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Abstract 

The complexity of our Earth system makes the investigation of its critical variables 

indispensable in order to understand the interrelationships and interactions of 

different sub-systems and processes in detail. Various parameters play a key role in 

the global weather and climate system of our Earth, as they control interactions and 

exchange processes as well as link the water, carbon, and energy cycles worldwide. 

Accordingly, the global determination and long-term monitoring of important 

geophysical parameters, such as soil moisture and soil surface roughness, is of 

significant relevance, especially in terms of, for instance, improving weather and 

climate forecasts, quantifying net carbon fluxes, and monitoring the condition 

assessment of existing infrastructures (e.g., roads). 

In this PhD thesis, active and passive microwave remote sensing is exploited to 

estimate soil moisture and soil surface roughness. The associated methods developed 

herein and conducted analyses are of high importance, since the recording of 

geophysical parameters makes an essential contribution to climate and ecosystem 

research. This study is divided into three sub-studies. It addresses the possibility to 

close a research and knowledge gap in remote sensing and proposes new approaches 

in the field of microwave remote sensing for soil- and vegetation-related parameter 

estimation. The innovation of this study lies specifically in the detailed analysis of 

longwave microwaves of low frequencies (L- to P-band). 

The first sub-study focused on a combined method of L-band radar and 

radiometer satellite observations for the simultaneous determination of soil surface 

roughness parameters on global and temporal continuous scales. It was found that the 

proposed covariation-based active-passive microwave retrieval algorithm for soil 

surface roughness estimation is independent of soil permittivity (soil moisture) inputs 

in non-arid areas (permittivity > 10 [-]). The determined surface roughness parameters 

correspond to local land surface conditions, e.g., rather smooth surfaces over non-

vegetated, sandy and dry deserts, and rather rough surfaces at the edge of deserts, 

where smaller vegetation appears. Further, no correlations between roughness 

patterns and precipitation or soil texture could be found at the investigated scale.  

In the second sub-study, low frequency (P-band) synthetic aperture radar (SAR) 

data are employed to investigate the penetration and scattering behavior of active 

microwaves interacting with different vegetation covers and soil types. The 

investigation relies on a proposed hybrid decomposition technique for separating the 

total SAR signal into individual scattering mechanisms (soil, dihedral, and volume), 

and is subsequently used for lateral soil moisture estimation in the upper root zone 
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(~20-30 cm) as well as P-band penetration depth calculations. The proposed moisture 

estimation approach is the first method (to the best of my knowledge) for estimating 

complex permittivity from microwave remote sensing. The method was validated at 

different monitoring sites across the United States and it was shown that P-band 

microwaves can penetrate up to 35 cm into the soil, depending on the local landcover 

and moisture conditions.  

In the third sub-study, a combined approach of active microwave remote sensing 

and soil hydrological modeling is proposed for the determination of vertically 

continuous soil moisture profiles. For that, airborne P-band SAR data are compared to 

soil hydrological model simulations based on the HYDRUS-1D for estimating the 

vertical discontinuity and variability of soil moisture with depth. With this combined 

approach, vertically continuous soil moisture profiles can be estimated with medium 

to high Pearson’s coefficients of determination (𝑅2 of 0.48 to 0.92). 

In summary, innovative retrieval approaches are proposed for soil moisture and 

surface roughness estimation from microwave remote sensing. High consistencies 

between retrieval results and auxiliary data (in situ, model and reanalysis) confirm the 

feasibility of the proposed approaches. These approaches can be extended for future 

research, for example, in the prospect of upcoming P-band satellite missions – the 

BIOMASS mission of the European Space Agency (ESA) or the SigNals Of Opportunity 

P-band Investigation (SNOOPI) mission of the National Aeronautics and Space 

Administration (NASA). 
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Zusammenfassung 

Die Komplexität unseres Erdsystems macht die Untersuchung wichtiger Variablen 

unverzichtbar, um Wechselbeziehungen und Interaktionen von Subsystemen und 

Prozessen im Detail zu verstehen. Verschiedene Parameter nehmen dabei eine 

Schlüsselrolle im globalen Wetter- und Klimasystem unserer Erde ein, da sie Wechsel-

wirkungen und Austauschprozesse kontrollieren sowie die weltweiten Wasser-, 

Kohlenstoff- und Energiekreisläufe miteinander verbinden. Dementsprechend ist die 

globale Bestimmung und langfristige Überwachung wichtiger geophysikalischer 

Parameter, wie der Bodenfeuchte oder der Bodenoberflächenrauheit, von erheblicher 

Relevanz, insbesondere in Hinblick auf die Verbesserung von Wetter- und Klima-

vorhersagen, die Quantifizierung von Nettokohlenstoffflüssen oder die Überwachung 

der Beschaffenheit bestehender Infrastrukturen (z. B. Straßen).  

In dieser Doktorarbeit werden Daten aus der aktiven und passiven Mikrowellen-

Fernerkundung genutzt, um die Parameter Bodenfeuchte und Bodenoberflächen-

rauheit zu bestimmen. Die hierbei entwickelten Methoden und durchgeführten 

Analysen sind von hoher Bedeutung, da die Bestimmung geophysikalischer 

Parameter einen wesentlichen Beitrag zur Klima- und Ökosystemforschung leistet. Die 

vorgestellte Forschung ist unterteilt in drei Teilstudien. Sie adressiert die Möglichkeit, 

eine Forschungs- und Wissenslücke in der Fernerkundung zu schließen und schlägt 

neue Ansätze im Bereich der Mikrowellen-Fernerkundung für die Boden- und 

Vegetations-Parameterschätzung vor. Die Innovation dieser Forschungsarbeit liegt 

speziell in der detaillierten Analyse von langwelligen Mikrowellen bei niedrigen 

Frequenzen (L- bis P-Band).  

Die erste Teilstudie konzentrierte sich auf die Entwicklung und Validierung einer 

kombinierten Methode von L-Band Radar- und Radiometer- Satellitendaten für die 

simultane Bestimmung der Bodenrauheit auf globaler und zeitlich kontinuierlicher 

Skala. Es wurde festgestellt, dass der vorgeschlagene Aktiv-Passiv-Mikrowellen-

Ansatz zur Bestimmung von Bodenrauheitsparametern unabhängig von der 

Permittivität (Bodenfeuchte) in nicht ariden Regionen (Permittivität > 10 [-]) ist. Die 

resultierenden Rauhigkeitsparameter stimmen mit den lokalen Landoberflächen-

bedingungen überein, was bedeutet, dass eher geringe Oberflächenrauhigkeit über 

unbewachsenen, sandigen und trockenen Wüstenregionen und eher raue Oberflächen 

am Rande von Wüsten mit niedrige Vegetationsbeständen vorkommen. Darüber 

hinaus konnten keine Korrelationen zwischen Rauheitsmustern und Niederschlägen 

oder Bodentexturen gefunden werden.  
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In der zweiten Teilstudie werden Radardaten mit synthetischer Apertur (SAR) bei 

niedriger Frequenz (P-Band) verwendet, um das Eindringungs- und Streuverhalten 

von aktiven Mikrowellen zu untersuchen, und wie diese mit unterschiedlichen 

Vegetationsdeckungen und Bodentypen interagieren. Die Untersuchungen beruhen 

hierbei auf einer hybriden Zerlegungstechnik zur Separierung des gesamten SAR 

Signales in einzelne Streumechanismen (Boden, Dihedral und Volumen) und wird 

anschließend zur Abschätzung der lateralen Bodenfeuchte in der oberen Wurzelzone 

(~ 20-30 cm) sowie für die Bestimmung der möglichen Eindringtiefen von P-band 

Mikrowellen verwendet. Die vorgeschlagene Methode ist die erste (nach bestem 

Wissen) zur Bestimmung der komplexen Permittivität aus fernerkundlich bestimmten 

Mikrowellendaten. Die Methode wurde über verschiedenen Regionen der USA 

validiert und es konnte gezeigt werden, dass P-Band Mikrowellen, je nach lokaler 

Landbedeckung und Feuchtebedingung, bis zu 35 cm in den Boden eindringen 

können.  

In der dritten Teilstudie wurde ein kombinierter Ansatz von aktiver 

Mikrowellenfernerkundung und hydrologischer Bodenmodellierung vorgeschlagen, 

um vertikal kontinuierliche Bodenfeuchteprofile zu bestimmen. Zu diesem Zweck 

wurden flugzeuggetragene SAR Daten mit hydrologischen Modellierungen 

(basierend auf HYDRUS-1D) verglichen, um die vertikale Diskontinuität und 

Variabilität der Bodenfeuchte mit der Tiefe zu bestimmen. Die Ergebnisse zeigen, dass 

mit dem kombinierten Ansatz vertikal kontinuierliche Bodenfeuchteprofile mit 

mittleren bis hohen Übereinstimmungen geschätzt werden können (𝑅2 von 0.48 bis 

0.92).  

Zusammenfassend werden in dieser Arbeit innovative Methoden für die 

Abschätzung von Bodenfeuchte und Oberflächenrauhigkeit aus der Mikrowellen-

Fernerkundung vorgeschlagen. Dabei bestätigen hohe Übereinstimmungen zwischen 

den bestimmten Ergebnissen und Validierungs- oder Vergleichsdaten (in situ, Modell 

und Reanalyse) die Performance der vorgeschlagenen Methoden bestätigen. Die 

Methoden können für zukünftige Forschungen erweitert werden, beispielsweise in 

Hinblick auf bevorstehende P-Band-Satellitenmissionen - die Mission BIOMASS der 

Europäischen Weltraumagentur (ESA) oder Mission SigNals Of Opportunity P-band 

Investigation (SNOOPI) der National Aeronautics and Space Administration (NASA). 

 



Background and Motivation 

 

1 
 

1 Background and Motivation 

We still do not know one thousandth of one 

percent of what nature has revealed to us.  

Albert Einstein 

1.1 The role of the land surface in the climate system 

The impact of the human-induced climate change is globally observable (Lansbury 

Hall and Crosby, 2022; Njagi et al., 2022; Reed et al., 2022). Global warming due to too 

high amounts of greenhouse gases in the atmosphere, such as carbon dioxide and 

methane, is slowly changing the climate and increasing weather extremes such as 

storms, floods, heat waves, droughts, and forest fires (Vereecken et al., 2022), with 

enormous consequences not only for millions of people but also flora and fauna. In 

earth science, based on the principles of mathematics, biology, chemistry, and physics, 

various disciplines, such as geology, meteorology, mineralogy, hydrology, and soil 

science (Dingman, 2015; Engelhardt and Zimmermann, 1988), are dedicated to the 

exploration of the earth system. The understanding of our Earth, its structure, 

constitution, processes, and how they are linked, is crucial when investigating and 

predicting the consequences of global climate change. The Intergovernmental Panel 

on Climate Change (IPCC) is using the expression ‘climate change’ to refer to all 

changes in the climate system over time due to an overall global warming, and 

confirms “with high confidence that human-induced climate change is the main 

driver” (IPCC, 2021). Climate change can already be witnessed by everyone, as 

weather extremes are becoming more frequent with impacts on our local and global 

climate. Hydrology is the earth science of water, studying the occurrence, distribution, 

and circulation of (fresh) water on Earth (Dingman, 2015; Ward and Robinson, 1990). 

The interdependent movement of fresh water on land is described by the concept of 

the hydrological cycle, including the spatial and temporal variations of water in the 

oceans and the atmosphere, “as well as the terrestrial compartments of the global 

water system” (Dingman, 2015). As the central component within the Earth’s climate 

system at all spatial and temporal scales, the hydrological cycle helps to understand 

the relationship between various hydrological processes, such as precipitation, 

evaporation, runoff, and soil moisture (Dingman, 2015; Vereecken et al., 2022; Ward 

and Robinson, 1990).  

In times of climate change and thus, the increasing vulnerability of the global 

ecosystem, the (long-term) monitoring and improved understanding of essential 

hydrological and environmental processes is crucial. In these processes, which are 
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related to water, energy, carbon, nutrient flux and exchange, land surface parameters, 

like soil moisture and soil surface roughness, play an important role, e.g., (Bojinski et 

al., 2014; Marzahn and Ludwig, 2009).  

Soil moisture, as one of the essential climate variables (GCOS, 2015), has direct 

impact on the hydrological and biogeochemical cycles (Bojinski et al., 2014), although 

it represents less than 0.001 % of all available water on Earth (Dingman, 2015; McColl 

et al., 2017). This means, soil moisture has a direct impact on exchange processes of 

water and energy occurring at the boundary between the land surface and the 

atmosphere, such as infiltration, evaporation, and runoff (Srivastava et al., 2015). 

Further, the soil moisture state has influence on the ecosystem and its water supply 

and hence, the health of vegetation or agricultural plants, with direct impact on 

transpiration, local weather, microclimate, agricultural production, and lastly food 

security (Almendra-Martín et al., 2021; Vereecken et al., 2022). Additionally, soil 

moisture in the root zone (up to one meter) “is an important regulator of both the 

hydrological and energy cycle” (Peterson et al., 2016), influencing evapotranspiration 

and the water availability for the vegetation (Pablos et al., 2018; Peterson et al., 2016). 

As is evident, soil moisture significantly contributes to the characterization and 

modification of the Earth’s climate (Bojinski et al., 2014) and, therefore, is of great 

importance in earth science, including hydrological, meteorological, ecological and 

agricultural applications (Alemohammad et al., 2018; Babaeian et al., 2019; Etminan et 

al., 2020; GCOS, 2015; Hoeben and Troch, 2000; Truong-Loi et al., 2015; Ward and 

Robinson, 1990). Similar to soil moisture, soil surface roughness, as the boundary 

condition between the pedosphere and the atmosphere defining the three-dimensional 

land surface geometry, plays an important role within environmental and 

hydrological exchange processes. It strongly influences water related processes like 

infiltration, evaporation, soil erosion, surface run off, and growth of plants (crops and 

vegetation) (Marzahn and Ludwig, 2009; Pan et al., 2018). In addition, soil roughness 

is, among others, an indispensable influencing factor in surface soil moisture research.  

