
18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 1 of 12

SpaceOps-2025, ID # 458

The Way to Service-Oriented Architectures –

Lessons Learned from Introducing HCC at GSOC

Hauke, Armina*

a Department Communication and Ground Station, German Space Operations Center, Münchner Straße 20, 82234

Weßling, Germany, armin.hauke@dlr.de

* Corresponding Author

Abstract

With the project HCC, the German Space Operations Center (GSOC) is on its way to provide its capabilities as

services and build ground segments for space operations in a service-oriented architecture. HCC has been first utilized

in an operational environment in the context of sounding rockets, operated by Moraba, DLR’s mobile rocket base, in

2022. After this successful prove of its proficiency, HCC is going to be introduced step by step in all the other fields

of operations at GSOC: satellite operations, human space flight and experimental setups like the LUNA analogue in

Cologne. In this paper, we share our experiences and findings on this journey. Overall, the change to service-oriented

architecture is a great improvement. But the necessity to convert legacy systems into this new architecture, as well as

guiding operations personnel to the new paradigms might be also a major effort. We present pitfalls and benefits and

also ways to gradually adapt humans and systems in order to make such a transition as smo oth and painless as possible.

Keywords: Service Oriented Architecture, Change Management

1. Introduction

In recent years, developments in space flight have been dominated by the trend towards becoming more agile. This

means that smaller, less complex and more cost-effective satellites are being put into orbit faster and faster. At the

same time, control systems on ground must also take this trend into account. On the one hand, such ground segments

must be made available much more quickly, but they must also be much cheaper to operate.

The technological answer to this challenge is undoubtedly modularization and the use of service -oriented

architectures. These two design features make it possible to quickly and precisely assemble ground segments from

existing components. They also make it possible to significantly increase the degree of automation of the overall

system.

However, service-oriented ground systems are not only essential for small missions with a low budget. It is als o

becoming increasingly important for large, complex missions to no longer operate from a single control center without

exception. Instead, concepts such as "distributed operations" allow the various tasks to be distributed across several

entities. In addition to the distribution of the various activities, this also enables new and more efficient concepts for

redundancies within the ground segment and the resilience of the overall system.

All agencies and commercial providers of solutions for space flight operations are actually working on the creation

of and transition to service-oriented architectures. The solution being developed at GSOC is called HCC [1,2].

2. The HCC-Infrastructure

A quick but very important realization when transferring the existing expertise for space flight operations at GSOC

into a service-oriented architecture was that a suitable platform is needed as infrastructure for a service-oriented ground

segment. Although there are some free or commercial products, such as cloud solutions, container orchestration and

message brokers, none of these tools were able to meet all the requirements of GSOC. This is also due to the fact that

we support a wide range of different types of missions at GSOC and want to continue to support them with a c ommon

platform. Two areas in particular gave rise to KO criteria: Safety aspects and the spatial location of the components.

In terms of security requirements, a system was needed in which access to data and data types can also be strictly

regulated within the system. In addition, the set of rules for assigning rights must also be changeable at runtime in

order to be able to adapt to special phases in mission operation. The requirements of manned space travel from the

experience of operating the Columbus module as part of the ISS were used as a guideline, as well as the requirements

of a critical infrastructure such as the Galileo project. Although corresponding strict safety precautions should be

intrinsically anchored in the overall system, it must nevertheless be possible to deactivate these precautions, for

example in order to set up a ground segment in cooperation with universities that can be used in a university

environment without critical safety aspects.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 2 of 12

The requirements for the spatial distribution of the overall system are just as wide-ranging. For more restrictive

customers, a ground system must be able to be set up completely and autonomously in our control center, where it

must also be physically separated. The concept for more experimental small satellites, where individual operations

components or even the operations personnel can be partially located outside the control center, or access to the systems

should also be possible via global Internet connections, is literally the opposite.

Figure 1 shows the schematic structure of an HCC ground segment. Logically, it can be divided into two parts: the

infrastructure components of the core system and the actual services that provide the space flight -specific

functionalities. It should be noted that this separation is purely logical. All services, both the basic infrastructure

services and the space flight services, interact with each other in the same way. All services communicate with other

components via the data transport service (HCC-DT).

Fig. 1. Structure of an HCC based ground segment with its basic services to build a common infrastructure

accompanied by the space flight specific services. All services are deployed from a common service repository and

interact with each other through the data-transport-service.

2.1 Basic Services

As mentioned at the beginning, one of the goals of HCC is to offer an intrinsic security layer. Accordingly, there

is a security service, HCC-SEC. After establishing a connection to the HCC system, all components can only

communicate with HCC-SEC in order to log in. Depending on the requirements, this login process can take the form

of a simple login with a password, via certificates exchanged in advance, or via an additional parallel path outside

HCC as two-factor authentication.

In addition to authentication, HCC-SEC also regulates the authorization of the individual components. To this end,

it uses a role concept to store the authorizations of all users and transfers these to other components as required. The

extent to which these then store the information in the form of session concepts, at least over a period of time, is left

to the respective components, depending on the criticality of the activities. However, HCC-SEC is also able to

communicate changes in the role assignment to other applications as a notification, i.e. to actively revoke rights. An

important feature of HCC is it does not differentiate between services, i.e. technical components, and human users in

terms of security. Both must authenticate and authorize themselves for interactions in the same way.

