanded AC mi-
crogrids, particularly those integrated with battery inverter systems, less explored [18,19].
The methodology employs a two-stage deep learning framework: an FNN for rapid attack
detection and an LSTM network for precise classification [18,20,21]. The FNN model’s
relatively simple architecture, with only four trainable layers, achieves a detection accuracy
of 95%, reducing computational overhead. The LSTM model, capable of capturing long-
term dependencies and mitigating the vanishing gradient problem common in recurrent
neural networks, attains a classification accuracy of 92%. This combined approach offers
an effective balance of computational efficiency and high accuracy, making it suitable for
real-time security applications in microgrids.

The microgrid in this study was modeled following the configuration from the Univer-
sity of Moratuwa (UoM) microgrid. Cyberattack scenarios were simulated by introducing
malicious signals to the controllers of various power converters. Voltage and current mea-
surements at both inputs and outputs were collected under normal and attack conditions
and used to train FNN and LSTM networks for efficient detection and classification [18,21].
The FNN model’s simplicity and computational efficiency make it well suited for real-time
deployment on hardware platforms such as Raspberry Pi, while the LSTM network’s capa-
bility to analyze sequential data enables accurate identification of cyberattack types based
on their behavioral patterns. The remainder of this paper is organized as follows: Section 2
describes the islanded microgrid model and its components. Section 3 discusses various
cyberattacks in microgrids and their impact. Section 4 presents the experimental setup and
evaluation of the proposed deep learning system for attack detection and classification.
Finally, Section 5 concludes the paper and suggests directions for future work.

Table 1. Summary of cyberattack detection methods in microgrid systems.

Paper Reference Detection Type Accuracy (%) Model Type

Koduru et al. [22] Denial-of-Service (DoS) attack 98.00 Deep Neural Network (DNN)

Koduru et al. [22] False Data Injection (FDI) attack 90.00 Deep Neural Network (DNN)

Hybrid ML Approach in DC False Data Injection (FDI) attack >96.5 Long Short-Term Memory (LSTM)
Microgrids [23] ) ’ & y

ﬁi’gﬁgﬁ:ﬁg ég]p roach in DC False Data Injection (FDI) attack >96.0 Logistic Regression

Dehghani et al. [24] FDI on control signals, communication networks >97 Wavelet transform + Deep auto-encoder
Ye et al. [25] FDI into smart metering and central controller unit 97.00 Modified prediction interval-based LSTM
Hakim and Karegar [26] FDI into substation measurements and sensors 95.53 Cross wavelet transform + SVM
Mohiuddin et al. [27] FDI into output voltage and power measurements 91.00 Deep learning using rectified linear unit
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2. Islanded Microgrid

The MATLAB/Simulink model of the microgrid was developed based on the UoM
microgrid, with particular emphasis on their load profiles. The model incorporates various
load sections, including a new administration building with a power demand of 100 kW, a
canteen requiring 50 kW, and the Sumanadasa building, which has a load requirement of
200 kW. Figure 1 illustrates the basic microgrid model, showing the load distribution and
the conceptual framework used for the MATLAB design and simulation of the system’s
behavior and control.
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Figure 1. Microgrid model with loads.

2.1. Solar PV with Solar Inverter

The proposed islanded PV system employs a two-stage power conversion architecture,
comprising a DC-DC boost converter followed by a standalone DC-AC inverter. The
DC-DC converter adopts a high-gain step-up topology to raise the variable PV array
voltage to a regulated DC link voltage, allowing the use of low-voltage PV modules and
ensuring stable operation under varying irradiance and temperature conditions.

A Maximum Power Point Tracking (MPPT) algorithm is implemented within the
converter control using a MATLAB function. The Perturb and Observe (P&O) method is
chosen for its simplicity, low computational requirements, and reliable steady-state tracking
capability. The inverter stage is based on a voltage-source inverter (VSI) topology, which
converts the regulated DC voltage into a stable AC output for local loads. In islanded
mode, the inverter maintains both output voltage and frequency within prescribed limits,
independent of any external grid connection.