In summary, the global determination and long-term monitoring of geophysical 

variables relevant to the Earth system and its processes, such as soil moisture and soil 

surface roughness, is of significant importance, especially in terms of improving 

weather and climate forecasts, developing improved flood forecasting and drought 

monitoring capabilities, and quantifying net carbon fluxes. In addition to the 

climatological importance of such measurement data, knowledge on soil properties is 

also of paramount relevance for safety-related tasks. Examples of applications are the 

analysis of trafficability and condition of terrain in case of catastrophes, the temporal 

and spatial behavior of certain areas for ground exploration and terrain assessment in 
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case of large construction projects (e.g., highways, power lines, large industrial plants), 

as well as the condition assessment of existing infrastructures (e.g., roads). 

The estimation and monitoring of these variables can be done with various tools 

and instruments at field scale (conventional), from remote, or by (hydrological) 

modeling. In situ field measurements of soil moisture can be conducted in units of 

volume, the volumetric moisture, or in units of mass, the gravimetric moisture. The 

latter is the default technique for estimating soil moisture at field scale (Wagner et al., 

1999). Soil surface roughness can be measured with needle and laser profilers, mesh 

boards, as well as photogrammetry, e.g., (Álvarez-Mozos et al., 2009; Marzahn et al., 

2012; Marzahn and Ludwig, 2009), which are invasive and often destroy the soil 

surface, leading to altered surface roughness. These direct methods of estimating 

moisture and roughness in the field are very time consuming, locally constrained, and 

cost intensive. Further, many regions on Earth are inaccessible for humans or of 

dangerous nature and cannot be entered easily. Lastly, in situ field measurements can 

only achieve data collections at point scale and are not available or representative over 

larger regions. Hence, there is a lack of spatial coverage and sometimes temporal 

continuity with field scale measured soil parameters.  

Modeling of important soil parameters, like moisture, can be done with several 

hydrological and land surface models. These models simulate feedback processes 

between the land and the atmosphere as well as water, energy or nutrient transports 

and flows in a simplified way (in comparison to the complexity of nature). For one, 

models are always strongly dependent on the configured initialization as well as the 

quality and availability of the required input parameters that drive the model. Second, 

they need to provide transferability for the simulations to be generalizable and 

comparable when applying them to climate change research (Thirel et al., 2015). The 

latter is mostly the reason why model simulations are of coarse spatial resolution 

(Dirmeyer et al., 2016). Lastly, the in this study employed HYDRUS-1D (Šimůnek et 

al., 2013), as many hydrological models, numerically solves the Richards equation for 

describing water flow in variable saturated soils. The Richards equation is based on 

the mass conservation law, or continuity principle (Sadeghi et al., 2016), and the Darcy-

Buckingham equation (Dingman, 2015) for describing unsaturated flow depending 

upon the saturated hydraulic conductivity, an additional proportionality factor, as 

well as the gradient of total hydraulic head (Bakker and Nieber, 2004; Dingman, 2015; 

Reichardt and Timm, 2020; Shukla, 2014). Due to the dependence of the hydraulic 

conductivity and the soil water content on the soil water pressure head, the equation 

is highly nonlinear. Hence, depending on the complexity, models are computationally 

expensive and require a considerable amount of processing time. 
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Remote sensing fills the gap between in situ field measurements and hydrological 

modeling since it is a powerful application for large-scale, temporal continuous soil 

parameter estimation and monitoring based on observations. It provides the 

opportunity to advance research on the impacts and consequences of human-induced 

climate change on regional and global scales, and can be used to enhance weather and 

climate forecast models (Dirmeyer et al., 2018; Koster et al., 2011). The exploration of 

the Earth's surface by means of remotely sensed information from unmanned aerial 

vehicles (UAV), airborne or spaceborne systems, e.g., (Alemohammad et al., 2018; Luo 

et al., 2019; McColl et al., 2017) has constantly evolved over the last decades and gained 

significant relevance.  

In addition, it is to be noted that the three techniques (in situ field measurements, 

hydrological modeling, and remote sensing observations) can also be combined for 

various environmental and hydrological research objectives, such as assimilation of in 

situ or remote sensing data in models, e.g., (Montzka et al., 2013; Wagner et al., 2022). 

1.2 Fundamentals of Active and Passive Microwave Remote Sensing 

In order to detect and measure various objects of interest from remote, some kind 

of propagated signal, such as an optical or a radio wave is needed. The fields of optical 

and hyperspectral remote sensing have become powerful tools and are highly 

researched disciplines for classifying the Earth’s landscape or analyzing the changes 

within ecosystems over time, e.g., (Gómez et al., 2016; Upadhyay and Kumar, 2018). A 

separate technique, besides optical and hyperspectral remote sensing, is microwave 

remote sensing, which is the technique employed in this study.  

Microwaves are defined as electromagnetic waves in the frequency range from 300 

MHz to 300 GHz of the electromagnetic spectrum (Lillesand et al., 2013). Microwave 

radiation is classified in different, historically conditioned frequency bands (Fig. 1). It 

is known that microwaves of different frequencies (wavelengths) have different 

penetration capabilities and scattering behavior on irradiated objects (Ulaby and Long, 

2014). Depending on the wavelength (among others, such as sensor and land surface 

characteristics), microwaves can penetrate in or through vegetation, ice, and the land 

surface. Therefore, depending on the nature of the research objective, different 

frequency ranges are used. Environmental studies, military surveillance and 

reconnaissance, mapping of human activities as well as global change detection are 

only a few of the potential applications of microwave remote sensing (Schowengerdt, 

2007). Currently, microwave sensors operate mainly in the frequency domains of the 

X- (8.2-12.4 GHz), C- (3.95-5.8 GHz), S- (2.6-3.95 GHz), L- (1-2.6 GHz), and P-band 

(0.23- 1 GHz) (Fig. 1). However, in recent decades, microwave remote sensing has been 

limited to narrow frequency bands (mainly C- to X-band) due to official restrictions on 
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available operating frequencies (Federal Communications Commission, 2022). Hence, 

the current microwave research satellites in space mostly operate in the C-, X-, and L-

band, such as the Sentinel-1 mission from the European Space Agency (ESA) (Sentinel-

1 Team (ESA), 2013), the German TerraSAR-X and TanDEM-X missions (Klenk et al., 

2022), the Soil moisture Active Passive (SMAP) mission from the National Aeronautics 

and Space Administration (NASA) (Entekhabi et al., 2014), and the Soil Moisture 

Ocean Salinity (SMOS) mission from ESA (Kerr et al., 2016). 

 

Figure 1. Electromagnetic spectrum with indication of the respective wavelengths and frequencies of 

the microwave portion as well as common IEEE band names. Source: Own illustration adapted after 

(Kamutzki et al., 2021). 

In contrast, low frequency microwave ranges, like at P-band, have been much less 

studied, since these systems are limited to ground-based observations and have not 

been operated from satellites at the time of this writing. The first P-band satellite 

missions in space will be the BIOMASS of ESA in 2025 (Gelas et al., 2021), and the 

SigNals Of Opportunity P-band Investigation (SNOOPI) from NASA in 2024 (Garrison 

et al., 2024; Kim et al., 2023). 

In order to be able to evaluate collected information and data in an unbiased and 

correct manner, knowledge on the employed techniques and methods is of significant 

importance. At microwave frequencies, it is essential to understand the behavior and 

interaction of the electromagnetic waves with the environment in terms of scattering 

mechanisms as well as penetration capabilities in vegetation and soil.  

Microwave instruments can be divided into two groups – actively sending radars 

and passively recording radiometers. Both groups include antennas and receivers 

(Ulaby and Long, 2014). Active radars emit microwaves with an additional transmitter 

towards the Earth’s surface and measure the amount of backscatter. In contrast, 

passive radiometers simply measure the amount of thermal emission without actively 
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emitting microwave radiation. While passive radiometers are one type of passive 

sensors mostly operating with real-aperture antennas, active radars comprise several 

types of sensor systems. Besides non-imaging radar systems, like altimeters operating 

with real-aperture antennas, the most important imaging radar system is the synthetic 

aperture radar (SAR) (Ulaby and Long, 2014). The main drawback of real-aperture 

systems is the coarse spatial resolution since, for radars, the resolution along the flight 

line of a satellite (azimuth resolution) depends on the physical size of the antenna. SAR 

systems synthesize the real antenna along the flight line to one longer effective antenna 

and hence, are able to achieve a comparable higher spatial resolution (Lee and Pottier, 

2009). SAR was invented in 1951, and since then, microwave remote sensing has 

become one of the most useful techniques for recording and analyzing the Earth’s 

surface. 

In order to estimate geophysical parameters, e.g. from soil, based on active and/or 

passive microwave sensor systems, some kind of electromagnetic wave-medium 

interaction models are necessary. One focus of this research study is on optimization 

procedures between remote sensing observations and model simulations in order to 

estimate relevant soil parameters. The following paragraphs will elaborate on the 

background knowledge required to estimate soil moisture as well as soil surface 

roughness from microwave remote sensing.  

Soil Moisture estimation from microwave remote sensing 

Soil moisture can be indirectly estimated from microwave remote sensing based 

on the correlation of wave propagation and the characteristics of the subjected 

medium. The change in propagation direction of an electromagnetic wave, when it 

enters a certain dielectric medium, is connected to the medium’s relative electric 

permittivity 𝜀𝑟 [-] and magnetic permeability 𝜇𝑟 [-] (𝜇𝑟 = 1, except for ferromagnetics) 

(Kraus and Carver, 1973; Ulaby and Long, 2014). This means, the higher the medium’s 

permittivity, the slower the wave propagation. It is convenient to use the relative 

permittivity 𝜀𝑟 as the ratio of the actual dielectric’s permittivity 𝜀 [𝐹/𝑚] to that of the 

permittivity of vacuum 𝜀0 [𝐹/𝑚], “[s]ince the permittivity of a dielectric is always 

greater than the permittivity of vacuum” (Kraus and Carver, 1973), with 𝜀0 = 8.85 ∗

10−12 𝐹/𝑚 (Kraus and Carver, 1973; Ulaby and Long, 2014). The permittivity of a soil, 

denoted by 𝜀𝑠 [-], is a complex number with a real (𝜀𝑠
′) and an imaginary (𝜀𝑠

′′) part: 

𝜀𝑠 = 𝜀𝑠
′ − 𝑗𝜀𝑠

′′, (1) 

with  

𝜀𝑠
′′ = 𝜎/(𝜔𝑓𝜀0), (2) 
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where 𝜎 is the soil conductivity [𝑆/𝑚], and 𝜔𝑓 is the angular frequency [rad/s]. The 

real part is associated with energy or heat storage, whereas the imaginary part is 

associated with energy or heat loss, often called dielectric loss factor (Kelleners et al., 

2005; Ulaby and Long, 2014). Since 𝜀𝑠
′′ is dependent on the conductivity of the soil (Eq. 

(2)), it follows that for a lossless medium, where 𝜎 = 0 and 𝜀𝑠
′′ = 0, (1) reduces to 𝜀𝑠 =

𝜀𝑠
′ (Ulaby and Long, 2014). However, in general, soils are lossy media with specific 𝜎 

and 𝜀𝑠
′′ ≠ 0, and thus 𝜀𝑠

′′ is of significant importance when describing the actual 

permittivity of a soil. In many studies, mainly the real part 𝜀𝑠
′ is investigated, e.g. 

(Bannawat et al., 2020; Gururaj et al., 2021; Jagdhuber, 2012; Jagdhuber et al., 2015; Shi 

et al., 2021). Finally, permittivity can be converted to soil moisture, denoted by 𝜃𝑠 [-], 

and vice versa, by employing dielectric mixing models, such as the one from Topp et 

al., (Topp et al., 1980), Dobson et al., (Dobson et al., 1985), and Mironov et al., (Mironov 

et al., 2009). The most employed dielectric mixing model for soil moisture conversion 

is given by the polynomial equation from (Topp et al., 1980), due to its simplicity. Only 

the real part of the permittivity (𝜀𝑠
′) is associated to 𝜃𝑠, and no additional information 

are needed: 

𝜃𝑠 = −0.053 + 0.0292 ∗ 𝜀𝑠
′ − 5.5𝑒−4 ∗ 𝜀𝑠

′2 + 4.3𝑒 − 6 ∗ 𝜀𝑠
′3. (3) 

Other models, such as the one from (Mironov et al., 2009), need, e.g., soil texture 

(clay fraction), soil temperature, and frequency information next to permittivity and 

are hence, more complex. An extended review of dielectric mixing models for soils can 

be found in (Park et al., 2017).  