The third important feature of HCC-SEC is that it manages the public keys of the individual services as a central

point. Each component receives the public key from HCC-SEC when going through the login process. This can then

be used so that the newly logged-in component shares its own public key with HCC-SEC. All other services can now

request these public keys (depending on their authorization) via HCC-SEC and use them for communication with other

services for hybrid encryption. In this way, all communication within HCC is completely end -to-end encrypted.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 3 of 12

A second main objective of HCC is to be able to set up a complete ground segment in a decentralized manner

without the individual services having to be aware of where other communication partners are physically located. The

data transport service HCC-DT was developed for this feature. It acts as a single central service for the components

connected to it, but is actually structured internally into individual so-called DT-nodes. This structuring makes it

possible to adapt to the structure of networks and to connect different areas with each other to form a single logical

unit within the framework of "distributed operation". The same structuring can also be used to reflect the internal

structure of a mission. For formations or satellite fleets, for example, individual areas can exist side by side that are

functionally assigned to the individual satellites, while there are components at a higher logical level that interact with

the overall system as a whole.

The individual DT-nodes can be set up with multiple redundancies. However, despite all redundancies, situations

can of course occur in which data packets sent through HCC-DT cannot be delivered. In such cases, the sender

definitely receives feedback about this error so that it can react accordingly.

With regard to the transported data, it was a conscious decision on the part of HCC not to make any specifications.

There are various standards for data descriptions in space flight operations, from purely textual variants such as orbit

descriptions as TLE, to structured formats such as XML for CCSDS descriptions of ground station scheduling

information, to pure binary data from space packets or TM frames [3]. All these formats have their justification and

are correspondingly in use. HCC does not intend to break with these conventions. Therefore, HCC limits itself in the

area of data transfer to ensuring the correct delivery of data from the sender to the recipient , but not interpreting data

content in any way. This approach corresponds both with the end-to-end encryption mentioned above and with the

paradigm of service orientation, according to which the service user must adhere to the service description created b y

the service provider.

Finally, this focus on the pure transport of data also makes it possible to keep the applications of the DT-nodes so

lean that they hardly consume any CPU and are essentially limited to I/O. As a result, HCC-DT achieves a data

throughput that almost matches the limitations of the network bandwidth when used sensibly in terms of packet sizes.

Another deliberate design decision for HCC-DT was to base the communication between the individual DT-nodes,

and also between all HCC components and HCC-DT, on the stateful connections of the TCP/IP protocol. Ultimately ,

an HCC system should not resemble the volatile network of the WWW, but rather be a static ground segment with

known and reliably accessible space systems. The permanent TCP connections with their handshakes, supplemented

by heartbeat signals via this connection, make it possible to permanently check the presence of the connected services

and to react to failures directly at system level before service requests come to nothing.

It makes sense that a distributed system, such as the one spanned by HCC-DT, requires suitable options to keep the

status of the overall system consistent and to carry out analyses at system level in the event of errors. HCC also offers

various services for these tasks, which are mandatory components of every HCC-based system.

The configuration service, HCC-CONF, not only contains the configuration of the overall system as such, i.e.

existing services, the internal structure of HCC-DT, etc., but also offers the option of configuring the system itself. It

also offers the option of centrally storing configurable descriptions for all services involved and distributing them to

all relevant components. In this way, it can be ensured that all services use a consisten t set of parameterizations at all

times. The special requirements of space flight operations are also considered here, for example by not simply

distributing a configuration change, but publishing it as an upcoming change in a step -by-step process, confirming and

validating it if necessary, and only then (at a suitable moment) finally activating it synchronously for all services.

The situation is similar with the runtime/lifecycle service HCC-LIFE. It controls the individual services in an HCC

system and their versioning. HCC-LIFE is able to stop running processes, start missing processes and install specific

versions of services from a service repository. As with HCC-CONF, such changes are coordinated, whereby the

coordination takes place both between the s ervices involved and (if desired) with the operation itself, i.e. manual

interactions are required for the activation. Since HCC-LIFE not only has to act internally within HCC, but also has to

interact with the underlying operating system (especially to start processes), HCC-LIFE is also able to monitor the

operating system and provide parameters such as CPU utilization etc. within the HCC system. In addition, all services

also provide basic information about their status, such as their work-load or readiness to process requests. This data

from both sources is collected within the monitoring service (HCC-MON), a part of HCC-LIFE, which can process

and distribute it further.

In addition to this information about the current status, the logging service, HCC-LOG, can be used to analyze the

development of the system in the past. All components of the HCC system have the option of sending events to be

logged to HCC-LOG, where they are stored uniformly and automatically annotated with time stamp and source. In this

way, errors that arise in a distributed system such as HCC from the dependencies between the services can be tracked

centrally.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 4 of 12

2.2 Space Flight-specific Application Services

The previous paragraph presented the infrastructure that HCC provides in order to build a ground segment with a

service-oriented architecture. However, such a project naturally depends on how the components that perform the

actual space flight operations take up and implement these possibilities. This question covers two aspects: the technical

connection of a component to the overall system, but also the way in which a component fulfills its tasks, i.e. the extent

to which such a component can be regarded as a service within the architecture.