The control strategy employs a dual-loop structure: an inner current control loop
for fast dynamic response and an outer voltage control loop for regulating the load-side
voltage. The voltage loop ensures stable RMS voltage under varying load conditions, while
the current loop provides overcurrent protection and improves transient performance.
Additionally, the power management scheme coordinates the operation of the PV array,
energy storage system, and local load to maintain supply—demand balance during islanded
operation. Table 2 illustrates the design parameters of the three solar PV arrays.



Electronics 2025, 14, 3409

50f 19

Table 2. Parameters of three PV arrays.
Parameter PV Array for 100 kW PV Array for 50 kW PV Array for 200 kW
Parallel strings 24 8 36
Series-connected modules per string 11 16 14
Maximum Power (W) 400.32 400.32 400.32
Cells per module (Nej1) 80 80 80
Open circuit voltage Ve (V) 49.8 49.8 49.8
Short-circuit current I (A) 10.61 10.61 10.61
Voltage at maximum power point Vinp (V) 41.7 41.7 41.7
Current at maximum power point Imp (A) 9.6 9.6 9.6
Temperature coefficient of Vi (%/°C) —0.36 —0.36 —0.36
Temperature coefficient of Is. (%/°C) 0.09 0.09 0.09
Light-generated current Iy, (A) 10.6354 10.6354 10.6354
Diode saturation current Iy (A) 3.7006 x 10~10 3.7006 x 1010 3.7006 x 1010
Diode ideality factor 1.0088 1.0088 1.0088
Shunt resistance Rg}, () 77.1038 77.1038 77.1038
Series resistance Rq (Q2) 0.18434 0.18434 0.18434

Each PV inverter has a central AC output, which connects to the PV AC combiner

panels and then feeds into the building’s power system. All inverters communicate with

the DHYBRID Universal Power Platform via an RS-485 communication line, which helps

prevent battery overcharging. Since communication is involved, there is a high possibility
of cyberattacks on the solar inverter. The MATLAB design of the solar PV system includes a
DC-DC boost converter with MPPT control, the PV array, and measurement units, as shown
in Figure 2. Figure 3 presents the schematic of the DC-AC converter with its controller, filter,
and measurement devices. An EMI (Electro Magnetic Interference) filter for reducing higher-
order harmonic frequencies from the inverter output is shown in Figure 4. Figure 5 depicts

the PI-based control structure with d—q axis-oriented cascade control for the three-phase

voltage source PWM rectifier.
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Figure 2. Schematic of the solar PV system comprising a DC-DC boost converter with MPPT control,

PV array, and measurement units.
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Figure 5. PI-based control structure with d—q axis-oriented cascade control of three-phase voltage

source PWM rectifier.

2.1.1. DC-DC Boost Converter and Inverter Control Equations

The DC-DC boost converter steps up the input voltage Vi, to a higher output voltage
Vo, which is then used as input to a DC-AC inverter. The main components include an
inductor L, with series resistance R, a diode D, an IGBT switch, a parallel output capacitor

Cpo, and a load Rjgag-

Steady-State Output Voltage
Vin — IRy

V, = 1
=2 M
Load and Inductor Currents
Vs I,
I , I} = 2
0 Rload L 1-D ( )

Inductor Current Ripple
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2.1.2. DC-AC Converter System Parameters

The DC-AC converter (VSI) converts the DC output of the boost converter V, into a
three-phase AC voltage. Key parameters include:

¢ Inverter inductance L and resistance R (AC-side filter)
*  DC-link voltage V, (from the boost converter)
*  AC-side voltages v,, vy, vc and currents iy, iy, ic

Control variables include d—q axis reference currents i3, i; and modulation indices
mg, my, m. for PWM. A PLL measures grid angle § and frequency w.
Reference Currents
2Q*

ldzga, lq :*ga (5)

Outer DC-Voltage PI Controller

ey = Vd*C - Vdc/ 12 = Kp'UeU + KZ'U €y dt (6)

