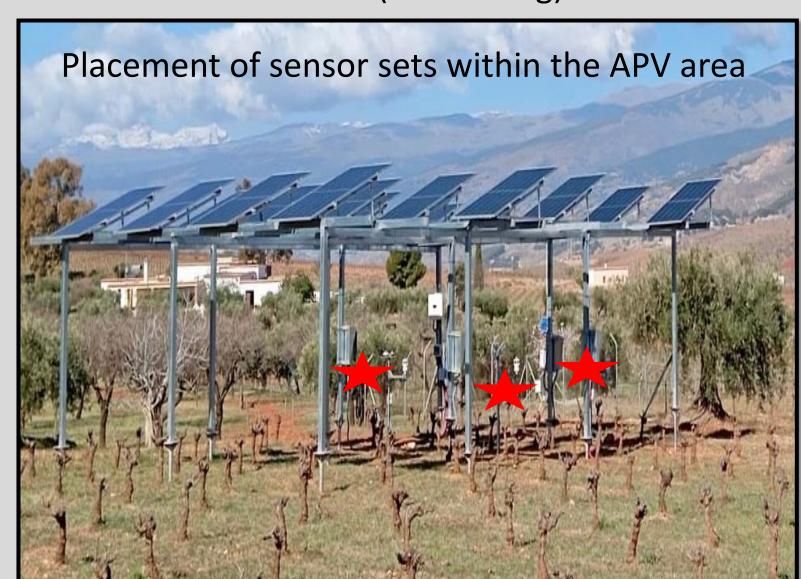
Exploring Agrivoltaics in Viticulture: Opportunities for Southern Spain

Álvaro Fernández Solas^{1,*}, Estefanía Sánchez Vizcaíno², Aitor Castillo³, Anna Kujawa¹, Marleen Landes¹, Natalie Hanrieder¹, Stefan Wilbert¹

¹German Aerospace Center (DLR e.V.), Institute of Solar Research, Almería, Spain, *alvaro.fernandezsolas@dlr.de;

²Cortijo El Cura Eco-Bodega, Laujar de Andarax (Spain), ³Bettergy SL, Málaga (Spain)

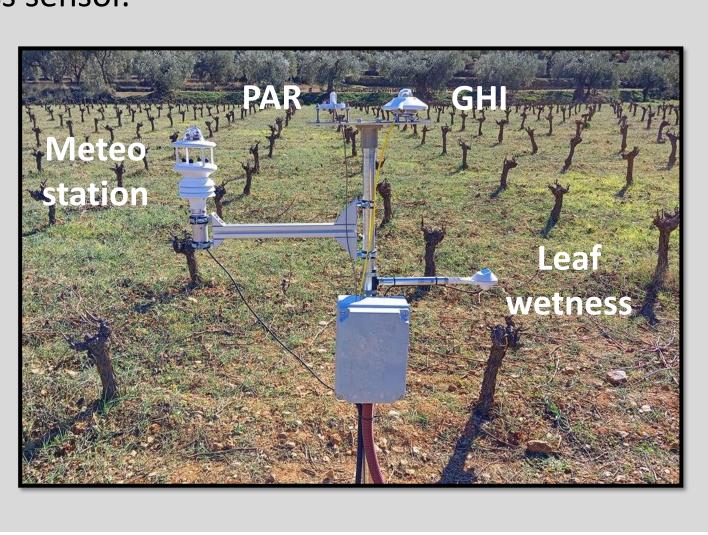
Introduction


- DLR investigates the synergies between PV technology and agriculture:
 - Climate-resilient agriculture.
 - Decentralized energy transition.
- About 90% of traditional wine areas in southern Spain are at high risk of disappearing in some decades because of climate change challenges:1
 - Longer drought periods.
 - More frequent heatwaves.
 - Extreme and more frequent hail events.
- This work presents the southernmost agrivoltaic (APV) installation in a vineyard in Europe.

Experimental Setup

- Pioneering agrivoltaic (APV) pilot project in Almería, southern Spain, located within an organic vineyard¹.
- Overhead PV system with a checkerboard layout, covering 120 m² and shading 32 Merlot vines (Ground Coverage Ratio – GCR: **38%**).
- System classified as Category I Use 1A under DIN **SPEC 91434 (Germany).**
- Eco-friendly foundation using ground screws to prevent soil compaction.
- PV capacity: 10.8 kWp from 18 modules. Inverter of 10 kWn.
- Energy use: Electricity is used on-site for self-consumption by the main winery building.