The second aspect in particular becomes important when you consider that GSOC has an extensive range of

operations software. Although HCC is deliberately intended to be a development towards a service -oriented

architecture, HCC cannot simply discard all existing operations components and develop them from scratch. A

transition is therefore necessary that makes it possible to develop the entire ground segment towards the desired

structure based on the existing systems. At the same time, the systems at GSOC are undergoing continuous further

development, so that the desired connection to HCC can take place in reasonable coordination with already planned

developments. Just as there are a large number of operations components that may or may not fit into a service-oriented

architecture in very different ways, the development paths are also very different. In the case of monitoring control

systems for satellite operations, the changeover from GECCOS to EGS-CC means the integration of a completely new

system. In contrast, flight dynamics systems are subject to more incremental changes. Planning systems, of which there

are separate systems for mission planning and ground station planning at GSOC for historical reasons, are taking a

middle course between these extremes and are gradually transferred to a joint planning tool.

In this context, it is important for a project like HCC to also allow partial implementations that can be implemented

step by step - an approach that would probably be described as "agile" in the context of pure software development.

HCC has already proven that this is the case, as the HCC infrastructure has been in operational use at DLR's mobile

rocket base, Moraba, since October 2023 [2]. Moraba also requires a ground system that is operational at all times for

continuous campaign operations, in which only individual components are improved or replaced without having to

adapt the other components.

In particular, the ability of HCC-DT to transport any data format has helped here, as the data can be transferred

exactly as it was before the introduction of HCC at the boundaries between the new HCC system and the old

components that are still in operation.

In this sense, HCC does not force the use of its services. Applications can continue to use and manage their own

configurations, write local log files or even use their own user management. Similarly, HCC cannot and will not prevent

a component from maintaining further direct connections to other entities in additio n to the connection to HCC via

HCC-DT. These non-HCC solutions may even be justified in individual cases. On the whole, however, we are

convinced that the advantages of the central HCC services outweigh the disadvantages and that developers and service

managers are only too happy to access the easily available HCC services after a transition and learning phase instead

of developing or maintaining their own implementations.

3. Connection to HCC

As the data transport service HCC-DT is the bracket that connects all components of a ground segment, the

connection of all services to HCC-DT is essential and indispensable. In this respect, it also represents the absolute

minimum that an HCC component must implement. As discussed in the previous chapter, an ac tive connection to

HCC-DT can only be established if the corresponding component successfully completes a registration process with

HCC-SEC. Strictly speaking, a connection to HCC-DT alone is therefore not technically possible. However, the

necessary interactions with HCC-SEC are encapsulated in the HCC API in such a way that the login process is

automatically run through by the API when the connection is established, meaning that the programmer of the

application does not have to explicitly create this code. This automatism justifies the following discussion, which is

completely limited to the use of HCC-DT.

3.1 File Transfer

One of the most common ways in which data interfaces are implemented in applications for space flight operations

is actually a file interface. One major advantage is clearly that it is easy to implement in all programming languages.

In addition, there are many ways of transporting files - even across network boundaries - or accessing central file

systems.

However, there are also two disadvantages: Especially when files have to be transported across different network

segments, which is common in a typical setup with secured operational areas, transitions through DMZs and the like,

files are written and read again at each transfer step, which is time-consuming. In addition, although files can be

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 5 of 12

assigned access rights by the file system, these rights can only be synchronized across different system or even network

areas with great effort. The same applies to an even greater extent to the use of content in addition to access rights. As

files can in principle contain anything, in particular both data and code, there must be additional agreements on how

the meta-information is transferred based on file names or similar, and how the file conten t is to be handled. Windows

operating systems, which encode this information in the extension of the file name - and we all know how this can be

manipulated - may serve as a bad example here.

Both aspects contradict the basic idea of HCC, which is to be a consistent overall system in which access rights are

regulated centrally and system-wide and data is not freely available without context, but is explicitly provided by

services. On the other hand, the decoupling of data transport and data usage makes it easier to replace existing transport

systems without having to change the consumers, the programs and applications. Changing only the transport

mechanism is therefore not a step towards a service-oriented ground system. Nevertheless, it already brings significant

advantages for operations in an existing ground system, as data transfer becomes noticeably faster in many cases.

For this reason, a generic file transfer (HFT) was implemented in HCC and made available as a service , see Fig. 2.

This initially replaced some file transfers for selected missions on an experimental basis. Transfers were deliberately

selected that pass (in both directions) the existing network boundaries at GSOC between the operational LAN segment

and the office area, as well as the DMZ in between. Such transfers were previously particularly slow due to the step -

by-step copying of data from one area to the next. The tool previously used for this purpose ("Automated File

Distribution", AFD) scans the source directories cyclically at intervals of several minutes. The various transfer steps

result in typical transfer times of 10-15 minutes in total.