Current PI Controllers

eg = 12 — iy, Uz = Kpied + Kj; | egdt

(7)
eq = l; — iq, Ug = Kpieq + Kj; eq dt
Voltage Commands with Decoupling
Uy = Ugq + Rig + Lug — wliy -
vy = Ugq + Rig + Lug + wLiy
PWM Generation
{v;, v}, v} = invClarke (invPark(Ufg, (O 9)) )
2, 1
Mype = Wvg,b,cr da,b,c = 2(1 + mu,b,c)/ |m| <1 (10)
c

2.1.3. EMI Filter Design: L1 — (C || Lp) Branch

The EMI filter branch consists of a series inductor L; and a parallel LC tank (C || L),
designed to suppress high-frequency noise from power electronic converters.

*  Series inductor Li: Acts as a line choke, blocking high-frequency harmonics.

*  Shunt capacitor C: Diverts high-frequency components to ground.

*  Parallel inductor L: Forms a resonant LC tank with C, high impedance at fundamen-
tal frequency, enhancing filtering near resonance.

Series Inductor Impedance
Zp, = jwly (11)

Parallel LC Tank Impedance
jCL)LZ 1

Iy = —1 = - -
I =1 wie T aryne

(12)
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Total Input Impedance
N . ja)Lz
Ziotal = ZL1 + ZH = jwLi + 1— ?L,C (13)
Component Selection
1 C 1
N, Ceqg=————, Ly = —F= 14
fe 271L1Ceq 17 1] —w2L,C 2 (27 fiine)2C (14

2.2. Battery Bank with Battery Inverter

The battery bank consists of parallel strings, each containing series-connected mod-
ules. This setup provides a total resultant capacity of 470 Ah to the battery inverter. A
battery inverter converts DC power to AC to supply the load and converts AC to DC
for battery charging using a bi-directional power converter. This system enables both
active and reactive power management. In off-grid mode, the battery inverter acts as a
virtual synchronous generator to regulate AC voltage and frequency through droop control.
Voltage regulation is managed based on the reactive power demand within the system.

Figure 6 illustrates the use of a universal bridge to perform both AC-DC and DC-
AC conversions. This configuration enables efficient interfacing between the microgrid
and the battery inverter system. The universal bridge facilitates bidirectional power flow,
supporting both charging and discharging operations of the battery. Figure 7 shows the
battery storage system, which includes a controller, the battery itself, a DC-DC buck-boost
converter, and measurement units. The controller manages the battery’s charging and
discharging processes to maintain optimal performance. The buck-boost converter adjusts
the voltage levels as needed to ensure efficient energy flow between the battery and the
microgrid. These converters use parameters such as state of charge (SOC), battery system
current, AC supply parameters, and DC parameters as inputs to the controller. The system
communicates with the Battery Management System (BMS), which is highly vulnerable
to cyberattacks.

g o® s
Scope

Demux4 Scope1
T

+p————d+

Battery with converter

Goto
R

g From17
A A Vabc i
labc Series RLC Branch
B B a
- b + 000 2>
(o3 c c
Universal Bridge Three-Phase Series RLC Branch1

V-l Measurement

L———————=+ 000 v »—x 3>
C
Series RLC Branch2

Figure 6. AC-DC and DC-AC conversion using a universal bridge for interfacing with the battery
inverter system.
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Figure 7. The battery storage system comprising a controller, battery, DC-DC buck-boost converter,
and measurement units.

3. Cyberattacks in Microgrid

A cyberattack refers to a deliberate action by a person or group to steal or expose
confidential data while attempting to breach security or damage networks and computers.
Based on their impact on different security properties, cyberattacks are categorized as
affecting availability, integrity, and confidentiality. Historically, there have been many cy-
berattacks on power systems. However, islanded microgrids are more vulnerable compared
to traditional power systems.