One of the potential applications, for which complex permittivity is needed, is the 

estimation of penetration depths of microwave signals into soil and vegetation. The 

penetration depth 𝛿𝑃 [cm] is defined as the depth after which the power density of the 

propagating electromagnetic radiation is reduced by a factor of 1/𝑒 (~ 0.37 %) and 

confined to the region in the observed medium that is important for soil and volume 

scattering (Ulaby et al., 1982; Ulaby and Long, 2014). In general, 𝛿𝑝 is dependent on the 

attenuation factor 𝛼 [-] (Eq. (4)), which is the basis for all available formulations to 

calculate 𝛿𝑝, i.e., (Klausing and Holpp, 2000; Mironov et al., 2002; Schaber et al., 1986; 

Ulaby et al., 1982; von Hippel, 1954; Wilheit, 1978; Zhang et al., 2019):  

𝛿𝑃 = 
1

2
𝛼.  (4) 

Although, 𝛿𝑃 is influenced by many factors, such as sensor characteristics (e.g., 

incidence angle, transmitted energy, band width) and soil characteristics (e.g., 

roughness, texture, bulk density, microstructure), most formulations are only 

dependent on the microwave frequency (represented by the wavelength 𝜆 [cm]) of the 

employed sensor and the complex soil permittivity, like one of the earliest and most-
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known formula for penetration depth estimation from (von Hippel, 1954), adapted 

after (Schaber et al., 1986):  

𝛿𝑝 =
1

2
∗

(

 𝜆

2𝜋
∗ [

2

𝜀𝑠
′∗(√1+𝑡𝑎𝑛2(𝜀𝑠

′′ 𝜀𝑠
′⁄ )−1)

]

1

2

)

 .  (5) 

Soil Surface Roughness estimation from microwave remote sensing 

Soil surface roughness represents the three-dimensional topography of the soil 

surface. The micro structure of soil roughness cannot be described deterministically 

due to its small, but countless features along space and time. Therefore, a statistical 

description needs to be adopted. The vertical (relief) component is described by the 

standard deviation of the surface height variation, called vertical root mean square 

(RMS) height 𝑠 [cm]. The horizontal (landscape) component is expressed by the 

horizontal correlation length 𝑙 [cm]. The parameter 𝑙 is defined as the displacement at 

which the autocorrelation equals 1/𝑒 and hence, as the reference length up to which 

the vertical RMS heights at two locations of one soil surface can be regarded as 

statistically independent from each other. This means, for a perfectly smooth soil 

surface, 𝑙 is infinite, since every point on this surface correlates with all other points. 

In the past, soil roughness has mainly been estimated on global scale from passive 

remote sensing due to the fact that radiometers are more sensitive to surface 

roughness, and because vegetation has stronger impacts on the radar backscatter than 

on the passive emissivity. In passive microwave remote sensing, the roughness 

parameter 𝐻𝑅 [-] is established that can be related to the vertical RMS height 𝑠 by (6): 

𝐻𝑅 = (2 · 𝑠 · 𝑘)
2,  (6) 

with the wave number 𝑘 [cm-1] given by 

𝑘 = 2𝜋/𝜆.  (7) 

The parameter 𝐻𝑅 is relevant in emission models which are based on the radiative 

transfer equation for describing the radiation passively emitted from the Earth’s 

surface. The most employed models are the 𝜏-𝜔 model (Mo et al., 1982), the Kirchhoff 

scattering model (Ulaby and Long, 2014), and the 𝑄𝐻𝑁 model (Wigneron et al., 2017). 

In these models, roughness strongly affects the magnitude of thermal emission 

because of its direct influence on the reflectivity components linked to the soil 

emissivity (Ulaby and Long, 2014).  

In this study, a combined approach of active and passive microwave remote 

sensing is employed for soil surface roughness parameter estimation in order to 
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improve surface roughness estimation. For that, a quasi-linear relationship between 

active backscatter (|𝑆𝑃𝑃|
2 [dB]) and passive emissivity (𝐸𝑃 [-]) is assumed: 

𝐸𝑃 = 𝛼𝑃−𝑃𝑃 + 𝛽𝑃−𝑃𝑃 ∗  |𝑆𝑃𝑃|
2,  (8) 

with 𝑃 representing the respective polarization. In the absence of vegetation, the 

intercept 𝛼 [-] of the linear regression becomes one, and the slope 𝛽 [-] of the linear 

regression can be used to describe the covariation between backscatter and emissivity: 

𝛽𝑃−𝑃𝑃 =
𝐸𝑃−1

|𝑆𝑃𝑃|2
 .  (9) 

This covariation parameter 𝛽𝑃−𝑃𝑃 [-], for varying polarization 𝑃, is calculated, on the 

one hand, based on radar and radiometer measurements of NASA’s SMAP mission 

(𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎 ). On the other hand, 𝛽𝑃−𝑃𝑃 can also be modeled based on simulations of 

backscatter and emissivity from electromagnetic soil scattering models (𝛽𝑃−𝑃𝑃 
𝑀𝑜𝑑𝑒𝑙), such 

as the small perturbation method (SPM), the improved integral equation model (I2EM), 

and the numerical Maxwell model in 3D (NMM3D) (Fung et al., 2002; Tsang et al., 

2013; Ulaby and Long, 2014). Finally, by determining the best fit between 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎 , based 

on SMAP observations, and the ensemble of simulated 𝛽𝑃−𝑃𝑃 
𝑀𝑜𝑑𝑒𝑙, soil surface roughness 

parameters 𝑠 and 𝑙 can be estimated: 

𝑠, 𝑙 =  𝑚𝑖𝑛(𝛽𝑃−𝑃𝑃 
𝑀𝑜𝑑𝑒𝑙 − 𝛽𝑃−𝑃𝑃 

𝐷𝑎𝑡𝑎 ).  (10) 

In the field of microwave remote sensing, soil surface roughness can only be 

estimated at the scale of the wavelength of the employed microwave sensor. Therefore 

the electromagnetic roughness parameters 𝑘𝑠 [-] and 𝑘𝑙 [-] are often used, where 𝑠 and 

𝑙 are scaled according to the wave number, which is based on the wavelength and 

hence, the frequency (Eq. (7)) of the employed sensor (Ulaby and Long, 2014).  

In general, surface roughness strongly influences the wave interaction with the soil 

surface and its penetration capabilities, e.g., (Choudhury et al., 1979). However, at the 

time of this writing, surface roughness is mostly fixed to static values and assumed to 

be constant over time (Marzahn et al., 2012; Srivastava et al., 2015). This assumption 

on static values is considerably more difficult to apply when analyzing soil moisture 

with remote sensing techniques. 

1.3 Research Questions 

In this study, the focus is on the retrieval of the previously described geophysical 

soil parameters - the soil moisture and the soil surface roughness - based on remotely 

sensed microwave observations. The following overarching research questions guided 

the accomplishment of the soil parameter retrieval: 
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1. How can the combination of active and passive microwave remote sensing 

data be used to determine soil roughness parameters, and what are the 

advantages and disadvantages? 

Many studies and methods exist for the retrieval of soil parameters from either 

active or passive microwave remote sensing, e.g., (Mengen et al., 2023; Narvekar et al., 

2015; Njoku et al., 2002). However, very few of them focus on the combination of both 

types of sensing systems, in particular, the potential advantages and drawbacks of 

such a methodology. Hence, research question one examines the potentials of a 

combined active-passive microwave retrieval method with focus on estimating soil 

surface roughness (see chapter 1.2). 

2. How do longwave (P-band) microwaves behave in interactions with different 

soil types and vegetation covers in terms of scattering mechanisms, soil 

moisture, and penetration depth? 

In recent decades, remote sensing studies focused on the analysis of narrow 

frequency bands, like C- and L-band, that are available for satellite-based microwave 

remote sensing (see chapter 1.2). This means, the understanding of the behavior of 

microwaves in the C- and L-bands with interaction of the land surface has been 

extensively studied and is well researched. However, due to the lack of available 

satellite remote sensing systems operating at lower frequencies, basic research studies 

analyzing the behavior of P-band microwaves in interaction with soils and vegetation 

are missing. Hence, research question two is intended to provide in-depth knowledge 

on longwave microwave behaviors in interaction with natural media in terms of 

scattering mechanisms, soil moisture assessment, and realistic penetration capabilities. 

3. How can polarimetric active microwave remote sensing and soil hydrological 

modeling be combined for the estimation of vertically continuous soil 

moisture profiles? 

One of the limitations in microwave remote sensing is that soil parameter 

retrievals are only possible at single soil layers, providing spatial (two-dimensional) 

maps of soil characteristics. However, backscatter signals in particular, contain 

information about soil moisture dynamics from the soil surface until the average 

penetration depth of the microwave in the soil. Hence, research for answering question 

three combines two of the previously described assessment approaches (remote 

sensing, soil hydrological modeling, see chapter 1.1), and explores their advantages 

and limitations in order to extend knowledge from remote sensing to the three-

dimensional space (lateral and vertical). To that end, research regarding the 
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combination of microwave remote sensing and soil hydrological modeling for 

estimating the vertical distribution and variability of soil moisture with depth is 

conducted and analyzed. 

1.4 Framework of the Thesis 

To answer the previously defined overarching research questions (see chapter 1.3), 

this research study includes three peer-reviewed articles, which are presented in 

chapters 2 to 4.  

In figure 2, the connection between the three research articles, their overall 

commonalities and differences regarding datasets, study regions, methods, and 

performance metrics, are visualized. It can be seen that for all articles remotely sensed 

microwave observations at L-band (article I) and P-band (article II & III) are employed 

together with auxiliary information from digital elevation models (DEMs) and in situ 

measuring networks. The focus of the study regions varies from the subregion Africa-

Asia-Australia (article I) to different parts of the continental U.S (CONUS). (article II 

& III). All articles deal with the retrieval of important soil parameters, the soil surface 

roughness (article I) or the lateral (article I) and vertical (article III) soil moisture by 

using various types of retrieval algorithms and models. In order to evaluate the 

proposed approaches, different performing metrices are used, such as sensitivity 

studies (article I & II), correlation and error measures (all articles), as well as shape 

measures (article III). Lastly, the key achievements of all three articles are described in 

detail in chapter 1.5. 
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Figure 2. Overview of the study framework with connections between the three research articles 

regarding datasets, study regions, methods, and performance metrics represented by boxes spanning 

the columns of every article. 
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In the following, a short summary is given for each article: 

Article I: Simultaneous Retrieval of Surface Roughness Parameters for Bare Soils 

From Combined Active–Passive Microwave SMAP Observations 

A. Fluhrer, T. Jagdhuber, R. Akbar, P. E. O’Neill, and D. Entekhabi, ‘Simultaneous 

Retrieval of Surface Roughness Parameters for Bare Soils From Combined Active–

Passive Microwave SMAP Observations,’ in IEEE Transactions on Geoscience and Remote 

Sensing, vol. 59, no. 10, pp. 8182-8194, Oct. 2021, doi: 10.1109/TGRS.2020.3035204. 

In this publication, an active-passive microwave combined retrieval algorithm for 

the simultaneous estimation of surface roughness parameters is proposed and 

analyzed. The newly developed approach combines active radar and passive 

radiometer observations at L-band frequencies by assuming a quasi-linear relationship 

between the radar backscatter and the radiometer emissivity, for respective horizontal 

and vertical polarization (Eq. (8), chapter 1.2). The advantage of a combined retrieval 

approach (compared to radar- and radiometer-only approaches) is the reduction of the 

parameter space for possible solutions as well as the beneficial amplification of 

individual strengths while mitigating certain limitations. Active radar observations 

are particularly sensitive to soil moisture and achieve a good spatial resolution, while 

passive radiometer measurements are more sensitive to surface roughness but yield 

rather coarse spatial resolution. Hence, by combining the complementary physics of 

both domains, the parameter search space is reduced, narrowing down the space for 

potential retrieval errors. Consequently, the susceptibility of radar sensors to soil 

moisture and the susceptibility of radiometer sensors to soil surface roughness is 

reduced as shown by a conducted sensitivity study (Fig. 1 in (Fluhrer et al., 2020)). 

Additionally, the beneficial spatial resolution of active radars enhances the resolution 

of the resulting roughness parameters in comparison to, for instance, radiometer-only 

approaches. 

The focus in the presented study was on bare and low vegetated areas due to the 

increasing algorithm complexity when assuming additional vegetation scattering. 

Results are presented for the subregion North Africa-Asia-Australia in the period from 

14th of April to 7th of July 2015 and showed that wavelength-dependent surface 

roughness parameters can be retrieved for every resolution cell and time step by 

minimizing the influence of the soil permittivity/moisture. The estimated surface 

roughness parameters, with 𝑠 varying between 0.35 cm to 7 cm and 𝑙 between 1.75 cm 

and 20.5 cm, are consistent with local conditions (i.e., topography, landcover, soil 

conditions) as well as reported roughness values in previously published studies.  
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Article II: Remote Sensing of Complex Permittivity and Penetration Depth of Soils 

Using P-Band SAR Polarimetry 

A. Fluhrer, T. Jagdhuber, A. Tabatabaeenejad, H. Alemohammad, C. Montzka, P. 

Friedl, E. Forootan, and H. Kunstmann, ‘Remote Sensing of Complex Permittivity and 

Penetration Depth of Soils Using P-Band SAR Polarimetry,’ in MDPI Remote Sensing, 

2022, 14(12), 2755, doi: 10.3390/rs14122755. 

In this publication, a complex soil permittivity estimation method based on fully 

polarimetric P-band SAR observations of NASA’s Airborne Microwave Observatory 

of Subcanopy and Subsurface (AirMOSS) mission is proposed. By improving and 

adapting already existing hybrid (combined eigen- and model-based) decomposition 

techniques, complex permittivity and subsequently P-band penetration depths are 

estimated without prior knowledge on land surface characteristics. Further, because 

of the incorporation of a complex soil scattering model, complex permittivity can be 

estimated for the first time (to the best of my knowledge) from SAR observations 

directly. This advantage allows the estimation of P-band microwave penetration 

capabilities (from the real and imaginary part of the complex permittivity) to help to 

understand the soil depth to which microwaves of low frequencies are in fact sensitive 

to. 

Results showed that at P-band frequency (430 MHz) the dihedral scattering 

mechanism is the dominant one over forests. Here, the strong vertical structures of tree 

trunks comprise the highest contribution to the SAR signal, aligning with reports in 

previous studies. In addition, comparisons of estimated soil permittivity, or converted 

soil moisture according to the dielectric mixing model from (Topp et al., 1980), with in 

situ measurements at selected stations are rather unsatisfying due to the discrepancy 

in measuring depths. This strengthens the need for soil moisture information at several 

soil depths, not only near the soil surface (~5 cm). Nevertheless, estimated moisture 

patterns across the investigated regions in the U.S. agree well with local conditions (i.e. 

soil characteristics, land cover, and climate). Subsequently, calculated permittivity-

based penetration depths revealed that P-band microwaves penetrate, on average, 

between 5 cm and 35 cm, depending on the type of vegetation cover and moisture state 

of the soil. 

