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Abstract
Autonomous navigation in planetary-like environments presents unique
challenges due to the absence of GPS signals, limited semantic structure, and
visual ambiguity caused by repetitive textures or harsh lighting conditions.
Traditional place recognition and localization methods either rely on dense
maps and structured environments or only provide coarse retrieval without
estimating full 6-DoF (Degrees of Freedom) poses. This limits their
applicability in the context of real-time Simultaneous Localization and
Mapping (SLAM) for field robotics and planetary exploration.

This thesis addresses the problem by developing a multi-modal system that
performs both place recognition and relative pose estimation in unstructured,
GNSS-denied environments. The proposed approach fuses visual features
extracted from a transformer-based encoder (DINOv2) with 3D geometric
descriptors from a LiDAR-based backbone (SONATA). These features are
projected and aligned in 3D space to produce interpretable correspondences,
from which the system estimates full 6D poses. On the retrieval side, DINOv2
descriptors are aggregated using SALAD, a learned VLAD-style module, and
searched efficiently using FAISS indexing. The system is evaluated on the
Etna volcano dataset, representative of planetary terrains.

The results show that the proposed model outperforms established retrieval
methods like NetVLAD and TransVPR and achieves more stable pose
estimation than handcrafted or regression-based alternatives. The fusion of
LiDAR and vision improved robustness in scenes with low texture or poor
illumination, validating the hypothesis that multi-modality can bridge the
gap between accuracy and generalization. Importantly, the system produces
interpretable outputs and operates within real-time constraints for retrieval,
although further optimization is needed for pose estimation.

This thesis demonstrates that it is feasible to move beyond retrieval-only
frameworks and provide full, explainable 6D poses suitable for SLAM. Future
work should focus on improving runtime efficiency in the pose estimation
module, incorporating more diverse datasets, and testing deployment on real
robotic platforms. These developments could contribute to more autonomous
and trustworthy robotic systems for exploration, disaster response, and
agriculture in extreme environments.
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Sammanfattning
Autonom navigering i planetliknande miljöer innebär unika utmaningar
på grund av avsaknad av GPS-signaler, begränsad semantisk struktur och
visuell tvetydighet orsakad av repetitiva texturer eller svåra ljusförhållanden.
Traditionella metoder för platsigenkänning och lokalisering förlitar sig
antingen på täta kartor och strukturerade miljöer eller erbjuder endast
grov återhämtning utan att uppskatta fullständiga 6-Degrees of Freedom
(DoF) (sex frihetsgrader) poser. Detta begränsar deras användbarhet i
realtids-SLAM (Simultaneous Localization and Mapping) för fältrobotik och
planetutforskning.

Denna avhandling angriper problemet genom att utveckla ett multimodalt
system som utför både platsigenkänning och relativ posuppskattning i
ostrukturerade miljöer utan GNSS. Den föreslagna metoden kombinerar
visuella egenskaper extraherade från en transformerbaserad kodare (DINOv2)
med 3D-geometriska beskrivare från en LiDAR-baserad ryggrad (SONATA).
Dessa egenskaper projiceras och justeras i 3D-rymden för att generera tolkbara
korrespondenser, från vilka systemet uppskattar fullständiga 6D-poser. På
återhämtningssidan aggregeras DINOv2-beskrivare med hjälp av SALAD,
en inlärd VLAD-liknande modul, och söks effektivt med FAISS-indexering.
Systemet utvärderas på Etna-vulkanens datamängd, som är representativ för
planetära terränger.

Resultaten visar att den föreslagna modellen överträffar etablerade
metoder för återhämtning såsom NetVLAD och TransVPR, samt uppnår mer
stabil posuppskattning än handgjorda eller regressionsbaserade alternativ.
Kombinationen av LiDAR och visuella data förbättrade robustheten i scener
med låg textur eller dålig belysning, vilket bekräftar hypotesen att multimo-
dalitet kan överbrygga gapet mellan noggrannhet och generalisering. Viktigt
är att systemet genererar tolkbara resultat och fungerar inom realtidskrav för
återhämtning, även om vidare optimering krävs för posuppskattningen.

Denna avhandling visar att det är möjligt att gå bortom enbart
återhämtningsbaserade ramverk och tillhandahålla fullständiga, förklarliga
6D-poser som lämpar sig för SLAM. Framtida arbete bör fokusera på att
förbättra prestandan i posuppskattningsmodulen, inkludera mer varierade
datamängder och testa implementering på verkliga robotplattformar. Dessa
framsteg kan bidra till mer autonoma och tillförlitliga robotsystem för
utforskning, katastrofinsatser och jordbruk i extrema miljöer.
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Tiivistelmä
Autonominen navigointi planeettamaisissa ympäristöissä tuo mukanaan
erityisiä haasteita GPS-signaalien puuttumisen, rajallisen semanttisen ra-
kenteen sekä visuaalisen epäselvyyden vuoksi, jota aiheuttavat toistuvat
tekstuurit ja vaikeat valaistusolosuhteet. Perinteiset paikan tunnistus- ja
paikannusmenetelmät perustuvat joko tiheisiin karttoihin ja jäsenneltyihin
ympäristöihin tai tarjoavat vain karkean haun ilman täysimääräistä 6-DoF
(kuuden vapausasteen) asennon estimointia. Tämä rajoittaa niiden soveltu-
vuutta reaaliaikaiseen SLAM-järjestelmään (Simultaneous Localization and
Mapping) kenttärobotiikassa ja planeettojen tutkimuksessa.

Tämä diplomityö käsittelee ongelmaa kehittämällä multimodaalisen
järjestelmän, joka suorittaa sekä paikan tunnistusta että suhteellisen asennon
estimointia jäsentymättömissä, GNSS-vapaissa ympäristöissä. Ehdotettu lä-
hestymistapa yhdistää transformer-pohjaisesta kooderista (DINOv2) poimitut
visuaaliset piirteet LiDAR-pohjaiseen runkoon (SONATA) perustuvien 3D-
geometristen piirteiden kanssa. Nämä piirteet projisoidaan ja kohdistetaan 3D-
avaruudessa tuottaen tulkittavia vastaavuuksia, joiden perusteella järjestelmä
arvioi täydet 6D-asennot. Haun osalta DINOv2-piirteet yhdistetään SALAD-
menetelmällä, joka on oppiva VLAD-tyylinen moduuli, ja haku toteutetaan
tehokkaasti FAISS-indeksoinnin avulla. Järjestelmä arvioitiin Etna-tulivuoren
tietoaineistolla, joka edustaa planeettamaista maastoa.

Tulokset osoittavat, että ehdotettu malli päihittää vakiintuneet hakume-
netelmät kuten NetVLAD ja TransVPR, ja saavuttaa vakaamman asennon
estimoinnin kuin käsintehdyt tai regressiopohjaiset vaihtoehdot. LiDARin
ja visuaalisen tiedon yhdistäminen paransi järjestelmän kestävyyttä alhaisen
tekstuurin tai heikon valaistuksen tilanteissa, vahvistaen hypoteesin siitä, että
multimodaalisuus voi kuroa umpeen tarkkuuden ja yleistettävyyden välistä
kuilua. Tärkeää on, että järjestelmä tuottaa tulkittavia tuloksia ja toimii
reaaliaikaisissa hakuvaatimuksissa, vaikka asennon estimointimoduuli vaatii
edelleen optimointia.

Tämä diplomityö osoittaa, että on mahdollista siirtyä pelkästään hakuun
perustuvista järjestelmistä kohti täysiä, selitettävissä olevia 6D-asentoja, jotka
soveltuvat SLAMiin. Tulevassa työssä tulisi keskittyä asennon estimoinnin
suoritustehokkuuden parantamiseen, monipuolisempien tietoaineistojen käyt-
töönottoon sekä järjestelmän testaamiseen oikeilla robottialustoilla. Nämä
kehitysaskeleet voivat edistää autonomisempien ja luotettavampien robotti-
järjestelmien kehitystä tutkimukseen, katastrofivalmiuteen ja maatalouteen
äärimmäisissä olosuhteissa.



vi | Tiivistelmä

Avainsanat
Monimodaalinen paikantunnistus, Kuuden vapausasteen asentopositiomit-
taus, Samanaikainen paikannus ja kartoitus (SLAM) -integraatio, Transformer-
pohjaiset kooderit, Valotutka (LiDAR), DINO versio 2, SONATA, Piirre-
koosteet, Sinkhorn-algoritmi paikallisesti koottuja piirteitä varten (SALAD),
Jäsentymättömät planetaariset ympäristöt, Reaaliaikainen haku



Acknowledgments | vii

Acknowledgments
I would like to thank the German Aerospace Center (DLR) for hosting me
during my thesis project and for providing financial support for my work.
This work was supported by the Helmholtz Association project iFOODis
(contract number KA2-HSC-06). It was an excellent environment to develop
this research, both professionally and personally.

I would like to thank Riccardo Giubilato for his invaluable supervision
at DLR. His continuous guidance, technical advice, and strategic suggestions
were key throughout this project. His recommendations on what to implement,
the regular discussions, and the data he provided for training and evaluating
the models were essential for the development of the thesis.

I would like to thank John Folkesson for his supervision at KTH. His
guidance and reading recommendations were helpful in shaping the direction
of the work, and his support is appreciated.

I would also like to thank my colleagues and other interns at DLR,
especially my office mates Kareem and Tommaso for the fun times, support,
and memorable ping pong games that added balance to the hard work.

Finally, I want to express my deepest gratitude to my parents, Jose Antonio
and Eugenia, and my boyfriend, Guglielmo, whose emotional and professional
support was always present. Their belief in me and constant encouragement
made this journey not only possible but enjoyable.

Munich, Germany, August 2025
Laura Alejandra Encinar Gonzalez



viii | Acknowledgments



Contents | ix

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Original problem and definition . . . . . . . . . . . . 4
1.2.2 Scientific and engineering issues . . . . . . . . . . . . 4

1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . 7
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Ethical, Social, and Sustainability Considerations . . . . . . . 9
1.8 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Fundamentals of SLAM and Loop Closure Detection . . . . . 13

2.1.1 SLAM and its Significance in Autonomous Navigation 13
2.1.2 The Role of Place Recognition and Pose Estimation . . 14
2.1.3 Challenges of Loop Closure in Planetary Environments 14

2.2 Visual Place Recognition . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . 15
2.2.2 Feature Aggregation . . . . . . . . . . . . . . . . . . 17
2.2.3 Database indexing . . . . . . . . . . . . . . . . . . . 20
2.2.4 Place Matching . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Verification and Re-ranking . . . . . . . . . . . . . . 24

2.3 Pose Estimation Techniques . . . . . . . . . . . . . . . . . . . 26
2.3.1 Geometric Approaches . . . . . . . . . . . . . . . . . 26
2.3.2 Deep Learning-Based Pose Estimation . . . . . . . . . 27
2.3.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . 29

2.4 Related work area . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Multi-Modal Place Recognition . . . . . . . . . . . . 30



x | Contents

2.4.2 Transformer-Based Feature Extraction . . . . . . . . . 31
2.4.3 3D Point Descriptor Matching . . . . . . . . . . . . . 32

3 Methodology: A Multi-Modal Hybrid Approach for Visual-
LiDAR-Based Localization 33
3.1 System Architecture and Methodological Rationale . . . . . . 34

3.1.1 Hybrid and Multi-Modal Approach . . . . . . . . . . 34
3.1.2 Visual Feature Extraction and Aggregation . . . . . . 37
3.1.3 Geometric Verification and Pose Estimation . . . . . . 40

3.2 Dataset and Data Preparation . . . . . . . . . . . . . . . . . . 44
3.3 Evaluation Design and Benchmarking Strategy . . . . . . . . 48

3.3.1 Retrieval and Pose Estimation Benchmarks . . . . . . 48
3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . 49
3.3.3 Ensuring Validity and Reliability . . . . . . . . . . . . 50

4 System Implementation and Technical Design 51
4.1 Dataset Preparation and Ground Truth Generation . . . . . . . 51
4.2 Feature Extraction and Aggregation Pipeline . . . . . . . . . . 53

4.2.1 DINOv2 Feature Extraction and Fine-Tuning . . . . . 53
4.2.2 Connecting DINOv2 to SALAD . . . . . . . . . . . . 57
4.2.3 Re-training SALAD . . . . . . . . . . . . . . . . . . 58

4.3 Descriptor Storage and Retrieval Infrastructure . . . . . . . . 58
4.4 Pose Estimation Pipeline . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Visual Embedding Projection to 3D . . . . . . . . . . 59
4.4.2 Sonata 3D Feature Extraction . . . . . . . . . . . . . 60
4.4.3 Feature Fusion and Correspondence Matching . . . . . 60
4.4.4 Pose Estimation and Re-Ranking . . . . . . . . . . . . 61

5 Results and Analysis 65
5.1 Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Image Retrieval Performance . . . . . . . . . . . . . . 66
5.1.2 Pose Estimation Performance . . . . . . . . . . . . . 69

5.2 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Validity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Discussion 75
6.1 Applicability in Unstructured and GNSS-Denied Environments 75
6.2 Comparative Analysis of Localization Methodologies . . . . . 77

6.2.1 Image Retrieval Systems. . . . . . . . . . . . . . . . . 77
6.2.2 Pose Estimation Systems. . . . . . . . . . . . . . . . . 78



Contents | xi

6.3 Insights from Ablations and Variants . . . . . . . . . . . . . . 79
6.4 Unexpected Observations . . . . . . . . . . . . . . . . . . . . 81
6.5 Impact and Practical Relevance . . . . . . . . . . . . . . . . . 82

7 Conclusions and Future work 83
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References 93

A Supporting materials 105
A.1 Viewpoint Overlap Computation Functions . . . . . . . . . . 105

A.1.1 compute_overlap_v1 . . . . . . . . . . . . . . . . . . 105
A.1.2 compute_overlap_v2 . . . . . . . . . . . . . . . . . . 106



xii | Contents



List of Figures | xiii

List of Figures

3.1 Overview of the proposed hybrid multi-modal localization
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Two initial stages of the image retrieval pipeline for place
recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Overview of the geometric verification and pose estimation
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Example of a loop closure pair detected using the overlap
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Top-down view of the trajectories recorded in the Etna dataset. 46
3.6 Example of a loop closure pair detected using the overlap

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 PCA visualization of DINOv2 patch embeddings overlaid on
an Etna dataset image. . . . . . . . . . . . . . . . . . . . . . 55

4.2 Training and validation loss curves during fine-tuning of
DINOv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 PCA projection of Sonata LiDAR descriptors. . . . . . . . . . 61
4.4 Point correspondences using only DINOv2 visual features. . . 62
4.5 Point correspondences using only Sonata 3D features. Mis-

matches occur in low-texture or structurally repetitive areas. . . 63
4.6 Point correspondences using fused DINOv2 and Sonata features. 64

5.1 Trade-off between retrieval time (in milliseconds) and Preci-
sion@1 for all evaluated methods. . . . . . . . . . . . . . . . 67

5.2 Examples of image retrieval outcomes using the proposed model. 68
5.3 Cumulative accuracy curves of yaw estimation error for

Reloc3r and the proposed method. . . . . . . . . . . . . . . . 71
5.4 Box plot of yaw errors (in degrees) for the top three models. . 72



xiv | List of Figures



List of Tables | xv

List of Tables

3.1 Model Comparison by Size . . . . . . . . . . . . . . . . . . . 37

5.1 Image Retrieval Results: Precision at Top-k and Average
Retrieval Time . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Pose Estimation Results: Average Errors, Total Poses
Estimated, and Inference Time . . . . . . . . . . . . . . . . . 69

5.3 Percentage of Estimated Poses with Yaw Error Below Thresholds 70
5.4 Percentage of Estimated Poses with Translation Error in X and

Y Below Thresholds . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Comparison of image retrieval methods evaluated on the Etna
dataset. DINOv2 variants use the “base” model (ViT-B/14)
with either the CLS token or the average of the last three layers
across all patches. . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Comparison of Pose Estimation Methods . . . . . . . . . . . . 79



xvi | List of Tables



List of acronyms and abbreviations | xvii

List of acronyms and abbreviations

ANN Approximate Nearest Neighbor

BeV Bird’s-eye View
BoW Bag-of-Words
BRIEF Binary Robust Independent Elementary Features

CLS Classification Token
CNN Convolutional Neural Network

DLR German Aerospace Center
DoF Degrees of Freedom
DoG Difference-of-Gaussian
DSAC Differentiable RANSAC

ECA Efficient Channel Attention
EMM Essential Matrix Module

FAISS Facebook AI Similarity Search
FOV Field of View
FPFH Fast Point Feature Histograms
FPN Feature Pyramid Network

GAP Global Average Pooling
GeM Generalized Mean Pooling
GGeM Group Generalized Mean Pooling
GMP Global Max Pooling
GNN Graph Neural Network
GNSS Global Navigation Satellite System
GPS Global Positioning System

HLoc Hierarchical Localization
HNSW Hierarchical Navigable Small World graphs

ICP Iterative Closest Point
IMU Inertial Measurement Unit
IVF inverted file



xviii | List of acronyms and abbreviations

LiDAR Light Detection and Ranging
LoFTR Local Feature TRansformer
LRU Lightweight Rover Unit
LSH Locality-Sensitive Hashing

MAE Masked Autoencoder
MLP Multi-layer Perceptrons

NN Nearest Neighbors

ORB Oriented FAST and Rotated BRIEF

PCA Principal Component Analysis
PnP Perspective-n-Point
PQ product quantization

RANSAC RANdom SAmple Consensus
RPR relative pose regression

SDG Sustainable Development Goals
SfM Structure-from-Motion
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SURF Speeded-Up Robust Features

UMF Unifying Local and Global Multi-modal Features
UN United Nations

VIO Visual-Inertial Odometry
ViT Vision Transformer
VLAD Vector of Locally Aggregated Descriptors
VPR Visual Place Recognition



Introduction | 1

Chapter 1

Introduction

This chapter introduces the foundations and motivations behind the thesis. It
begins with a background on visual place recognition, pose estimation, and
their role in Simultaneous Localization and Mapping (SLAM), particularly
in Global Navigation Satellite System (GNSS)-denied and unstructured
environments. Section 1.2 presents the core problem and research question,
outlining the limitations of current methods in planetary-like terrains.
Section 1.2.1 defines the original problem in detail and identifies the key
scientific and engineering challenges. Section 1.3 clarifies the thesis purpose
within a broader societal and research context, followed by a breakdown of
the project goals in Section 1.4. The methodology adopted to address these
challenges is described in Section 1.5. Section 1.7 discusses the thesis’ ethical,
environmental, and social considerations. Finally, Section 1.8 outlines the
structure of the rest of the thesis.

1.1 Background
Place recognition and pose estimation are critical components of robotic
navigation systems, particularly in SLAM, where they enable loop closure
detection to improve localization accuracy. The seminal tutorial on SLAM
highlights the importance of loop closure detection in achieving consistent
maps and precise localization [1]. In planetary exploration scenarios, where
GNSS are unavailable, robust place recognition and pose estimation ensure
accurate navigation in unstructured environments.

Traditional visual place recognition methods rely heavily on image-
based techniques that identify similar places by comparing visual features.
Classical approaches such as ORB-SLAM3 [2], an open-source SLAM
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system, utilize binary descriptors and kd-tree-based indexing to detect loop
closures efficiently [3, 4]. While effective in structured environments, they
struggle in planetary-like terrains, where the absence of distinct features
or extreme changes in appearance can degrade performance. For example,
keypoint-based methods like Scale-Invariant Feature Transform (SIFT) [5],
ORB [6], and SuperPoint [7] depend on distinct visual features, making them
less suitable for featureless landscapes. In contrast, detector-free methods like
Local Feature TRansformer (LoFTR) [8] do not begin by detecting discrete
keypoints, but instead extract features for every pixel or patch. This approach
enables the model to identify matches even in low-texture or repetitive areas
where keypoint-based detectors typically fail. However, their application to
extreme environments remains underexplored.

Deep learning approaches like NetVLAD and Hierarchical Localization
have advanced visual place recognition by learning robust global descriptors
and generating 6D pose outputs [9, 10]. Despite their advancements, these
methods are computationally intensive, making them unsuitable for real-time
applications on resource-constrained systems like planetary rovers. To address
these challenges, multi-modal approaches that integrate vision and LiDAR
data have gained traction. Vision provides rich texture and color information,
while LiDAR offers robust geometric insights, even in low-light conditions.
Recent research, such as the method proposed in [11], tackles the challenge of
place recognition in low-texture environments as an image retrieval problem,
achieving better accuracy than unimodal methods like PointNet or NetVLAD
and outperforming previous multimodal approaches like AdaFusion [12, 9,
13]. However, it does not tackle the problem of pose estimation, which is
crucial for integrating place recognition into SLAM.

Pose estimation in feature-deficient environments is typically ap-
proached via end-to-end learning-based methods or structure-based tech-
niques. End-to-end learning-based approaches like PoseNet estimate camera
pose directly from images but may lack the precision of geometric techniques
[14]. Structure-based techniques such as Perspective-n-Point (PnP) with
RANdom SAmple Consensus (RANSAC) estimate camera pose using 2D-
3D correspondences but require sufficient keypoints for reliability [15, 16].
Hybrid approaches, including Structure-from-Motion (SfM) pipelines like
COLMAP and Iterative Closest Point (ICP) [17, 18], leverage 3D structure
for pose refinement and can integrate LiDAR data for improved accuracy in
textureless environments. However, traditional SfM approaches are highly
data-intensive and computationally expensive, requiring multiple images from
different viewpoints to reconstruct the 3D structure. This makes them
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impractical for real-time rover applications in planetary-like terrains, where
obtaining diverse viewpoints may be infeasible.