3.1. Attacks on Data Integrity

These attacks can corrupt measurements or command signals within the communica-
tion network, leading to malfunctions in the microgrid and affecting its control systems.
Examples of attacks on data integrity include rogue software and malware and the FDI
attack. FDI attacks are among the most challenging threats to microgrids, with impacts on
modern power grids that can be severe and unacceptable.

Yr(t) =a-Yo(t)+ B (15)

e Ifa #0,B =0, this attack manipulates the real measurement by «
e Ifa=0,p8 #0, this attack replaces the real measurement by j
e Ifa=1,p =0, thereis no attack in the controller.

The manipulation in Equation (15) is derived from the paper [5]. Yo(t) represents
the input from the sensors to the controllers, while Yr(t) denotes the manipulated output
obtained after the cyberattack. Based on this manipulation, we can categorize the FDI
attack into three distinct cases.

e FDICasel:a#1,8>0
e FDICase2:a#1,6=0
e FDICase3:a=1,8>0

3.2. Attacks on Data Availability

The cybersecurity system must ensure timely and accessible data, which is essential for
controlling power electronics converters in smart microgrids, particularly in islanded mode
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and during transient events. Attacks aimed at obstructing or delaying data communications
are known as attacks on data availability, commonly referred to as Denial of Service (DoS)
attacks.The DoS attack model is defined as a« = 0, f = 0 in Equation (15). Attackers can
employ DoS attacks to target communication links, while False Data Injection (FDI) attacks
compromise the data exchanged between the controller and sensors.

3.3. Attacks on Data Confidentiality

Cyberattacks that breach confidentiality enable hackers to eavesdrop on the communi-
cation network, gaining access to sensitive information about customers and the microgrid
operation and control strategies. While these attacks may not immediately disrupt micro-
grid operations, they pose significant privacy and security risks. In our project, we employ
False Data Injection (FDI) attacks in three distinct cases, along with Denial of Service (DoS)
attacks, which have more impact on microgrids and attackers commonly willing to use
these types.

3.4. Cyberattack Model Design

In the MATLAB design, we used a step input U(t) along with a delayed step input
to simulate an attack over a specific period. The rationale for limiting the duration of
the attack is rooted in safety considerations. If the attack persists beyond the system’s
safety thresholds, protection mechanisms such as circuit breakers would be triggered in
a real-world scenario. Therefore, to realistically simulate a transient disturbance without
initiating a system shutdown, the attack duration was kept brief. Figure 8 shows the model
that was designed based on Equation (15).

We independently varied the parameters using the corresponding Equation (15). This
experimental design enables us to isolate and observe the effects of manipulating each
parameter individually during the attack window. Figure 9 is an example of how the attack
model is integrated with the microgrid solar inverter.

Scoped

\G

R NS
- ( 1>
Scopet ] !
Add1 PID Controller Gain2 Scope3

Gaint

<
Step3
i

Stepd.

Figure 8. Cyberattack model.
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:

Solar Voltage Input Controller
X1 [Amea Y1 1)
————
Model z operator
Solar Current Input Unit Delay MPPT .
h Repeating
L 2 Ak | Y2 3 Algorithm Sequence
Model .? P

Unit Delay

Figure 9. Solar inverter with DC-DC boost converter with attack in MATLAB.
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3.5. Cyberattack Results

The graphical representation illustrates the effects of a cyberattack on different power
converters, quantifying the extent to which each converter is impacted. It demonstrates
how such attacks influence the operational behavior of the microgrid. Figures 10-13 show
examples of the results of cyberattacks that occurred in power converters.

In these graphs, the attacks are introduced after 1 s of simulation time. Notably, in
Figure 10, following the termination of a cyberattack at 4 s, the system response of the
solar inverter under FDI attack returns to normal operating conditions. However, in other
cases, the system does not regain stability after the attack. These observations underscore
the necessity of implementing cybersecurity measures to ensure microgrid stability and
resilience against such disturbances.

AC Voltage outputl Over Time AC Current output1 Over Time Voltage output of

Figure 10. FDI attack in solar inverter. (a) AC voltage output, (b) AC current output, (¢) DC boost
converter voltage output.