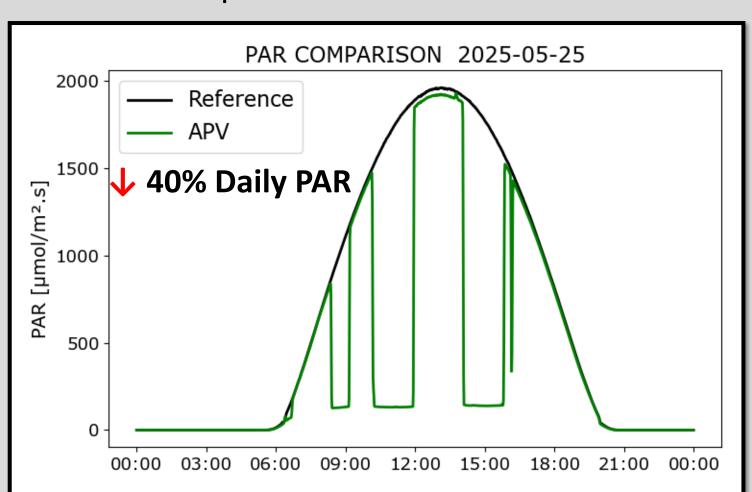
Monitoring System


- 4 measurement zones to assess the impact of shading on microclimate, soil and crop performance:
 - Under the PV structure (x3) \rightarrow APV area
 - Control area (no shading)

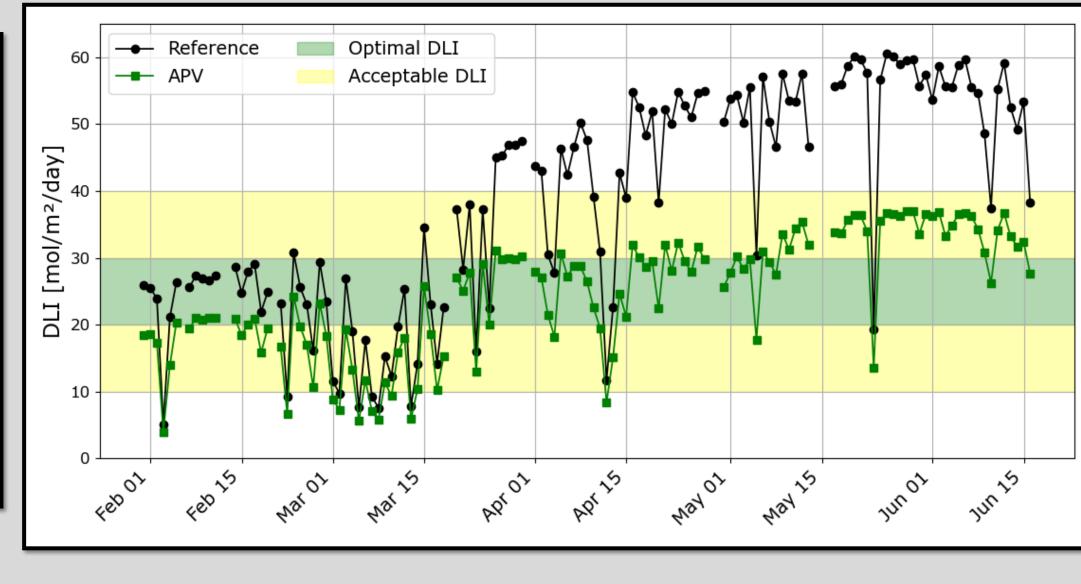
Sensors take measurements with 1-minute resolution

Category	Parameters Measured
Meteorological	 Air temperature • Relative humidity • Wind speed and direction • Precipitation
Irradiance	 Solar irradiance (PAR, GHI, G_{POA_f}, G_{POA_r})
Soil	Soil temperature
Crop	 Leaf wetness • Brix (sugar content) • Physiological traits • Yield quantity and quality

Instrumented mast in the control area with meteorological sensors, irradiance sensors (PAR and GHI), and a leaf wetness sensor.



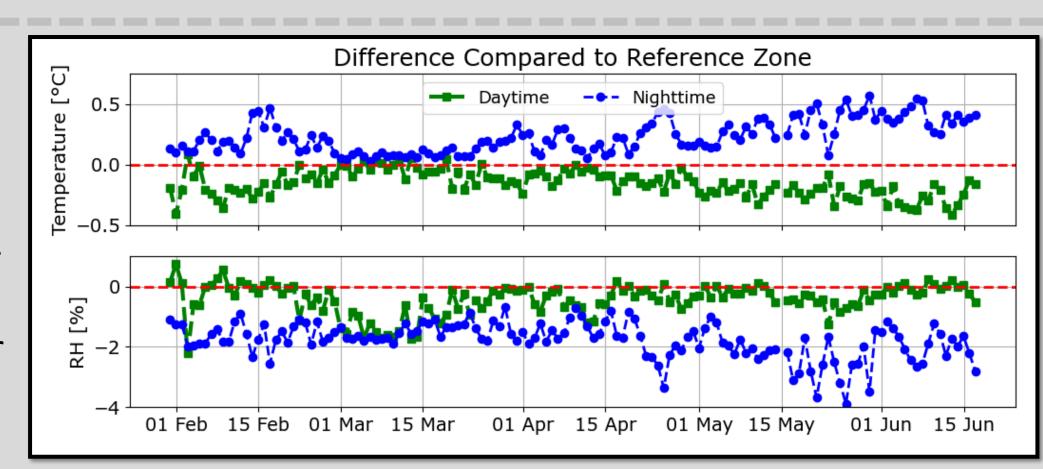
A drone picture of the APV setup in an eco-friendly vineyard², located in a valley surrounded by high mountains and fertile farmland with vineyards, olive trees, and almond trees. Top Right – A close-up of a grapevine growing under the APV structure. The system was installed in January 2025 on land owned by Cortijo El Cura – Ecobodega³.