The primary objective of this thesis is to bridge the gap between place
recognition and SLAM by integrating pose estimation into a multi-modal
framework that leverages both image and LiDAR data. The proposed
algorithm will focus on recognizing places and estimating the relative pose
of the camera, thereby enhancing the localization and mapping capabilities
of the Lightweight Rover Unit (LRU) in unstructured, planetary-like
environments [19]. By combining the complementary strengths of vision and
LiDAR, this research aims to develop a robust and computationally efficient
solution for real-time navigation in extreme and feature-deficient terrains.

1.2 Problem
In visual SLAM systems, closing a loop does not only require identifying a
previously visited place, it also requires estimating the relative pose between
the current observation and the matched location. This transformation is
essential to correct accumulated drift and ensure map consistency. Despite
its importance, many existing methods treat place recognition purely as an
image retrieval problem [11], ignoring the estimation of relative spatial
transformation between the retrieved image and the query.

Additionally, most prior work in place recognition and pose estimation
is developed for structured environments, where texture-rich scenes and
clearly defined landmarks simplify keypoint extraction and matching. In
contrast, planetary-like terrains characterized by low texture, repetitive
features, and sparse geometry—pose a significantly greater challenge.
Traditional feature-based methods often fail in these settings due to the
absence of distinctive visual cues.

This thesis addresses both challenges: first, by integrating relative
pose estimation into the place recognition pipeline, and second, by
developing methods that remain effective in unstructured, feature-sparse
environments. To improve robustness, the project also explores multi-modal
integration, combining vision and LiDAR to compensate for the limitations
of each modality.

How can autonomous systems reliably estimate relative pose and
perform robust loop closure in low-texture, planetary-like environments
where conventional image-based methods fail?
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1.2.1 Original problem and definition
The original problem addressed in this thesis stems from the limitations
of current visual place recognition systems in unstructured, planetary-
like environments. Existing methods are primarily designed for structured
scenes and focus on recognizing previously visited places, often without
providing an associated relative pose estimate. As a result, they cannot be
directly integrated into SLAM frameworks, which require both recognition
and geometric alignment to perform loop closure and correct drift.

The core challenge is to develop a multi-modal place recognition system
that not only retrieves relevant past observations but also computes a reliable
6-Degrees of Freedom (DoF) pose transformation between them. This must
be achieved under the constraints of real-time operation and in terrains where
classical visual features are sparse or non-discriminative. The solution must
be scalable, data-efficient, and suitable for deployment on computationally
constrained platforms such as the LRU, a robot available at German Aerospace
Center (DLR) designed for planetary exploration [19].

1.2.2 Scientific and engineering issues
Several scientific and engineering challenges must be addressed to solve this
problem effectively. From a scientific perspective, the lack of texture and
structure in planetary-like environments raises open questions about how to
extract discriminative and robust visual descriptors that generalize beyond
the training domain. Estimating relative pose from visual data remains
difficult in the absence of stable keypoints or dense geometric information,
particularly in scenes dominated by repetitive or ambiguous features like rock
fields and horizon lines.

A further scientific challenge lies in defining what constitutes a valid
loop closure during training and evaluation. Establishing ground truth
similarity between image pairs typically relies on the camera’s position
and orientation, assuming a well-calibrated and synchronized dataset.
This is especially critical when integrating LiDAR, which requires tight
sensor synchronization and alignment. Even under these conditions,
inconsistencies arise: images taken from the same location may differ
significantly due to occlusions or dynamic changes in the environment,
making them hard for a deep model to associate. Conversely, images captured
from distant viewpoints but facing similar terrain (e.g., the same horizon
line) may appear deceptively similar to a deep network despite large spatial
separation. These ambiguities complicate the creation of reliable training
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signals and performance benchmarks.
From an engineering standpoint, the solution must operate in real-time

on platforms with limited computational resources, such as the LRU [19].
This necessitates the use of computationally efficient architectures and careful
trade-offs between model complexity and responsiveness.

1.3 Purpose
The purpose of this thesis is to develop a robust and efficient system
for multi-modal place recognition and relative pose estimation in
unstructured, planetary-like environments, with a focus on improving loop
closure detection in SLAM pipelines. The project aims to bridge the current
gap between image-based place recognition and the geometric requirements
of SLAM by integrating pose estimation into a learning-based, multi-modal
framework that combines visual and LiDAR data.

The broader purpose of the degree project is to contribute practical and
scientifically validated solutions to the domain of autonomous navigation
in extreme and feature-sparse environments, such as those encountered
in planetary exploration. By developing methods that can generalize to
low-texture, ambiguous terrains where traditional techniques fail, this work
supports ongoing efforts in robotics and space exploration. Specifically, the
research will benefit institutions like the German Aerospace Center (DLR)
[20], which deploys systems such as LRU for testing autonomous capabilities
in Mars-analogue scenarios [19].

The societal and scientific value of the work lies in enabling more robust,
resource-efficient, and autonomous robotic systems. In space robotics, greater
autonomy reduces the need for human intervention, which is essential for long-
duration missions and improves mission safety. On Earth, similar systems can
be applied to disaster response, agriculture, and search-and-rescue in areas
where GPS is unreliable and human access is limited.

From an ethical and sustainability perspective, the project supports
responsible AI deployment in critical systems by focusing on transparency,
robustness, and reliability. The use of open datasets and reproducible
methods contributes to scientific integrity. Moreover, by enabling more
effective and autonomous robotic systems, the project indirectly contributes to
sustainable space exploration, minimizing reliance on energy-intensive human
supervision and improving the operational lifespan of robotic explorers.
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1.4 Goals
The primary goal of this thesis is to develop a multi-modal place recognition
and pose estimation system capable of operating in unstructured, planetary-
like environments. The aim is to go beyond image retrieval by producing 6D
relative pose estimates suitable for integration into SLAM pipelines, while
ensuring the approach is efficient enough for real-time deployment on systems
like the LRU.

To fulfill this goal, the work has been structured into the following three
sub-goals:

1. Evaluate the benefits of multi-modality (vision + LiDAR) in place
recognition and pose estimation This involves reviewing state-of-
the-art multi-modal learning techniques, selecting suitable datasets
representative of unstructured terrains, and analyzing the impact of
combining visual and LiDAR inputs. Tasks include preprocessing
synchronized data, implementing baseline models, and comparing their
performance to quantify the contribution of LiDAR in environments
where visual features alone are insufficient.

2. Develop an algorithm that outputs 6D poses for SLAM integration
instead of simple image retrieval The focus is on extracting
and combining descriptors from both modalities in a geometrically
consistent way and producing full 6-DoF transformations between query
and matched observations. This goal includes benchmarking against
existing approaches, defining robust evaluation metrics, and validating
the model in real planetary-like conditions.

3. Optimize computational and memory efficiency by integrating
model-based components into deep learning-based multi-modal
methods This includes identifying classical geometric techniques
or SLAM priors that can reduce reliance on high-capacity deep
models, and investigating inference-time optimization methods such
as quantization, pruning, or knowledge distillation. Testing will be
conducted under hardware constraints similar to those of the LRU to
ensure real-world feasibility.
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1.5 Research Methodology
This thesis adopts an applied experimental research approach grounded in en-
gineering problem-solving. The project is driven by a practical need: enabling
accurate and efficient place recognition and pose estimation in unstructured,
planetary-like environments. To address this, the methodology combines
deep learning-based algorithm development, comparative evaluation, and
multi-modal data integration, supported by an experimental framework and
benchmark analysis.

At the core of the project is the design of a deep learning-based algorithm
for multi-modal place recognition and pose estimation, integrating both
visual (RGB images) and geometric (LiDAR point clouds) data. The
research follows a design science methodology, where the main goal is to
iteratively develop, implement, and evaluate a working artifact that meets
clearly defined performance criteria. The system will be evaluated not only for
recognition accuracy but also for computational efficiency and pose estimation
quality—metrics aligned with the constraints of autonomous planetary rovers.

The project explores hybrid architectures that incorporate both learned
and model-based components. Deep feature extractors (transformers) are
used to obtain discriminative descriptors from images and point clouds, while
classical model-based techniques (such as PnP or ICP) support geometric
consistency and pose estimation. This hybridization approach was chosen
to balance data-driven generalization with the interpretability and structure
of geometric models, particularly important in environments where texture is
sparse and viewpoints vary significantly.

Several methodological alternatives were considered. Purely geometric
methods were excluded due to their reliance on stable keypoints and dense
3D structure, which are not available in the target environments. End-to-end
pose regression networks were also considered but deprioritized, as they often
struggle with generalization across terrain types and fail to capture the spatial
consistency required for SLAM integration. Instead, the chosen approach
leverages the modularity and interpretability of descriptor-based retrieval
and relative pose estimation from correspondences.

In terms of philosophical assumptions, the thesis is grounded in a
realist paradigm: it assumes that camera pose and physical structure exist
independently of observation and can be measured or estimated through
sensing. The approach is deductive, testing the performance of the designed
system against established SLAM objectives and metrics. The methodology
emphasizes empirical validation through experiments on publicly available
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datasets and real-world rover trials.
Three primary methodological phases guide the project:

• Algorithm Development: Design and implement a multi-modal
deep learning pipeline using transformer-based feature extractors (e.g.,
DINOv2 for images, Sonata for point clouds). Descriptors from each
modality are aggregated and fused to allow fast and robust place
recognition and relative pose estimation. Aggregation methods like
SALAD are used to compress image features into compact, comparable
descriptors.

• Dataset Preparation: Utilize publicly available datasets such as the
Etna dataset and DLR’s outdoor rover trials [21]. If needed, additional
data from the Morocco-Acquired dataset of Mars-Analog eXploration
(MADMAX) may be included to increase environmental diversity [22].

• Evaluation: Conduct systematic experiments to assess the system’s
performance. Metrics include precision and recall for place recognition,
yaw error for pose estimation, and inference speed for real-time
deployment feasibility.

This methodology supports both the scientific exploration of novel feature
fusion strategies and the engineering validation of a system intended for
deployment on real-world robotic platforms.

1.6 Delimitations
This thesis focuses on the development of a multi-modal place recognition
and 6D pose estimation system using vision and LiDAR data in unstructured,
planetary-like environments. However, there are several important delimita-
tions that define the scope and boundaries of this work.

First, the project does not involve the development of a complete SLAM
system. While the proposed method is designed to serve as a component
within the loop closure detection module of a SLAM pipeline, the thesis
does not implement or evaluate integration with full SLAM frameworks.
All SLAM-related processes—such as map building, odometry correction, or
back-end optimization—are considered out of scope.

Second, real-time deployment on robotic platforms, such as the LRU,
is not included in this project due to time and resource constraints. Although
the system is designed with computational efficiency in mind and is intended
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for future integration into the LRU, this thesis focuses exclusively on offline
testing using recorded datasets. Evaluation will be limited to metrics such
as recognition precision, recall, and yaw error for pose estimation, without
real-time testing or performance validation on embedded hardware.

These delimitations ensure that the thesis remains focused on the
core research contributions: improving robustness and accuracy in place
recognition and pose estimation through multi-modal deep learning, without
extending into full SLAM system development or deployment.

1.7 Ethical, Social, and Sustainability Con-
siderations

In addition to addressing technical challenges, this thesis places strong
emphasis on ethical responsibility, sustainability, and social relevance,
especially as autonomous systems are increasingly deployed in critical real-
world applications.

The proposed methodology is fully reproducible, transparent, and ethically
sound. All datasets used during training and evaluation are publicly available
and licensed for academic use and redistribution. The primary evaluation was
conducted on the Etna dataset [21], a benchmark collected in a planetary-
analog environment on Mount Etna, Sicily. This dataset includes grayscale
images, LiDAR point clouds, and D-GNSS ground truth poses. It contains no
human subjects or sensitive information, thus posing no privacy risks or ethical
concerns. Additional training data for the image retrieval module was sourced
from urban-scale benchmarks—Mapillary Street-Level Sequences (MSLS)
[23], GSV Cities [24], and Pittsburgh250k [25]—all of which contain public
street imagery captured in outdoor settings, with no manual annotations or
personally identifiable content.

From a technical reproducibility perspective, all aspects of the system—
data preprocessing, model training, evaluation, and benchmarking—are
implemented using open-source Python scripts. Full reproducibility was
a guiding principle throughout the project: every experiment is scriptable,
parameterized, and designed to be rerun on any system with appropriate
hardware. Upon submission, the entire codebase and trained model
checkpoints will be released publicly, supporting the broader research
community in building on this work.

Beyond these research norms, the thesis aligns with broader sustainability
goals. Efficient and modular visual-LiDAR localization systems have the
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potential to reduce the energy footprint of autonomous agents by enabling
real-time, onboard processing without reliance on cloud infrastructure. This is
particularly valuable in planetary exploration, where communication latency
and bandwidth are extremely limited. The use of compact descriptors like
SALAD [26], and efficient indexing (e.g., FAISS [27]) reflects a conscious
effort to design methods that are not only accurate but computationally
efficient, making them more deployable in low-power robotic systems.

This focus on computational efficiency is especially relevant in planetary
exploration, where communication delays, bandwidth limitations, and power
constraints demand fully autonomous systems that operate reliably and
independently. Beyond its technical challenges, planetary exploration
carries significant societal and scientific importance: it drives technological
innovation, fosters international cooperation, and expands our understanding
of Earth’s place in the cosmos. Enabling robust, interpretable localization
in these missions directly supports this broader vision—ensuring that robotic
platforms can safely navigate, collect data, and carry out scientific objectives
in extreme and unstructured environments. By advancing autonomy in these
contexts, the system contributes not only to mission success but also to the
long-term goal of sustainable and responsible exploration beyond Earth.

Beyond space missions, the system contributes to other socially beneficial
domains such as disaster response, environmental monitoring, and precision
agriculture. These applications often share similar constraints—unstructured
environments, poor lighting, and lack of infrastructure—making the de-
veloped techniques broadly applicable. Improving localization robustness
and explainability in such contexts can accelerate rescue missions, enhance
environmental resilience, and expand the frontier of autonomous robotics in
both Earth and space.

Finally, the system is explicitly designed for interpretability and trans-
parency, in contrast to many black-box AI methods. By using matching-
based pose estimation and modular components, the pipeline enables users
to understand, validate, and diagnose localization decisions, an essential
property for ethical deployment in high-stakes scenarios. This commitment
to explainability aligns with increasing demands for accountability in AI and
robotics, especially as these technologies enter socially and environmentally
sensitive domains.
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1.8 Structure of the thesis
This thesis is organized into seven chapters. Chapter 1 introduces the
background, problem formulation, purpose, goals, research methodology, and
delimitations of the project. Chapter 2 presents the necessary background
on SLAM, visual place recognition, pose estimation, and multi-modal
approaches, followed by a review of related work in the field. Chapter 3
will describe the research methods and experimental design used to develop
and evaluate the proposed approach. Chapters 4 to 7 will cover the system
implementation, experimental results, discussion, and final conclusions,
including reflections and directions for future work.



12 | Introduction



Background | 13

Chapter 2

Background

This chapter provides essential background information on visual place
recognition and pose estimation, with a focus on their roles in Simultaneous
Localization and Mapping (SLAM) systems. It introduces key challenges
specific to unstructured, planetary-like environments, where traditional
methods often fail due to low texture and sparse visual cues. In addition, this
chapter outlines the components and phases of a place recognition pipeline,
including feature extraction, descriptor aggregation, and pose estimation.
Finally, the chapter presents a review of related work in multi-modal learning,
transformer-based representation learning, and LiDAR-based registration,
highlighting recent advancements and identifying gaps that motivate the
present study.

2.1 Fundamentals of SLAM and Loop Clo-
sure Detection

2.1.1 SLAM and its Significance in Autonomous
Navigation

SLAM refers to the process by which a mobile robot concurrently constructs
a model of its environment while estimating its own position within that
environment. The primary objective of SLAM is to enable a robot to
navigate autonomously in an unknown environment without relying on Global
Positioning System (GPS). Instead, the robot builds a map incrementally using
sensor data and updates its localization within that map over time [1].

SLAM is a fundamental component of autonomous navigation, allowing
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robots to explore unstructured environments, from indoor spaces to large-scale
outdoor settings, including planetary surfaces. Without SLAM, navigation
systems must rely solely on odometry, which accumulates drift over time.
The incorporation of mapping allows for the correction of localization errors
through loop closure detection, significantly improving the accuracy and
robustness of navigation [1].

2.1.2 The Role of Place Recognition and Pose Estima-
tion

Place recognition and pose estimation play a critical role in ensuring the
consistency of the SLAM-generated map [28]. Place recognition allows the
robot to recognize previously visited locations, even if they are viewed from
different angles or under different conditions. Once a place is recognized,
relative pose estimation determines how the robot’s current viewpoint relates
to the previously recorded scene.

These components are essential for loop closure detection, where the
system identifies that the robot has returned to a previously mapped area and
corrects localization drift. However, in feature-sparse environments such as
deserts, planetary surfaces, or underwater regions, place recognition and pose
estimation remain difficult due to the lack of distinct visual landmarks [1].

2.1.3 Challenges of Loop Closure in Planetary Envi-
ronments

Loop closure detection becomes particularly challenging in planetary
exploration scenarios due to the following constraints:

• GNSS Absence: Unlike terrestrial robots, planetary rovers cannot
rely on satellite-based positioning, requiring SLAM to rely entirely on
visual, Light Detection and Ranging (LiDAR), or inertial sensors for
localization.

• Low-Texture Environments: Deserts, volcanic landscapes, and
extraterrestrial terrains are characterized by large regions of uniform
sand or rock, offering few discriminative features for place recognition
[1].

• Limited Landmarks: Natural landmarks such as craters and mountains
are typically distant from the rover’s camera, making accurate pose
estimation challenging.
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Addressing these challenges requires novel approaches, including self-
supervised deep learning for feature extraction, multimodal data fusion (vision
and LiDAR), and advanced loop closure verification techniques to minimize
false matches.

2.2 Visual Place Recognition
Visual Place Recognition (VPR) is a critical component of SLAM, enabling
robots to recognize previously visited locations and correct accumulated drift
through loop closure detection. This capability is particularly important
in GPS-denied or perceptually ambiguous environments, such as planetary
surfaces, caves, or underwater terrains. To address these challenges effectively,
VPR pipelines are typically divided into distinct phases, with specialized
methods tailored to each stage. The following sections review the key
techniques employed at each phase of the VPR process.

2.2.1 Feature Extraction
The first and most critical phase of VPR is feature extraction—the process
of extracting meaningful representations from raw images using either
handcrafted or learned descriptors. These features must be robust to changes
in viewpoint, lighting, and environmental texture, particularly in planetary or
extreme environments where traditional navigation cues are minimal. VPR
methods can be categorized according to their feature extraction approach,
broadly divided into classical techniques and learning-based methods, each
with distinct advantages and limitations.

a) Classical Methods
Classical VPR methods rely on handcrafted features and descriptors
to match images across different viewpoints and conditions. These
approaches, while computationally efficient, often struggle in feature-
deficient environments such as planetary landscapes.

One of the most well-known methods, SIFT [5], extracts keypoints
that are invariant to scale and rotation using Difference-of-Gaussian
(DoG) filters. Although robust to viewpoint changes, SIFT relies
heavily on high-gradient features, making it less effective in low-texture
terrains such as sandy or volcanic landscapes. Speeded-Up Robust
Features (SURF) improves detection speed by using Haar wavelet
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approximations and integral images [29]. While faster than SIFT, its
dependence on local texture patterns similarly limits its effectiveness in
low-contrast planetary terrains where distinctive features are rare.

Oriented FAST and Rotated BRIEF (ORB) enhances computa-
tional efficiency by combining FAST keypoints with Binary Robust
Independent Elementary Features (BRIEF) descriptors [6]. This
method is particularly useful in real-time applications, as demonstrated
in ORB-SLAM3 [2], which utilizes ORB features for simultaneous
localization and mapping (SLAM). However, its performance degrades
in environments with repetitive or sparse features.

A major limitation of these classical methods in planetary environments
is perceptual aliasing, where different locations appear visually similar,
leading to incorrect matches. The survey by Barros et al. [30], highlights
that handcrafted descriptors such as SIFT and SURF are particularly
sensitive to these conditions [5, 6].

b) Learning-based Methods
Deep learning has transformed VPR by enabling systems to learn
discriminative and invariant feature representations directly from raw
image data. Unlike handcrafted approaches, learning-based methods
adapt better to changes in lighting, viewpoint, and environmental
structure. Their development has followed a progression from
Convolutional Neural Network (CNN) based models to transformer-
based self-supervised architectures.

NetVLAD was one of the earliest learning-based approaches in VPR
[9]. It extends the traditional Vector of Locally Aggregated Descriptors
(VLAD) framework by learning a differentiable pooling layer that
aggregates local CNN features into a global vector. While highly
effective in structured urban environments, it requires extensive labeled
data and struggles with extreme viewpoint changes. DenseVLAD im-
proves robustness in low-texture environments by incorporating dense
feature extraction [31], though it remains vulnerable to domain shifts,
such as applying Earth-trained models to Martian landscapes. Patch-
NetVLAD enhances recognition of distant landmarks by incorporating
multi-scale feature aggregation [32], making it more applicable to
planetary horizons. However, all of these CNN-based approaches
depend on large labeled datasets, which limits their applicability in
environments where annotated data is unavailable.
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Methods like LoFTR [8] extend the capabilities of CNN-based
extractors by introducing transformer-based modules to enhance feature
representations. LoFTR first extracts coarse and fine features using
a convolutional backbone with a Feature Pyramid Network (FPN),
leveraging CNNs’ local inductive bias and computational efficiency.
These features are then passed through a transformer module that
encodes position- and context-aware representations using attention
mechanisms. Although primarily used for dense matching tasks,
LoFTR’s approach illustrates how transformer-based refinement of
CNN features can improve robustness in unstructured or low-texture
environments.