AC Voltage outputl Over Time AC Current output1 Over Time

- 800 —

Voltage output of boost converterl Over Time

Current()

Volatge (V)
3
w
f
L

H 3 7 3
Time (5) Time (s)

(a) (b) (c)

Figure 11. DoS attack in the solar inverter. (a) AC voltage output, (b) AC current output, (¢) DC boost
converter voltage output.

AC Voltage outputl Over Time AC Current output1 Over Time Voltage output of boost converterl Over Time

@) (b)

Figure 12. FDI attack in the battery inverter. (a) AC voltage output, (b) AC current output, (c) DC
boost converter voltage output.
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@) (b) (0)

Figure 13. DoS attack in each DC-DC boost converter. (a) AC voltage output, (b) AC current output,
(c) DC boost converter voltage output.

4. Experiment and Evaluation

The proposed data-driven evaluation method is directly applied to the islanded micro-
grid MATLAB model output. Cyberattacks are applied at specific time intervals, recording
and labeling the output data. Based on the labeled data, data processing methods are
applied. Subsequently, data-driven methods are trained. With respect to evaluation of
methods, precision, F1-score, recall, accuracy, MSE (mean squared error), MAE (mean abso-
lute error), and validation processing methods are applied based on the labeled data loss.

FNNSs are typically less complex than other deep learning architectures. Due to their
simpler structure, they enable quick processing along with brief training periods. The quick
computational capabilities of FNNs make them suitable for applications requiring quick
performance, together with restricted computational resources.

LSTMs are highly effective for cyberattack detection because they analyze sequential
patterns and track variations in data during operations. The LSTM network captures
long-term patterns while retaining essential information, enabling it to detect changes
effectively. LSTMs are also highly capable of handling diverse sequences and supporting
real-time monitoring, making them effective in detecting cyber threats across a variety of
data types, including system events and network.

4.1. Data Pre-Processing

The basic step is data analysis to understand the relationships between variables and
how the data are distributed. Handling missing values, and detecting and removing outliers
are managed by data cleaning. The data transformation process consists of normalization,
duplicate removal and encoding of categories, and discretization procedures. Feature
engineering is used to select relevant features and create new features from existing ones
to identify patterns. The process of data integration unites information across multiple
sources, while data reduction works to simplify the collected data.

In data processing, the input data window size is (10, 9). Each window is assigned
a label based on the maximum frequency of outputs within those 10 rows. Ten rows and
nine features are combined into a matrix. To address this, the FNN and LSTM models were
designed to accept two-dimensional input with a window size of 10 rows and 9 features.
The process involves sliding the window from the 1st to the 10th row, then from the 2nd
to the 11th row, and so on. Below Table 3 explains the hyperparameters used for our
four models.
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Table 3. Deep learning model hyperparameters for classification and detection.
Hyperparameter LSTM Class FNN Class LSTM Detect FNN Detect
Model Type Stacked LSTM (6) Feedforward ANN (4) Stacked LSTM (4) Feedforward ANN (3)
Layers 6 LSTM 4 Dense (128, 64, 64,32) 4 LSTM 3 Dense (128, 64, 32)
Units per Layer 50 128, 64, 64, 32 50 128, 64, 32
Return Sequences Yes N/A Yes N/A
Activation Default ReLU Sigmoid (output) ReLU
Dropout 0.2 0.3 0.2 0.2
Batch Norm. Yes No No No
L2 Reg. 0.01 (1st layer) No No No
Output Layer Dense (3, softmax) Dense (3, softmax) Dense (1, sigmoid) Dense (1, sigmoid)
Loss Categorical CE Categorical CE Binary CE Binary CE
Optimizer Adam Adam Adam Adam
Epochs 60 60 50 50
Batch Size 20 20 20 20
Validation Split 0.2 0.2 0.2 0.3
Callbacks
. val_loss val_loss & val_mae val_loss val_loss
(EarlyStopping)
Patience 5 15 10 15
Min Delta 1x107* 1x107* 1x1073 1x107*