The step-by-step transfer of data is a consequence of the security requirements for the control center. Among other

things, the directions in which network connections may be established are specified. As a general rule, a connection

must always be established from a more secure area to a less secure area, never in the opposite direction. A file from

the operational area can therefore be transferred to a DMZ, but must be picked up from the DMZ by another transfer

process in the office area.

Of course, HCC must also comply with these security requirements. However, with the Data Transport Service,

HCC has a functionality that was developed precisely for such cases. Although HCC-DT looks like a single, central

message broker to the connected components, it still has an internal structure that is ideally suited to fulfilling the

requirements described. The entire DT service consists of several instances of so-called DT-nodes, which are connected

to each other and pass on the data to be transported from node to node.

Just as with the individual steps of a file transfer, the transfer within HCC-DT also takes place in individual steps

from one network area to the next and the connections between the individual DT-nodes are established in accordance

with the security guidelines. However, incoming data packets can be forwarded immediately via the standing

connections between the DT-nodes. There is therefore no need to store and re-read the entire file on a hard disk. This

reduces the duration of the entire transfer from the original source to the actual recipient from the aforementioned 10-

15 minutes to just a few seconds.

In addition to proving once again that HCC is suitable for use in operational environments, this time saving has

contributed significantly to the acceptance of HCC and its new technologies. However, this success also harbors a

certain danger: the use of file interfaces has now become so convenient in terms of time consumption that the pressure

to actually transform the underlying systems into a truly service-oriented architecture is now less great - at least for

existing and established ground segments.

Fig. 2. Different ways for data exchange. On the left, a file exchange by a stand-alone application, AFD in this

case. In the middle, replacement of the AFD by the HCC file transfer service, HFT. On the right, the desired final

solution with a direct HCC based communication between the two entities. FE here denotes “functional entity”, the

generic label for any service within an HCC system.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 6 of 12

3.2 Adapter Applications

Even for applications that already exchange data with their communication partners on a network layer and do not

take the detour of a file to be written, there is a very simple way to connect them to HCC and use the HCC-DT service

without having to change the actual application. This can be done using an independent adapter application that is

connected to HCC-DT on one side and uses the protocol of the respective application on the other. From the point of

view of the HCC system, this adapter "is" the addressed service. And in the spirit of a service-oriented architecture, it

does not matter to HCC how this service is provided, i.e. whether other processes do the actual work in the background,

as is the case with such an adapter.

In this way, the majority of existing applications can be connected to HCC. As far as the description of the

exchanged data is concerned, HCC is agnostic, as already mentioned. The encodings commonly used in the Internet

world such as XML, HTML or JSON, which are often used by machine interfaces, and likewise HTTP requests are

just from the point of view of HCC simple (sometimes quite long) strings, which HCC-DT can handle natively. As far

as the interactions of the protocols are concerned, the commonly used protocols are compatible with HCC. In particular,

the frequently used, stateless REST interfaces can be mapped in HCC without any problems.

Problems only arise with very specific protocols, such as the SLE protocol specified by CCSDS. However, such

cases are extremely precisely tailored to a specific use case, so that it should be discussed very carefully how reasonable

it is to "wrap" such a special protocol in HCC or to replace it with HCC.

In fact, it is an intended feature of HCC to be able to continue using such special connections "out of band". At the

same time, however, it is intended to use HCC to configure such connections. To stay with the example of SLE: The

standard specifies so-called "managed parameters", which the communication partners must agree on in advance. This

exchange of information to ensure that both end points of the route operate their systems in a coordinated manner can

and should take place via HCC.

3.3 Communication Patterns

Another quasi-standard that is often used for machine-to-machine interfaces are message brokers such as MQTT.

In fact, such message brokers have also been evaluated for HCC to see whether they might represent a ready-made

solution for the HCC-DT data transfer service. However, the broker itself is a very centralized component and, as

already discussed in chapter 2.1, HCC requires a decentralized transport service.

Irrespective of this, ground segments are often located entirely within a single LAN segment and message brokers

are used accordingly. Services that are addressed with this technology usually use the "publish/subscribe"

communication pattern. Accordingly, when it comes to connecting such serv ices to HCC, the question is often asked

as to whether HCC also supports this scheme - which is basically the case at first place. However, the question that is

not explicitly stated but is actually meant is almost always whether a service can simply publish a data record in HCC

without having to worry about subscriptions. And here the answer is initially "no". Of course, it is possible to integrate

an MQTT-style component into HCC that collects information centrally and distributes it to interested recipie nts.

However, such an implementation contradicts the principles and ideas behind HCC in a number of respects.

First of all, the structure of HCC-DT should not only enable the connection of spatially separated areas, but also

reflect the structure of a mission - especially in the case of formations or constellations. This could also be achieved

by assigning a separate broker to each logical area, which would then have to be connected and synchronized with

each other. And even widespread implementations of message brokers themselves point out that not all types of quality

of service are completely supported in highly distributed systems.