Recent developments have led to fully transformer-based models
designed for general-purpose feature extraction. Models such as
DINO and its successor DINOv2 utilize self-supervised learning and
Vision Transformers (ViTs) to produce general-purpose features without
requiring annotated datasets [33, 34]. These models are trained using
a teacher-student distillation framework that captures both semantic
and structural patterns at multiple spatial resolutions. DINOv2, in
particular, has demonstrated strong transferability across tasks and
environments without the need for fine-tuning, making it suitable for
deployments where labeled data collection is impractical. Research
shows that features from intermediate transformer layers often contain
richer positional information than those from the final layer [34], which
can enhance performance in place recognition tasks, especially in
unstructured or perceptually degraded environments.

In summary, the shift from CNN-based to transformer-based and
self-supervised feature extractors reflects a growing need for gen-
eralization, scalability, and data efficiency in VPR. These methods
improve robustness in challenging environments, though issues such as
computational cost and domain transferability remain key challenges for
future research.

2.2.2 Feature Aggregation
After extracting features from images, VPR systems aggregate these features
into compact and discriminative descriptors for efficient comparison. The
choice of aggregation strategy significantly impacts the descriptor’s quality,
size, and the system’s overall performance.
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a) Attention-Based Aggregation
Transformer-based models like DINO and DINOv2 rely on a Classifi-
cation Token (CLS) to aggregate information from all image patches
[33, 34]. The CLS token is a learned vector that gathers global context
through multiple attention layers. It is commonly used as the image-
level descriptor in many vision transformer models. However, studies
such as AnyLoc have shown that relying solely on the CLS token may
be suboptimal for place recognition in unstructured environments [35].
Instead, aggregating local features directly can yield better performance
in such settings.

Beyond the CLS token, other models implement more sophisti-
cated attention-based aggregation mechanisms. TransVPR [36],
for example, extracts multi-level features from different layers of a
transformer and combines them using attention across spatial scales.
This approach captures both low-level details and high-level semantic
information, resulting in a more expressive global descriptor. In
addition to producing a global vector, TransVPR also generates patch-
level descriptors that enable geometric verification, an important step
for reducing false positives in place recognition.

Attention-based aggregation dynamically focuses on informative image
regions, improving robustness in complex scenes, but often comes with
higher computational cost compared to simpler methods.

b) MLP Mixer-Based Aggregation
Multi-layer Perceptrons (MLP) Mixers offer an alternative to atten-
tion mechanisms for combining spatial and channel-wise information
across feature maps [37]. These models use stacked MLP to mix features
across tokens and channels, capturing spatial relationships without
relying on self-attention.

In DinoMix [38], the final transformer layer output from DINOv2
is passed through an MLP Mixer composed of consecutive MLP
blocks and linear projections. The goal is to extract high-level spatial
relationships and produce a compact global descriptor. A similar
design is used in MixVPR [39], which applies the MLP Mixer on
CNN-derived features instead of transformer outputs. MixVPR has
shown competitive performance, outperforming methods such as Patch-
NetVLAD, TransVPR, and SuperGlue in certain benchmarks[32, 36,
40].
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The optimal architecture for the mixer, based on empirical evaluations
[41], consists of two mixing layers. This configuration achieves a
good trade-off between expressiveness and computational efficiency.
However, its effectiveness may vary across datasets, and in some cases,
it performs slightly below more complex aggregation schemes like
VLAD.

c) Pooling-Based Aggregation
Pooling methods represent a simpler and more efficient class of
aggregation strategies. These include Global Average Pooling (GAP)
[42], Global Max Pooling (GMP) [43], and Generalized Mean
Pooling (GeM) [44]. GAP computes the average value of each
feature map, GMP selects the maximum, and GeM introduces a
learnable parameter that generalizes both operations. Variants such
as Group Generalized Mean Pooling (GGeM) further improve
upon this by dividing feature channels into groups and applying
different pooling parameters to each [45], emphasizing important
features while suppressing trivial ones. The AnyLoc study provides
a comprehensive comparison of these pooling strategies when applied
to DINO features [35], finding that while GeM offers a good balance
between performance, speed and memory efficiency, it is often
outperformed by more complex aggregation schemes such as VLAD
in unstructured or low-texture environments.

d) VLAD-Based Aggregation
VLAD-based aggregation remains one of the most powerful approaches
for place recognition. The original VLAD algorithm aggregates features
by assigning them to pre-defined cluster centers and computing the
residuals between each feature and its assigned centroid [46]. These
residuals are then concatenated into a global descriptor. NetVLAD
extends this concept by learning the cluster centers and using soft
assignment instead of hard clustering, allowing for end-to-end training
[9]. Patch-NetVLAD builds further on this idea by incorporating
multi-scale features and introducing a geometric consistency measure
known as Rapid Spatial Scoring [32, 47], which compares vertical
and horizontal distances between matched patch positions in two
images. These refinements improve recognition of distant landmarks
and increase robustness to spatial distortions.

A notable advancement in this area is SALAD [26], which inte-
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grates DINO features with a modified VLAD framework. Unlike
NetVLAD, which initializes its cluster centers from precomputed k-
means centroids, SALAD learns its cluster assignments using two fully
connected layers. It also introduces a “dustbin” cluster to discard
uninformative features, reducing noise in the final descriptor. Feature-
to-cluster assignment is reformulated as an optimal transport problem,
and SALAD applies the Sinkhorn algorithm to obtain the optimal soft
assignment [48]. Instead of computing residuals, features assigned to
each cluster are summed and processed through fully connected layers
for dimensionality reduction. Finally, SALAD concatenates this cluster-
based representation with a global DINO token for improved semantic
encoding. This combination has demonstrated strong performance,
particularly under challenging conditions such as severe viewpoint
or lighting changes, and outperforms other DINO-based aggregation
methods with similar descriptor sizes such as GeM or MixVPR [44, 39].

In summary, feature aggregation defines how extracted features are
combined into a representation suitable for place recognition. While attention-
based methods offer dynamic, high-capacity representations, simpler tech-
niques like pooling remain useful in low-resource contexts. Mixers offer a
simple yet effective solution, while VLAD-based methods provide stronger
feature discrimination, particularly when enhanced with self-supervised
backbones like DINO. The selection of an aggregation method depends on
the trade-off between robustness, efficiency, and environmental complexity.

2.2.3 Database indexing
In VPR, once image descriptors are extracted, they must be organized into
efficient data structures to enable rapid and accurate retrieval. This process,
known as database indexing, is crucial for scaling VPR systems to large
environments. Below, we delve into various indexing methods.

a) Exact Nearest Neighbor and k-d Tree Search
The most straightforward retrieval method is exact Nearest Neighbors
(NN) search [49], where a query descriptor is compared against
every descriptor in the database to find the most similar one. While
this brute-force method guarantees maximum accuracy, it becomes
computationally impractical as the database size grows, especially when
dealing with high-dimensional descriptors commonly used in VPR.
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To improve search speed, data structures like k-d trees have been
introduced [50]. K-d trees organize descriptors into a binary tree
based on recursive partitioning of the feature space. This allows for
efficient pruning during search, significantly reducing the number of
comparisons required. However, their performance degrades rapidly in
high-dimensional spaces, where most points become nearly equidistant,
and the tree structure provides little benefit. As a result, k-d trees are
suitable for small or low-dimensional datasets but are rarely used in
recent large-scale VPR applications.

b) Approximate Nearest Neighbor (ANN) Search and FAISS
To overcome the limitations of exact methods, Approximate Nearest
Neighbor (ANN) algorithms allow a controlled loss in retrieval
accuracy in exchange for faster search times [51]. These methods are
especially useful for high-dimensional data and large databases, where
exact search becomes infeasible.

One widely adopted ANN solution is Facebook AI Similarity Search
(FAISS), an open-source library that supports multiple indexing
techniques optimized for dense vector retrieval [27]. FAISS includes
both CPU and GPU implementations and offers a variety of indexing
structures such as flat (brute-force), inverted file (IVF) indexing, product
quantization (PQ), and Hierarchical Navigable Small World graphs
(HNSW). For example, IVF partitions the database into coarse clusters
to narrow down the search space, while PQ compresses vectors into
low-bit representations to reduce memory usage. HNSW, a graph-based
approach, provides highly efficient search by constructing a multi-layer
proximity graph.

The key advantage of FAISS is its flexibility: users can choose an
index that balances speed, memory efficiency, and accuracy according
to their needs. However, approximate methods inherently involve a
trade-off in precision, and tuning FAISS parameters requires care to
avoid significant performance loss. Despite this, FAISS has become
a standard tool in large-scale VPR pipelines due to its scalability and
robustness.

c) Bag-of-Words (BoW) Models
Another common indexing approach in visual recognition is the Bag-of-
Words (BoW) model [52]. Inspired by text retrieval, BoW treats visual
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features as ”words” by assigning local descriptors to entries in a pre-
trained visual vocabulary (typically generated via k-means clustering)
[3]. Each image is then represented as a histogram of word frequencies,
which can be compared efficiently using inverted indices.

BoW offers a compact and computationally efficient representation,
making it attractive for VPR systems and scenarios where real-time
performance is essential. Its storage requirements are low, and retrieval
can be performed quickly using established information retrieval
techniques. However, BoW suffers from several limitations: it discards
spatial information, making it less effective in scenes where layout
matters, and its accuracy is highly dependent on the quality and size
of the vocabulary.

d) Hashing-Based Indexing
Hashing methods project high-dimensional descriptors into a lower-
dimensional binary space, allowing similarity comparisons using
Hamming distance. Examples include Locality-Sensitive Hashing
(LSH) and Spectral Hashing, which aim to ensure that similar
descriptors hash to similar binary codes [53, 54].

The primary benefit of hashing is its high speed and low memory
footprint. Binary representations allow for rapid bit-wise comparisons
and can be stored compactly, which is advantageous for large-scale or
embedded applications. However, hashing often leads to information
loss, especially when the binary representation is too compact or the
hash function is poorly aligned with the feature distribution. This
can result in lower accuracy and missed matches, particularly in
environments with subtle visual differences or repeated structures.

2.2.4 Place Matching
After feature extraction and indexing, the next step in the VPR pipeline
is place matching, identifying which entries in the database most closely
correspond to a query image. This stage can be divided into two levels: global
image matching, where compact descriptors are compared to identify likely
candidates, and local correspondence matching, where spatial consistency is
verified through keypoint or dense feature alignment.

At the global level, similarity between image descriptors is typically
measured using distance metrics such as Euclidean distance or cosine
similarity.Euclidean distance measures the straight-line distance between two
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points in feature space and is sensitive to descriptor magnitude. Cosine
similarity, on the other hand, compares the angle between descriptors,
normalizing for their length and focusing on their direction. It is particularly
useful when descriptors are normalized to unit vectors. In practice, a match
is usually considered valid if it exceeds a similarity threshold or ranks within
the top-k nearest neighbors. A widely used method to reduce false positives
is Lowe’s ratio test [55], which compares the distance of the closest match
to the second-closest. A match is accepted only if the ratio between these two
distances is below a set threshold (typically 0.7), indicating that the best match
is significantly better than the next best candidate and thus more likely to be
correct.

However, image-level similarity alone may not be sufficient in visually
ambiguous or feature-sparse environments. To improve both robustness
and efficiency, many VPR systems adopt a hierachical frameworks such as
Hierarchical Localization (HLoc) [10], which combines global retrieval
with local geometric verification. This two-stage methods enable scalable
localization in large environments by first narrowing down potential matches
using global descriptors and then refining pose estimates with local features.
HLoc has been widely explored for terrestrial applications and hold potential
for planetary exploration, where extreme viewpoint variations and feature
sparsity can make single-stage approaches unreliable. The survey by Barros et
al. highlights the effectiveness of hierarchical frameworks in addressing these
challenges [30].

In the second stage of hierarchical frameworks, local correspondence
methods establish detailed relationships between features in the query and
candidate images. SuperGlue enhances this process by modeling spatial
context using a Graph Neural Network (GNN) [40], enabling it to identify
consistent keypoint matches even under moderate viewpoint and illumination
changes. It improves upon classical local matching methods by learning both
feature descriptors and their spatial context. However, it still depends on the
presence of clearly detectable keypoints, which may be sparse or unstable in
low-texture settings.

To address the limitations of sparse keypoints, recent methods have shifted
toward transformer-based architectures capable of computing dense pixel-
wise correspondences. LoFTR uses a detector-free pipeline that combines
CNN-extracted features with self- and cross-attention mechanisms, allowing
it to compute dense, pixel-level correspondences [8]. This makes it highly
suitable for low-texture or repetitive terrains, where classical methods often
fail. LoFTR has outperformed SuperGlue on the MegaDepth dataset, which
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includes significant viewpoint variation and repetitive patterns [56]. With
an inference time of approximately 116 ms for 640×480 image pairs, it is
suitable for real-time applications. However, its performance on desert-like
or extraterrestrial landscapes remains an open research question.

Overall, the place matching stage plays a pivotal role in the success
of loop closure detection. While global descriptor matching offers speed
and scalability, local correspondence methods are more effective in visually
challenging or ambiguous environments, where fine-grained spatial detail
is required. A widely adopted strategy that combines the strengths of
both is hierarchical localization. This approach first performs fast, coarse
retrieval using global descriptors to narrow down the search space, and then
applies local matching techniques to refine and verify the candidate matches.
This two-stage process ensures computational efficiency and geometrical
consistency.

2.2.5 Verification and Re-ranking
In challenging environments—especially those characterized by perceptual
aliasing, repetitive structures, or sparse features—initial place recognition
results may include false positives. To reduce these errors, many VPR systems
incorporate an optional verification and re-ranking stage. This stage refines the
shortlist of candidate matches by applying additional spatial or sensor-based
checks to ensure geometric and physical plausibility before a loop closure is
confirmed. Below, we review two key strategies used in this stage: spatial
consistency verification and multi-modal fusion.

a) Spatial Consistency Verification
Spatial consistency verification methods assess whether the geometric
relationship between a query image and a retrieved candidate is
physically plausible. These techniques use local or dense feature
correspondences to estimate the spatial transformation between two
viewpoints, thereby validating the match based on geometric criteria.

A commonly used approach is RANSAC-based geometric verification
[57], in which keypoint correspondences (often generated by methods
such as ORB or SuperGlue) are used to estimate a fundamental or
essential matrix. This estimation allows outlier correspondences to
be discarded and ensures that the transformation between views is
consistent with epipolar geometry. Similarly, PnP (Perspective-n-
Point) algorithms combined with RANSAC can be used when 3D
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landmarks are available, allowing for relative pose estimation based on
2D-3D correspondences [15, 16].
Another technique that integrates spatial validation into the matching
process is patch alignment, as implemented in Patch-NetVLAD. This
method evaluates the geometric consistency of retrieved matches
by analyzing the relative vertical and horizontal displacement of
corresponding image patches. Known as Rapid Spatial Scoring [47],
this technique allows for efficient and robust verification of candidate
images, especially in environments with distant or large-scale features,
such as planetary landscapes.
Overall, these spatial verification methods significantly reduce the
rate of false positives by filtering out candidate matches that are not
geometrically consistent, thereby improving the reliability of loop
closure detection.

b) Multi-Modal Fusion
In environments where visual data alone may be unreliable—such as
those with poor lighting, dust, or feature repetition—verification can
be improved through multi-modal fusion. These approaches combine
image-based recognition with other sensor modalities to cross-validate
matches and increase robustness.
One common strategy is Visual-Inertial Odometry (VIO) [58], which
integrates camera data with inertial measurements from an Inertial
Measurement Unit (IMU). The IMU provides high-frequency motion
information that helps constrain visual matching and reduce drift,
particularly in texture-poor regions or during rapid motion.
Another powerful approach is visual–LiDAR fusion [11], where point
cloud maps generated by LiDAR are used alongside visual descriptors to
verify place matches. This cross-modal validation is particularly useful
in planetary robotics, where visual scenes may appear similar despite
physical differences. By aligning image-based and LiDAR-based
localizations, the system can reject perceptual aliases and reinforce only
the matches that are consistent across both modalities.
These multi-sensor strategies are frequently integrated into SLAM
frameworks, especially in robotics applications requiring high reliabil-
ity. By combining different sensor modalities, they enhance robustness
against perceptual ambiguity and improve the accuracy of loop closure
decisions in visually degraded or repetitive environments.
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2.3 Pose Estimation Techniques
Pose estimation refers to the process of determining the position and
orientation (pose) of a camera or sensor relative to a known or reconstructed
environment. In visual systems, this typically involves estimating a 6-degree-
of-freedom (6-DoF) pose: three values for translation (x, y, z) and three
for rotation (pitch, yaw, roll). Pose estimation can be performed using a
single image (absolute pose) or by analyzing multiple views (relative pose).
Depending on the available data—such as 2D images, depth maps, or 3D
landmarks, various techniques can be applied, ranging from geometric solvers
to deep learning models. These approaches vary in accuracy, robustness, and
computational demands, especially when deployed in constrained or visually
ambiguous environments such as planetary terrains.

2.3.1 Geometric Approaches
Classical pose estimation pipelines rely on geometric correspondences
between 2D image features and known 3D points, or between image pairs, to
compute the camera’s position and orientation. These methods are valued for
their accuracy and interpretability, but their performance is highly dependent
on the quality of detected features and the robustness of matching under
varying visual conditions.

A widely used technique in this category is the Perspective-n-Point
(PnP) algorithm [15], which estimates camera pose from a set of 2D–3D
correspondences, typically derived from keypoint matches or projected 3D
models. To ensure robustness against outliers, PnP is often combined with
RANSAC [59], which iteratively selects minimal subsets of correspondences
to identify a geometrically consistent solution. This PnP-RANSAC
combination remains a reliable baseline in structure-based localization tasks
and is also a core component in hybrid pipelines such as COLMAP and
FoundPose [17, 60].

For applications involving dense 3D data, such as from LiDAR or depth
sensors, Iterative Closest Point (ICP) is commonly used to align two
point clouds or depth maps and estimate relative pose [18]. ICP works by
minimizing the distance between corresponding points in successive scans.
While highly effective in well-structured environments, its accuracy can
degrade significantly in scenes with poor geometric features, low texture, or
poor initial alignment—conditions.
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2.3.2 Deep Learning-Based Pose Estimation
Deep learning methods aim to directly regress the relative or absolute pose
from images, bypassing traditional feature matching or explicit 3D scene
geometry. These approaches can be broadly categorized into end-to-end
pose regression, scene coordinate regression, and foundation model-based
estimators.

a) End-to-End Relative Pose Regression
One of the earliest and most influential models in this domain is
PoseNet, introduced by Kendall et al [14]. PoseNet uses a convolutional
neural network to regress the absolute 6-DoF camera pose directly
from a single RGB image. It offers high robustness to challenging
visual conditions such as motion blur and lighting changes. However,
PoseNet’s performance is generally lower than that of geometry-based
methods, particularly in terms of accuracy and metric scale estimation,
due to its limited geometric supervision.
Building upon the foundations of PoseNet, more recent deep learning
models have shifted toward end-to-end relative pose regression (RPR),
which predicts the relative transformation between a pair of input
images. Early RPR approaches also used convolutional backbones
such as ResNet-34 to generate global embeddings [61], followed by
MLPs for pose regression. These models often lacked spatial awareness
and struggled to generalize to unseen environments.
To address these limitations, more recent models have incorporated
pretrained matching networks such as LoFTR to obtain spatially
informed, semi-dense feature maps [62]. These are subsequently
warped and passed through a camera motion regression module
trained with specialized losses, such as cosine similarity for translation
direction and L1 distance for scale, to decouple geometric components.
This design improves generalization across datasets and offers faster
inference than full feature matching pipelines, making it more practical
for real-time applications.
A recent hybrid approach, Match-And-Transform, also known as
Reloc3r, proposes a two-stage architecture that combines coarse feature
matching with Transformer-based pose regression [63]. The model
first identifies tentative correspondences using an attention mechanism
inspired by SuperGlue, followed by a refinement stage that regresses the
relative pose. Despite incorporating soft correspondences, the model’s
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interpretability remains limited since you cannot trace which image
regions caused which part of the pose prediction. This makes debugging
and safety validation harder than with classic matching + PnP pipelines,
raising questions about the model’s reliability and transparency in real-
world or safety-critical deployments.

Another class of methods leverages ViTs for pose regression. By
encoding positional information directly into patch embeddings,
transformer-based models can implicitly emulate geometric algorithms
like the Eight-Point Algorithm [64]. For instance, Rockwell et al.
propose a lightweight architecture that modifies a standard ViT with
an Essential Matrix Module (EMM), introducing bilinear attention,
quadratic positional encodings, and a dual-softmax mechanism. These
changes allow the ViT to approximate the Eight-Point Algorithm’s key
computation U⊤U and estimate both rotation and translation with scale
directly from image pairs. This approach achieves competitive accuracy
on baseline datasets like Matterport3D [65], while requiring less data
and outperforming CNN-based regressors in data-scarce settings.

b) Scene Coordinate Regression
This method offers an alternative by predicting, for each image pixel, its
corresponding 3D coordinate in the world. This allows the camera pose
to be estimated via PnP and RANSAC, bypassing explicit descriptor
matching. A representative example is Differentiable RANSAC
(DSAC) [59], which addresses a core limitation in integrating RANSAC
into deep learning pipelines. Traditional RANSAC involves non-
differentiable hypothesis selection, which makes end-to-end training
unfeasible. DSAC resolves this by introducing a probabilistic
formulation of hypothesis selection inspired by reinforcement learning,
allowing the expected pose loss to be differentiated with respect
to all network parameters. Applied to camera localization, DSAC
enables end-to-end learning of scene coordinate predictions by directly
optimizing pose accuracy, improving over classical methods. While
later extensions introduce multi-view consistency and reprojection
losses to improve robustness, these models often face scalability issues
due to dense prediction requirements and high memory usage.

c) Foundation Model-Based Methods
Finally, foundation model-based methods have emerged as a new direc-
tion in pose estimation. FoundPose, for instance, leverages DINOv2
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patch descriptors to establish 2D–3D correspondences between input
images and synthetic renderings of object templates [60]. Using
PnP with RANSAC and a featuremetric refinement stage, FoundPose
accurately estimates 6-DoF object poses, even for symmetric or low-
texture geometries. Notably, it does so without requiring task-specific
training, demonstrating the potential of vision foundation models to
support generalizable, training-free localization pipelines.