4.2. FNN Model for Detection

Implementing a hyperparameter tuning process for an FNN model using a grid search
technique, the model has three hidden layers with 128, 64, and 32 neurons, respectively,
activated by ReLU. The input layer accepts 2D input, and the output layer uses the sig-
moid activation function. We identified the best configuration that included dropout rates
through a grid search process to boost performance. Early stopping is also used to mea-
sure validation loss, with a threshold value of 0.01. It monitors 10 epochs and waits for
10 epochs to check the change in validation loss. If the change is not significant, training
stops. The validation performance deterioration triggers this method to stop training
processes while keeping the optimal network weights for the prevention of overfitting.
The defined epoch count is 50, and the batch size is 20. The model is trained using the
training dataset.

In tests, the FNN detection model demonstrated solid performance through the binary
cross-entropy result of 0.278 and the mean squared error of 0.0408. The model showed reliable
binary classification results with 95.32% accuracy and 93.3% precision alongside 95% recall
because of its optimal false positive and negative ratio. Figures 14 and 15 show how accuracy
and loss change with each epoch during training for a given scenario.

Loss

— Vvalidation Loss
—— Training Loss

0 10 20 30 40 50
Epoch

Figure 14. Loss curve of training and validation loss of FNN model for detection.
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Figure 15. Accuracy curve of training and validation of FNN model for detection.

4.3. LSTM Model for Detection

The LSTM model consists of four LSTM layers, each with 50 units of neurons, which
process sequential data by maintaining 50-dimensional hidden states. The model gener-
alizes and prevents overfitting with a dropout rate of 0.2 implemented after each LSTM
layer. During dropout operations, a random partition of neurons is deactivated to prevent
the model from depending on particular features. The final classification step depends on
a dense layer with sigmoid activation to generate a binary output, which determines the
data class. The detection model utilizing LSTM produced exceptional outcomes through its
measurement of 0.171 binary cross-entropy value and 0.030 mean square error. The 96.6%
accurate model revealed 99.0% precision, and 93.0% recall, establishing highly successful
detection with very low error rates. The learning curves for accuracy and loss with the
attack data are illustrated in Figures 16 and 17.

Accuracy

1.00 1 — validation Accuracy A,

Training Accuracy D N
0.98 4
0.96
0.94 1

0.92 4

Value

0.90 4

0.88 1

0.86

0.84

T T T T T T T
0 5 10 15 20 25 30
Epoch

Figure 16. Accuracy curve of training and validation of LSTM model for detection.
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Figure 17. Loss curve of training and validation loss of the LSTM model for detection.
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4.4. FNN Model for Classification

The grid search algorithm was used to identify the number of neurons in each hidden
layer. It provides the best parameters for each dataset. The aim is to identify the optimal set
of parameters that exhibit good performance when presented with various inputs. Based
on the results of the grid search, the number of neurons in the hidden layers, in order
from the input layer, is 128, 64, 64, and 32. This configuration gives a higher performance
compared to other parameter sets during training. Figures 18 and 19 illustrate the learning
curves for accuracy and loss using the attack data. For its classification model, the FNN
showed performance through a cross-entropy of 0.378 and mean squared error of 0.0456,
together with mean absolute error of 0.0836. An evaluation of the model exhibited balanced
classification performance through 90.1% accuracy, as well as precision and recall, while
maintaining an Fl-score of 0.925.

Accuracy

0.875 A
0.850 ﬁ,\_/\/ a4

0.825 1
0.800 1

0.775 4

Value

0.750
0.725
0.700

—— Validation Accuracy
0.675 4 Trainin g Accurac y

v v . ! ' v !
o 10 20 30 a0 0 60
Epoch

Figure 18. Accuracy curve of training and validation of FNN model for classification.
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Figure 19. Loss curve of training and validation of FNN model for classification.