It is also an important part of HCC to regulate access to data within a project, for which end -to-end encryption is a

central component. This could also be realized with a central message broker and a little effort, but the broker is in any

case a "man in the middle" for any communication, and as such a primary target for attack. Apart from that, a service

that generates or manages data itself can probably judge more reliably who is allowed to receive this data and in which

context, than a third party that is a hub for data products of all kinds can.

Finally, there is another point that reveals a certain paradox. On the one hand, service providers do not want to

worry about the delivery of their data to all clients individually, but on the other hand, the data distributor is often

required to provide guaranteed delivery. Here too, the service provider is presumably in a much better position to

assess whether critical data will not reach important recipients or will not reach them on time and what measures should

then be taken, rather than leaving this to a central broker.

Despite all this criticism, publish/subscribe is of course a valid communication pattern that is justifiably used in

many applications. However, the arguments cited show that it should not be used centrally in a ground segment, but

rather implemented directly in the services offering this pattern. This is precisely the approach chosen for the basic

services at HCC. For example, the monitoring service HCC-MON mentioned above makes its collected data available

according to the publish/subscribe pattern. However, this example also quickly makes it clear that it is difficult to

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 7 of 12

implement this communication pattern generically for all cases. In the case of HCC-MON, it is clear from the context

that the monitoring reflects the current system status. It therefore makes no sense to persistently store information from

components that have been logged out of the system. In other cases, however, precisely this behavior can be useful.

Based on all these considerations, the following approach was chosen for HCC: It remains the case that the HCC

API, which is used by developers to integrate the HCC protocol into their applications, provides the communication

patterns "send" (without confirmation) and "request/response" (with reply) as a basis. In addition, there is a separate

application that acts as a message broker and as such manages topics to which clients can subscribe. An instance of

this broker can be installed "alongside" the actual service for each service that wants to offer such communication but

does not want to implement it itself. These respective instances can then also be adapted in detail to the requirements

if necessary: Whether, how long and how much data is buffered, how to deal with clients that are temporarily

unavailable, what feedback is required to the actual service, and so on.

As with the previously discussed adapter solutions, the message broker in the HCC system can represent the entire

service and the connection between it and the actual service can be outside of HCC. However, it seems to make more

sense to establish both parts as components of HCC, especially in view of the fact that the HCC basic system provides

more than just a pure transport layer.

4. Extension to Other HCC Basic Services

The previous chapter described how applications can be connected to an HCC system as easily as possible so th at

they can at least use HCC for communication with other components. However, the HCC basic services offer much

more extensive functionality than just data transport.

In particular, the security layer, a unique selling point of HCC, can only be fully effective if it is also used by the

connected services.

As already mentioned in chapter 3, it is not possible to use HCC-DT alone without also interacting with other basic

services, in particular HCC-SEC. These absolutely necessary interactions are carried out automatically within the HCC

API as required. Examples of this are the registration of the process with HCC-SEC at the start, but also the exchange

of keys for encryption/decryption of messages, as well as the caching of information (e.g. role affiliation) of

communication partners over shorter (configurable) periods of time. In the same way, the HCC API automatically

interacts with HCC-CONF and obtains the current configuration for its service from there at start-up. In particular, the

parts of the configuration that do not affect the specific service but the HCC system are kept consistent system-wide

and processed immediately by the HCC API. Examples include time limits for the aforementioned heartbeat exchange,

or timeouts within which an (at least provisional) response to a request is expected. The programmer of an application

does not have to worry about any of these things.

However, there are also cases that cannot be processed generically within the HCC API, but really have to be

handled by the actual service. Here is another example in the context of the security service: HCC ensures that a

requested service knows the identity of the requester. HCC-SEC provides information on the roles to which this

requester is assigned. However, the API cannot make a general assessment of whether these authorizations are

sufficient for the request made; only the service itself can decide this.

This is where the disadvantage becomes apparent if the connection of existing services is implemented using the

adapter solutions discussed. All relevant information (who, with which roles, wants what?) is made available to the

adapter from the HCC system, but cannot be evaluated by the adapter in terms of content. This means that the adapter

has to pass on all this information to the actual service application using a different protocol. The extent to which the

protocol originally implemented by the service even provides for the transfer of such information is also not

guaranteed.

With existing systems in particular, it often turns out that HCC offers new functionalities for which they are simply

not yet designed. For example, some control systems at the ground station have no user management at all. The security

and logging of access, which was of course also previously required , was adequately guaranteed by physical access

control, user control of the operating systems on the computers used and the isolation of the local network against

external access. As a consequence, however, physical persons are also required to go through access control and operate

the system in the control room.

The transition to HCC is therefore much more than the replacement of a special implementation for data exchange.

It is a paradigm shift to allow much more extensive automation of operations. And it is clear that this requires different

solutions for direct communication between machines than before, involving operating personnel.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 8 of 12

Fig. 3. Different ways to connect some service to HCC: On the left, some adapter, in the middle, utilisation of

HCC-DT only, and on the right a full featured integration with interaction to all HCC basic services.

At this point, a fundamental design decision must be made for each service. Do you want to continue to adapt the

existing implementation as little as possible and continue to make them do with encapsulation behind adapters (or

operating personnel), or do you take the step of converting the service interface directly to the HCC format? Fig. 3

sketches the different variants.