2.3.3 Hybrid Approaches
Hybrid methods combine the strengths of geometric and learning-based
approaches to enhance robustness, scalability, and generalization in pose
estimation tasks. Their flexibility makes them particularly attractive
for applications such as long-term SLAM and planetary robotics, where
environmental conditions can vary drastically and model adaptability is
essential.

A well-established example is SfM, with pipelines such as COLMAP
that reconstruct 3D models from collections of images through geometric
triangulation and bundle adjustment [17]. For localization, new query images
are matched against the reconstructed model using hierarchical or direct
feature matching to estimate pose. Although COLMAP offers high accuracy
and is widely used in research, its computational cost makes it impractical for
real-time deployment.

Other approaches focus on efficient 2D–3D matching using learned
descriptors. For example, FoundPose leverages synthetic template rendering,
patch-level matching with DINOv2 descriptors, and pose estimation through
PnP to localize objects without requiring per-scene training [60]. This results
in a robust and training-free pipeline that generalizes well across various object
types and visual conditions.

In more recent developments, differentiable matching pipelines integrate
deep feature extractors, semi-dense matchers like LoFTR, and learnable pose
regressors into a unified framework [62]. These setups leverage geometric
priors while benefiting from data-driven learning and achieve competitive
accuracy at lower inference times compared to full geometric methods.

2.4 Related work area
This section reviews key advances in multi-modal place recognition and pose
estimation, with a focus on transformer-based architectures for both image and
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point cloud data, as well as recent efforts in 3D point descriptor matching for
LiDAR registration. We highlight relevant gaps that motivate the present work

2.4.1 Multi-Modal Place Recognition
Earlier LiDAR-only approaches, such as PointNetVLAD, aimed to directly
learn global place descriptors from raw point clouds using PointNet and a
NetVLAD aggregation layer [66, 12, 9]. These models demonstrated strong
performance in large-scale place recognition without relying on images or
precomputed features. However, their reliance on geometry alone limited
their robustness in environments with perceptual aliasing or sparse structure.
This limitation, along with the growing availability of synchronized visual
and LiDAR data, motivated the development of multimodal approaches that
can integrate complementary cues for more reliable localization under diverse
conditions. A recent survey by Nagrani et al. provides a comprehensive review
of such multi-modal place recognition methods, discussing fusion strategies,
benchmark datasets, and remaining challenges including modality imbalance,
scalability, and generalization across environments [67].

Recent research has increasingly focused on combining vision and
LiDAR to leverage the complementary strengths of both modalities for
place recognition in challenging environments. AdaFusion proposes an
adaptive weighting mechanism that dynamically adjusts the contribution of
visual and LiDAR features depending on the environment [13]. This is
achieved via a dual-branch architecture—one for feature extraction and one
for adaptive weighting—enhanced by multi-scale and inter-modality attention
mechanisms. AdaFusion demonstrates robust performance across diverse
scenes, outperforming traditional fusion methods that treat both modalities
equally regardless of context.

Similarly, the Unifying Local and Global Multi-modal Features (UMF)
framework introduces an attention-based fusion of image and LiDAR data
using parallel branches with a ResNet-50 and a LiDAR encoder [11]. It
incorporates both local and global descriptors through transformers with
positional encoding and enhances final retrieval accuracy through re-ranking
using geometric verification of local features. This method captures both
coarse and fine-grained spatial features, boosting robustness against viewpoint
and appearance changes.

Another notable contribution is MinkLoc++ [68], which introduces a
late fusion approach that processes RGB and LiDAR data separately and
merges them into a global descriptor at the end of the pipeline. The
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method employs deep metric learning with a triplet loss and addresses a key
challenge in multimodal fusion: the dominating modality problem, where one
modality (typically RGB) may overfit and degrade generalization. MinkLoc++
mitigates this by introducing a multi-head loss function with separate losses
for each modality in addition to the fused descriptor. The architecture
builds on MinkLoc3D with enhancements such as sparse voxel-based 3D
convolutions and Efficient Channel Attention (ECA) to boost the quality of
the point cloud representation. Experimental results on Oxford RobotCar and
KITTI datasets demonstrate state-of-the-art performance [69, 70], particularly
under challenging conditions like low visibility, showing that careful training
strategies and robust architecture design are essential for effective multimodal
place recognition.

2.4.2 Transformer-Based Feature Extraction
a) Vision Transformers

Recent advances in transformer-based feature extraction include the
vision transformer DINOv2, which excels at learning structured
patch-level representations that generalize across domains [34], unlike
traditional CNN. Its robustness under severe viewpoint or appearance
changes has made it particularly effective for VPR. Extensions such as
SALAD further enhance DINOv2 by incorporating a feature aggregator
based on optimal transport [26], achieving state-of-the-art performance.
The combination of patch-level descriptors with a global token makes
this approach especially suitable for place recognition under challenging
visual conditions.

Additionally, transformer-based self-supervised learning approaches
like Masked Autoencoder (MAE) and hierarchical attention structures
such as ASpanFormer have been explored for learning generalizable
image representations [71, 72]. These models, while not specific to
planetary exploration, offer promise by avoiding the need for task-
specific labeled data.

b) Point Cloud Transformers Point Cloud Transformers
In the domain of 3D data, Sonata stands out as a self-supervised
transformer-based architecture designed for learning point cloud
representations [73]. It achieves strong performance in various
segmentation and matching tasks by overcoming limitations found
in previous sparse convolutional or U-Net-based methods [74, 75,
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76]. Sonata discards the decoder and focuses solely on encoder-side
feature learning, enabling multi-scale spatial reasoning and semantic
awareness, which are crucial for LiDAR-based place recognition and
alignment.

2.4.3 3D Point Descriptor Matching
LiDAR scan registration for long-term localization often relies on reliable
3D point descriptors to establish correspondences between scans and maps.
Traditional methods like Fast Point Feature Histograms (FPFH) or
3DMatch are increasingly replaced by learning-based approaches [77, 78].
A recent and novel direction is the use of visual foundation models to guide
3D point descriptor learning.

In particular, the method described in LiDAR Registration with Foundation
Models utilizes DINOv2 to extract dense 2D image features [79], which are
projected onto the corresponding 3D point cloud to serve as descriptors. These
descriptors are then used in conjunction with traditional geometric registration
methods like RANSAC and ICP [16, 18]. This hybrid approach outperforms
many learning-based baselines, particularly in long-term map registration
tasks with substantial environmental changes. Its generalization capability
and independence from LiDAR-specific network training make it attractive
for planetary applications where domain shifts are common.
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Chapter 3

Methodology: A Multi-Modal
Hybrid Approach for Visual-LiDAR-
Based Localization

This chapter presents the methodology underlying the development of a
multi-modal system for place recognition and pose estimation in unstructured
environments. The approach is rooted in applied experimental engineering,
combining deep learning-based feature extraction with classical geometric
methods to support loop closure in SLAM systems. The methodology is
shaped by the challenges of planetary-like terrains, such as low texture,
limited geometric structure, and perceptual aliasing, and reflects the need for
robustness and computational efficiency in real-time robotic applications.

Section 3.1 introduces the system architecture and justifies the selection of
models and techniques used for visual representation, multi-modal fusion, and
geometric verification. Section 3.2 describes the dataset and data preparation
process, including the definition of ground truth loop closures and the
overlap scoring function. Section 3.3 outlines the experimental design and
benchmarking protocol, covering task separation, evaluation metrics, baseline
comparisons, and validation procedures.

Together, these sections provide a transparent and technically grounded
framework for evaluating loop closure performance under realistic and
demanding conditions.
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3.1 System Architecture and Methodologi-
cal Rationale

3.1.1 Hybrid and Multi-Modal Approach
The system presented in this work follows a hybrid, multi-modal design that
integrates deep learning techniques with classical geometric pose estimation
methods. This combination is motivated by the need to handle the unique
challenges of planetary-like environments while ensuring the system remains
suitable for real-time operation. The environments under consideration, such
as Martian analog sites or volcanic terrains, are characterized by weak textures,
repeated patterns, and sparse geometric features. These conditions pose
significant difficulties for both traditional and deep learning-based approaches
when used in isolation.

At the core of the system lies a hierarchical architecture inspired by
previous work in hierarchical localization [10]. This architecture enables
a multi-stage place recognition and pose estimation pipeline, balancing
computational cost with accuracy. The design begins with a fast, coarse
filtering stage that uses global visual descriptors generated by the SALAD
network [26]. These descriptors, of size 8192, are compared using cosine
similarity and FAISS indexing to rapidly retrieve the top 20 candidate images
from the database [27]. This stage ensures fast and efficient screening,
eliminating the need for expensive computations on every frame.

Once this shortlist is obtained, a second, finer screening process is carried
out. Features are extracted from the final three layers of the DINOv2
transformer model for both the query image and the top 20 candidates [34].
These features offer more detailed and semantically rich representations,
which are then compared to produce a refined list of the top 10 most relevant
candidates. Following these two filtering stages, the system performs feature
matching and relative pose estimation only on this smaller set of candidates.
Since these geometric computations are applied selectively to a limited number
of candidates, the process remains efficient without sacrificing accuracy.
The final output is a ranked list of candidates reordered based on their
estimated spatial relation to the query frame. This multi-stage architecture
is visualized in Figure 3.1, which illustrates how the different components—
global retrieval, local feature matching, and geometric verification—interact
to support robust localization in challenging environments.

Alternative approaches that attempt to jointly solve place recognition and
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pose estimation, such as BoxGraph [80], were intentionally avoided in this
system. While these methods offer integrated solutions, they come with
significant computational overhead, making them unsuitable for real-time
applications on resource-limited platforms. Moreover, BoxGraph and similar
methods typically require a well-structured 3D point cloud map, often derived
from urban LiDAR scans, along with precomputed semantic segmentations of
the environment. These segmentations extract high-level features like object
type, centroid position, and bounding boxes, which are useful in structured
urban scenes. However, in planetary-like environments, where distinct objects
are scarce and the landscape lacks semantic richness, such preprocessing
would add complexity without a corresponding gain in performance.

By adopting a hierarchical structure, the system maintains modularity
and supports scalability. Each component—coarse retrieval, fine descriptor
comparison, and final pose verification—can be independently modified or op-
timized for different datasets, environments, or computational requirements.
This modularity also allows for runtime adaptations, such as dynamically
adjusting the number of candidates retrieved (top-k) or tuning the precision
of pose estimation based on available resources.

The decision to combine deep learning methods with classical geometric
techniques also reflects a deliberate trade-off between efficiency and
robustness. Deep learning models like DINOv2 are capable of extracting high-
level features that remain informative even in texture-less or homogeneous
environments [34]. However, they are computationally intensive and typically
require more memory and processing time. In contrast, geometric methods
such as RANSAC are fast and interpretable but depend on reliable keypoint
detection and matching [16]. By using deep learning to extract features and
match keypoints, and then applying geometric methods for the final pose
verification, the system effectively combines the strengths of both paradigms.

A purely classical pipeline—using feature extractors like SURF or ORB
combined with geometric pose estimation—would not be sufficient for the
target environments [29, 6]. These classical methods are designed to detect
regions with high intensity variation such as corners or edges. In desertic or
planetary terrains, where images are often flat and texture-poor, these methods
fail to detect enough reliable keypoints, leading to degraded recognition
performance. On the other hand, a fully deep learning-based pipeline would
require more computational resources and would not benefit from the spatial
interpretability and robustness of geometric verification. Additionally, such
models typically lack guarantees about spatial consistency, which is especially
important in SLAM and localization tasks.
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The inclusion of both visual and LiDAR data further strengthens the
system’s adaptability to harsh and unstructured environments. Visual
inputs offer rich appearance-based information that can be leveraged through
powerful deep models. However, in settings where visual cues are weak—due
to lighting conditions, surface homogeneity, or repetitive structures—vision
alone may be unreliable. To address this, the system incorporates LiDAR
scans as a complementary modality. LiDAR contributes dense geometric
information that remains consistent under variable lighting, providing valuable
structural context.

Purely LiDAR-based systems, such as “One RING to Rule Them All”
[81], have also been explored for joint place recognition and pose estimation.
While effective in some cases, these systems often rely on prebuilt 3D
maps and typically convert LiDAR scans into 2D Bird’s-eye View (BeV)
representations [82]. These projections are then processed using techniques
such as the Radon Transform [83]. However, such projections inherently lose
critical 3D information, which reduces the system’s ability to discriminate
between similar-looking scenes, particularly problematic in terrains with
repetitive structures or limited variation, as commonly found in planetary
analog environments.

The importance of combining modalities has been further demonstrated in
recent work such as UMF [11]. This study shows that integrating LiDAR and
image data significantly boosts performance in place recognition tasks under
challenging conditions. While LiDAR point clouds alone may be too sparse
or flat to support accurate candidate retrieval, they become highly useful in
the final verification stage—especially when nearby geometric structures, like
rocks or terrain features, are present. These structures allow for more reliable
point correspondences and pose estimation, which helps disambiguate visually
similar locations.

In the proposed system, both images and LiDAR scans are utilized.
Global visual descriptors drive the initial retrieval stages, ensuring speed and
scalability. In the later stages, local multi-modal features—combining visual
and LiDAR information—are used to verify candidates and compute accurate
relative poses. This combination allows the system to remain effective across
a wide range of scenarios, including those where one modality alone would
fail.

In conclusion, the design choices made in this system are driven by
the constraints and demands of real-world deployment in planetary-like
environments. By adopting a hierarchical structure, combining deep learning
with geometric methods, and incorporating multiple sensing modalities, the
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system achieves a balance between precision, efficiency, and adaptability. It
supports generalization across different terrains and remains computationally
feasible for use in real-time SLAM systems operating on resource-constrained
robotic platforms.

3.1.2 Visual Feature Extraction and Aggregation
Visual place recognition in unstructured environments requires feature
representations that are robust to changes in viewpoint, lighting, and scene
composition, especially in terrains with limited texture or distinct visual
landmarks. For this reason, transformer-based image encoders have become
increasingly favored over convolutional backbones due to their ability to
capture high-level semantic and structural cues across the entire image [30].
Among these, DINOv2 has demonstrated state-of-the-art performance for
unsupervised representation learning and has been adopted in this work as
the core image feature extractor [34, 38].

The base variant of DINOv2 was selected as it offers an optimal balance
between performance and computational cost. Empirical results from existing
benchmarks show that while the large and giant variants produce marginally
better retrieval accuracy, they introduce substantial memory overhead and
latency [34]. Conversely, the small variant underperforms significantly
in scenarios with weak textures and spatial ambiguity, failing to extract
meaningful descriptors. The base model, with a 768-dimensional output
and 86M parameters, offers a strong trade-off between feature richness and
efficiency, making it a suitable backbone for real-time applications (see
Table 3.1).

Table 3.1: Comparison of transformer-based models by size, parameters,
latency, and R@1. Adapted from [26].

Model Dim. size # Params. Latency (ms) R@1
Small 384 21 M 1.30 90.5
Base 768 86 M 2.41 92.2
Large 1 024 300 M 7.82 92.6
Giant 1 536 1 100 M 24.93 91.7
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Figure 3.1: Overview of the proposed hybrid multi-modal localization
pipeline. The system combines global visual retrieval using SALAD
descriptors, fine-grained DINOv2 feature matching, and geometric pose
estimation with LiDAR data. A hierarchical architecture enables efficient
candidate filtering and accurate pose estimation, making it suitable for
deployment in environments with weak textures and repetitive structures.
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As shown in Step 1 of the pipeline in Figure 3.1, the system integrates
the SALAD network as an aggregation module to generate global descriptors
from image features. SALAD builds upon the NetVLAD architecture by
introducing several key improvements that directly address the limitations of
its predecessor. Unlike NetVLAD, which initializes its clustering weights with
k-means centroids and applies softmax-based soft assignment [9], SALAD
treats the assignment step as an optimal transport problem [26]. It includes
a “dustbin” cluster to discard uninformative features, and uses the Sinkhorn
algorithm to compute the optimal assignment of image patches to clusters.
This mechanism allows SALAD to focus on salient image regions and avoid
incorporating noisy background features, which is particularly advantageous
in the low-structure scenes.

Moreover, while NetVLAD computes residuals based on centroids and
aggregates them per cluster, SALAD directly processes features through two
fully connected layers, followed by a sum aggregation and a concatenation
with a global token descriptor. This enables more efficient dimensionality
reduction and yields a compact, 8192-dimensional descriptor that captures
both global context and localized structure. Another advantage of SALAD
is its compatibility with DINOv2 features: unlike simpler pooling methods
such as GeM [44, 45], SALAD effectively exploits the positional and semantic
richness of transformer patch embeddings. These properties make it a
compelling choice for generating descriptors that remain discriminative under
extreme viewpoint or illumination variations.

For efficient candidates search, the system employs FAISS with an
IndexFlatIP index and L2-normalized descriptors [27]. This setup allows
cosine similarity to be used as the scoring metric, enabling fast and accurate
retrieval at scale. From the database, the top 20 most similar candidates
to a query image are retrieved using their global SALAD descriptors. This
coarse retrieval stage is designed to be lightweight and scalable, enabling rapid
screening of large image sets while maintaining a high probability of retrieving
true positive matches. The two-stage image retrieval process is illustrated in
Figure 3.3.

The use of cosine similarity, combined with transformer-based descriptors,
offers robustness to intensity variations and affine transformations, which are
common in outdoor environments. Cosine similarity is widely used in place
recognition pipelines due to its effectiveness in comparing high-dimensional
feature vectors, especially when descriptor magnitudes may vary across inputs
[84, 85, 86].

For computational efficiency, all global and patch-level image descriptors



40 | Methodology: A Multi-Modal Hybrid Approach for Visual-LiDAR-Based
Localization

produced by DINOv2 and SALAD are precomputed and stored in serialized
.pickle files. This allows for rapid retrieval during evaluation and avoids
redundant forward passes at runtime.

Alternative approaches such as NetVLAD or GeM were considered, but
were ultimately rejected due to either lower performance (in the case of GeM)
or higher descriptor dimensionality and sensitivity to initial clustering (in the
case of NetVLAD) [26]. NetVLAD, for instance, requires careful initialization
and suffers from soft assignment limitations in ambiguous scenes. In
contrast, SALAD offers an end-to-end trainable aggregation method with
better generalization across varied environments.

In summary, the combination of DINOv2 (base) for image encoding,
SALAD for descriptor aggregation, and FAISS with cosine similarity
for efficient retrieval forms a retrieval pipeline that is both accurate and
computationally tractable. This visual backbone enables robust candidate
selection even under challenging conditions, laying a solid foundation for the
subsequent pose estimation stages of the system.

3.1.3 Geometric Verification and Pose Estimation
Once a shortlist of candidate frames has been retrieved using visual
descriptors, the system proceeds to verify the candidates and estimate their
relative pose with respect to the query. This stage is critical for closing
loops in SLAM, as it determines the actual geometric consistency between
views beyond visual similarity. For this purpose, the system integrates point
cloud-based geometric verification using LiDAR data, enhanced with visual
information from the DINOv2 encoder. The final pose is estimated through
a robust combination of descriptor matching, RANSAC-based alignment, and
ICP refinement, as illustrated in Figure 3.3.

The method relies on two key components: Sonata for LiDAR-based
feature extraction and DINOv2 for image-based descriptors. Sonata
was chosen as the 3D encoder due to its ability to extract patch-level
features from unstructured point clouds [73]. It divides each LiDAR
scan into spatial patches of fixed size (e.g., 8×8×8 meters) and outputs a
512-dimensional embedding per patch. Unlike handcrafted descriptors or
handcrafted segmentation, Sonata is pretrained on large-scale 3D data and is
capable of producing semantically meaningful and robust features, even in
sparse or noisy point clouds. While fine-tuning Sonata on the target domain
was initially considered, it proved infeasible due to hardware limitations. The
training was attempted on a Slurm cluster equipped with 2× Quadro GV100



Methodology: A Multi-Modal Hybrid Approach for Visual-LiDAR-Based
Localization | 41

Figure 3.2: Two initial stages of the image retrieval pipeline for place
recognition. First Screening: Features are extracted from the query image
using DINOv2 and aggregated into a global descriptor via the SALAD module.
This descriptor is matched against a database of stored global descriptors
using FAISS with cosine similarity, retrieving the top 20 candidates. Second
Screening: For a finer selection, features from the last three layers of DINOv2
are used and compared against stored features, again using FAISS with cosine
similarity, to produce a final shortlist of the top 10 candidates. The integration
of transformer-based features, SALAD aggregation, and cosine similarity
provides robustness to environmental variations and visual ambiguities.

GPUs, 128 GB of RAM, and an 18-core Xeon CPU. However, persistent out-
of-memory (OOM) errors occurred early during training, even with modest
batch sizes. In contrast, the original Sonata model was trained using a



42 | Methodology: A Multi-Modal Hybrid Approach for Visual-LiDAR-Based
Localization

distributed setup with a batch size of 96 across 32 GPUs, allowing significantly
higher memory throughput and parallelism. Given these constraints, the
pretrained Sonata model was used in this work. Despite being trained
on a general-purpose dataset, the pretrained version still offered stable and
meaningful features suitable for downstream matching.