4.5. LSTM Model for Classification

This LSTM model is designed for multi-class classification tasks on sequential data.
The model is made up of six stacked LSTM layers, each containing 50 units. The first
five LSTM layers maintain sequence return functionality to process the full temporal
data patterns, while the final LSTM layer produces a fixed-length vector summary of the
sequence. After each LSTM layer, the model applies a dropout layer with a dropout of
0.2 to increase generalization and decrease overfitting effects. The application of batch
normalization directly follows each LSTM layer to stabilize and accelerate the training
process. The first LSTM layer also incorporates L2 regularization to constrain the model’s
complexity. The final output layer has three neurons while employing softmax activation
to generate probability estimates of the three target classes. This architecture uses a balance
between depth features and regularization and stability, which makes it an ideal fit for
the classification of sequences. The performance of the LSTM classification model was
exceptional, as it recorded a Brier score of 0.0346, along with 92% accuracy. The model
reached a cross-entropy value of 0.1742 along with a loss of 0.1929 and MAE 0.0721,
precision 93.34%, recall 92.19%, and PRC 0.9825. The learning curves for accuracy and loss
with the attack data are illustrated in Figures 20 and 21.
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Figure 20. Accuracy curve of training and validation of LSTM model for classification.
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Figure 21. Loss curve of training and validation of LSTM model for classification.

4.6. Final Combined Model

An FNN model was preferred over an LSTM model for the initial detection phase
due to the complexity and time-consuming nature of LSTM models. However, the LSTM
model was selected for classification purposes due to its high accuracy. To reduce resource
usage, the system is designed such that the LSTM model is activated only if the FNN model
detects an attack. Otherwise, the LSTM remains idle. Figure 22 illustrates the final model
developed. The system enables complete allocation of computational resources to every
model so that it can perform its processing tasks.

Sensor data

l

Data
Processing

|

FNN
Detection ﬁ» Attack signal

model

o
LSTM classification
No attack signal model

|

End

Attack type

Figure 22. Overall combined model.
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5. Conclusions

Due to the evolution of the power sector with the integration of IoT technologies,
islanded microgrids have become increasingly vulnerable to cyberattacks. Such attacks,
particularly when targeting power converters, can cause severe system damage, making
recovery highly challenging and underscoring the importance of reliable cybersecurity
mechanisms. This study investigated the impact of cyberattacks on power converters in
an islanded microgrid, along with the development of deep learning-based detection and
classification models. Numerous experiments were conducted, and the resulting datasets
were used to train models capable of identifying high-impact attacks. Results indicated that
DoS attack had a relatively lower impact compared to three cases of FDI attack scenarios.
Among the converters tested, solar inverters were the most vulnerable, while battery
inverters showed the least susceptibility.

For attack detection, the FNN achieved an accuracy of 95.33%, while the LSTM
achieved 96.60%. In classification tasks, the FNN attained 90.10% accuracy, and the LSTM
reached 92.85%. A combined architecture was developed, consisting of an FNN-based de-
tection model followed by an LSTM-based classification model to minimize resource usage
and enable quick detection. The classification process using the LSTM model is initiated
only after the FNN model detects an attack. The FNIN model was chosen for detection due
to its simplicity and faster response time compared to the LSTM, which is essential for rapid
detection. The LSTM model excels in classification tasks as it is well suited for managing
sequential data, achieving higher accuracy rates. Future work on this project will include
hardware implementation and a comparison of the models with other built-in models.
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The following abbreviations are used in this manuscript:

AC Alternating Current

ANN Artificial Neural Networks
BMS Battery Management System
DC Direct Current

DNN Deep Neural Networks

DoS Denial of Service

EMI Electromagnetic Interference
FDI False Data Injection

FNN Feedforward Neural Network
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IoT Internet of Things

LST™M Long Short-Term Memory

MPPT Maximum Power Point Tracking

SCADA  Supervisory Control and Data Acquisition

S0C State of Charge

SVM Support Vector Machines
UoM University of Moratuwa
VSI Voltage Source Inverter
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