The answer to this question depends on many factors. The current and future areas of application of the components

in question play just as much a role as the availability of resources for major changes. It may also be possible to find

synergies by coordinating new implementations with the orig inal development path of the product, so that a direct

HCC connection is tackled together with other features for a specific release.

From the perspective of HCC, it is important to note that this freedom of choice exists. The integration of a

component into HCC does not have to take place in one fell swoop and in its entirety, but can take place step by step

along other boundary conditions.

5. The HCC API and Its Use

In the discussion so far, the HCC API has often been mentioned, which makes it easy for a service manager to

implement their service as part of an HCC system. This API is currently available in three variants, namely

implementations in the programming languages C/C++, JAVA and python.

The API handles the establishing of the TCP/IP connection to the DT network, as well as the entire data exchange

at TCP/IP level, including segmented packets, the aforementioned heartbeat exchange and similar. It also provides an

interface for each HCC basic service, in which the functionality of this service is mapped in high-level functions. For

example, there are login and logout methods as interaction with HCC-SEC, query and set methods for HCC-CONF or

simply a routine to leave a log message with HCC-LOG. The interface to HCC-DT is also the portal that is used to

communicate with all other HCC components. Here there are methods that create HCC packets according to the

protocol definition, fill them with data and finally send them to an addressee.

All implementations of the API are reactive, so that various interactions can run in parallel and asynchronous

incoming responses are assigned to the requests and transferred to corresponding callbacks.

As previously reported, HCC was first used by DLR's Mobile Rocket Base, Moraba, to distribute telemetry on the

ground. Due to this use in a near-real-time environment, the time performance of the components was a critical

condition and the components were developed in C++ using the corresponding API. The experience was so good that

the HCC infrastructure has now been adopted for further developments at Moraba. This sudden increase in the number

of users also led to a number of suggestions for improving the implementation of the API. In the spirit of open software

development, such suggestions were and are not only taken on board but also implemented jointly by the HCC team

and Moraba. The API has been considerably improved in terms of its usability, particularly through the involvement

of users. Especially in a C++ environment, where developers are used to working relative ly close to the operating

system and hardware, it is a fine line to guarantee the user sufficient flexibility but also sufficient ease of use. This

balancing takes place very fruitfully through an intensive exchange between the groups.

In this respect, the situation is simpler with a high-level language such as JAVA, which already works at a much

higher level of abstraction. This variant of the API was first used by two groups.

HCC is used for the LUNA analogue built by ESA and DLR at the DLR site in Cologne [4] to control the LUNA

hall itself and to configure it for the respective experiments. This includes controlling the lighting as well as the future

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 9 of 12

suspension-system in the hall, which simulates the reduced gravity on the moon for astronauts. An MCS ba sed on

EGS-CC is used for the central control of this experiment environment. HCC is used as the connection between the

hall hardware and the MCS. The main reason for this decision was that the modular structure of HCC with its intrinsic

security layer will also allow to grant external experimenters secure access to the LUNA infrastructure or parts of it in

the future. For the necessary development of HCC-compatible drivers for the hardware, only a short introduction of

the responsible programmers to the concepts of HCC and the corresponding structure of the JAVA-API of about two

times 2-3 hours was necessary. The programmers were then able to develop and test the necessary drivers using the

API provided and a set of HCC basic services.

At the same time, the EGS-CC team from the group responsible for satellite MCS at GSOC also began to work on

HCC. The first milestone in this case is to create a telemetry parameter service in EGS-CC as an HCC service. In this

case too, the direct exchange between the HCC developers and the MCS experts meant that the HCC API was

successfully integrated into an EGS-CC development environment in just a few hours and the implementation of the

interface can now be tackled.

The third variant of the API, the version in python, has s o far been used primarily by GSOC colleagues in the Flight

Dynamics Services group. In fact, this implementation was also created independently by these colleagues, with the

HCC team only providing the protocol description. In this respect, this version pe r se meets the requirements and

wishes of the users and is suitable for the development environments in which it is used.

The decision to use a scripting language such as python should be understood against the background that the flight

dynamics services are already available in a very modular form as individual services. For example, there are services

that provide trajectory predictions on request, as well as conversions of formats or coordinate systems. The

corresponding applications can be easily addressed and parameterized from a scripting language.

In addition, the calculations are often based on programs that have been hardened over many years, some of which

are still programmed in variants of FORTRAN. Of course, the quality achieved should not be je opardized by a

completely new development, so that it makes much more sense to continue to use the existing routines and to simply

add new scripts to call these routines for new usage scenarios.

All of these developments are taking place in the spirit of an open source community. All three variants of the API

are located in a shared area in a central GitLab and can currently be used by all DLR employees.

It is the declared aim of GSOC to make the API in all variants, as well as the protocol description, op en and freely

available even outside DLR. There will also be freely available versions of the HCC basic services so that anyone can

create HCC-compatible applications and test them in an HCC test environment. Experience with the areas of

application to date shows that the entry barrier to using HCC is not particularly high.