To enable multi-modal feature integration, point-level features from
DINOv2 are projected into 3D space using camera intrinsics and frame
calibration. Inspired by recent work in LiDAR-vision registration [79],
this projection enables each 3D point to inherit visual descriptors from the
corresponding image patch. The visual patch descriptors are taken from
the last three layers of the DINOv2 transformer and concatenated to form
a 2304-dimensional vector. These are then associated with each 3D point
based on its projection into the image plane. The resulting multi-modal
descriptor is formed by concatenating the DINO-based patch embedding with
the corresponding Sonata feature, creating a fused feature representation that
encodes both visual appearance and geometric structure.

Matching between the query and candidate frames is performed by
comparing these multi-modal point descriptors using cosine similarity, which
was found to be more effective than Euclidean distance or Lowe’s ratio
in this setting. A simple similarity threshold is applied to filter reliable
correspondences, avoiding the need for more complex mutual matching
algorithms. This point-level filtering ensures that only high-confidence
matches are passed to the geometric estimation stage.

The initial pose estimation is conducted using the RANSAC algorithm
[16], which robustly fits a rigid SE(3) transformation (Special Euclidean group
in 3D—between the matched 3D point sets). SE(3) models real-world rigid-
body motion by combining rotation and translation while preserving distances
and angles. It excludes transformations such as scaling or shearing, making it
the standard for estimating 6-DoF poses in SLAM and 3D vision tasks. The
Open3D library is used to perform this step, leveraging its implementation
of point-to-point transformation estimation with a configurable inlier distance
threshold [87]. RANSAC is chosen for its ability to handle noisy matches and
outliers [16], which are expected in environments where geometric structure
is often sparse or ambiguous. The estimated transformation provides an initial
guess of the relative pose between the query and each candidate.

Following RANSAC, the pose is refined using the ICP algorithm [18]. A
point-to-point ICP variant is applied to the same 3D point sets [88], using the
RANSAC pose estimation as an initialization. This step further improves pose
accuracy by minimizing the Euclidean distance between corresponding points.
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Although more advanced ICP variants such as point-to-plane or color ICP
exist [88, 89], the selected point-to-point approach offers sufficient accuracy
for the application domain without introducing unnecessary complexity. In
particular, color ICP was not applicable in this case due to the lack of reliable
color information in the LiDAR point clouds, and point-to-plane ICP requires
accurate surface normal estimation, which is challenging given the sparsity
and noise in these data.

In addition to estimating the relative transformation, the system uses
the ICP fitness score to determine whether a candidate should be retained
or discarded. The fitness score, defined as the proportion of inlier
correspondences relative to the total number of points, provides a quantitative
measure of geometric consistency. Candidates with low fitness values are
filtered out as unreliable matches. The final re-ranking of accepted candidates
is performed based on their estimated spatial proximity to the query frame,
ensuring that the top-ranked results are not only geometrically consistent but
also contextually relevant within the trajectory.

Alternative verification methods, such as learned pose regression networks
or matching modules like SuperGlue, were evaluated but ultimately not
selected. Learned pose regression approaches tend to generalize poorly to
novel environments and lack geometric interpretability in their predictions.
Meanwhile, vision-only matchers such as SuperGlue or LoFTR depend
heavily on sufficient texture and repeatable features, which are often absent
in planetary terrains. In contrast, the proposed geometric pose estimation
pipeline is better suited for loop closure in sparse, ambiguous, or low-visibility
conditions.

While the proposed pipeline is robust and computationally efficient, a few
limitations remain. The pretrained Sonata model, although stable, may not be
optimally adapted to planetary terrain due to domain shift from urban datasets.
Fine-tuning was not feasible under hardware constraints, but may improve
performance in future work. Similarly, the projection of image features
into 3D assumes accurate camera calibration and synchronized modalities;
misalignment could degrade descriptor fusion quality. Lastly, while RANSAC
and ICP are well-established, their performance depends on the quality of
initial correspondences, and alternative robust estimators could be explored
for further gains.

In summary, the geometric verification and pose estimation module
combines robust 3D feature extraction, visual-geometric fusion, and classical
alignment techniques to produce accurate and interpretable pose estimates.
This design supports modularity and adaptability, making it well aligned with
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the constraints and goals of SLAM systems operating in unstructured, real-
world conditions.

Figure 3.3: Overview of the geometric verification and pose estimation
pipeline. Given a query image and point cloud, visual features are extracted
from the last three layers of DINOv2 and projected into 3D space using
known calibration. These are concatenated with LiDAR-based descriptors
from Sonata to form fused point-level embeddings. For each of the top
10 retrieved candidates, stored DINO and Sonata descriptors are processed
similarly. Point correspondences are then established by comparing fused
descriptors, followed by pose estimation using RANSAC and refinement
with ICP. The final output includes re-ranked candidates based on geometric
consistency and the estimated relative pose.

3.2 Dataset and Data Preparation
This project uses the Etna dataset, a publicly available multi-modal dataset
collected in a Moon-like environment on Mount Etna, Sicily [21]. It was
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chosen specifically for its relevance to planetary robotics: it exposes extreme
environmental challenges such as visual aliasing, sparse and ambiguous
geometric structure, and lighting variability. These characteristics closely
resemble conditions expected in extraterrestrial exploration missions and
provide a rigorous testbed for developing robust loop closure techniques.
The dataset includes grayscale images, LiDAR point clouds, precise camera
intrinsics and extrinsics, robot poses (position and orientation relative to
North), and synchronized timestamps. Figure 3.4 presents a representative
example of a single frame from the Etna dataset, showing both the grayscale
image and the corresponding LiDAR scan.

Figure 3.4: Example of a loop closure pair detected using the overlap function.
Despite changes in viewpoint and lighting, the location is the same.

The dataset consists of seven sequences, each with different motion
patterns and landscape characteristics. Figure 3.5 shows a top-down trajectory
visualization of all sequences in the Etna dataset. While the figure does not
explicitly annotate loop closures, it illustrates the diversity of the paths and
the spatial layout of the terrain. For this work, two sequences—s3li_loops
and s3li_traverse1—were used to generate query frames for evaluation.
These sequences were selected because they contain multiple revisits to the
same locations either within the sequence or relative to other sequences,
enabling natural loop closures. The remaining five sequences (crater,
crater_inout, landmarks, traverse2, and mapping) were used to
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construct the database during fine-tuning. This split ensures that the system is
evaluated on data with previously unseen loop closures.

Figure 3.5: Top-down view of the trajectories recorded in the Etna dataset.
The plot shows the spatial paths of all seven sequences captured during data
collection.

To define ground truth matches for loop closure detection and pose
estimation, a custom viewpoint overlap function was developed (see
Appendix A, A.1). Traditional pair selection strategies based solely on spatial
distance or timestamp proximity often capture consecutive or near-consecutive
frames, which are not representative of true loop closures. In this work, we are
specifically interested in detecting revisits to the same location under different
viewpoints, which is why a minimum timestamp separation of 100 ms is
enforced to exclude sequential matches. Figure 3.6 illustrates an example of
two frames from different timestamps that satisfy the loop closure criteria,
showing significant viewpoint variation while capturing the same location.

Two alternative formulations for computing viewpoint overlap were con-
sidered. The first (compute_overlap_v1) estimates angular alignment
by comparing the yaw angles of two frames and modulates the result with
a position-based correction derived from their relative distances along the
lateral and forward axes. The second variant (compute_overlap_v2)
uses polygonal approximation to explicitly compute the intersection of
each camera’s field-of-view triangle, treating overlap as a normalized area
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Figure 3.6: Example of a loop closure pair detected using the overlap function.
Despite changes in viewpoint and lighting, the location is the same.

of intersection. While this method is geometrically intuitive, it proved
less effective in practice due to sensitivity to Field of View (FOV)
assumptions and reduced flexibility in controlling spatial constraints. As a
result, compute_overlap_v1 was selected for its better alignment with
perceptual overlap and its tunability for the given environment and sensor
configuration.

The final overlap score is computed as the product of angular consistency
and spatial alignment factors. This continuous metric allows fine-grained
control over what constitutes a ”true positive” match for loop closure.

Let τt = 100ms denote the minimum temporal separation and τo = 0.6 the
minimum overlap score. Image pairs with a timestamp difference greater than
τt and an overlap score above τo were considered valid loop closure matches.
These thresholds were empirically tuned to balance between strict geometric
consistency and sufficient coverage of revisited scenes. The use of such a
scoring function makes the evaluation procedure more reflective of real-world
robotic constraints, where viewpoint overlap—not just proximity—is the key
factor for reliable loop detection.

The Etna dataset is distributed under an open-source license and does not
include any human subjects or privacy-sensitive data. It is publicly available
online [21], along with detailed documentation and usage guidelines.. The
sensor suite includes a stereo camera, a solid-state LiDAR, and an IMU,
and the dataset provides accurate D-GNSS ground truth for all frames. The
LiDAR’s narrow field of view ( 70° horizontal × 30° vertical), in combination
with the environment’s lack of salient features, makes this dataset particularly
challenging for both visual and LiDAR-based place recognition. These
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characteristics support the methodological focus of this work on developing
robust, multi-modal loop closure techniques in unstructured and visually
ambiguous environments.

In addition to the Etna dataset used for evaluation and DINOv2 fine-
tuning, the SALAD aggregation module was re-trained using a combination of
standard visual place recognition datasets—the same ones used by the original
authors. These include the Mapillary Street-Level Sequences (MSLS) dataset
[23], the GSV Cities dataset [24], and the Pittsburgh250k dataset from the
original NetVLAD benchmark [25]. All three datasets consist of large-scale
urban imagery with GPS-based ground truth, making them well-suited for
training global image descriptors using contrastive or triplet loss. The datasets
were used directly without additional preprocessing or domain adaptation, and
the training procedure followed the protocol described in the SALAD paper
[26]. This training step was conducted to explore potential improvements in
the aggregation module—within the image retrieval pipeline—by modifying
the model’s input dimensionality. Importantly, these datasets were used solely
for training and were not involved in any aspect of evaluation, testing, or loop
closure analysis.

3.3 Evaluation Design and Benchmarking
Strategy

This section outlines the experimental design used to evaluate the two
core components of the system—image retrieval and pose estimation—and
describes the metrics, benchmarks, and validation strategies applied. The
evaluation is performed on the Etna dataset, which presents a planetary-like
environment characterized by sparse features and visual ambiguity, making it
a rigorous testbed for localization systems operating in unstructured terrain.

3.3.1 Retrieval and Pose Estimation Benchmarks
The evaluation is structured around two distinct tasks: image retrieval and
pose estimation. These components are assessed separately to isolate their
performance and to better understand the contribution of specific model
choices to each sub-task. Feature extraction and fusion are not directly
evaluated as standalone modules but are instead reflected in the performance
of the retrieval and pose estimation pipelines.

For image retrieval, the comparison includes a diverse set of baselines
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categorized by modality and model type. CNN-based methods are
represented by NetVLAD [9], a widely used architecture for place recognition
that aggregates convolutional features into a global descriptor using a learned
VLAD-based pooling scheme. Transformer-based visual-only methods
include several variants of DINOv2 [34]: a small model using patch features
from the last three layers with cosine similarity, a base model using the [CLS]
token, and a base model using patch embeddings aggregated from the final
three layers. The system proposed in this work also uses DINOv2 (base model)
but integrates the SALAD module to produce global descriptors [26]. To
isolate SALAD’s performance, it is also evaluated independently as a retrieval
method using cosine similarity on its standalone global descriptors. The
benchmark additionally includes multimodal methods, such as MinkLoc++
[68], which combines LiDAR and visual inputs, and LiDAR-only methods,
such as PointNetVLAD [66]. Two additional multimodal frameworks—UMF
and AdaFusion—were initially considered for comparison [11, 13], but due to
unresolved technical and availability issues, they could not be included in the
final evaluation.

The pose estimation task is evaluated using a range of baselines
covering different algorithmic strategies. Handcrafted geometric methods
are represented by FPFH combined with RANSAC [77, 16]. Transformer-
based pipelines include LoFTR for 2D keypoint matching [8], DINOv2 patch
embeddings directly compared between frames [60], and a DINO+LiDAR
fusion pipeline inspired by recent multi-modal registration research [79].
Another transformer-based baseline uses Sonata’s 3D patch embeddings alone
[73], matched with cosine similarity and refined with RANSAC. Finally,
a regression-based method, Reloc3r [63], is included to test performance
using an end-to-end image-based 6-DoF pose predictor. All methods were
implemented to operate on the same Etna data split used for evaluating the
proposed system, ensuring consistency in environmental conditions and test
scenarios.

3.3.2 Evaluation Metrics
To evaluate image retrieval performance, the chosen metric is precision at top-
k, reported as Precision@1, @5, and @10. This reflects the priority in SLAM
applications for high-confidence loop closure predictions: false positives are
far more damaging than occasional missed matches. According to the ground
truth definition (τo = 0.6, τt = 100 ms), a retrieved image is considered a
correct match if it meets these criteria, thereby excluding temporally adjacent
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frames. This ensures that only genuine loop closures are counted, providing a
more realistic assessment of the system’s place recognition capability.

Pose estimation accuracy is measured using three main metrics: yaw error
(in degrees), and translation errors along the x and y axes (in meters). These
are computed by comparing the estimated relative transform with the ground
truth relative pose. To facilitate interpretation, the analysis also includes
cumulative accuracy plots, reporting the percentage of poses that fall within
defined thresholds—2°, 3°, 5°, and 10° for yaw; and 1, 2, 3, 5, and 10 meters
for both x and y translation.

Runtime is also measured for both components: image retrieval time, pose
estimation time, and the total inference time per frame. All experiments are
executed using custom Python scripts developed for this thesis.

3.3.3 Ensuring Validity and Reliability
Multiple strategies were employed to ensure the validity and reproducibility of
the experimental results. Ground truth loop closures were determined using
a custom scoring function (compute_overlap_v1, see Appendix A, A.1)
that combines angular similarity and spatial consistency, offering a continuous
and tunable overlap metric. Thresholds such as τo and τt were set to select valid
matches and eliminate sequential frames, respectively. The correctness of the
matching criteria was verified through visual inspection using the S3LI toolkit
[90].

To ensure fair comparisons, all methods—both proposed and baseline—
were tested on the same set of query frames, database entries, and retrieval
settings. The same top-k candidate strategy was applied uniformly. While no
cross-validation or random seeds were used, multiple runs were conducted,
and no significant variability was observed. All experiments were fully
scripted, and the evaluation code will be released to ensure full reproducibility
and support future extensions by the research community.
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Chapter 4

System Implementation and Tech-
nical Design

This chapter presents the complete implementation of the proposed system
for multi-modal loop closure detection and pose estimation in unstructured
environments. Section 4.1 details the data preparation procedures, including
ground truth generation and training data construction. Section 4.2 introduces
the feature extraction and aggregation pipeline, covering the use and fine-
tuning of DINOv2 and its integration with the SALAD aggregation module.
Section 4.3 describes the descriptor storage strategy and the retrieval
infrastructure based on FAISS. Section 4.4 outlines the pose estimation
pipeline, including 3D projection, multi-modal fusion, and geometric
verification.

4.1 Dataset Preparation and Ground Truth
Generation

To enable effective evaluation of loop closures in the Etna dataset, a custom
data preparation pipeline was implemented. This included generating reliable
ground truth correspondences between frames using a viewpoint overlap
scoring function and refining data selection with the aid of visual verification
tools. The resulting loop closure pairs and training triplets were saved in
both .csv and .pkl formats for convenient inspection and efficient pipeline
integration, respectively.

The overlap computation relied on the compute_overlap_v1 function
(see Appendix A, A.1), which estimates frame similarity based on angular



52 | System Implementation and Technical Design

alignment (yaw comparison) and positional consistency (relative distances
along the forward and lateral axes). Parameters such as the maximum lateral
and longitudinal distances (set to 60 and 80 respectively) were empirically
tuned to maximize alignment with perceptual overlap. This was validated
using the visualization toolkit from the S3LI framework, which enables side-
by-side inspection of matched image pairs, LiDAR point cloud projections,
camera orientations, and overlap histograms in a top-down view. As part of
this thesis, minor refinements were made to this toolkit to improve usability
and support the Etna data format.

The final ground truth loop closures were defined as image pairs satisfying
the overlap and temporal separation thresholds (τo = 0.6, τt = 100 ms),
ensuring that only true revisits—not consecutive frames—were considered.
The temporal constraint τt was enforced directly in the script using the
timestamp metadata provided in the Etna dataset.

The output of the script for evaluation data consists of a .csv and a
.pkl file, where each row contains a query image, a matched image, and the
corresponding overlap score. The .csv format facilitates inspection, while
the .pkl file is used directly by the pipeline during evaluation. These files
are later employed to assess image retrieval precision at various top-k levels
by comparing predicted matches against this ground truth. In total, 794 query
images were selected for evaluation.

For training purposes, specifically for fine-tuning DINOv2, a separate
script was used to generate triplets in the format [anchor, positive,
negative], where each element stores the image path. From each image
path, additional metadata—such as the corresponding LiDAR point cloud,
pose, and orientation relative to North—can later be retrieved by indexing
against the full dataset. This capability facilitates downstream alignment and
analysis without requiring reprocessing of raw sensor data.

The selection of positive and negative examples was based on the same
viewpoint overlap computation (i.e., compute_overlap_v1), but with
different thresholding:positives were defined as image pairs with an overlap
score above a new threshold τ+o = 0.7, and negatives as those below τ−o = 0.1.
This separation was designed to ensure that training samples reflected both
clear matches and strong mismatches. This procedure yielded 219,460 training
triplets, which were split into 175,568 for training (80%) and 43,892 for
validation (20%).

While an alternative version of the overlap function (compute_overlap_v2)
based on polygonal field-of-view intersections—was also implemented and
evaluated, it proved overly sensitive to field-of-view assumptions and
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consistently failed to capture many visually overlapping pairs. Therefore,
compute_overlap_v1 was ultimately selected for its better alignment
with perceptual overlap in the Etna dataset.

4.2 Feature Extraction and Aggregation Pipeline
This section details the core representation learning pipeline used to extract
and aggregate visual features from raw images. The process begins with
DINOv2, a self-supervised Vision Transformer model, used to extract rich
patch-level embeddings from each frame. These features are then either
retained in their raw form for geometric tasks or aggregated into compact
global descriptors for efficient image retrieval. The section also explains the
rationale and setup behind fine-tuning DINOv2 on the Etna dataset, followed
by the integration with the SALAD module for descriptor aggregation. Both
components are evaluated in terms of their compatibility, training behavior,
and final role within the complete localization system.

4.2.1 DINOv2 Feature Extraction and Fine-Tuning
For feature extraction, this project uses the DINOv2 ViT-Base model
(dinov2_vitb14_reg), loaded from Meta’s model repository. The model
comprises 12 transformer blocks with an embedding dimension of 768.
During training, the final three transformer blocks are unfrozen to enable
fine-tuning, while earlier layers remain fixed to preserve general-purpose
representations.

Patch embeddings are extracted from the final three layers of the
transformer. Specifically, each layer output is sliced to exclude the [CLS]
token and retain only the patch-level features. These are then concatenated
along the feature dimension and normalized. For downstream applications,
two types of embeddings are used:

• Pose estimation and geometric alignment: the raw patch embeddings
from the last three layers of DINOv2 are used directly without
aggregation. These embeddings retain full spatial resolution and are
concatenated across layers to form a rich representation of local features.

• Image retrieval refinement: the same patch embeddings are averaged
across the spatial dimension to produce a compact global descriptor per
image, allowing efficient similarity computation.
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To qualitatively assess the semantic structure encoded in the DINOv2
patch embeddings, a Principal Component Analysis (PCA) visualization was
applied some of the Etna dataset images [21]. The resulting color-coded
projection, shown in Figure 4.1, reveals distinct spatial patterns corresponding
to scene components. Patches associated with the mountain appear in blue,
those covering the sky in green, and those on the sandy terrain in red and
orange. Notably, stones scattered across the ground are rendered in colors
that differ from the dominant three regions, suggesting that DINOv2 is able
to distinguish fine-grained elements within complex environments. This
confirms the model’s strong capability for capturing semantically meaningful
spatial features, a property critical for both loop closure detection and pose
estimation in perceptually ambiguous scenes.
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Figure 4.1: PCA visualization of DINOv2 patch embeddings overlaid on an
Etna dataset image. Colors correspond to the top three PCA components
of patch features from the last transformer layer. The model differentiates
semantically meaningful regions: the mountain (blue), sky (green), and sandy
floor (red/orange). Importantly, scattered stones on the terrain are rendered in
distinct colors, indicating that DINOv2 captures subtle visual elements beyond
broad categories.

These DINOv2 embeddings are saved as .pkl files containing a
dictionary that maps each image path to its corresponding feature tensor and
timestamp, enabling fast retrieval during evaluation and inference. The final
feature tensor for each image varies by usage: the patch-based embeddings
used in pose estimation have a shape of [n_patches, 2304], while the
global descriptors used for retrieval have shape [2304].

Fine-tuning of the DINOv2 model was conducted using 219,460 triplets
generated from the Etna dataset, split into 175,568 training and 43,892
validation examples. Each triplet includes an anchor, a positive (with
overlap > 0.7), and a negative (with overlap < 0.1), identified using the
compute_overlap_v1 function and a minimum temporal separation of
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100 ms. During training, data augmentation was applied on-the-fly to improve
generalization. This included random variations in brightness, contrast,
saturation, and hue, as well as resized cropping. These transformations helped
simulate lighting and appearance changes commonly encountered in real-
world scenarios.

Training was performed on a dual-GPU Quadro GV100 server (32 GB
memory per GPU) using the AdamW optimizer with a learning rate of 1 ×
10−5, batch size of 8, and the triplet margin loss with a margin of 0.2. Early
stopping with a patience of 2 epochs was used to prevent overfitting. Training
logs were saved to CSV, and a loss curve was plotted to monitor progress. The
best-performing checkpoint (based on validation loss) was retained and used
in the final system.