  

https://doi.org/10.3390/rs14122755
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Article III: Soil Moisture Profile Estimation by Combining P-band SAR Polarimetry 

with Hydrological and Multi-Layer Scattering Models 

A. Fluhrer, T. Jagdhuber, C. Montzka, M. Schumacher, H. Alemohammad, A. 

Tabatabaeenejad, H. Kunstmann, and D. Entekhabi, ‘Soil Moisture Profile Estimation 

by Combining P-band SAR Polarimetry with Hydrological and Multi-Layer Scattering 

Models’, in Elsevier’s Remote Sensing of Environment, Volume 305, 2024, 114067, doi: 

10.1016/j.rse.2024.114067. 

In this publication, the combination of remote sensing with soil (hydrological) 

modeling is investigated in order to enhance soil parameter retrieval approaches. From 

remote sensing alone, soil moisture can only be retrieved at one soil depth, although 

the received intensity is proportional to the integral over the vertical soil column, from 

the soil surface until the penetration depth of the microwave, and contains information 

on vertical soil moisture variability. Hence, by combining high resolution P-band 

remote sensing observations with soil hydrological modeling the vertical variability 

and discontinuity of soil moisture, called soil moisture profile, can be estimated.  

In this study, on the one hand, airborne P-band SAR observations from NASA’s 

AirMOSS mission are decomposed into the individual scattering mechanisms (soil, 

dihedral, and volume) to get the soil surface scattering component only. On the other 

hand, the HYDRUS-1D model is used to simulate soil moisture profiles based on 

meteorological observations (e.g., precipitation, temperature, solar radiation, etc.), 

atmospheric boundary conditions for water flow and heat transport, as well as soil 

information (e.g., hydraulic properties, amount of gridding points (nodes), etc.). 

During simulations with HYDRUS-1D some of the assumptions on certain initial input 

parameters, such as the initial pressure head and the soil depth, when no prior 

knowledge was available, are kept variable. Hence, an ensemble of simulated soil 

moisture profiles is created. Every simulated soil moisture profile is then compared to 

the soil scattering component from the SAR observations to get the most suitable soil 

moisture profile from their best fit.  

The proposed retrieval method for soil moisture profile estimation was analyzed 

at eight monitoring stations within six different AirMOSS sites across the continental 

U.S. between 2013 to 2015. Results proved the overall feasibility of the approach and 

validation with in situ measured soil moisture values showed medium to high 

correlations from 0.48 to 0.92.  

https://doi.org/10.1016/j.rse.2024.114067
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1.5 Innovations and Key Achievements 

In this thesis, innovations center around developing retrieval algorithms and their 

application to active and passive microwave signals for the estimation of essential soil 

parameters. The essence of the presented research is: 

o First time application of newly developed innovative and non-iterative physics-

based retrieval algorithms for soil moisture and soil surface roughness estimation 

that can be applied globally on any spatial and temporal scales. 

o Provision of an improved understanding regarding low-frequency microwave 

scattering behavior in interaction with different soil types and vegetation covers. 

o First time combination of airborne P-band SAR remote sensing and soil 

hydrological modeling for vertically continuous soil moisture profile estimation 

from the soil surface until the upper root zone. 

o Detailed analyses on how remote sensing methods can be improved and support 

climate research as well as how the joint use of remote sensing and hydrological 

modeling can broaden scientific applications. 

These innovations lead to the key achievements of the conducted research: 

o The combination of active and passive microwave data reduces the susceptibility 

of radars to soil permittivity and radiometers to soil roughness and hence, 

improves soil roughness estimations, and in the end soil moisture retrievals.  

o The enhanced determination of vertical and horizontal surface roughness 

parameters can be done simultaneously over time and variable in space.  

o Radar microwave signals of low frequencies are suitable for soil moisture 

estimation in the upper root zone based on an improved polarimetric 

decomposition method adapted to P-band frequency. The proposed method 

enables, for the first time in remote sensing, the estimation of complex soil 

permittivity (Eq. (1), chapter 1.2). 

o The combination of remote sensing and soil hydrological modeling significantly 

enhances the estimation of physically meaningful and vertically continuous soil 

moisture profiles until the upper root zone. From remote sensing alone, the 

vertical variability and discontinuity of soil moisture cannot be estimated. 

However, by combining remote sensing with soil hydrological modeling, both 

assessment approaches benefit from each other and provide new possibilities for 

soil parameter retrievals.  
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o The combined P-band microwave remote sensing and soil hydrological modeling 

approach provides the ability of estimating continuous near-surface soil moisture 

dynamics (between 0 cm to 5 cm soil depth), where in situ field measurements 

are not feasible due to the fact that field sensors require a certain volume of soil 

material for realistic soil moisture measurements. 

1.6 Contributions of the Author to the Presented Research Articles 

Article I: Simultaneous Retrieval of Surface Roughness Parameters for Bare Soils From 

Combined Active–Passive Microwave SMAP Observations (doi: 

10.1109/TGRS.2020.3035204). 

The research concept and method development were conducted by Anke Fluhrer 

and Thomas Jagdhuber. The data (active radar and passive radiometer observations 

from the SMAP mission) were provided by Dara Entekhabi & his team, and extended 

for auxiliary information by Anke Fluhrer. The data curation and method 

implementation in MATLAB© was performed by Anke Fluhrer. The analysis, 

validation, and visualization of all results was done by Anke Fluhrer, supervised by 

Thomas Jagdhuber. The article design was developed by Anke Fluhrer, Thomas 

Jagdhuber, and Dara Entekhabi. The article was written by Anke Fluhrer with 

contributions and comments from all co-authors. 

Article II: Remote Sensing of Complex Permittivity and Penetration Depth of Soils 

Using P-Band SAR Polarimetry (doi: 10.3390/rs14122755). 

The research concept and model development were elaborated by Anke Fluhrer 

and Thomas Jagdhuber. The data (P-band SAR observations) were provided by 

Hamed Alemohammad, and extended for auxiliary information by Anke Fluhrer. The 

data curation was performed by Anke Fluhrer, Hamed Alemohammad, and Peter 

Friedl. The method implementation in MATLAB© was done by Anke Fluhrer. The 

implementation of the soil scattering model (multi-layer SPM) was done by Alireza 

Tabatabaeenejad. The analysis, validation, and visualization of all results in Python© 

was done by Anke Fluhrer, supervised by Thomas Jagdhuber and Harald Kunstmann. 

The article design was developed by Anke Fluhrer and Thomas Jagdhuber. The article 

was written by Anke Fluhrer with contributions and comments from all co-authors. 

The acquisition of the funding for the AssimEO project (50EE1914A), within which this 

research study was conducted, and the project administration was done by Thomas 

Jagdhuber and Carsten Montzka. 

https://doi.org/10.3390/rs14122755
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Article III: Soil Moisture Profile Estimation by Combining P-band SAR Polarimetry 

with Hydrological and Multi-Layer Scattering Models (doi: 10.1016/j.rse.2024.114067). 

The research concept and model development were done by Anke Fluhrer and 

Thomas Jagdhuber, with input from Dara Entekhabi. The data (P-band SAR 

observations) were provided by Hamed Alemohammad, and extended for auxiliary 

information by Anke Fluhrer. The data curation was performed by Anke Fluhrer and 

Hamed Alemohammad. The method implementation in Python© was done by Anke 

Fluhrer. The implementation of the soil scattering model (multi-layer SPM) was done 

by Alireza Tabatabaeenejad. The implementation of the hydrological model 

(HYDRUS-1D) in Python© was done by Anke Fluhrer with input from Carsten 

Montzka and Harald Kunstmann. The analysis, validation, and visualization of all 

results was done by Anke Fluhrer, supervised by Thomas Jagdhuber and Harald 

Kunstmann. The article design was developed by Anke Fluhrer. The article was 

written by Anke Fluhrer with contributions and comments from all co-authors. The 

acquisition of the funding for the AssimEO project (50EE1914A), within which this 

research study was partly conducted, and the project administration was done by 

Thomas Jagdhuber and Carsten Montzka.  

https://doi.org/10.1016/j.rse.2024.114067
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2 Article I 

A. Fluhrer, T. Jagdhuber, R. Akbar, P. E. O’Neill, and D. Entekhabi, ‘Simultaneous 

Retrieval of Surface Roughness Parameters for Bare Soils From Combined Active–

Passive Microwave SMAP Observations,’ in IEEE Transactions on Geoscience and Remote 

Sensing, vol. 59, no. 10, pp. 8182-8194, Oct. 2021, doi: 10.1109/TGRS.2020.3035204. 

© 2020 IEEE. Reprinted, with permission, from Anke Fluhrer and all authors, 

Simultaneous Retrieval of Surface Roughness Parameters for Bare Soils From 

Combined Active–Passive Microwave SMAP Observations, IEEE Transactions on 

Geoscience and Remote Sensing, Oct. 2021. 

https://doi.org/10.1109/TGRS.2020.3035204
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Peggy E. O’Neill , Fellow, IEEE, and Dara Entekhabi , Fellow, IEEE

Abstract— An active–passive microwave retrieval algorithm for
simultaneous determination of soil surface roughness parameters
[vertical root-mean-square (RMS) height (s) and horizontal
correlation length (l)] is presented for bare soils. The algorithm
is based on active–passive microwave covariation, including the
improved Integral Equation Method (I2EM), and is tested with
global soil moisture active passive (SMAP) observations. The
estimated retrieval results for s and l are overall consistent
with values in the literature, indicating the validity of the pro-
posed algorithm. Sensitivity analyses showed that the developed
roughness retrieval algorithm is independent of permittivity for
εs > 10 [-]. Furthermore, the physical model basis of this
approach (I2EM) allows the application of different autocor-
relation functions (ACF), such as Gaussian and exponential
ACFs. Global roughness retrieval results confirm bare areas
in deserts such as Sahara or Gobi. However, the type of
ACF used within roughness parameter estimation is important.
Retrieval results for the Gaussian ACF describe a rougher
surface than retrieval results for the exponential ACF. No corre-
lations were found between roughness results and the amount
of precipitation or the soil texture, which could be due to
the coarse spatial resolution of the SMAP data. The extension
of this approach to vegetated soils is planned as an add-on
study.

Index Terms— Correlation length, I2EM, radar, radiometer,
root-mean-square (RMS) height, soil moisture active passive
(SMAP).
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I. INTRODUCTION

A. Motivation for Surface Roughness Estimation

THE estimation and monitoring of geophysical parameters
via Earth-observation satellites are crucial for improving

our understanding of global environmental and hydrological
processes. Soil roughness is an essential parameter in phys-
ical processes related to water, energy, and nutrient flow
and exchange since it characterizes the boundary between
the pedosphere and atmosphere [1]. Soil roughness influ-
ences microwave signals from soil surfaces and contributes
to measurements from active and passive sensors. Both radar
backscatter |SPP|2 [dB] and microwave emissivity EP [-],
based on brightness temperature TBP [K], are sensitive to
surface roughness [2], [3].

Despite its importance for environmental applications, soil
roughness has played a minor role in land parameter retrieval
with microwave remote sensing in recent decades [4], [5].
For instance, soil roughness is an important parameter in land
surface modeling of soil erosion applications because it defines
the soil surfaces that represent “the interface between the
eroding soil body and the erosive agent” [6], [1], [3], [5].

Retrieval of geophysical parameters, such as soil rough-
ness or soil moisture, is mainly performed at lower frequen-
cies, such as at L-band (1.4 GHz), due to the higher sensitivity
of active and passive microwave signatures to soil moisture
(under vegetation) compared with the C-band (∼6 GHz) and
higher frequency bands [3], [7], [8]. Furthermore, the opera-
tional monitoring of soil moisture content on global scales has
been mainly performed continuously with passive microwave
sensors up until now. Passive microwave sensors are used
predominantly since soil roughness and vegetation hold a
stronger influence on backscatter than on soil-emitted bright-
ness temperature [9].

The primary disadvantage of passive-only retrievals is the
coarse spatial resolution of microwave radiometers (>40 km),
which is sufficient for large-scale applications, such as global
climate modeling. Yet, for weather forecasting and agricultural
yield management, soil moisture information of at least 10 km
spatial resolution is desired [10]. Active microwave sensors
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provide a higher spatial resolution than passive microwave
sensors. Unfortunately, studies in recent years have shown
that estimations of geophysical parameters, more precisely
soil moisture, on the basis of radar-only retrievals are more
prone to errors than radiometer-only or combined methods [9].
This might be due to two reasons: first, there are difficulties
in quantifying all occurring scattering effects [9], [11]–[13];
second, the impact of terrain and vegetation morphology is
often not considered adequately in radar retrievals due to
complex plant structures [9]. Thus, the combination of both
active and passive sensor systems can improve the monitoring
of geophysical parameters, such as soil surface roughness,
by leveraging the advantages of both sensors while overcoming
their individual limitations.

Currently, the existing soil moisture retrieval algorithms for
joint processing of radar and radiometer microwave satellite
data are neural network-based approaches (e.g., [14], [15]),
the change detection method [7], [16]–[18], and the soil
moisture active passive (SMAP) optional [10] and the SMAP
baseline [10], [19] downscaling algorithms. In all of these
algorithms, soil roughness is considered only as a secondary
effect. For one, soil roughness is corrected either by col-
lecting multiconfiguration data (variety of frequency and/or
polarization) or by optimizing it within the parameter retrieval
algorithm until the model predictions coincided with the actual
measured data. Second, roughness is considered as static and
fixed to a constant value for single land cover classes according
to the classification of the International Geosphere-Biosphere
Program (IGBP), as done within the SMAP L2 and L3 soil
moisture algorithms [20]. However, Saatchi et al. [21] noted
that, for precise monitoring of soil moisture, accurate determi-
nation of surface roughness is key for correctly deriving soil
moisture information from radar data.