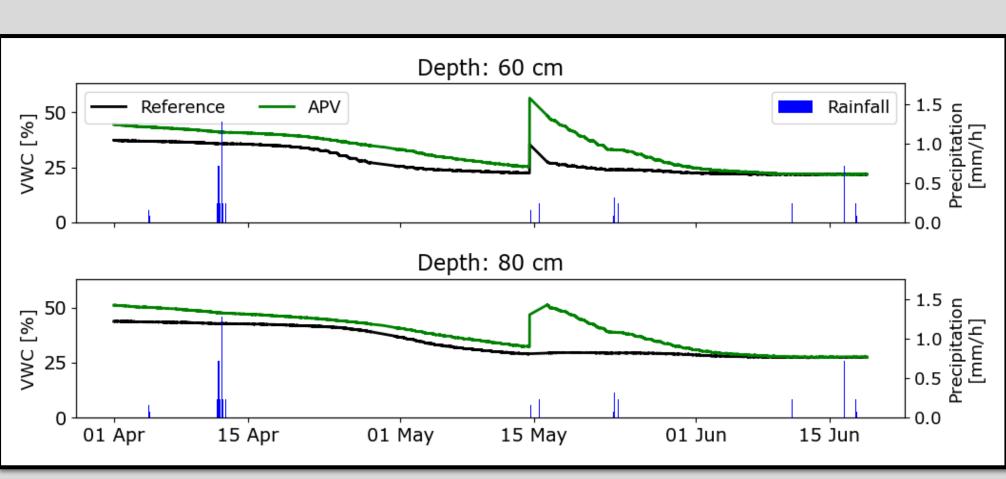

Results

Irradiance pattern

- Optimal Daily Light Integral (DLI) values for grapevine cultivation range between 20 and 30 mol m⁻² d⁻¹ depending on the development stage and on other weather conditions⁴.
- Measurements by EKO ML-020P PAR sensors at 1.5 m height to monitor DLI values.
- The checkerboard layout allows mitigating the excess of radiation during the hours with PAR values higher that the saturation point for grapevines, which is around 1200 μmol m⁻²·s⁻¹.⁵
- Excepting on very cloudy days \rightarrow DLI > 20 mol m⁻² d⁻¹ below the panels and in the control zone.
- DLI increases toward the summer, reaching nearly 40 mol m⁻² d⁻¹ in the APV area.
- Near the summer solstice, DLI in the APV area is about 40% lower than in the control area \rightarrow only slightly higher than the optimal values.

Evolution of PAR radiation across measurement zones on a clear-sky day.




Microclimate & Soil

- Lower temperature during daytime in the APV zone (up to 0.5°C lower during hot days with max. temperatures about 35°C).
- Slightly higher temperatures (+0.6 °C) and lower RH (-4%) during nighttime in the APV zone.
- Correlations with crop yield to be identified after having at least data from 3 different crop seasons.

Soil Moisture

- Comparison of Volumetric Water Content (VWC) at different depths in the reference and APV areas.
- Extended soil moisture retention below the modules in the APV area.
- Higher VWC is maintained for more days after rainfall under the PV modules, thus suggesting that APV systems effectively reduce evapotranspiration.

Summary and Outlook

- First agrivoltaic installation in a vineyard in Almería, Andalucía, Spain.
- Farmer benefits: additional incomes and crop protection from excess radiation and hail.
- Plant growth: No visible differences between vines in the APV zone and those in the control area.
- Next step: First crop yield data expected after September harvest; APV impact yet to be fully assessed.

References

- 1. van Leeuwen et al. (2024), "Climate change impacts and adaptations of wine production", Nat. Rev. Earth Environ.,
- https://doi.org/10.1038/s43017-024-00521-5 2. https://www.dlr.de/en/sf/latest/news/2025/harvesting-the-sun-protecting-the-vines-a-milestone-for-sustainable-agriculture
- 3. Cortijo El Cura-Ecobodega. https://cortijoelcura.com/
- 4. Photone Growth Light Meter, "Light Requirements for Plants". https://growlightmeter.com/light-requirements-for-plants/
- 5. Yuan, Y.; et al. (2025) "The Effects of Light Duration and Intensity with Supplemental Light-Emitting Diode Lights on Grape Photosynthesis, Yield, and Fruit Quality". *Agronomy*, https://doi.org/10.3390/agronomy15030518