The training and validation loss curves in Figure 4.2 show a consistent
decrease in training loss over epochs, indicating that the model is effectively
learning from the training data. The validation loss initially decreases,
mirroring the training loss, but starts to fluctuate slightly after epoch 3,
suggesting minor overfitting. However, this fluctuation is expected due to the
use of early stopping with a patience of 2, which allows training to continue
for a few epochs after the validation loss stops improving, helping to avoid
premature stopping. Overall, the trend of the validation loss remains relatively
flat and low, staying close to the training loss, which indicates that the model
is generalizing well to the validation data and not significantly overfitting.

Figure 4.2: Training and validation loss curves during fine-tuning of DINOv2.
Early stopping is triggered after the 9th epoch when validation loss no longer
improves.

The fine-tuned DINOv2 model was ultimately adopted in the final pipeline,
both as a feature extractor for patch embeddings and as input to the aggregation
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module. However, although additional experiments were conducted to adapt
SALAD to aggregate concatenated embeddings from the last three transformer
layers, these modifications led to worse performance compared to the original
SALAD model. As a result, the original SALAD architecture, using single-
layer features with the [CLS] token, was retained in the final design, while the
fine-tuned DINOv2 weights were still used to initialize the base encoder.

4.2.2 Connecting DINOv2 to SALAD
To integrate DINOv2 as a feature extractor within the image retrieval pipeline,
the model’s output had to be aligned with the input expectations of the
SALAD aggregation module. The original SALAD architecture was designed
to operate on patch embeddings from Vision Transformers, typically from a
single layer, including the [CLS] token.

Initially, the standard version of SALAD was used without modification,
applying it to the output of the fine-tuned DINOv2 model. In this
configuration, patch embeddings (including the [CLS] token) from the final
transformer layer were passed directly into the aggregation module. This setup
produced reliable results and served as the baseline.

To explore whether richer features could improve performance, a custom
version of SALAD was implemented that aggregates concatenated patch
embeddings from the last three transformer layers of DINOv2. This involved
modifying the forward pass of the DINO model to output a 3D tensor of
shape [B, 2304, H/14, W/14], constructed by stacking patch tokens
from the last three layers (each with dimension 768). Correspondingly,
the aggregation head of SALAD was adapted to accept an input with 2304
channels (i.e., 3 layers × 768 dim) and was configured with the following
hyperparameters:

• num_channels = 2304

• num_clusters = 64

• cluster_dim = 128

Despite these adjustments, the modified aggregation approach did not
yield improved performance. It was observed that including multi-layer
features introduced more noise than discriminative power, possibly due
to redundancy or misalignment across layers. Consequently, the original
SALAD model was retained for the final pipeline. However, it was used
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in conjunction with the fine-tuned DINOv2 backbone, ensuring that the
aggregation benefited from the improved feature representations learned
during training.

4.2.3 Re-training SALAD
To explore whether adapting the SALAD aggregation module to better align
with DINOv2 feature representations could yield performance improvements,
a modified version of SALAD was trained using patch embeddings
concatenated from the last three transformer layers of the fine-tuned DINOv2
model. This adjustment increased the input dimensionality from 768 to 2304,
requiring structural changes to the aggregation head.

The training followed the protocol described in the original SALAD paper
and used the same datasets: Mapillary Street-Level Sequences (MSLS), GSV
Cities, and Pittsburgh250k. These datasets offer diverse, large-scale urban
environments with GPS-based ground truth, making them suitable for training
global image descriptors using triplet loss.

Training was conducted on the same hardware as used for DINOv2 fine-
tuning—a dual-GPU Quadro GV100 workstation with 128GB RAM. The
process was stable and completed successfully.

However, when tested on the Etna dataset, the re-trained SALAD module
did not outperform the original version. In fact, the modified model showed
slightly reduced retrieval and pose estimation performance, suggesting that
the higher-dimensional feature input may have introduced noise or led to
overfitting on irrelevant patterns in the training data.

As a result, the final pipeline retained the original SALAD architecture,
which aggregates features from the last transformer layer using the [CLS]
token. This version, combined with the fine-tuned DINOv2 backbone,
provided the most consistent and robust performance in the downstream tasks.

4.3 Descriptor Storage and Retrieval Infras-
tructure

To support efficient large-scale image retrieval, all feature descriptors used
in this system are precomputed and stored as .pkl files. These files
contain dictionaries mapping each image path to its corresponding descriptor
vector and associated timestamp. For organizational clarity and modularity,
descriptors are saved in separate folders depending on their role in the pipeline.
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The retrieval process is implemented using Facebook AI Similarity Search
(FAISS) [27], specifically the IndexFlatIP index with L2-normalized
descriptors. This configuration enables fast and scalable approximate nearest
neighbor search based on cosine similarity, which aligns well with the
normalized output of the DINOv2 and SALAD embedding models.

A two-stage retrieval strategy is employed to improve robustness:

• Coarse Retrieval: Global descriptors aggregated using the SALAD
module are used to perform an initial ranking of the top-k candidate
matches. This step captures high-level visual similarity and efficiently
narrows the search space.

• Fine Re-ranking: The top candidates from the coarse stage are
then re-ranked using a finer-grained descriptor. Specifically, DINOv2
patch embeddings from the last three layers are averaged to produce
an independent global descriptor. These refined descriptors help
disambiguate visually similar scenes and improve match quality.

This two-stage pipeline balances speed and accuracy: the SALAD-based
global descriptor provides efficient broad filtering, while the DINOv2-based
refinement stage enhances precision, particularly in environments with high
perceptual aliasing.

4.4 Pose Estimation Pipeline
This section details the multi-modal approach developed to estimate the
relative 6-DoF pose between two frames in the Etna dataset. The pipeline
integrates high-dimensional visual descriptors extracted from a fine-tuned
DINOv2 model with semantic 3D features from the Sonata model. These
complementary features are aligned and fused to enable robust point
correspondence matching, which is then used for pose estimation through
geometric optimization techniques.

4.4.1 Visual Embedding Projection to 3D
The process begins by extracting patch-level embeddings from the final three
layers of the DINOv2-base Vision Transformer (ViT-B/14), which has been
fine-tuned on Etna data using triplet loss. These embeddings are normalized
and concatenated across layers, yielding a [n_patches, 2304] tensor per image.
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For pose estimation, the goal is to associate these descriptors with real-world
3D coordinates.

To achieve this, the corresponding LiDAR point cloud for each image is
projected into the image plane using the camera’s intrinsic parameters. Each
valid 3D point is mapped to a 2D pixel coordinate and then associated with the
closest DINO patch based on its spatial location in the image grid (560×560
resolution, 14×14 patch structure). This enables each 3D point to inherit the
high-level semantic descriptor from the corresponding visual patch.

This method provides a dense 3D embedding set per frame, where each
point carries both geometric location and a visual descriptor derived from the
transformer. Figure 4.1, demonstrates the semantic richness of these features
using a PCA projection of patch embeddings over an Etna image. Blue-toned
patches correspond to mountainous regions, green to sky, and red/orange to
sandy terrain. Interestingly, small rocks and discrete elements on the ground
appear in colors distinct from these major classes, illustrating DINO’s fine-
grained discrimination capabilities.

4.4.2 Sonata 3D Feature Extraction
To complement the visual embeddings, each LiDAR point cloud is also
processed through the Sonata model to produce dense 3D descriptors [73].
These embeddings encode both semantic and geometric properties of the
environment, providing a powerful modality for matching when visual features
may fail (e.g., due to illumination or viewpoint changes).

Figure 4.3 shows a PCA projection of Sonata features. Semantic patterns
naturally emerge, rocky formations are clearly separated from flatter ground
regions. The blacked-out points correspond to filtered areas where the
first principal component is negative, which are excluded following the
visualization strategy in the original DINOv2 work [34].

4.4.3 Feature Fusion and Correspondence Matching
After extracting descriptors from both modalities, visual and geometric
features are fused at the point level. Each 3D point descriptor is formed
by concatenating its DINO-derived embedding and its Sonata descriptor,
resulting in a hybrid feature that captures both appearance and geometry.

To find correspondences between a query and candidate frame, cosine
similarity is computed between each pair of fused descriptors. Matches are
selected using the Hungarian algorithm to enforce one-to-one correspondence.
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Figure 4.3: PCA projection of Sonata LiDAR descriptors. Distinct regions
in the environment such as rock formations (blue) and ground surfaces
(green/pink) are semantically separated. Points with ambiguous or low-
information content are excluded (black).

A threshold (e.g., 0.9) is applied to filter out weak or ambiguous matches.
Figures 4.4 and 4.5 highlight the limitations of using only a single

modality: DINOv2 descriptors tend to overmatch, resulting in dense but noisy
correspondences; Sonata descriptors, while geometrically robust, may lack
discrimination in visually complex areas. Figure 4.6 shows the benefit of
fusion—fewer matches are produced, but they are significantly more accurate
and geometrically coherent.

4.4.4 Pose Estimation and Re-Ranking
Once a set of high-confidence correspondences has been established, the
relative pose between the query and candidate frame is estimated. The initial
transformation is computed using a RANSAC-based solver that fits a rigid
transformation to the 3D matched points. This helps reject outliers and
produce a stable estimate.

Following RANSAC, an optional ICP refinement step is applied. This
further aligns the two point clouds by minimizing geometric error. The ICP
fitness score, defined as the proportion of inlier points after alignment, is
computed and used to filter out geometrically invalid matches.

After pose estimation, the candidates are re-ranked based on their spatial
proximity to the query, specifically, the angular difference in their yaw
orientations. This prioritizes geometrically consistent results while preserving
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Figure 4.4: Point correspondences using only DINOv2 visual features. Many
incorrect matches are observed due to lack of geometric constraints.

robustness against false positives.



System Implementation and Technical Design | 63

Figure 4.5: Point correspondences using only Sonata 3D features. Mismatches
occur in low-texture or structurally repetitive areas.
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Figure 4.6: Point correspondences using fused DINOv2 and Sonata features.
Matches are more accurate, consistent, and less noisy than those using either
modality alone.
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Chapter 5

Results and Analysis

This chapter presents a comprehensive evaluation of the proposed multi-
modal pipeline for image-based place recognition and relative pose estimation.
Section 5.1 introduces the major quantitative results across both core tasks:
image retrieval and pose estimation. Section 5.1.1 analyzes the retrieval
performance in terms of precision at top-k ranks and runtime across
various baselines, highlighting the benefits of fine-tuning and aggregation.
Section 5.1.2 evaluates pose estimation accuracy using yaw and translation
errors, comparing the proposed fusion model against transformer-based and
regression-based baselines. In Section 5.2, the model’s consistency is
analyzed through pose coverage, error distributions, and qualitative examples.
Finally, Section 5.3 addresses the validity of the evaluation metrics and
experimental setup, confirming their alignment with the system’s intended
deployment scenarios in unstructured environments.

5.1 Major Results
This section presents the main quantitative results of the proposed visual
place recognition and pose estimation pipeline. The evaluation focuses on
two key tasks: image retrieval and pose estimation. In both cases, the
performance of the proposed method is compared against a variety of existing
baselines, including traditional handcrafted descriptors, recent transformer-
based methods, and recent neural models tailored to place recognition and
localization.
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5.1.1 Image Retrieval Performance
The image retrieval task was evaluated by measuring precision at top-k ranks,
specifically at k = 1, k = 5, and k = 10. Precision at top-k is defined as the
proportion of retrieved images (among the top k) that correspond to ground
truth matches. A true match is defined according to the ground truth thresholds
(τo = 0.6) as an image pair with an overlap score above τo, computed using the
compute_overlap_v1 function introduced in Section 4.1. All descriptors
used in this task are precomputed and stored in the format described in
Chapter 4, and retrieval is performed via cosine similarity search using a
FAISS index with L2-normalized vectors.

Table 5.1 summarizes the retrieval performance across several models,
including CNN-based methods such as NetVLAD [9], transformer-based
baselines like TransVPR [36], and different configurations of DINOv2-based
descriptors [34], both with and without the SALAD aggregation module
[26]. Runtime measurements (in milliseconds) are also included to assess
computational efficiency.

graphicx

Table 5.1: Image Retrieval Results: Precision at Top-k and Average Retrieval
Time

Model Precision@1 Precision@5 Precision@10 Time (ms)
NetVLAD 0.4395 0.4237 0.4033 1249.89
TransVPR 0.4534 0.4325 0.4126 392.39
DINOv2 (s) (last 3 layers) 0.2179 0.2033 0.1897 370.87
DINOv2 (b) (CLS Token) 0.5982 0.5471 0.5161 1123.11
DINOv2 (b) (last 3 layers) 0.6474 0.6081 0.5838 1216.88
SALAD (pretrained) 0.6378 0.7048 0.6792 369.82

Proposed Model (pretrained SALAD + pretrained DINOv2) 0.7116 0.6897 0.6795 389.71
Proposed Model (pretrained SALAD + fine-tuned DINOv2) 0.7569 0.7332 0.7090 476.57
Proposed Model (retrained SALAD + fine-tuned DINOv2) 0.7141 0.6965 0.6712 578.21

The best performing configuration is the proposed method combining
original SALAD with the fine-tuned DINOv2 backbone. It achieved a
precision of 75.69% at top-1, 73.32% at top-5, and 70.90% at top-10.
This significantly outperforms CNN-based baselines such as NetVLAD and
even transformer-based methods like TransVPR, while offering competitive
inference time. Fine-tuning DINOv2 provided a clear benefit over using the
base encoder out-of-the-box. However, attempts to improve performance
by retraining SALAD with modified input dimensions resulted in a drop in
precision, indicating that the original architecture is better suited for this task
when paired with a strong image encoder.
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To better visualize the trade-off between retrieval accuracy and compu-
tational efficiency, Figure 5.1 presents a scatter plot of Precision@1 versus
average retrieval time for all evaluated methods. Each point represents a
different model configuration. The results show that the proposed method
combining pretrained SALAD with fine-tuned DINOv2 (SALAD+DINO-ft)
offers the best balance, achieving the highest precision while maintaining
a reasonable retrieval time. In contrast, methods like NetVLAD and even
transformer-based baselines such as TransVPR exhibit lower accuracy despite
similar or higher computational costs. Interestingly, models that solely
rely on DINOv2 without aggregation (e.g., DINOv2-b-CLS and DINOv2-b-
3L) perform well in terms of precision but suffer from significantly higher
inference times, making them less suitable for time-sensitive applications.
Overall, the plot highlights the efficiency and effectiveness of combining
compact aggregation (SALAD) with strong pretrained or fine-tuned visual
descriptors.

Figure 5.1: Trade-off between retrieval time (in milliseconds) and
Precision@1 for all evaluated methods. Top-left positions represent models
that are both accurate and efficient. The proposed method (SALAD+DINO-
ft) achieves the best balance, outperforming traditional baselines.

To complement the quantitative results presented above, Figure 5.2 shows
three examples of image retrieval outcomes using the proposed method
(SALAD + fine-tuned DINOv2). These examples highlight the ability of
the model to recognize scene similarity under changes in viewpoint and
illumination, as well as one failure case where perceptual similarity leads to
an incorrect match.
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(a) Query image (viewpoint shift)
(b) Retrieved image: correct match
despite partial mountain occlusion

(c) Query image (lighting variation)
(d) Retrieved image: correct match un-
der illumination change, crater visible

(e) Query image (perceptually am-
biguous)

(f) Retrieved image: incorrect match
due to similar horizon and rock
patterns

Figure 5.2: Examples of image retrieval outcomes using the proposed model.
The first row shows a successful match under a viewpoint change. The second
row shows a match under both viewpoint and lighting variations. The third
row shows a failure case, where similar horizon and rock features caused a
false positive retrieval, despite not satisfying the overlap threshold.
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5.1.2 Pose Estimation Performance
To evaluate the pose estimation performance of the proposed system, we report
the average yaw error (in degrees), average translation errors in the X and Y
directions (in meters), runtime per query (in milliseconds), and the number of
poses successfully estimated. A successful pose is defined as one that passes
RANSAC verification with sufficient feature correspondences.

Table 5.2 presents the results for several baselines, including traditional 3D
feature descriptors (FPFH), 2D and 3D transformer-based models (LoFTR,
SONATA), and the latest regression-based model (reloc3r). The proposed
model, which fuses projected DINOv2 and SONATA features, achieves high
pose coverage and good accuracy, but the best overall performance in terms
of both precision and computational efficiency is achieved by reloc3r.

Table 5.2: Pose Estimation Results: Average Errors, Total Poses Estimated,
and Inference Time

Model Yaw Error (°) DX Error (m) DY Error (m) Poses Estimated Time (ms)
FPFH + RANSAC 46.82 8.23 14.27 1560 12233.82
DINO-LiDAR + RANSAC 25.10 8.40 14.27 1560 5686.82
LoFTR + RANSAC 11.40 4.13 6.92 744 249.36
DINO-Patches + RANSAC 17.13 8.06 14.05 1353 948.30
SONATA + RANSAC 16.36 8.86 15.30 1066 3572.05
Reloc3r 8.15 8.31 14.19 1560 133.76
Proposed Model (DINO + SONATA) 8.20 8.44 14.24 1560 3114.33

While the proposed model achieves strong accuracy and high pose
coverage across all queries, it is not the best performer in terms of runtime.
The reloc3r model not only achieves the lowest yaw error but also matches the
proposed method in the number of successful poses while running an order of
magnitude faster. Nevertheless, the proposed system offers an interpretable,
matching-based alternative that does not rely on end-to-end supervision and
maintains competitive accuracy under a fusion-based architecture.

To provide a finer-grained view of model reliability, we report the
percentage of estimated poses whose yaw and translation errors fall within
a set of predefined thresholds. This allows us to analyze how often models
predict poses that are geometrically close to the ground truth.

Table 5.3 presents yaw angle error percentages for thresholds at 2◦, 3◦, 5◦,
and 10◦. Table 5.4 complements this by showing the proportion of translation
errors in both the X and Y directions falling under 1, 2, 3, 5, and 10 meters.

This breakdown reveals that while LoFTR exhibits the best translational
accuracy, reloc3r performs best overall in angular precision and robustness
across all thresholds. The proposed model shows competitive performance,
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especially in yaw estimation, and maintains close performance to reloc3r in
terms of translation reliability.

Table 5.3: Percentage of Estimated Poses with Yaw Error Below Thresholds

Model < 2◦ < 3◦ < 5◦ < 10◦

LoFTR + RANSAC 13.31 20.03 32.66 60.48
Reloc3r (2025) 16.22 25.00 41.60 71.22
Proposed model 14.29 22.56 39.10 69.94

Table 5.4: Percentage of Estimated Poses with Translation Error in X and Y
Below Thresholds

Model DX Error < DY Error <
1m 2m 3m 5m 10m 1m 2m 3m 5m 10m

LoFTR + RANSAC 22.58 36.83 51.48 72.85 91.67 19.35 34.68 43.28 56.99 79.03
Reloc3r (2025) 9.36 18.14 26.47 44.49 66.92 11.09 20.60 28.33 37.63 57.05
Proposed model 8.65 18.21 27.37 42.44 65.45 11.09 20.38 27.88 36.99 57.12

To further investigate the angular estimation performance of the proposed
model, we analyze cumulative accuracy curves based on yaw error thresholds.
Figure 5.3 compares the cumulative accuracy between the proposed method
and the Reloc3r baseline. The proposed model consistently yields higher
accuracy at lower yaw error thresholds, with over 90% of poses estimated
within 15° of ground truth, slightly outperforming Reloc3r in the sub-10°
region. While both models converge near 100% accuracy at larger thresholds,
the proposed system reaches saturation earlier, indicating greater reliability
in producing precise yaw predictions. This improved precision at tighter
thresholds is particularly important for downstream tasks such as visual
localization and path planning, where even small orientation errors can lead
to significant downstream effects.
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(a) Reloc3r Baseline (b) Proposed Model

Figure 5.3: Cumulative accuracy curves of yaw estimation error for Reloc3r
and the proposed method. Higher values at lower thresholds indicate better
angular precision. The proposed model (b) reaches saturation slightly more
quickly and maintains stronger accuracy in the critical sub-10° error region.

Additionally, a box plot of yaw errors for the three top-performing
models—My Model, Reloc3r, and LoFTR—is shown in Figure 5.4. The
distribution reveals that while all three models have a similar interquartile
range (IQR), Reloc3r displays the lowest median yaw error, confirming its
overall advantage in angular precision. The proposed model shows a slightly
higher median but with fewer extreme outliers than LoFTR and reloc3r.
LoFTR, despite having a competitive IQR, exhibits the widest spread of high-
error outliers, indicating occasional large deviations in orientation estimation.
These findings reinforce earlier metrics and highlight the consistency of
Reloc3r and the robustness of the proposed method, particularly in avoiding
catastrophic angular failures.
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Figure 5.4: Box plot of yaw errors (in degrees) for the top three models. The
median error is lowest for reloc3r, while the proposed model shows fewer
extreme outliers than LoFTR.

5.2 Reliability Analysis
Reliability refers to the consistency and stability of the system’s performance
across different inputs and evaluation metrics. The results presented in
Section 5.1 demonstrate that the proposed model performs robustly across a
range of image retrieval and pose estimation scenarios.

For image retrieval, consistent improvements in precision across top-
k ranks (Table 5.1) indicate that the model maintains strong matching
performance regardless of the retrieval k. The method performs reliably
across both challenging viewpoint and illumination variations, as evidenced
by qualitative examples (Figure 5.2).