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion

section is often appropriate. Avoid extensive citations and discussion of published literature.

6. Ground Segments in Service Oriented Architecture

The previous chapters discussed how existing or newly developed components can be technically connected to an

HCC system. The focus here was on data exchange with HCC-DT, or using HCC-DT with other services, as well as

on the integration of the other HCC basic services. In addition to the purely technical connection, supported by the

provision of the HCC API, a component should ideally also fit structurally into the service -oriented architecture of

HCC.

At this point, it should be emphasized that HCC services are not necessarily to be understood as micro services.

The granularity of the HCC services is rather characterized by the tasks in space flight operations. An individual

HCC service itself can therefore be structured in a micro service architecture. This is the case with planning systems,

for example, where the creation and optimization of a sequence can be a very extensive process. This can also be

realized in the form of containers that scale dynamically during a planning run, controlled in a Kybernetes cluster,

for example. Nevertheless, the creation of a consolidated timeline would then be a single HCC service.

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or

form a subsection of a Discussion or Results and Discussion section.

6.1 Service Oriented Applications

In this sense, and consistent with the usual definition of service-oriented architectures, HCC services in a ground

segment are characterized by the fact that they provide self-sufficient, clearly defined services that can be called via a

defined interface. Existing applications that follow this concept should therefore be able to be converted into an HCC

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 10 of 12

service simply by replacing the interface. However, this view is rather theoretical; in reality, such a consistent

encapsulation usually cannot be achieved.

An example of this is a component that communicates with a redundant data exchange platform. In the previous

system architecture with dedicated peer-to-peer connections between the individual applications, this component

therefore maintains a TCP/IP connection to the data exchange system. In the event of a redundancy switch in this

system - whether for a planned maintenance or in the event of a unforeseen failure - this TCP connection will be

terminated. This in turn will be registered and lead to a new connection being established, this time to the redundant

system.

In this special case, however, a number of activities are necessary within the application following such a

switchover in order to ensure synchronization between all processes. These activities are controlled from the point

where the redundancy switching is handled, i.e. in the program section that handles the TCP socket.

What does the situation look like if these components are to be integrated into an HCC system? The TCP/IP

connection now exists exclusively between the application and the HCC-DT data transport service. Redundancies may

also be switched here, but this only relates to the multiple instantiation of the DT-nodes and are handled automatically

by the HCC API. Information that the logical communication partner, the data exchange platform, may have had to

perform a switchover is of course also transmitted within an HCC system, but now reaches the application as an HCC

packet, just like the rest of the data exchange. The necessary synchronizations must therefore now be triggered from

the part of the program that carries out the entire data handling via the HCC API. Compared to where the TCP socket

was originally implemented, this is a completely different part of the program, perhaps even a different thread - in any

case a completely different context. The extent to which the triggering of the necessary processes can simply be moved

there depends on many very subtle details of how the application is implemented in terms of software technology.

6.2 Operation of a Service Oriented Architecture

Finally, another problem that should not be underestimated is the user of the entire system, i.e. the operating

personnel. The transition to a service-oriented architecture is also an immense step that the people involved have to

take. The necessary changes run in two different directions which, paradoxically, are actually diametrically opposed.

On the one hand, as already mentioned, services should be self-sufficient and offer their services even without

knowing much about the entity that uses these services - and especially for what purpose. And vice-versa, the user of

a service does not need to know how the service is actually provided. This encapsulation is not always anchored in the

minds of operating personnel. In discussions parallel to the introduction of HCC, the argument is often made that t he

supervisor of a service must have direct access to how another service is provided. Interestingly, other components

should always be controlled as well, while access to one's own areas is usually denied. Typical examples are being

able to actively select the prime and backup of a redundancy on a third-party system to ensure that both are regularly

tested. Or fears of the kind "and what do I do if their service fails?".

It speaks for the commitment of the staff to anticipate and rule out possible errors. But it goes against the spirit of

a service-oriented architecture, in which responsibilities are transferred to the service owners.

This attitude becomes particularly noticeable as soon as the entire system can no longer be fully controlled by any

of the operators in distributed operations. In addition to responsibilities, liability issues must also be clearly regulated

here.

Unfortunately, this extension of perceived responsibility does not lead to the entire operating staff developing

comprehensive expertise for the entire ground segment. This is probably not even possible in individual cases.

However, in a service-oriented architecture, the role of an overall system manager is all the more important and

demanding. While the entire system can otherwise be covered relatively well by the sum of overlapping expertise, in

a service-oriented architecture someone is absolutely necessary to ensure that the construct, which is made up of ready -

to-use building blocks, the services, ultimately fulfills its purpose correctly. A clear distinction must be made here

between in-depth knowledge in individual domains (for those responsible for the service) and comprehensive, broad

but significantly less in-depth expertise (for those responsible for the system), see Fig. 4.

The paradox mentioned at the beginning is therefore that service-oriented architecture requires someone with very

broad knowledge on the one hand, while it tends to restrict the individual service experts to their respective domains.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 11 of 12

Fig. 4. Sketch of the knowledge of operations personnel of a legacy-type system (left) and a service-oriented

architecture (right). See text for more details.