B. Parameterization of Surface Roughness in Remote Sensing

The two fundamental parameters describing soil surface
roughness are the standard deviation of the surface height
variation [or vertical root-mean-square (RMS) height], with
its related autocorrelation function (ACF), and the horizontal
correlation length [8]. The degree of correlation between two
laterally separated locations of one surface can be estimated
through the surface correlation function p(ξ), with ξ as
displacement between those two locations. With the increas-
ing separation between two locations on the surface, p(ξ)
decreases, and at a certain distance, the so-called horizontal
correlation length and the vertical RMS heights at the two
locations are considered statistically uncorrelated [8].

Due to the nonstandardized naming convention, the termi-
nology for both parameters is ambiguous. Common parame-
terizations for the vertical RMS height are SD , σ , or s [4], [8],
[22], [23] and for the horizontal correlation length LC or l [2],
[24]. In this study, the standard deviation of the surface height
variation is denoted by s [cm], with its related ACF [-], and the
horizontal correlation length by l [cm], which is the naming
convention already used, e.g., in [1], [8], [25], and [26].

For the sake of completeness, it should be mentioned
that passive microwave retrievals often refer to a different
roughness parameter. They are using a radiative transfer model

to simulate the effects of surface roughness on measured
brightness temperature TBP [4]. This model is the analytical
zero-order solution to the radiative transfer equation, com-
monly referred to as the tau–omega (τ −υ) model [27], which
is the basis for numerous microwave emission models, such as
the L-band Microwave Emission of the Biosphere (L-MEB)
model, employed in the current Soil Moisture and Ocean
Salinity (SMOS) L2 algorithm [23]. Within these models, soil
emission is calculated based on a semiempirical approach first
proposed by Wang and Choudhury [28], known as H QN
[24] or H − Q model [29]. Wang and Choudhury [28]
pointed out that the Fresnel equations can be used to describe
the reflectivity of a smooth but not a rough soil surface.
In the latter case, scattering of the incident wave occurs
in many directions, and the reflected parts “in the specular
direction would be lower than the Fresnel reflectivity” [28].
To consider reflectivity losses caused by increasing surface
roughness, the soil roughness loss factor, h = HR · cosN θ ,
was introduced [4]. Here, another roughness parameter, called
HR [23], is used to characterize roughness effects on passive
microwave signatures.

In this study, we determine the vertical RMS height and the
horizontal correlation length of a surface and can link h with
s by HR = (2 ·s ·k)2, where k [cm−1] is the wavenumber (k =
2π/λ) [4], [22], [23], [30]. In the HQN model, the parameter
Q is called the polarization mixing factor that accounts for
differences in values between the horizontal polarization and
the vertical polarization. Finally, within the HQN model to
describe the reflectivity of a rough surface, the parameter N
accounts for multiangular and dual-polarization measurements,
which is set equal to two in most studies [24], [28].

In addition to s and l, a third roughness parameter is defined
as the RMS slope m, “a quantity proportional to the ratio of [s
to l]” [8], indicating the degree of roughness of one surface.
For a 1-D height profile for one random surface, m is defined
as m = [−s2 p��(0)]1/2, with p��(0) being the second derivative
of the surface correlation function p(ξ), evaluated at the origin
(ξ = 0). Since p(ξ) is an even function, p��(0) is a negative
quantity [8]. For modeling of electromagnetic scattering at soil
surfaces, assumptions of the functional forms of p(ξ) have to
be made. The most common forms are the exponential and
Gaussian correlation functions. In the case of a Gaussian ACF,
m can be calculated by m = √

2 s/ l [8], [31]. In theory, in the
case of an exponential ACF, a surface does not have an RMS
slope. This is due to the fact that this correlation function
is not differentiable at the origin since, in order to describe a
correlation, it has to be an even function [32]. Hence, Dierking
[31] presented the derivation of an “effective” RMS slope for
exponentially correlated surfaces, which always has to be con-
sidered in relation to the frequency of the acquisition system.
Therefore, the exponential RMS slope can be calculated by
m = (2/π)1/2∗s/ l∗(5kl−arctan(5kl))1/2 [31]. The RMS slope
m is one of the validation criteria for the small perturbation
model (SPM) [8]. In general, for L-band, m should be lower
than 0.3 [8] or 0.4 [31], [32] in the case of bare soil surfaces
with moderate RMS heights [32].

Overall, the type of employed wave scattering model is
essential for modeling of electromagnetic wave interaction
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with vegetation or soil and should be considered carefully
depending on its advantages and disadvantages.

When observing soil surfaces with remote sensing tech-
niques, the observed roughness scales are mainly a function of
the wavelength of the sensing system. In detail, the observable
roughness scales can either be equivalent or larger (but limited
by resolution cell extent) than the wavelength of the sensing
system, whereas smaller scales would not contribute signif-
icantly to the signal [8]. In the field of microwave remote
sensing, surface roughness is mainly observed at centimeter
scale since, “[a]t microwave frequencies, the wavelength is on
the order of centimeters to a few tens of centimeters” [8].
Exceptions are found for surfaces that include the effects of
large-scale topography when resolution cell sizes are in the
order of the topographic variations.

The objective of this study is to simultaneously determine
the vertical (s) and horizontal (l) components of bare soil
surface roughness through the combination of active and
passive microwave data on a global scale.

II. DATA

Data for this study come from the NASA SMAP mis-
sion [3]. This mission was launched in 2015 with the aim
to exploit synergies between active and passive instruments at
L-band frequency. It is the first soil moisture dedicated space-
borne mission developed to provide moisture products from
active and passive microwave satellite data [3], [33]. Unfortu-
nately, the SMAP radar went out of service in July 2015 after
only three months of operations, but the SMAP radiometer
continues to deliver high-quality data [34]. Due to the radar
failure, the investigation period with SMAP data in this study
is limited to the period from April 14 to July 7, 2015.

The data used in this study are the SMAP L1B Radar Half-
Orbit Time-Ordered low-resolution backscatter |SPP|2 [35],
the SMAP L1C Radiometer Half-Orbit Time-Ordered Bright-
ness Temperatures TBP [36], the physical soil temperature
TS , and the soil moisture obtained from the SMAP L3SM_P
products [37], all posted on a 36-km Equal-Area Scalable
Earth-2 (EASE-2) grid [20], [38].

In order to guarantee analyses exclusively over bare soils,
we filter the global surface roughness results for vegetation,
water, or snow. We used the vegetation optical depth (VOD)
posted on a 36-km EASE-2 grid from the SMAP data set
processed with the multitemporal dual-channel retrieval algo-
rithm (MT-DCA) [38] and the surface condition quality flags
for snow and frozen ground from the SMAP L3 Radiometer
Global and Northern Hemisphere Daily 36 km EASE-Grid
Freeze/Thaw State [39] for filtering. Pixels with VOD greater
than 0.06, with more than one day covered by snow or frozen
ground during the investigation period, or with more than 5%
water fraction are masked out.

Previous studies emphasized the impact of large-scale
roughness effects due to topography on satellite microwave
observations (e.g., [40], [41]). Therefore, significant topog-
raphy is normally excluded or treated with special care in
satellite data products of various missions, such as SMOS [42]
or SMAP [33]. In this study, the effects of topography on

36 km-scale SMAP observation-based soil roughness esti-
mates are assumed to be nonsignificant mainly due to two
reasons. First, after filtering of SMAP retrieval input para-
meters (backscatter and emissivity), only regions with digital
elevation model (DEM) slope angles, extracted from the
Shuttle Radar Topography Mission (SRTM) V4 [43], smaller
than 25◦ are analyzed. Hence, only bare soils with flat to
moderate terrain are considered. Second, at the resolution
cell size of 36 km intra-cell variations in DEM slope angles
are assumed to compensate themselves (cooccurrence of up
and down slopes) up to a certain degree. This might be
reflected in nonsignificant correlations (R = 0.42 for s and
R = −0.32 for l) between SMAP retrieval results and the
standard deviation of DEM slopes within the 36 km resolution
cells.

III. METHODS

In the course of developing combined active–passive
microwave retrieval algorithms for geophysical parameters
(e.g., soil moisture), the relationship between the radar
backscatter (|SPP|2) and the emissivity (EP = TbP /T ) of a
radiometer was found to be quasi-linear [20]. For the SMAP
algorithms, it is expressed by the two regression parameters
α and β, with αP−PP [-] being the P-polarized intercept and
βP−PP [-] being the P-polarized slope of the linear regression
(1) [20], [44]:

EP = αP−PP + βP−PP ∗ |SPP|2 (1)

For bare soils, the intercept αP−PP is 1 due to the fact that
vegetation cover is absent [45]. Therefore, the slope βP−PP

describes the covariation between emissivity and backscatter
for bare soils and is defined as follows [44]:

βP−PP = EP − 1

|SPP|2 =
TbP
TS

− 1

|SPP|2 (2)

where TS is the surface physical temperature within the top 5
cm of the soil [2].

In (2), βP−PP is referred to as the covariation parameter for
respective polarization P . The specific form of (2) allows us to
calculate βP−PP based on electromagnetic interaction models
of bare surface backscatter and emissivity, βModel

P−PP [-], such
as the SPM, I2EM, or the numerical Maxwell model in 3-D
(NMM3-D), ordered with increasing model complexity.

βP−PP can also be calculated from quasi-simultaneously
acquired active and passive microwave measurements, hence-
forth βData

P−PP. The only limiting factor is that both sensors (radar
and radiometer) must have the same spatial resolution in order
to observe roughness at the same scales.

For surface roughness estimation, we calculate βModel
P−PP and

βData
P−PP based on the simulated and data-based backscatter

and emissivity, respectively. Then, we minimize the absolute
difference between model prediction βModel

P−PP and the calcu-
lated observations-driven βData

P−PP for s and l estimations by
selecting the βModel

P−PP based on the permittivity closest to
the actual permittivity of the SMAP L3SM_P product (see
Section II) (converted according to the dielectric mixing model
of Topp et al. [46]).

 



FLUHRER et al.: SIMULTANEOUS RETRIEVAL OF SURFACE ROUGHNESS PARAMETERS 8185

In order to avoid invalid combinations of surface roughness
parameters, we use the RMS slope m with m< 0.4 to filter
the retrieval results (see Section I-B). As mentioned earlier,
this condition is also used as a validity criterion for the
SPM [8], which is equivalently valid for I2EM when the
L-band frequency is applied [47]. The details for modeled and
data-based covariation parameters are as follows.

A. Model-Based Retrieval of Active–Passive
Microwave Covariation

βModel
P−PP is calculated by forward simulations of surface

emissivity (EP) and backscatter (|SPP|2) using (2). We first
defined a physically meaningful and sufficiently large range
of values for s ∈ [0, 10] cm in 0.1 cm steps and l ∈
[1, 40] cm in 0.5 cm steps. The third input parameter is soil
permittivity and ranges from εs ∈ [2.6, 78] in 0.1 steps. Within
forward wave scattering models, several types of ACFs for
simulations can be assumed. It is a requirement for simulating
the surface backscatter and emissivity and is detached from in
situ or remote sensing data. In this study, results for s and l
are calculated using either Gaussian or Exponential ACF.

In this study, we simulate backscatter and emissivity values
with the I2EM to calculate βModel

P−PP [8]. The reason for employ-
ing the I2EM is its common physical basis for backscatter
and emissivity based on s and l, frequency f , type of ACF,
incident angle θ , and soil permittivity εs [8], [47], [48]. Details
on model formulations (computer codes) can be found in the
supplement of [8]. Because of its analytical formulation, I2EM
is preferred over computationally more expensive numerical
methods, such as the NMM3-D [49].

B. Data-Based Retrieval of Active–Passive
Microwave Covariation

The covariation parameter calculated with (2) based on
microwave observations is called the data-based covariation
parameter βData

P−PP [-]. This parameter is dependent on the
observation conditions and the sensitivity of the recording
system to the natural phenomenon.

In this study, βData
P−PP is calculated based on SMAP observa-

tions specified in Section II.

C. Advantage of Active and Passive Microwave
Signature Combination

As an example of how the joint use of radar and radiometer
can improve soil moisture estimations, Fig. 1 shows overlays
of radar-only and radiometer-only cost functions along with
permittivity εs and the roughness parameter s simulated with
the I2EM.

Similar to Akbar et al. [34], the computed backscatter
�|SPP|2 (radar-only) and emissivity �EP (radiometer-only)
spaces are displayed for a vector of unknowns (x̄ = [εs, s, l]).
εs ranges from 2.6 to 50 in 0.1 steps, s values from
0.05 to 10 cm, and l values from 1 to 21 cm, each in 0.1 cm
steps. In Fig. 1, we assume l = 14 cm and plot �|SPP|2 <
−30 dB and �EP < 0.01[−] to emphasize model predictions
in the vicinity of the true test point (black cross), which is

Fig. 1. Overlay of radar-only (�|SPP|2 = ||SPP|2(x̄) − |SPP|2True|2 [dB]) and
radiometer-only (�EP = |EP (x̄) − EPTrue |2 [-]) cost functions modeled with
I2EM assuming a Gaussian ACF. (a) Overlay for horizontal polarization.
(b) Overlay for vertical polarization. The black cross is the true test point
(global minimum) at input parameters εs = 15[−], s = 2 cm, and l = 14 cm.
Study similar to Akbar et al. [34].

the global minimum of the cost function. The results for the
horizontal polarization [see Fig. 1(a)] and the vertical polar-
ization [see Fig. 1(b)] are shown individually since “scattering
polarization behaviors are different” [34].