In pose estimation, the proposed model achieves similar coverage as
reloc3r, successfully estimating 1,560 poses, while maintaining acceptable
yaw and translation errors (Table 5.2). The box plot in Figure 5.4 shows that
the proposed method has a stable yaw error distribution with limited extreme
outliers, suggesting robustness across different queries. Furthermore, the
cumulative accuracy curves (Figure 5.3) show consistent pose accuracy across
increasing error thresholds, reinforcing the model’s reliability in angular
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estimation.
Overall, the evaluation metrics demonstrate that the system delivers

reproducible results under diverse and realistic conditions, confirming its
reliability.

5.3 Validity Analysis
Validity concerns whether the evaluation setup and metrics truly measure what
the system is intended to achieve. In this work, both tasks—image retrieval
and pose estimation—are evaluated using metrics that align closely with their
intended real-world functions.

For image retrieval, a retrieved image is considered a correct match only
if it exceeds an overlap threshold of 0.6 with the query image, as defined in
Section 4.1. This threshold ensures that the system retrieves not just visually
similar scenes, but ones that are truly spatially relevant, which enhances the
construct validity of the evaluation. The inclusion of failure cases and correct
matches under viewpoint and lighting changes (Figure 5.2) further supports
the method’s validity in real-world conditions.

Pose estimation validity is ensured by evaluating against ground truth
poses using standard geometric metrics: yaw angle and translation error in
meters. The use of multiple error thresholds (Tables 5.3 and 5.4) provides
a nuanced view of the system’s precision. Additionally, RANSAC-based
inlier filtering ensures that only geometrically consistent poses are considered,
reinforcing the correctness of each estimated transformation.

By combining semantic similarity for image retrieval with geometric
correctness for pose estimation, the system’s evaluation pipeline accurately
reflects the core objectives of robust place recognition and localization.
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Chapter 6

Discussion

This chapter reflects on the findings presented in Chapter 5, offering a broader
interpretation of their implications for visual localization in unstructured and
GNSS-denied environments. Section 6.1 evaluates the practical relevance of
the proposed system for real-world field robotics, highlighting its strengths in
environments where traditional methods fail. Section 6.2 compares different
localization paradigms—regression, matching, and handcrafted approaches—
emphasizing the trade-offs between accuracy, interpretability, and efficiency.
Section 6.4 outlines unexpected behaviors and counterintuitive outcomes
observed during experimentation, offering insights into model fragility and
generalization. Section 6.5 positions the contributions of this thesis within the
broader research landscape, identifying the niche it fills and its applicability
in future autonomous systems. Together, these sections provide a deeper
understanding of the system’s capabilities, limitations, and potential impact.

6.1 Applicability in Unstructured and GNSS-
Denied Environments

The experimental results presented in this thesis show that the proposed model
is well-suited for visual place recognition and pose estimation in challenging,
low-structure environments. Unlike many existing works that are evaluated in
urban or indoor settings—such as cityscapes, university campuses, or office
corridors—this project targets a more demanding scenario: a natural, low-
texture terrain that closely resembles planetary or remote field environments.

This distinction is significant because urban datasets typically contain
semantic regularities like roads, buildings, and signs, which offer strong



76 | Discussion

visual cues for models trained in those domains. Consequently, descriptor-
only baselines like NetVLAD [9] and TransVPR [36], which perform well
on standard benchmarks, show poor generalization when applied to the Etna
dataset. Their reliance on high-level semantics becomes a limitation in
environments where such cues are absent or ambiguous.

In contrast, the proposed image retrieval system—based on a fine-tuned
DINOv2 encoder and the SALAD aggregation module—achieved a top-1
retrieval precision of 75.69% (Table 5.1). This performance confirms that self-
supervised features, combined with efficient and adaptive aggregation, can
significantly improve robustness in visually sparse conditions. Importantly,
the retrieval system also maintains reasonable computational efficiency, with
an average inference time under 500 ms, which is compatible with real-time
onboard use in many robotic platforms (Figure 5.1).

For tasks like SLAM, reliable image retrieval is essential for loop closure,
which helps correct drift and ensures global map consistency. Failure
in recognizing a revisited place may result in serious localization errors,
particularly when GNSS signals are unavailable. Hence, accurate and efficient
retrieval is not just a performance goal but a prerequisite for long-term
autonomous navigation.

The same applies to pose estimation. While regression-based models like
Reloc3r [63] showed the best accuracy and runtime (Table 5.2), the proposed
matching-based system using projected DINOv2 features and SONATA
achieved high pose coverage and competitive yaw accuracy, with fewer
catastrophic outliers than LoFTR (Figure 5.4). This is particularly important
in cratered or texture-sparse landscapes, where handcrafted descriptors like
FPFH [77] often fail to yield enough reliable matches for geometric solvers.

In this setting, matching-based techniques provide more interpretable
and failure-resilient solutions, as they build pose estimates directly from
observable similarities. This is especially relevant in safety-critical scenarios
such as planetary exploration, where explainability and modularity are as
important as raw performance. While the proposed system is slower than
regressive alternatives, it offers transparency, robustness, and adaptability—
attributes that are essential for autonomous systems operating in unknown,
unstructured environments.

To summarize, the findings of this work reinforce the need to design
localization methods that are not only accurate but also interpretable and
reliable in visually ambiguous or GNSS-denied settings. This is essential for
real-world field robotics applications, including planetary exploration, search
and rescue, and long-range autonomous navigation in remote areas.
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6.2 Comparative Analysis of Localization
Methodologies

This section presents a structured comparison between the different categories
of localization systems evaluated in this thesis, focusing on both image
retrieval and pose estimation. The goal is to analyze their respective strengths,
limitations, and practical trade-offs in terms of interpretability, generalization,
runtime, and robustness.

6.2.1 Image Retrieval Systems.
The image retrieval methods evaluated in this thesis differ primarily in how
they aggregate features into compact descriptors. Aggregation strategy plays
a crucial role in retrieval robustness and generalization, particularly under the
visually sparse and ambiguous conditions targeted in this work.

VLAD-based aggregation methods include both traditional approaches
like NetVLAD [9] and more advanced variants like SALAD [26]. NetVLAD
uses soft assignment of CNN-based local features to cluster centroids and
computes residuals, offering compact descriptors but limited adaptability
to novel domains. In contrast, SALAD integrates DINOv2 [34] features
with a learned VLAD-style framework that replaces k-means clustering with
a differentiable assignment via the Sinkhorn algorithm and introduces a
“dustbin” cluster to ignore uninformative features. It also includes fully
connected layers for dimension reduction and a global token fusion step. These
enhancements improve robustness to viewpoint and appearance variations,
making SALAD particularly effective in unstructured environments.

Attention-based aggregation is used in TransVPR [36], which applies a
transformer architecture to aggregate image patch features using global self-
attention. While effective in semantically rich urban scenes, its reliance on
structured content reduces its effectiveness in the natural terrain of the Etna
dataset, where semantic cues are sparse.

Global descriptor variants of DINOv2 were also evaluated to assess
the standalone capability of self-supervised features. The CLS-token version
of DINOv2 base (ViT-B/14) achieved a top-1 precision of 59.82%, while
a variant using the average of the last three layers across all patches
reached 64.74%, both outperforming conventional baselines. However,
the best performance was obtained by combining DINOv2 with SALAD,
which reached 75.69% precision. These results, summarized in Table 6.1,
highlight the importance of aggregation strategy: combining domain-robust
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features with learnable, VLAD-style pooling significantly improves retrieval
performance in low-texture settings.

The proposed image retrieval system—based on DINOv2 features
aggregated with SALAD—achieved the best top-1 precision (75.69%) on the
Etna dataset, significantly outperforming both NetVLAD and TransVPR. This
demonstrates the advantage of pairing robust, self-supervised features with
learned VLAD-style aggregation tailored for retrieval.

In summary, VLAD-style aggregation remains competitive, especially
when enhanced through learning-based methods like SALAD. Attention-
based approaches offer semantic richness but struggle in unstructured scenes.
The findings highlight the importance of using robust descriptors and adaptive
aggregation for generalization to unstructured natural environments.

Table 6.1: Comparison of image retrieval methods evaluated on the Etna
dataset. DINOv2 variants use the “base” model (ViT-B/14) with either the
CLS token or the average of the last three layers across all patches.

Method Backbone Aggregation Runtime (ms) Robustness
NetVLAD [9] VGG-16 Fixed VLAD Slow Low
TransVPR [36] Transformer Attention Pooling Fast Low
DINOv2 (b) CLS Token ViT-B/14 CLS Token Slow Medium
DINOv2 (b) Last 3 Layers ViT-B/14 Patch Avg (3 Layers) Slow Medium–High
DINOv2 + SALAD [26] ViT-B/14 Learnable VLAD (Sinkhorn) Fast High

6.2.2 Pose Estimation Systems.
The pose estimation approaches in this thesis can be categorized based on their
core design principles and data dependencies.

Regression-based methods, such as Reloc3r [63], directly learn to predict
camera pose from image input via deep networks. These models achieve
high pose accuracy and runtime efficiency, as demonstrated by Reloc3r’s
strong performance on yaw and translation metrics. However, they lack
interpretability and are more difficult to diagnose in failure cases, making them
less suitable for safety-critical applications where transparency is important.

Matching-based pipelines, including LoFTR [8], DINO-Patches [60],
and the proposed DINO+SONATA model, estimate pose by establishing
explicit correspondences between query and reference features. These
methods are generally more interpretable, as their outputs are based on
observable feature matches. The proposed approach, which integrates 2D
visual features from DINOv2 with 3D geometric descriptors from SONATA,
achieved full coverage across all queries and strong yaw accuracy with fewer
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catastrophic outliers than LoFTR.
Handcrafted descriptor methods, such as FPFH [77] combined with

RANSAC [16], rely on predefined 3D geometric features and traditional
matching. While conceptually simple, they performed poorly in low-texture
scenes, frequently failing to produce sufficient inlier matches for pose
estimation. These results underline the limitations of purely handcrafted
pipelines in complex or unstructured environments.

In summary, regression-based methods offer speed and accuracy but
sacrifice transparency. Matching-based systems, particularly those fusing 2D
and 3D cues like the proposed DINO+SONATA, strike a balance between
robustness and interpretability. Handcrafted pipelines, while efficient in
structured scenes, struggle under the environmental conditions explored in this
work. A comparative summary of these methods is presented in Table 6.2.

Table 6.2: Comparison of Pose Estimation Methods

Method Category Yaw MAE (°) Runtime (ms) Interpretability
FPFH + RANSAC [77, 16] Handcrafted High Slow High
Reloc3r [63] Regression-based Lowest Fastest Low
LoFTR [8] Matching-based Medium Medium Medium
DINO-Patches [60] Matching-based Medium Slow Medium
Projected ViT (DINO-LiDAR) [79] Matching-based High Slow High
Projected ViT (DINO+SONATA) Matching-based Low Slow High

6.3 Insights from Ablations and Variants
This section summarizes key lessons from the ablation studies and model
variants evaluated during the thesis. These insights help explain the
performance trends observed in Chapter 5 and inform the design decisions
made for the final pipeline.

a) Impact of Fine-Tuning DINO.
Fine-tuning the DINOv2 backbone on the Etna dataset produced a
significant gain in retrieval accuracy. While the proposed model using
pretrained DINOv2 and pretrained SALAD reached a top-1 precision of
71.16%, fine-tuning DINOv2 improved this to 75.69%. This highlights
the importance of domain adaptation, even for strong self-supervised
models. Although the pretrained features were already effective,
this performance gap suggests that general-purpose features lack the
necessary specificity to handle ambiguous or repetitive terrain, which is
common in natural and planetary-like environments.
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b) Design Choice: DINO Base Model and Layer Strategy.
The performance of different DINO configurations was also evaluated.
DINOv2 (b), which uses a larger ViT backbone, significantly out-
performed its small counterpart DINOv2 (s), achieving up to 64.74%
precision when using the last three layers compared to only 21.79%
for DINOv2 (s). Additionally, using the last three layers and averaging
patch-level features provided better results than the standard CLS token
(64.74% vs 59.82%). These findings justify the use of DINOv2 (b) with
multi-layer aggregation in the final pipeline.

c) Fragility of SALAD when Re-trained.
Attempts to retrain SALAD using the same dataset—after changing the
DINO feature aggregation strategy—showed that the model is sensitive
to both initialization and training setup. While the original SALAD
performed best when used off-the-shelf with DINOv2 (b), retraining
led to reduced performance. This suggests that SALAD’s optimal
performance is closely tied to its original pretraining conditions, and
modifying the input representation without adjusting the architecture
or carefully tuning hyperparameters can destabilize feature-cluster
assignments.

d) Value of SONATA Fusion.
The fusion of 2D visual features with 3D geometric descriptors using
SONATA contributed to more robust pose estimation. Compared to
DINO-only matching pipelines like DINO-Patches, the proposed hybrid
model achieved reduced yaw error and showed more stable behavior in
low-texture regions. This demonstrates the benefit of combining multiple
sensing modalities in environments where purely visual information is
unreliable or ambiguous.

e) Understanding Reloc3r’s Advantage.
While the regression-based Reloc3r model lacks interpretability, its high
accuracy and speed are due to direct end-to-end optimization. By
minimizing pose error during training, it avoids the need for matching
or explicit geometry, making it less sensitive to feature quality or scene
overlap. However, its black-box nature and potential failure under
distribution shifts make it less suitable for high-stakes applications where
diagnosis and robustness are critical.

In conclusion, these findings reinforce the importance of domain-specific fine-
tuning, careful feature selection, and hybrid architectures in building reliable
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localization pipelines. While end-to-end systems like Reloc3r offer strong
performance, matching-based pipelines with interpretable modules, especially
when enhanced by multi-modal fusion, remain robust and transparent in the
types of environments targeted in this work.

6.4 Unexpected Observations
While the experimental results largely aligned with expectations, several
findings stood out as surprising or counterintuitive. These observations offer
deeper insight into the limitations and behaviors of the evaluated methods:

a) Underperformance of DINO-Patch Matching. Despite leveraging
strong visual features, the DINO-Patches baseline delivered less robust
pose estimates than anticipated. This may be due to coarse spatial
resolution or suboptimal patch alignment, which led to inconsistent
match quality in low-texture regions. The lack of geometric priors also
made it more vulnerable to perceptual aliasing.

b) FPFH’s Mixed Practicality. Although FPFH was expected to fail
completely in unstructured terrain, it still produced valid poses in a
surprising number of cases. However, its computational cost was
prohibitively high, and the pose accuracy was inconsistent. This confirms
that while handcrafted features can sometimes succeed, they are not
scalable or dependable for real-time deployment.

c) LoFTR’s Translation–Yaw Discrepancy. LoFTR achieved strong
translation accuracy but showed poor stability in yaw estimation. This
suggests that while dense correspondence fields may be sufficient for
estimating position, they are more susceptible to rotational drift, possibly
due to ambiguous feature orientations or local symmetries.

d) Performance Gaps Between Similar DINO Variants. The large
performance jump between DINOv2 (b) using CLS tokens vs. the last
three layers was larger than expected. This highlights the sensitivity of
self-supervised descriptors to subtle architectural and pooling choices,
and the importance of layer selection in transfer learning.
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6.5 Impact and Practical Relevance
The method proposed in this thesis addresses a key gap in the visual
localization literature by offering a pipeline that delivers both image retrieval
and pose estimation—a capability rarely achieved in a single system. While
many existing approaches focus exclusively on retrieval for place recognition
or regression-based pose estimation, few provide a full pipeline that is
modular, interpretable, and robust across both tasks.

This work introduces a matching-based architecture that combines 2D self-
supervised features with 3D geometric descriptors, striking a valuable balance
between interpretability, modularity, and robustness. These properties are
essential in safety-critical scenarios such as planetary exploration or disaster
response, where explainability and diagnostic access are nonnegotiable.

Equally important is the consideration of computational efficiency,
especially for deployment in real-time autonomous systems. Although the
current pose estimation module is relatively slow (3114.33 ms per query), the
image retrieval component operates at 476.5 ms and is therefore compatible
with real-time use on embedded platforms. Optimizing or approximating the
pose estimation stage remains a promising direction for future work.

This makes the system particularly well-suited for field robotics in GNSS-
denied and unstructured environments, such as planetary exploration, disaster
response, or agricultural monitoring—scenarios where semantic structure is
limited, connectivity may be absent, and runtime constraints are strict.

The key takeaway is that domain-adapted, multi-modal fusion pipelines
can offer strong performance without sacrificing explainability. Future
systems can build upon this work by extending multi-modal integration,
improving runtime for onboard execution, or adding uncertainty quantification
to support decision-making in critical missions.
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Chapter 7

Conclusions and Future work

This chapter summarizes the key contributions, insights, and outcomes
of the thesis. Section 7.1 revisits the three main objectives, detailing
how each was addressed through system design, experimentation, and
evaluation. Section 7.2 outlines the key limitations encountered during the
project, particularly in terms of generalizability, computational cost, and
evaluation scope. Section 7.3 proposes future research directions to improve
performance, expand applicability, and support real-world deployment.
Finally, Section 7.4 reflects on the ethical, societal, and environmental
implications of the work, aligning the system’s design with broader goals such
as sustainability, safety, and transparency in robotics.

7.1 Conclusions
This thesis aimed to develop a multi-modal place recognition and pose
estimation system for unstructured, GNSS-denied environments, focusing
on both accuracy and interpretability. The motivation stemmed from the
lack of existing methods capable of delivering 6-DoF pose estimates—
rather than simple retrieval—under visually sparse and ambiguous conditions.
The targeted use case was integration with SLAM pipelines in resource-
constrained robots like the LRU, making efficiency and modularity essential
considerations.

To meet this goal, the work was structured around three main objectives:
This thesis aimed to develop a multi-modal place recognition and pose

estimation system tailored for unstructured, GNSS-denied environments, with
a focus on producing interpretable, SLAM-compatible 6D pose outputs. The
system was designed to balance accuracy, robustness, and efficiency for use



84 | Conclusions and Future work

in field robotics platforms such as the LRU. The work was structured around
three main objectives:

Objective 1: Evaluate the benefits of multi-modality (vision + LiDAR) in
place recognition and pose estimation. This objective was fully achieved
and is supported by results throughout the thesis.

• Literature Review: Chapter 2 provides an extensive overview of state-
of-the-art multi-modal learning techniques and identifies limitations in
existing approaches, especially under unstructured terrain conditions.

• Data Preprocessing: Chapter 3.2 and 4.1 detail the processing of
the Etna dataset, chosen for its resemblance to planetary environments.
LiDAR and camera synchronization was performed using the S3LI
toolkit to ensure aligned multi-modal input [90].

• Baseline Analysis: While the implementation of prior multi-modal
frameworks (e.g., MinkLoc, UMF, AdaFusion) was hindered by
technical and reproducibility issues, this thesis demonstrated through
ablation that the proposed fusion of DINOv2 (vision) and SONATA
(LiDAR) outperformed their standalone counterparts [34, 73]. This
validates the hypothesis that combining modalities improves pose
robustness, especially in texture-poor scenes.

Objective 2: Develop an algorithm that outputs 6D poses for SLAM inte-
gration instead of simple image retrieval. This objective was successfully
met.

• Feature Extraction and Fusion: The system uses transformer-based
features from DINOv2 and SONATA, fused by projecting 2D visual
features into 3D space before concatenation. Alternative fusion
techniques, such as weighted averaging, were explored but found less
effective.

• Pose Estimation: The final pipeline outputs a 6-DoF transformation
matrix, enabling SLAM integration. While evaluation was restricted to
yaw and translation (due to dataset constraints), the full output structure
satisfies the original goal.

• Benchmarking: Metrics and baseline comparisons are presented in
Chapters 3.3 and 5. The proposed method achieved competitive
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accuracy and robustness when compared with regression-based and
traditional feature-based pose estimators.

Objective 3: Optimize computational and memory efficiency by inte-
grating model-based components into deep learning-based multi-modal
methods. This objective was partially achieved, although it revealed
important trade-offs between transparency, runtime, and robustness.

• Model-Based Integration: Classical geometric modules such as
RANSAC were incorporated into the pose estimation pipeline to infer
transformations from matched features [16]. This contributed to
interpretability and reduced the reliance on fully end-to-end learned
pose estimators.

• Efficient Inference: The image retrieval pipeline was optimized using
descriptor aggregation via SALAD and fast similarity search with
FAISS indexing [26, 27], resulting in a mean inference time of under 500
ms—suitable for real-time deployment. Pose estimation, on the other
hand, remained computationally heavy (approx. 3.1 seconds), which
limits immediate deployment but provides a transparent and modular
structure that is open to future optimization.

• Hardware Constraints: Runtime measurements reflect realistic GPU
settings. Although SONATA could not be fine-tuned due to hardware
limitations, its pre-trained performance was strong, and the system
remains adaptable for constrained platforms.

From a broader perspective, the project confirmed that hybrid pipelines
combining interpretable, modular components with domain-adapted features
can deliver competitive performance even in the absence of structured
semantics.

Some challenges and trade-offs emerged. Re-training SALAD after
changing DINO features led to degraded performance, underscoring the
fragility of VLAD-based learning. Similarly, while the proposed matching-
based pose estimator offered strong interpretability and robustness, its
computational cost limits its current applicability in real-time systems.
Nevertheless, the pipeline offers a valuable foundation for future SLAM
systems that require both accurate retrieval and metric pose estimation, a
combination still underexplored in the literature.

Key insights gained include:
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• The importance of fine-tuning, even for powerful self-supervised
models like DINOv2, which showed a 4.5

• The value of fusing 2D and 3D modalities, particularly in texture-poor
scenes.

• The potential of regression models like Reloc3r, which, despite lacking
interpretability, delivered strong pose accuracy, suggesting room for
hybridization with interpretable pipelines.

If this project were to be repeated, more focus would be placed on
exploring regressors for pose estimation, and with more computational
resources, it would have been feasible to fine-tune geometric backbones like
SONATA, potentially unlocking further performance gains.