Of course, none of the points discussed is an insurmountable obstacle. On the contrary, the switch to service-

oriented architectures is being made for good reason with regard to missions that are already making new demands

now or will do so in the near future. The changes discussed are therefore not the result of an ideological decision, but

are well justified by the development of the boundary conditions in space flight.

In addition to this strategic argument, however, HCC provides another aspect that should appeal to sceptical

operating personnel in particular. Space flight operations are, and will contin ue to be, the interaction of many.

Accordingly, several positions work together, such as mission control, network control and the ground stations. Until

now, it has been technically difficult to display status information from all subsystems in each other. HCC's approach

of viewing the ground system as a whole now enables the individual positions to receive information from all parts of

the system (depending on access-rights) thanks to central services such as HCC-MON. As mentioned above, this is

definitely a wish of the operating personnel. It is a nice touch that the introduction of a service-oriented architecture,

which actually narrows the focus to individual services, only enables system-wide services such as HCC-MON.

7. Conclusions

Like other agencies and private space flight operators, GSOC is aiming to offer its expertise in services in future

and build up ground segments in a service-oriented architecture. The necessary infrastructure components were

developed with the HCC program and are constantly being extended in line with requirements. HCC has proven its

suitability with the operational use at Moraba, and so HCC is set at GSOC for future missions and developments

such as the LUNA analogue.

Three things are essential for transforming space flight operations into a service-oriented architecture: the

technical connection of the operational components to HCC, the structuring of the tasks to be performed into

services, and the adaptation of operations to the new structure.

All three points can pose major challenges, and there is a wide range of the extent to which existing components

and processes already work according to the principles of service-oriented architectures. It can be observed that

technical developments have been moving in this direction of their own accord for some time. An initiative such as

HCC now offers a necessary common basis for all components to fully exploit the advantages of this architecture. It

is precisely because of this wide range of requirements that it is important for HCC to make a step-wise transition

possible for the components to be connected. As has been shown, this has been excellently achieved with HCC.

When transferring operations, it is also necessary to communicate the major goals of the development well and

repeatedly, but then proceed in small steps. Operating personnel in particular have a strong tendency to stick to

familiar systems that do not change. However, with the gradual integration of technical components, a step -by-step

approach is almost a given in operations too. For example, it makes sense to offer high-level monitoring via HCC-

MON with every component that fully uses HCC in addition to HCC-DT. This extends the view of the system for

each operator step by step to the entire system, without making them immediately responsible for the entire system.

Acknowledgements

With the decision to make HCC the basis for all projects at GSOC, almost all colleagues at GSOC came in touch

with HCC in one way or the other. We would like to thank all of them for their feedback and contributions to HCC as

a holistic system. Special thanks to our pioneering users from the Moraba, especially Martin Stoffers, our outpost at

RB-MRB, who lead his team on a save path to use HCC, and helped the HCC team a lot, to est ablish user friendly

software releases. Special thanks also to the entire group “Flight Dynamic Services” for being eager to open-mindedly

try out the HCC features, especially Martin Weigel, author of the python version of the HCC-API.

Last not least, the author would like to express his greatest gratitude to Udo Häring and Sven Kuhlmann. There

would simply be no HCC at all without them.

18
th

 International Conference on Space Operations, Montreal, Canada, 26 - 30 May 2025.

Copyright 2025 by DLR.
Published by the Canadian Space Agency (CSA) on behalf of SpaceOps, with permission and released to the CSA to publish in all forms.

SpaceOps-2025, ID # 458 Page 12 of 12

References

[1] A. Hauke and M.P. Geyer, Towards a Modular and Flexible New Ground System, 15th International Conference

on Space Operations, Marseille, France, 2018, 28 May – 01 June.

S. Gärtner, M.P. Geyer, S. Hackel, A. Hauke, C. O'Meara, and Y. Wasser, Rethinking Ground Systems: Supporting

New Mission Types through Modularity and Standardization, 15th International Conference on Space Operations,

Marseille, France, 2018, 28 May – 01 June.

[2] A. Hauke, GSOC's Service-Oriented Ground System "HCC" – Status and First Experiences from Sounding Rocket

Missions, 17th International Conference on Space Operations, Dubai, UAE, 2023, 06 – 10 March.

[3] Kim Dismuke, Definition of Two-line Element Set Coordinate System, 29. September 1999,

http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html, (accessed

07.04.2025).

The Consultative Committee for Space Data Systems, CCSDS-132.0-B-3, TM Space Data Link Protocol, 2021.

The Consultative Committee for Space Data Systems, CCSDS-133.0-B-2, Space Packet Protocol, 2020.

The Consultative Committee for Space Data Systems, CCSDS 902.1-B-1, Cross Support Service Management –

Simple Schedule, 2018

[4] A. Casini, et al., Lunar missions’ simulations in analogue facilities: the operational concept and the first

commissioning of the ESA-DLR LUNA facility, 73rd International Astronautical Congress, Paris, France, 2022,

18 – 22 September.

http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html