It can be understood from Fig. 1 that the possible range
of valid permittivity values that yield �|SPP|2 ∼= 0 extend
over the entire range of initial εs values. This holds true for
both polarizations. The possible range of values for s spans
from 1.2 to 5 cm. In the case of the radiometer, the possible
range of permittivity values is slightly reduced and extends
from 14 to 50 for the horizontal polarization [see Fig. 1(a)]
and from 14 to 30 for the vertical polarization [see Fig. 1(b)].
However, the range of possible values for s now covers the
entire range of initial s values (from 0.05 to 5 cm). Therefore,
if only radars or radiometers are used, it is not clear which
pairs (εs , s) lead to the most accurate estimates. This disad-
vantage is further amplified by the presence of measurement
noise.

By combining radar- and radiometer-only cost functions,
the search space for optimum parameter values is significantly
reduced since the complementary physics of backscatter and
emissivity limits the possible parameter search space. Conse-
quently, lower retrieval errors can be achieved compared with
retrievals only based on one sensor. The combined approach
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Fig. 2. Comparison of correlation coefficient (R), RMSE, and ubRMSE
between the original roughness parameters s and l and perturbated roughness
parameters ŝ and l̂ from retrieval input parameters with added random noise,
along with the weighting factor f w controlling the strength of added random
noise ranging from 0% to 10%. (a) Vertical RMS-height (s, ŝ). (b) Horizontal
correlation length (l , l̂).

effectively reduces the susceptibility of radars to permittivity
and the susceptibility of radiometers to roughness.

IV. SENSITIVITY ANALYZES

A. Simulation-Based Performance Assessment of the
Retrieval Algorithm

In order to assess the performance of the proposed
active–passive covariation-based retrieval algorithm for surface
roughness parameter estimation, simulations with noise-added
retrieval input parameters have been performed. We simulated
backscatter coefficients and emissivity values with the I2EM
for a wide range of roughness and permittivity values, based
on which we estimated the surface roughness parameters s and
l with the proposed approach. Afterward, we added random
noise to the I2EM simulated backscatter and emissivity. The
subsequently estimated surface roughness parameters based on
the noise-added simulations are denoted by ŝ and l̂. The ran-
dom noise is generated based on the variance of the respective
simulated parameter (backscatter and emissivity), randomly
generated values uniformly distributed in the interval [0, 1],
and a weighting factor fw for each realization between 0% and
10%. In total, 1001 realizations are incorporated. The results
for ŝ and l̂ are then compared with the originally estimated
roughness parameters s and l. Fig. 2 displays the correlation
coefficient (R), root-mean-square error (RMSE), and unbiased
root-mean-square error (ubRMSE) between the original and

perturbated surface roughness estimates as a function of the
weighting factor fw (strength of added noise).

It can be seen that correlation coefficients decrease to 0.85
between s and ŝ and 0.43 between l and l̂ for the maximum fw
of 10%. Here, the decrease in the surface parameter l is more
rapid and larger in magnitude than for surface parameter s,
showing that l is more sensitive to added noise on input para-
meters (backscatter and emissivity). The RMSE and ubRMSE
increase concurrently with increasing fw from 0 to 1.42 cm
for s and from 0 to 7.98 cm for l. In summary, this simulation
study serves as a first-order performance assessment of the
proposed retrieval approach. However, the validation of the
approach with real-world observations is paramount in a
follow-on study.

B. Analysis of Sensitivity on Soil Permittivity

As shown in Fig. 1 in an overlay study, the influence
on backscatter and emissivity is twofold with roughness and
permittivity of the soil. In order to minimize the influence of
permittivity, the covariation formulation in (2) was developed
in this study. As (2) represents a ratio, it is anticipated that
the permittivity-dependent reflectivity term in the emissivity
and backscatter formulation (see [44] for modeling details) is
comparable and minimizes its influence.

In order to evaluate this permittivity influence on our
proposed covariation-based retrieval algorithm, we compared
the full range of physically reasonable εs-values with the esti-
mated model-based covariation parameter βModel

P−PP, computed
with NMM3-D and I2EM (see Section III-A). As shown in
Fig. 3, βModel

P−PP remains nearly constant over the entire range
of permittivity values for both employed models except for
small permittivity values. βModel

P−PP changes only for εs lower
than approximately ten, representing arid and hyperarid soils.
The reason for this is found in the formulation of covariation
with emission over backscatter [see (2)]. The backscatter falls
exponentially to very low values for these small permittivity
values, which, in turn, causes larger dynamics in covariation.
However, for εs > 10, βModel

P−PP calculated based on backscat-
ter and emissivity from I2EM is insensitive to permittivity
dynamics. Consequently, both model simulations (NMM3-D
and I2EM) predict that the retrieval algorithm is independent
of permittivity variations in the case of nonarid soils.

As the independence of our approach for εs > 10 is
only based on NMM3-D and I2EM simulations, the exact
permittivity value from which our approach is insensitive may
vary with other models, depending on the respective model
design.

V. RESULTS

This section presents the roughness results obtained from
SMAP observations using the proposed covariation-based
active–passive algorithm [see (2)]. In addition, the results for
varying ACFs are compared and analyzed in the context of
changing weather and soil conditions.

A. Results of Surface Roughness Parameter Estimation

In the following, the retrieval results for the roughness
parameters s and l are presented. Note that the proposed
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Fig. 3. Influence of soil permittivity εs on covariation parameter βModel
P−PP modeled with NMM3-D or I2EM assuming a Gaussian ACF, s of 0.5, 1.5 and 3 cm

and the ratio l/s of 4, 7, and 10 cm. (a) NMM3-D results for βModel
H−HH. (b) NMM3-D results for βModel

V −VV. (c) I2EM results for βModel
H−HH. (d) I2EM results for

βModel
V −VV. The y-axes are interrupted since βModel

P−PP increases to large negative values for very smooth surfaces.

approach only applies to bare surfaces. These regions are
located almost exclusively in North Africa, Asia, or Australia.
For reasons of better readability, we will, therefore, only
display results for this subregion.

Fig. 4 illustrates the median of estimated s and l for the sub-
region Africa–Asia–Australia, which was calculated assuming
a Gaussian ACF. The results for s are between 0.35 and 7 cm,
with a majority of the values (∼72.3%) between 0.35 and
2.5 cm. The lowest values for s are found within the Sahara
and the highest values at the edges of deserts (e.g., Sahara
and Gobi) or in the Arabian Peninsula due to increasing
vegetation cover (e.g., shrublands) or rocks [see Fig. 4(a)]. The
results for l range between 1.75 and 20.5 cm, with correlation
lengths mostly (∼86.4%) of 6–16 cm. The lowest values for
l are estimated, for example, in the Sahara or in the southern
part of Australia. The highest values for l are found in the
northwestern part of Australia as well as in Kazakhstan and
Mongolia [see Fig. 4(b)].

Comparing the roughness estimates calculated assuming
either a Gaussian (see Fig. 4) or an exponential ACF (see
Fig. 5), the roughness patterns for the two ACFs generally
appear similar. However, results for the Gaussian ACF are
higher for s and lower for l compared with the results for
the exponential ACF. About 72.3% of all s values assuming
a Gaussian ACF are between 0.35 and 2.5 cm, whereas over
82.2% of all s values are located in the same range when
assuming an exponential ACF. In addition, over 86.4% of
values for l are located between 6 and 16 cm for the Gaussian
ACF, but only 60.2% are located in that same range for the
exponential ACF since overall larger l values are retrieved (see
Fig. 5).

Fig. 4. Temporal median (April–July 2015) of the estimated surface
roughness parameters s and l from SMAP observations for the subregion
Africa–Asia–Australia assuming a Gaussian ACF. (a) Vertical RMS height s.
(b) Horizontal correlation length l.

Based on the estimated roughness results for s and with
N = 2 (see Section I-B), the roughness loss factor h is
calculated assuming a Gaussian ACF [see Fig. 6(a)] or an
exponential ACF [see Fig. 6(b)]. The values for h are in the
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Fig. 5. Temporal median (April–July 2015) of the estimated surface
roughness parameters s and l from SMAP observations for the subregion
Africa–Asia–Australia assuming an exponential ACF. (a) Vertical RMS
height s. (b) Horizontal correlation length l.

Fig. 6. Temporal median (April–July 2015) of the estimated roughness loss
factor h for the subregion Africa–Asia–Australia based on surface roughness
parameters s from SMAP observations. (a) Gaussian ACF. (b) Exponential
ACF.

range between 0 and 2. As can be seen in Fig. 6, assuming
a Gaussian ACF, the majority of values (∼79.7%) are located
between 0 and 1.5 with a peak between 0.6 and 0.7 [see inset
of Fig. 6(a)]. In the case of an exponential ACF, approximately

Fig. 7. Comparison of the normalized power spectra [-] for the Gaussian
(black line) and exponential (blue dashes–dotted line) ACF at the L-band (red
dashed line) along with the wavenumber k [cm−1], calculated based on (9)
and (10) of [50].

86.1% of all values for h are located in the range between 0
and 1.5. However, its peak is also between 0.6 and 0.7, whereas
the magnitude is dropping significantly toward higher values.
Hence, overall lower values for h are obtained assuming
an exponential instead of a Gaussian ACF. By definition,
the spatial patterns of h are equivalent to the ones of s (see
Figs. 4–6).

For a more detailed investigation of the differences between
the results of both ACFs, we analyzed their power spectra,
as described in [50]. Defined as “a measure of the amplitude
of each Fourier component scattered by a rough surface” [51],
the power spectrum explains the surface type assumed for the
ACF. We calculated the respective power spectrum for both
ACFs along with different wave numbers according to [50]
and normalized them by their respective amplitude to allow
direct comparisons.

Fig. 7 shows the normalized power spectra of both ACFs
and the case for L-band (λ = 21 cm) as a red dashed line.
The roughness values calculated with an exponential ACF stay
below the level of the values calculated with the Gaussian
ACF. Hence, the Gaussian ACF describes a rougher soil
surface, whereas the exponential ACF describes a smoother
soil surface at the L-band, according to the presented retrieval
results displayed in Figs. 4 and 5.

B. Comparison of Surface Roughness Estimates With
Precipitation and Soil Conditions

Analyses are performed to investigate possible correlations
between the estimated roughness parameters and external
factors, such as weather or soil conditions, since precipita-
tion or wind, as well as specific soil textures, potentially
influence soil surface roughness.

For temporal analyzes, we used data from the Yanco
Agricultural Institute, Bureau of Meteorology, Australia [52],
to investigate the influence of precipitation on soil surface
roughness with time.

In Fig. 8, we compare the daily in situ precipitation mea-
surements and the corresponding SMAP soil moisture [37]
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Fig. 8. Daily precipitation measurements from the Yanco agricultural
institute, Bureau of Meteorology, Australia [52], (bright blue bars) and soil
moisture from SMAP [37] (dark blue stars) in comparison with retrieval
results for surface roughness parameters s and l, based on SMAP observations,
assuming a Gaussian ACF (black bars) or exponential ACF (gray bars), at the
Yanco weather station (NSW, 34.60◦S, 146.42◦E).

values with roughness retrieval results at the Yanco test site,
Australia.

For one, the variations in surface roughness parameters
across the entire period from April 14 to July 7, 2015, show
differences between the lowest and highest estimates of 2 cm
for s and 10 cm for l, assuming a Gaussian ACF, as well
as differences of 0.75 cm for s and 8 cm for l, assuming an
exponential ACF. Hence, the estimated roughness parameters s
and l vary less during the investigated period if an exponential
ACF is assumed.

Second, it can be seen that the soil moisture and precipi-
tation follow each other and correlate, as expected. However,
both show no correlation with the SMAP-based results for s
and l, regardless of the type of ACF (see Fig. 8). This lack of
correlation between roughness results and precipitation was
also tested between the roughness and soil moisture for the
entire subregion Africa–Asia–Australia (not shown here). The
analysis of the temporal correlation between the change of
estimated roughness parameters s and l and the SMAP soil
moisture dynamics shows no significant correlation, whereby
the most frequent value in the analyzed histograms is zero
with a standard deviation of 0.14.

In addition, the estimated roughness patterns were com-
pared with VOD from SMAP MT-DCA retrievals [38] and
sand or clay fractions of soils from [53], both posted on the
36-km EASE-2 grid.

Fig. 9 shows that retrieval results for s are slightly increas-
ing until VOD class 0.015–0.03 and then slightly decrease.

Fig. 9. Comparison of estimated surface roughness parameters s and
l with VOD [-] [38], both from SMAP observations for the subregion
Africa–Asia–Australia. (a) Gaussian ACF. (b) Exponential ACF.

In contrast, the results for l are slightly decreasing until
VOD class 0.015–0.03 and then slightly increase. Despite the
overall similar distribution patterns, the value ranges for both
ACFs are significantly different for roughness parameter l
with much larger ranges for the exponential ACF. However,
no influence of vegetation could be observed at higher VOD
values. In extended analyses up to VOD of 1.12 (not shown
here), we get higher values for s and lower values for l.
The reason for this is that, with increasing vegetation canopy,
we rather get a mix of signal effects from the ground (rough-
ness) and vegetation. The value ranges of estimated s and l
for all VOD classes from 0 to 0.06, thus, confirm the effective
filtering before estimating the surface roughness parameters
(see Section II).

Finally, we compared surface roughness results with the
sand and clay fractions used as ancillary data within the
SMAP parameter retrievals [53] in order to analyze if soil
texture might influence the roughness retrieval of a soil
surface. Fig. 10 shows that the overall distribution patterns
are quite similar for both employed ACFs. Similar to the
results displayed in Fig. 9, the value ranges are larger for
the exponential ACF than for the Gaussian ACF. It can be
seen that the estimated s peaks for the smallest sand fraction
(0%–10%). On the contrary, the results for estimated l are
lowest for the smallest sand fraction. In addition, the overall
dynamic of l along increasing sand fractions (from 20% to
90%) is very low with absolute differences in median values of
only 0.75 cm (Gaussian ACF) and 2.5 cm (exponential ACF)
(see Fig. 10). In summary, the value ranges for s are similar for
both ACFs, whereas the ranges for l assuming an exponential
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Fig. 10. Comparison of estimated surface roughness parameters s and l
retrieved from SMAP observations with sand fractions from [53] for the
subregion Africa–Asia–Australia. (a) Gaussian ACF. (b) Exponential ACF.