To conclude, this work demonstrates that multi-modal, interpretable
localization systems can achieve reliable performance in visually ambiguous,
unstructured environments, while also paving the way for future deployment in
SLAM for planetary robotics. The system fills a niche in the current research
space by addressing both retrieval and pose estimation with a balance of
explainability, modularity, and performance.

7.2 Limitations
While the proposed multi-modal localization pipeline achieved promising
results, several limitations affect its generalizability, efficiency, and applica-
bility.

Single-Dataset Evaluation. All experiments were conducted exclusively on
the Etna dataset [21]. Although this dataset provides a suitable approximation
of planetary terrain, it does not capture the full variability of real-world or
extraterrestrial conditions. Additional datasets, including those with different
terrain types, weather conditions, or sensor configurations, would be required
to validate the method’s robustness more comprehensively.

Incomplete 6D Evaluation. Although the system is designed to output full
6-DoF pose transformations, quantitative evaluation was restricted to yaw
and planar translation. This was due to the nature of the dataset, where
variations in roll, pitch, and vertical displacement were minimal and could not
be reliably assessed. As a result, further testing in more dynamic environments
is necessary to confirm the accuracy of the full 6D output.
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Pose Estimation Runtime. Despite the real-time performance of the
image retrieval module (476.5 ms), the pose estimation module remains
computationally heavy, averaging over 3 seconds per query. This runtime is
too high for seamless real-time deployment in SLAM pipelines, particularly
in time-sensitive robotic applications. Additional engineering work is needed
to optimize this component.

Unrealized Multi-Modal Baselines. Due to time and compatibility con-
straints, state-of-the-art multi-modal baselines such as AdaFusion, MinkLoc,
and UMF could not be successfully evaluated. Their absence limits the
breadth of comparative analysis, although alternative single-modality and
hybrid baselines were included for benchmarking.

Hardware Constraints. The inability to fine-tune SONATA was a direct
result of limited computational resources. While the backbone performed well
using pre-trained weights, fine-tuning could have yielded even better domain
adaptation and feature alignment.

7.3 Future work
The work presented in this thesis opens several directions for continued
research and development:

Fine-Tuning SONATA. With sufficient computational resources, future
work should focus on fine-tuning SONATA to better adapt geometric features
to unstructured, planetary-like terrain. This could reduce pose error and
improve match robustness, especially in sparse or noisy point clouds.

Semantic-Aware Pose Refinement. A promising extension would involve
integrating semantic information into the geometric alignment process, e.g.,
enhancing ICP refinement by minimizing distances not only between point
positions but also point-wise semantic features. This could reduce the
ambiguity of low-texture or repetitive surfaces and improve registration
accuracy.

Speed Optimization of Pose Estimation. Significant engineering work
remains to reduce the computational cost of the pose estimation module.
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Options include distillation of feature extractors, faster match pruning
strategies, or lightweight regressors that operate after an initial matching stage.

Robust SLAM Integration and Field Testing. Future iterations of the
system should be deployed on robotic hardware such as the LRU for real-time
testing [19]. This would allow validation of the system’s SLAM compatibility,
feedback-loop behavior, and error recovery in operational scenarios.

Dataset Expansion. New datasets, such as the S3LI Vulcano dataset, could
be used to evaluate the generalization of the pipeline to novel terrain and
sensor conditions. Additionally, incorporating real-world data from planetary
exploration robotics would enhance relevance and robustness.

Extended Baseline Comparisons. Revisiting multi-modal methods like
UMF, MinkLoc, and AdaFusion, as well as LiDAR-only approaches like
PointNetVLAD, would allow for a more complete benchmarking of the
proposed system. Overcoming reproducibility issues in these baselines
remains a useful effort for the research community.

Alternative Pose Estimators. Given the strong performance of regression-
based pose models such as Reloc3r [63], future work could explore hybrid
models that retain interpretability through initial matching but refine outputs
using compact pose regressors. This could improve the speed-accuracy trade-
off while maintaining transparency.

7.4 Reflections
This section provides a broader reflection on the ethical, environmental, and
societal aspects of the work, in line with the United Nations (UN) Sustainable
Development Goalss (SDGs).

Environmental Sustainability (SDG 13: Climate Action). From a
sustainability standpoint, the focus on computational efficiency directly
contributes to reducing the energy footprint of autonomous systems. By
employing compact image descriptors (e.g., SALAD [26]), efficient search
indexing (via FAISS [27]), and modular architecture, the proposed system
avoids the heavy resource consumption typical of end-to-end models.
Moreover, real-time onboard processing reduces reliance on remote servers,
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making the method suitable for deployment in low-connectivity environments
with limited infrastructure.

Autonomous systems that rely on visual-LiDAR SLAM are increasingly
used in sustainable agriculture (e.g., precision weeding, soil monitoring),
where they enable optimized use of resources like water, fertilizer, or fuel.
By improving navigation robustness in natural terrain, the methods developed
here can help scale up these applications.

Social Relevance (SDG 9: Industry, Innovation, and Infrastructure).
The system presented in this thesis has potential applications in planetary
exploration, disaster response, environmental monitoring, and autonomous
field robotics. These use cases are often safety-critical, occurring in GPS-
denied, unpredictable environments where human operation is infeasible.
Providing reliable and interpretable localization under such conditions can
facilitate faster rescue missions, advance space research, and support critical
infrastructure inspection.

Furthermore, enabling affordable and accurate autonomous navigation
contributes to democratizing access to robotics technologies in under-
resourced regions or industries, fostering inclusive technological develop-
ment.

Ethical Considerations. Interpretability and modularity were central de-
sign principles of the proposed system. Unlike black-box regressors,
matching-based pipelines allow users to trace the reasoning behind lo-
calization estimates—an essential property for safety-critical deployments.
This aligns with growing ethical requirements around explainability and
accountability in AI and robotics.

From a data ethics perspective, the use of public and non-sensitive
datasets (e.g., Etna [21]) ensures that the development process avoids privacy
violations or misuse. However, broader deployment, especially in surveillance
or defense contexts, requires ongoing vigilance regarding the potential for
unintended applications or societal harm.
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Appendix A

Supporting materials

A.1 Viewpoint Overlap Computation Func-
tions

The following functions were implemented to evaluate the geometric and
angular overlap between pairs of image frames in the Etna dataset. These were
used to define ground truth loop closure matches based on spatial alignment
and viewpoint consistency.

A.1.1 compute_overlap_v1

Listing A.1: Custom overlap scoring function based on angular difference and
sigmoid-based corrections in the lateral and longitudinal directions.
def compu te_ove r l ap_v1 ( pos0 , ang0 , pos1 , ang1 ,

ho r_ fov = 6 0 . 0 ) :
a n g 0 _ p o s i t i v e = ( 1 8 0 . 0 ∗ ang0 / np . p i ) % 360
a n g 1 _ p o s i t i v e = ( 1 8 0 . 0 ∗ ang1 / np . p i ) % 360
a n g _ d i f f e r e n c e = 180 − np . abs ( np . abs (

a n g 0 _ p o s i t i v e − a n g 1 _ p o s i t i v e ) − 180)

a n g u l a r _ o v e r l a p _ r a t i o = max ( ho r_ fov − abs (
a n g _ d i f f e r e n c e ) , 0 . 0 ) / ho r_ fov

l a t e r a l _ d i s t a n c e , l o n g i t u d i n a l _ d i s t a n c e =
l a t e r a l _ l o n g i t u d i n a l _ d i s t a n c e s ( pos0 , ang0 ,
pos1 )
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p o s i t i o n _ c o r r e c t i o n _ l a t e r a l = 1 . 0 − 1 . 0 / ( 1 . 0
+ np . exp ( − l a t e r a l _ d i s t a n c e + 8 0 . 0 ) )

p o s i t i o n _ c o r r e c t i o n _ f o r w a r d = 1 . 0 − 1 . 0 / ( 1 . 0
+ np . exp ( − l o n g i t u d i n a l _ d i s t a n c e + 6 0 . 0 ) )

re turn a n g u l a r _ o v e r l a p _ r a t i o ∗ min (
p o s i t i o n _ c o r r e c t i o n _ l a t e r a l ,
p o s i t i o n _ c o r r e c t i o n _ f o r w a r d ) , \

a n g _ d i f f e r e n c e , l a t e r a l _ d i s t a n c e ,
l o n g i t u d i n a l _ d i s t a n c e

A.1.2 compute_overlap_v2

Listing A.2: Alternative method that computes the intersection area between
the FOVs of two camera poses as polygons.
def compu te_ove r l ap_v2 ( pos0 , ang0 , pos1 , ang1 ,

ho r_ fov =45 .0 , f ov_ r ange1 =75 .0 , f ov_ r ange2 =75 . 0 ) :
fov0 = g e t _ f o v _ t r i a n g l e ( pos0 , ang0 , hor_fov ,

f ov_ r ange1 )
fov1 = g e t _ f o v _ t r i a n g l e ( pos1 , ang1 , hor_fov ,

f ov_ r ange2 )

po ly0 = Polygon ( fov0 )
po ly1 = Polygon ( fov1 )
i n t e r s e c t i o n = po ly0 . i n t e r s e c t i o n ( po ly1 )
i n t e r s e c t i o n _ a r e a = i n t e r s e c t i o n . a r e a i f

i n t e r s e c t i o n . i s _ v a l i d e l s e 0 . 0

f o v _ a r e a = max ( Polygon ( fov0 ) . a r ea , Polygon ( fov1
) . a r e a )

o v e r l a p _ r a t i o = i n t e r s e c t i o n _ a r e a / f o v _ a r e a i f
f o v _ a r e a != 0 e l s e 0 . 0

a n g _ d i f f e r e n c e = abs ( ang0 − ang1 ) % 360
a n g _ d i f f e r e n c e = 180 − abs ( a n g _ d i f f e r e n c e −

180)
l a t e r a l _ d i s t a n c e , l o n g i t u d i n a l _ d i s t a n c e =

l a t e r a l _ l o n g i t u d i n a l _ d i s t a n c e s ( pos0 , ang0 ,
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pos1 )

re turn o v e r l a p _ r a t i o , a n g _ d i f f e r e n c e ,
l a t e r a l _ d i s t a n c e , l o n g i t u d i n a l _ d i s t a n c e
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searched efficiently using FAISS indexing. The system is evaluated on the Etna volcano dataset,
representative of planetary terrains.

The results show that the proposed model outperforms established retrieval methods like NetVLAD and
TransVPR and achieves more stable pose estimation than handcrafted or regression-based alternatives.
The fusion of LiDAR and vision improved robustness in scenes with low texture or poor illumination,
validating the hypothesis that multi-modality can bridge the gap between accuracy and generalization.
Importantly, the system produces interpretable outputs and operates within real-time constraints for
retrieval, although further optimization is needed for pose estimation.

This thesis demonstrates that it is feasible to move beyond retrieval-only frameworks and provide
full, explainable 6D poses suitable for SLAM. Future work should focus on improving runtime
efficiency in the pose estimation module, incorporating more diverse datasets, and testing deployment
on real robotic platforms. These developments could contribute to more autonomous and trustworthy
robotic systems for exploration, disaster response, and agriculture in extreme environments.
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Autonom navigering i planetliknande miljöer innebär unika utmaningar på grund av avsaknad av
GPS-signaler, begränsad semantisk struktur och visuell tvetydighet orsakad av repetitiva texturer
eller svåra ljusförhållanden. Traditionella metoder för platsigenkänning och lokalisering förlitar
sig antingen på täta kartor och strukturerade miljöer eller erbjuder endast grov återhämtning utan
att uppskatta fullständiga 6-\gls{DoF} (sex frihetsgrader) poser. Detta begränsar deras användbarhet
i realtids-SLAM (Simultaneous Localization and Mapping) för fältrobotik och planetutforskning.

Denna avhandling angriper problemet genom att utveckla ett multimodalt system som utför både
platsigenkänning och relativ posuppskattning i ostrukturerade miljöer utan GNSS. Den föreslagna
metoden kombinerar visuella egenskaper extraherade från en transformerbaserad kodare (DINOv2) med
3D-geometriska beskrivare från en LiDAR-baserad ryggrad (SONATA). Dessa egenskaper projiceras och
justeras i 3D-rymden för att generera tolkbara korrespondenser, från vilka systemet uppskattar
fullständiga 6D-poser. På återhämtningssidan aggregeras DINOv2-beskrivare med hjälp av SALAD, en
inlärd VLAD-liknande modul, och söks effektivt med FAISS-indexering. Systemet utvärderas på
Etna-vulkanens datamängd, som är representativ för planetära terränger.

Resultaten visar att den föreslagna modellen överträffar etablerade metoder för återhämtning såsom
NetVLAD och TransVPR, samt uppnår mer stabil posuppskattning än handgjorda eller regressionsbaserade
alternativ. Kombinationen av LiDAR och visuella data förbättrade robustheten i scener med låg textur
eller dålig belysning, vilket bekräftar hypotesen att multimodalitet kan överbrygga gapet mellan
noggrannhet och generalisering. Viktigt är att systemet genererar tolkbara resultat och fungerar inom
realtidskrav för återhämtning, även om vidare optimering krävs för posuppskattningen.

Denna avhandling visar att det är möjligt att gå bortom enbart återhämtningsbaserade ramverk och
tillhandahålla fullständiga, förklarliga 6D-poser som lämpar sig för SLAM. Framtida arbete bör
fokusera på att förbättra prestandan i posuppskattningsmodulen, inkludera mer varierade datamängder
och testa implementering på verkliga robotplattformar. Dessa framsteg kan bidra till mer autonoma och
tillförlitliga robotsystem för utforskning, katastrofinsatser och jordbruk i extrema miljöer.
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Autonominen navigointi planeettamaisissa ympäristöissä tuo mukanaan erityisiä haasteita
GPS-signaalien puuttumisen, rajallisen semanttisen rakenteen sekä visuaalisen epäselvyyden vuoksi,
jota aiheuttavat toistuvat tekstuurit ja vaikeat valaistusolosuhteet. Perinteiset paikan tunnistus-
ja paikannusmenetelmät perustuvat joko tiheisiin karttoihin ja jäsenneltyihin ympäristöihin tai
tarjoavat vain karkean haun ilman täysimääräistä 6-\gls{DoF} (kuuden vapausasteen) asennon
estimointia. Tämä rajoittaa niiden soveltuvuutta reaaliaikaiseen SLAM-järjestelmään (Simultaneous
Localization and Mapping) kenttärobotiikassa ja planeettojen tutkimuksessa.

Tämä diplomityö käsittelee ongelmaa kehittämällä multimodaalisen järjestelmän, joka suorittaa sekä
paikan tunnistusta että suhteellisen asennon estimointia jäsentymättömissä, GNSS-vapaissa
ympäristöissä. Ehdotettu lähestymistapa yhdistää transformer-pohjaisesta kooderista (DINOv2) poimitut
visuaaliset piirteet LiDAR-pohjaiseen runkoon (SONATA) perustuvien 3D-geometristen piirteiden kanssa.
Nämä piirteet projisoidaan ja kohdistetaan 3D-avaruudessa tuottaen tulkittavia vastaavuuksia, joiden
perusteella järjestelmä arvioi täydet 6D-asennot. Haun osalta DINOv2-piirteet yhdistetään
SALAD-menetelmällä, joka on oppiva VLAD-tyylinen moduuli, ja haku toteutetaan tehokkaasti
FAISS-indeksoinnin avulla. Järjestelmä arvioitiin Etna-tulivuoren tietoaineistolla, joka edustaa
planeettamaista maastoa.

Tulokset osoittavat, että ehdotettu malli päihittää vakiintuneet hakumenetelmät kuten NetVLAD ja
TransVPR, ja saavuttaa vakaamman asennon estimoinnin kuin käsintehdyt tai regressiopohjaiset
vaihtoehdot. LiDARin ja visuaalisen tiedon yhdistäminen paransi järjestelmän kestävyyttä alhaisen



tekstuurin tai heikon valaistuksen tilanteissa, vahvistaen hypoteesin siitä, että multimodaalisuus
voi kuroa umpeen tarkkuuden ja yleistettävyyden välistä kuilua. Tärkeää on, että järjestelmä tuottaa
tulkittavia tuloksia ja toimii reaaliaikaisissa hakuvaatimuksissa, vaikka asennon estimointimoduuli
vaatii edelleen optimointia.

Tämä diplomityö osoittaa, että on mahdollista siirtyä pelkästään hakuun perustuvista järjestelmistä
kohti täysiä, selitettävissä olevia 6D-asentoja, jotka soveltuvat SLAMiin. Tulevassa työssä tulisi
keskittyä asennon estimoinnin suoritustehokkuuden parantamiseen, monipuolisempien tietoaineistojen
käyttöönottoon sekä järjestelmän testaamiseen oikeilla robottialustoilla. Nämä kehitysaskeleet voivat
edistää autonomisempien ja luotettavampien robottijärjestelmien kehitystä tutkimukseen,
katastrofivalmiuteen ja maatalouteen äärimmäisissä olosuhteissa.
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acronyms.tex
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% The following command is used with glossaries-extra
\setabbreviationstyle[acronym]{long-short}
% The form of the entries in this file is \newacronym{label}{acronym}{phrase}
% or \newacronym[options]{label}{acronym}{phrase}
% see ”User Manual for glossaries.sty” for the details about the options, one example is shown below
% note the specification of the long form plural in the line below
\newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging Information Entity}
%
% The following example also uses options
\newacronym[shortplural={OSes}, firstplural={operating systems (OSes)}]{OS}{OS}{operating system}

% note the use of a non-breaking dash in long text for the following acronym
\newacronym{IQL}{IQL}{Independent ‑QLearning}

% example of putting in a trademark on first expansion
\newacronym[first={NVIDIA OpenSHMEM Library (NVSHMEM\texttrademark)}]{NVSHMEM}{NVSHMEM}{NVIDIA OpenSHMEM Library}

\newacronym{KTH}{KTH}{KTH Royal Institute of Technology}

% MY ACRONYMS
\newacronym{VPR}{VPR}{Visual Place Recognition}
\newacronym{ICT}{ICT}{Information and Communication Technology}
\newacronym{SLAM}{SLAM}{Simultaneous Localization and Mapping}
\newacronym{GPS}{GPS}{Global Positioning System}
\newacronym{GNSS}{GNSS}{Global Navigation Satellite System}
\newacronym{LiDAR}{LiDAR}{Light Detection and Ranging}
\newacronym{SIFT}{SIFT}{Scale-Invariant Feature Transform}
\newacronym{SURF}{SURF}{Speeded-Up Robust Features}
\newacronym{DoG}{DoG}{Difference-of-Gaussian}
\newacronym{ORB}{ORB}{Oriented FAST and Rotated BRIEF}
\newacronym{LoFTR}{LoFTR}{Local Feature TRansformer}
\newacronym{VLAD}{VLAD}{Vector of Locally Aggregated Descriptors}
\newacronym{CNN}{CNN}{Convolutional Neural Network}
\newacronym{GNN}{GNN}{Graph Neural Network}
\newacronym{ViT}{ViT}{Vision Transformer}
\newacronym{FPN}{FPN}{Feature Pyramid Network}
\newacronym{CLS}{CLS}{Classification Token}
\newacronym{MLP}{MLP}{Multi-layer Perceptrons}
\newacronym{GAP}{GAP}{Global Average Pooling}
\newacronym{GMP}{GMP}{Global Max Pooling}
\newacronym{GeM}{GeM}{Generalized Mean Pooling}
\newacronym{GGeM}{GGeM}{Group Generalized Mean Pooling}
\newacronym{NN}{NN}{Nearest Neighbors}
\newacronym{ANN}{ANN}{Approximate Nearest Neighbor}
\newacronym{FAISS}{FAISS}{Facebook AI Similarity Search}
\newacronym{IVF}{IVF}{inverted file}
\newacronym{PQ}{PQ}{product quantization}
\newacronym{HNSW}{HNSW}{Hierarchical Navigable Small World graphs}
\newacronym{BoW}{BoW}{Bag-of-Words}
\newacronym{LSH}{LSH}{Locality-Sensitive Hashing}
\newacronym{HLoc}{HLoc}{Hierarchical Localization}
\newacronym{VIO}{VIO}{Visual-Inertial Odometry}
\newacronym{IMU}{IMU}{Inertial Measurement Unit}
\newacronym{RPR}{RPR}{relative pose regression}
\newacronym{EMM}{EMM}{Essential Matrix Module}
\newacronym{DSAC}{DSAC}{Differentiable RANSAC}
\newacronym{PnP}{PnP}{Perspective-n-Point}
\newacronym{ICP}{ICP}{Iterative Closest Point}
\newacronym{SfM}{SfM}{Structure-from-Motion}
\newacronym{LRU}{LRU}{Lightweight Rover Unit}
\newacronym{UMF}{UMF}{Unifying Local and Global Multi-modal Features}
\newacronym{MAE}{MAE}{Masked Autoencoder}
\newacronym{FPFH}{FPFH}{Fast Point Feature Histograms}
\newacronym{BeV}{BeV}{’Birds-eye View}
\newacronym{FOV}{FOV}{Field of View}
\newacronym{PCA}{PCA}{Principal Component Analysis}
\newacronym{SDG}{SDG}{Sustainable Development Goals}
\newacronym{UN}{UN}{United Nations}
\newacronym{ECA}{ECA}{Efficient Channel Attention}
\newacronym{DoF}{DoF}{Degrees of Freedom}
\newacronym{BRIEF}{BRIEF}{Binary Robust Independent Elementary Features}



\newacronym{RANSAC}{RANSAC}{RANdom SAmple Consensus}
\newacronym{RGB}{RGB}{Red, Green, and Blue}
\newacronym{DLR}{DLR}{German Aerospace Center}
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