ACF are approximately two to three times larger than for the
Gaussian ACF. However, the variation between sand fractions
is reasonable and does not show a distinct correlation between
roughness parameters and sand fractions.

When comparing the roughness results with clay fractions
(not shown here), the most significant finding is that there
is no correlation between clay fractions and the soil surface
roughness parameters, similar to the case for sand fractions.
Another finding is that there are no estimates of s and l for clay
fractions greater than 70%. The fact that no roughness results
overlap with clay fractions greater than 70% is consistent with
the global distribution of clay fractions from the Harmonized
World Soil Database (HWSD) [54].

VI. DISCUSSION

Our covariation-based approach requires equivalent spatial
resolution for radar and radiometer acquisitions in order to
observe roughness at the same scales. Most space-borne radar
sensors provide a much higher resolution than radiometer
sensors. In the case of the SMAP mission, the radar had
a spatial resolution of ∼3 km until its failure, whereas the
radiometer has a resolution of ∼40 km [3]. In this study,
we used the SMAP low-resolution radar and radiometer
data with the same spatial resolution of 36 km. Since our
approach is limited to simultaneously acquired polarimetric
active/passive microwave data sets with comparable spatial
resolutions, the data suitable beyond this study include the air-
borne passive and active L and S band sensor (PALS) data sets
[16], [55] or the space-borne AQUARIUS data [56]. Despite

these limitations in acquisition and resolution, our roughness
retrieval technique outperforms ground-based sensing methods
in terms of acquisition time and spatial coverage.

For evaluation of the proposed approach, we conducted sev-
eral model-based sensitivity studies, compared retrieval results
with literature values, and investigated possible correlations of
roughness parameters with precipitation or soil texture. These
analyzes will be discussed in the following. A direct validation
based on experimental surface roughness data is not feasible
due to the lack of available (in situ) data sets at the satellite
footprint scale (36 km).

The covariation-based approach, including the forward
model I2EM for the retrieval of s and l, provides the possibility
of employing varying ACFs and the simultaneous estimation
of both roughness components with centimeter precision.
Although we are only able to retrieve a wavelength-dependent
roughness scales (here L-band), this approach enables the
simultaneous estimation of both surface roughness parameters
s and l by minimizing the influence of soil moisture (see
Section IV). The study from [47] showed that the I2EM is
in good agreement with the SPM at low frequencies and the
standard Kirchhoff model (KM) at high-frequency regions.

For SPM, the roughness influence on backscatter and emis-
sivity is a multiplicative factor to the reflection coefficient,
detailed in [44]. Hence, forming the ratio in (2) should
cancel the permittivity influence if the reflection coefficients in
backscatter (Bragg scattering) and emission (Fresnel scatter-
ing) are identical. This is the case for horizontal polarization
but not for vertical polarization [44]. Thus, a residual depen-
dence on soil moisture remains, which we have analyzed in
Section IV-B. These analyzes showed that this dependence
is the strongest for low permittivity and approaches toward a
constant value for higher permittivity. In detail, for permittivity
values of ten and higher, the value of the SPM-based ratio
of Bragg to Fresnel scattering coefficients is approaching a
constant value of six. Therefore, a quasi-independence from
soil permittivity for values of ten and higher is found when
estimating roughness parameters, which motivates the com-
bined active–passive microwave approach. Similar to SPM,
analyses presented in this study based on I2EM delineated that
our covariation-based approach is independent of permittivity
for values εs > 10 (see Section IV-B).

However, in this study, we are only presenting results for
subregion Africa–Asia–Australia since our approach is limited
to bare soils. These regions are mostly arid to hyperarid with
very low permittivity, which hardly changes in space and time
due to the lack of precipitation. Hence, the approach presented
in this study minimizes the permittivity dependence in two
ways. On the one hand, our covariation-based approach is
independent of permittivity for nonarid soils (εs > 10) by
utilizing the covariation formulation [see (2)]. On the other
hand, our presented roughness retrievals (see Section V) are
quasi-independent of permittivity since we are only analyzing
bare soils of dry regions with almost static soil moisture
content. We tested this in a small add-on study where we
fixed the input permittivity for all bare soil areas to a constant
value of three and retrieved s and l. Analyses showed that we
achieved very similar results as with inserting SMAP-based
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permittivity, with average RMSE for the entire subregion
Africa–Asia–Australia of 0.33 cm (s) or 0.87 cm (l) assuming
a Gaussian ACF.

Within the proposed approach, we consider the two com-
monly applied ACFs of Gaussian and exponential type for
characterization of the soil surface. Previous studies by [25]
and [45] showed that, for rather smooth bare surfaces, the cor-
relation function is close to the exponential ACF, whereas,
for very rough surfaces, it is close to the Gaussian ACF.
Especially for surface roughness of agriculturally managed
soils, parameterization is more complex and variable since
the ACF is affected by the characteristics of tillage, spanning
several roughness scales. Nonetheless, also for agriculturally
managed soils, most studies confirm an exponential ACF for
smooth and Gaussian ACF for very rough surfaces (e.g.,
after plowing) [25], [57], [58]. Moreover, previous studies
pointed out that surface roughness parameters are close to an
exponential ACF when sensing over bare soils at L-Band [11],
[29], [59]. A comparison of roughness results outlined the
differences between both ACFs. We estimated values for s
mainly in the range between 0.35 and 2.5 cm and for l
between 6 and 16 cm, assuming a Gaussian ACF. For the
assumption of an exponential ACF, we estimated overall lower
s and higher l values. Thus, the exponential ACF describes
a smoother roughness pattern, whereas the Gaussian ACF
describes a rather rough surface roughness pattern, equivalent
to the literature [25], [57], [58]. Ogilvy and Foster [51]
investigated, in a numerical study, Gaussian and exponential
correlation functions of theoretically generated random rough
surfaces. They found that the exponential ACF tends to corre-
late roughness on a fine-scale due to a rapid loss of correlation.
By contrast, the Gaussian ACF decreases more slowly over
distance and, hence, tends to correlate roughness, not on a
very fine scale [51]. Their explanation for varying roughness
correlations was found to be the shape of the respective power
spectra. In the case of the exponential ACF, it is a Lorentzian
transform of the correlation function, whereas, in the case of
the Gaussian ACF, it is given by the Fourier transform of the
correlation function [51]. Hence, the influence of the employed
ACF type is distinct and the assumption of Zhixiong et al. [60]
that, for homogeneous agricultural fields, the ACF is unrelated
to surface roughness conditions cannot be confirmed here.

In this study, we also presented the results for the roughness
loss factor h, which is the prominent parameter used in passive
microwave retrievals based on the H QN-model [24], [28] (see
Section I-B). The results for h are located mainly between 0
and 1.5 with most values between 0.6 and 0.7, independent
of the employed type of ACF. In the literature, typical values
for HR are located between 0 and 1.7, depending on the type
and amount of vegetation canopy [24]. These correspond to
h values between 0 and 1 (see Section I-B). The values for
HR greater than 1 are only estimated for forests, with typical
values for the grass or open shrublands mostly around 0.4 [24],
which is equal to an h value of 0.23.

With our covariation-based approach, where h peaks
between 0.6 and 0.7, we are apparently overestimating h since
our study areas are limited to bare soils only. Nonetheless,
similar studies that are estimating the single scattering albedo

υ directly instead within the τ − υ model are also retriev-
ing higher values compared with theoretical definitions [61].
Hence, we directly retrieve s and subsequently h, with esti-
mated roughness values for h fitting to the expected smooth
to moderately rough bare surfaces.

For detailed analyses of temporal changes within estimated
surface roughness parameters and possible correlations with
precipitation, we investigated results at the Yanko station,
Australia. Surface roughness changes with weather (e.g., pre-
cipitation and wind) and agricultural managing techniques
(e.g., plowing) [1]. Hence, we correlated retrieved s and l para-
meters with respective precipitation measurements over the
entire investigation period (April to July 2015) but could not
find significant correlations. Although, consequential “meteo-
rological impacts cause a smoothing of the soil surface” [1],
no such influence of rain events on estimated roughness
parameters could be detected in this study. The reason for this
is most likely related to the coarse spatial resolution of the
SMAP data since the impacts of rainfall events are limited to
the respective affected surface. Also, the study in [62] showed
that precipitation can lead to changes in surface roughness, but
these changes strongly dependent on the initial condition of the
soil surface. Furthermore, the assumption may be only applies
to agricultural managed soils right after tilling when the soil
surface is disturbed. Zhao et al. [62] point to various studies
regarding soil surface roughness variation due to different
tillage practices and water erosion processes.

Surface roughness results and analyzes based on small-scale
experimental microwave data from NASA’s APEX12 cam-
paign can be found in [63].

For detailed analyses of globally retrieved roughness pat-
terns from SMAP observations, we compared the results for
s and l with sand or clay fractions. From those analyses,
it can be understood that, for our study setup, the respective
sand or clay fraction of soil shows no distinct influence on s
and l. However, we compared all roughness results retrieved
from SMAP observations at once. This means that we do
not consider different types of soils. Thus, comparisons of
roughness results with individual major soil types to account
for sand or clay dominated soils are needed to investigate the
relationship between surface roughness and specific soil types
in more detail [64].

VII. CONCLUSION AND SUMMARY

This study presents a covariation-based active–passive
microwave retrieval algorithm for simultaneous estimation of
vertical and horizontal soil surface roughness components
(s, l) from bare soils. Within this approach, we use radar
and radiometer data from both horizontal and vertical polar-
izations with an equivalent spatial resolution to calculate
the active–passive microwave covariation for each individual
radar-radiometer acquisition pair (no time series needed). This
way, the approach enables a simultaneous retrieval of both
roughness parameters (s, l) over a larger area (compared with
in situ measurements).

Results show that the proposed approach leads to valid
retrievals of s and l, with consistencies of more than 90%
between model simulations and roughness results.
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By conducting a series of model-based (NMM3-D and
I2EM) sensitivity tests, it was found that the influence of
permittivity (soil moisture) on our covariation-based approach
is only significant for (hyper) arid soils with εs < 10 (see
Section IV). However, for these soils, the permittivity is small
and static along space and time, which enables fixing its
value to a constant. First tests (not shown) for the subregion
Africa–Asia–Australia affirm this option.

We also tested the effectiveness of our filtering of data,
in order to ensure analyses exclusively over bare soils, based
on VOD values. Since no influence of vegetation could be
observed at higher VOD values, we concluded that the filtering
prior to the estimation of roughness results for vegetation was
successful.

Moreover, no significant correlation between precipitation
and surface roughness parameters could be found despite
the often applied assumption that soil surface roughness
smoothens with precipitation. One reason could be that this
assumption only applies to agricultural managed soils after
tilling. Furthermore, results outline that the changes in surface
roughness are not correlated with changes in soil moisture.

Similar to correlations between the estimated roughness
patterns and precipitation or soil moisture, no correlation could
be found between roughness parameters and sand or clay
fractions. The reason for the lack of correlations in all corre-
lation analyses might be that we investigate global roughness
patterns from SMAP observations with ∼36 km spatial res-
olution where precipitation effects might be nondominant in
the recorded signal.

Detailed investigations regarding the influence of the
assumed type of ACF revealed that both Gaussian and expo-
nential ACF describe different types of roughness patterns, and
our conclusions are consistent with previous studies. Hence,
the employed type of ACF for surface roughness estimation
is crucial and must be considered carefully.

In summary, the retrieved roughness parameters have the
potential to improve soil moisture estimates, even from satel-
lite data and for global scales. This supports soil moisture
estimation for hydrometeorology or climate research.

The proposed technique for surface roughness retrieval from
the combined active and passive microwave signatures is
currently limited to bare soils. In order to enable the estimation
under vegetated soils, our covariation-based algorithm needs to
be updated for vegetation-based scattering and emission [44].
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Abstract: A P-band SAR moisture estimation method is introduced for complex soil permittivity and
penetration depth estimation using fully polarimetric P-band SAR signals. This method combines
eigen- and model-based decomposition techniques for separation of the total backscattering signal
into three scattering components (soil, dihedral, and volume). The incorporation of a soil scattering
model allows for the first time the estimation of complex soil permittivity and permittivity-based
penetration depth. The proposed method needs no prior assumptions on land cover characteristics
and is applicable to a variety of vegetation types. The technique is demonstrated for airborne P-band
SAR measurements acquired during the AirMOSS campaign (2012–2015). The estimated complex
permittivity agrees well with climate and soil conditions at different monitoring sites. Based on
frequency and permittivity, P-band penetration depths vary from 5 cm to 35 cm. This value range
is in accordance with previous studies in the literature. Comparison of the results is challenging
due to the sparsity of vertical soil in situ sampling. It was found that the disagreement between in
situ measurements and SAR-based estimates originates from the discrepancy between the in situ
measuring depth of the top-soil layer (0–5 cm) and the median penetration depth of the P-band waves
(24.5–27 cm).

Keywords: AirMOSS; polarimetric decomposition; soil moisture; multi-layer SPM

1. Introduction

Soil moisture is one of the essential climate variables (ECVs) [1] “that critically con-
tribute [ . . . ] to the characterization of [the] Earth’s climate” [2] and its changes. Hence,
it plays a crucial role within the hydrological and biogeochemical cycles [1,3–7]. Many
approaches exist to retrieve soil moisture from air- or space-borne remote sensing obser-
vations, taking advantage of the sensitivity of active (radar) and/or passive (radiometer)
microwave signals to soil moisture [8–12]. These studies allow an estimation of soil mois-
ture predominantly from L-band measurements: on the one hand, because of the larger
penetration capabilities compared to higher frequency bands, such as C- or X-band, and
on the other hand, due to the availability of global L-band satellite data, e.g., from Soil
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Moisture and Ocean Salinity (SMOS) (since 2009) [10] or Soil Moisture Active Passive
(SMAP) (since 2015) [8] missions. Lower frequency bands such as P-band have only rarely
been used to estimate soil moisture from space, mainly due to the lack of sensors operating
at P-band frequencies. Nevertheless, with the European Space Agency (ESA) BIOMASS
mission in 2023, the first P-band sensor in space will be launched [13]. In addition, the first
on-orbit demonstration of the remote sensing technique will be started by the National
Aeronautics and Space Administration (NASA) SigNals of Opportunity: P-band Investiga-
tion (SNoOPI) mission in 2022 [14,15]. Moreover, P-band airborne datasets, e.g., from the
Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) campaign, are
already available [16]. Hence, P-band data can also be employed for estimating soil moisture,
e.g., by decomposing fully polarimetric radar signals into individual scattering mechanisms.

Incoherent decomposition theorems have been developed to decompose scattering
from natural media and disentangle the different scattering contributions of the signal.
Fully polarimetric synthetic aperture radar (PolSAR) provides measurements of the Earth’s
surface represented by a complex scattering matrix [S], based on which the 3× 3 covariance
[C] or coherence [T] matrices can be calculated [9,17–19]. Among many decomposition
methods, two basic categories can be distinguished: eigen-based, introduced by [20], or
model-based, established by [21]. The first is based on the eigenvalue decomposition of
the [C] or [T] matrix, leading to three parameters: the polarimetric entropy H, expressing
the randomness of the polarimetric scattering process, the polarimetric anisotropy A,
characterizing the secondary scattering processes, and the polarimetric scattering angle α,
representing an intrinsic scattering mechanism [17,22,23].

The model-based decomposition simulates backscattering as the linear sum of mul-
tiple, mostly simple physical scattering mechanisms of canonical objects (e.g., spheres,
dipoles) [18,22,24]. Here, [C] or [T] are decomposed into three components: surface, dihe-
dral (double-bounce), and volume scattering. More detailed reviews of the decomposition
theorems can be found in [25–30].

In order to take advantage of both, a combination of eigen- and model-based inco-
herent decomposition techniques was suggested by [24,31]. By including a generalized
volume scattering model and under the assumption of scattering reflection symmetry
(
〈
SHHS∗HV

〉
= 0 &

〈
SVVS∗HV

〉
= 0), an iterative hybrid decomposition method was pro-

posed, combining eigen- and model-based techniques to decompose [T] into the three
canonical scattering components: surface [Ts], dihedral [Td], and volume [Tv] [24]. As-
sumed scattering reflection symmetry may only be violated significantly in urban or high
mountain regions [27]. The authors of [24] demonstrated the feasibility of the proposed
iterative hybrid decomposition method and the inversion algorithm for soil moisture es-
timation across various agricultural vegetation covers, based on L-band airborne SAR
data of the operational discharge and flooding predictions in head catchments (OPAQUE),
Synthetic Aperture Radar within TERENO framework (SARTEO), and AgriSAR campaigns
from 2006 to 2008. Within this decomposition, two iterations to determine the appropri-
ate initial permittivity and the best physically “constrained volume intensity component
fV” [24] are necessary. Although the results showed that the separation of volume scat-
tering from ground scattering components is physically meaningful compared to in situ
measurements, this iterative approach is complex in algorithmics, computationally ex-
pensive, and requires certain assumptions on initial conditions. Hence, [3] presented an
adapted hybrid decomposition technique by combining the model-based decomposition
technique of [18,21] with the eigen-based decomposition technique, as proposed in [24,27].
By employing observations of the AirMOSS campaign, [3] were the first to apply the hybrid
decomposition method on P-band SAR data across a wide range of vegetation covers (from
grasslands to dense forests). Further, no assumptions on initial vegetation conditions are
made in that study, since “[volume] scattering is modeled using a cloud of randomly-
oriented dipoles” [3]. For the decomposition of the total backscattering signal into the three
scattering components [Ts], [Td], and [Tv], the volume scattering intensity fV is estimated
from the cross-polarized signal directly [31] by fixing the vegetation representations to
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dipoles that are randomly distributed [3] (cf. Section 3.2). The authors of [19] further
explored the proposed hybrid decomposition approach by comparing results based on L-
and P-band SAR observations from the AirMOSS campaign. Both studies demonstrated
the applicability of the hybrid decomposition technique to P-band data of various biomes.
Thus, results for soil and dihedral scattering contributions proved the usability of such
hybrid techniques for designing soil moisture retrieval algorithms using polarimetric low
frequency observations [3,19]. However, the authors concluded that the approach can be
further improved by considering more than just one vegetation representation [3]. In the
end, one main disadvantage of decomposition approaches is the well-known problem
of overestimating the volume scattering component due to “discrimination [problems]
between vegetation and oriented buildings” [32], leading to negative powers (physically
impossible) [9,22,27,33].

The change in direction of the electromagnetic wave when it enters a dielectric medium
can be related to its relative electric permittivity εr [–], formerly also called the dielectric
constant [34,35]. In this study, the relative permittivity of soil is denoted by εs, which is a
complex number with a real εs

′ and an imaginary part εs ′′ . In most studies, only the real
part of εs is considered and investigated, e.g., [24,31,36–38]. However, in general, soils are
lossy media, where εs ′′ is of significant importance when describing the soil permittivity
and, hence, is investigated in this study.

The advantage of microwave remote sensing is the ability of electromagnetic waves
to penetrate through vegetation or into the soil. In general, the lower the frequency, the
larger the penetration into the soil, e.g., [5,35,39,40]. However, the penetration ability of
microwaves is more complex and depends on varying factors besides frequency, such as
the sensor itself, as well as soil or vegetation cover characteristics (e.g., incidence angle,
polarization, soil texture, density, moisture, and surface roughness). Since the penetration
depth is defined as depth after which the power density of the propagating electromagnetic
radiation is reduced by a factor of 1/e (≈0.37), e.g., [35,39,41], it is an important measure
and indication in microwave remote sensing. For example, if the penetration depth is low,
the contribution of the underlying soil to the backscattered waves is questionable and,
hence, the signal may be insensitive to estimated soil moistures [42].

Dependent on εs, several more or less complex formulations to calculate the microwave
penetration depth δp have been published, e.g., in [35,41,43–45]. Many of them depend
mainly on the permittivity of the medium, the wavelength (frequency), and incidence
angle of the incoming wave and, hence, do not account for scattering effects, system
(e.g., sensitivity, calibration uncertainty), or medium (e.g., dielectric discontinuity) charac-
teristics, but only attenuation effects of the medium [39]. Ref. [39] compared penetration
depths at L-band (1.26 GHz) and P-band (430 MHz) frequencies across varying top-layer
permittivities and concluded that δp “significantly underestimates the depths that radar
backscatter can actually detect” [39]. One reason is that δp does not account for discrep-
ancies between decreasing wave intensity with depth and the depth contribution to the
total radar signal. However, in the case the radar signal-to-noise ratio is sufficiently high,
variations beyond δp will be detected [46]. Furthermore, results showed smaller penetration
capabilities of L-band frequencies compared to P-band [39]. Similarly, [40] determined
the moisture retrieval depth from polarimetric L-band (1.400–1.426 GHz) and P-band
(0.742–0.752 GHz) radiometer data, measured during the P-band Radiometer Inferred Soil
Moisture (PRISM) project in 2019 at Core Lynn, Australia. The study was conducted to
investigate the assumption of increasing moisture retrieval depths for longer wavelengths,
and thus to show the potential of P-band wavelengths to retrieve soil moisture at larger
depths than L-band. Their results overall confirmed that this assumption proves the poten-
tial of P-band measurements for subsurface soil moisture retrievals. However, the results
also indicated that the moisture retrieval depth is not only dependent on frequency but
also on the soil moisture gradient with depth, which diminishes the differences in retrieval
depths of P- and L-band for higher moistures in the top soil layer [40]. Smaller penetration
capabilities of L-band frequencies compared to P-band are also confirmed by the studies
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of [40,41,47], concluding that at P-band, influences of soil surface roughness and vegeta-
tion canopy are diminished. Nevertheless, numerical results from [48] revealed limited
influence of small scale roughness on P-band backscatter simulations, but an increasing
complexity between P-band signals and soil roughness at spatially larger scales.

In the literature, P-band is assumed to be able to estimate soil moisture across the root-
zone of the soil (up to approx. 2 m depth) [5,49,50]. Consequently, a wide range of P-band
penetration and sensing depths can be found in the literature, from some centimeters up to
one meter or more [5,39,46,51]. Following the assumption that soil depths are accessible
“in the order of one half to one tenth of the [employed] wavelength [52]” [45,47,53], P-band
penetration depths of 6.97 to 34.86 cm at 430 MHz (λ = 69.72 cm) are potentially realistic.
This value range was estimated, e.g., by [46] in a ten-year study based on P-band data near
the Ameriflux site at Vaira Ranch, CA, USA. Additionally, within the AirMOSS P-band root-
zone, soil moisture (RZSM) product sensing depths of typically 45 cm are considered [51].
Here, RZSM is estimated based on AirMOSS measurements together with simulations
from a vegetation, surface, and subsurface scattering model by assuming a second-order
polynomial function of the profile [54].

In this study, an adapted non-iterative hybrid P-band SAR decomposition method for
moisture estimation is proposed to separate scattering mechanisms in fully polarimetric
SAR data (Section 3.2). The proposed method utilizes a soil scattering model, which is
suitable for P-band wavelengths (Section 3.1). The decomposition results are used in a
consecutive step for the estimation of the complex permittivity, which in turn is applied
for penetration depth calculations (Section 3.3). Thus, this study seeks to estimate complex
permittivity from decomposed SAR signals and to determine permittivity-based P-band
penetration capabilities to better understand P-band microwave behavior in soil along
depth. For that, the proposed P-band SAR moisture estimation method continues the
efforts of [3,24], and is the first of its kind, to the best of our knowledge, for complex soil
permittivity estimation from (P-band) SAR data.

2. Materials

The polarimetric P-band SAR observations employed in this study were acquired
during the AirMOSS campaign (a NASA Earth Venture-1 project) from 2012 to 2015 over
nine different biomes across ten sites in Northern and Central America. This campaign
was the first P-band airborne mission designed to estimate RZSM. The monitoring sites
comprise varying land cover classes from bare soils to tropical rain forests. Each site covers
an area of approximately 25 × 100 km at ~100 m spatial resolution and was revisited at
least two to four times every year during the campaign. The P-band instrument operated at
a center frequency of 430 MHz (λ ≈ 69.72 cm). With a high radiometric calibration accuracy
(0.5 dB) and a noise equivalent σo of −40 dB, the AirMOSS dataset provides P-band SAR
measurements, which are very well suited for estimating soil and vegetation parameters [3].
Detailed information on the campaign can be found in, e.g., [3,16].

The AirMOSS dataset provides measurements for a total of 168 dates at ten sites, each
of them covering an area of 25 × 100 km. Hence, in this study, only a subset of the dataset
was processed and analyzed, with focus on the three AirMOSS monitoring sites “MOISST”
in Oklahoma, “Walnut Gulch” in Arizona, and “Harvard Forest” in Massachusetts, USA.
By choosing these three monitoring sites, varying vegetation types and climatic conditions
are analyzed. Furthermore, every study area is filtered for pixels classified as water, snow,
wetlands, developed ground, bare soil, and pasture/hay, as well as for incidence angles
smaller than 30◦ and greater than 50◦, to narrow down the amount of data to be processed
and to focus on vegetated soils.

Lastly, only four dates per year and monitoring site are evaluated, in the case data for
more than four dates are available (Figure 1). Walnut Gulch in Arizona is characterized by
an arid to semi-arid climate of a hot desert (BWh), MOISST in Oklahoma by a temperate
climate with hot summers (Cfa), and Harvard Forest in Massachusetts by a cold humid
continental climate with warm summers (Dfb) [55].
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Figure 1. Timeline of processed AirMOSS dates per year and for every monitoring site. (A) Walnut
Gulch, AZ, USA. (B) MOISST, OK, USA. (C) Harvard Forest, MA, USA.

In Figure 2, the land cover types according to the National Land Cover Database
(NLCD) [56], as provided within the AirMOSS datasets, are shown for every monitoring
site. The percentages in Table 1 represent the respective number of pixels per land cover
class in comparison to all processed pixels (after filtering). Walnut Gulch (Figure 2A)
is mostly covered by shrub/scrub (92.5%) while other classes represent less than 5% of
all pixels (Table 1). The monitoring site MOISST (Figure 2B) is mainly covered by grass-
land/herbaceous (51.5%) and cultivated crops (38.3%), while Harvard Forest (Figure 2C) is
covered by deciduous (49%), mixed (30.4%), and evergreen (25.1%) forests (Table 1).
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Table 1. Distribution of NLCD land cover classes at every AirMOSS monitoring site (%) (in relation
to the total of all processed pixels after filtering).

NLCD Land Cover
Class

AirMOSS Monitoring Site

Walnut Gulch MOISST Harvard Forest

Grassland/herbaceous 2.2 51.5 0.3
Shrub/scrub 92.5 0 1.8

Cultivated crops 2.2 38.3 0.3
Deciduous forest <0.1 8.3 49
Evergreen forest 3 1.7 25.1

Mixed forest <0.1 0.3 30.4

For a later comparison of SAR-based estimates, the daily averages of in situ soil
moisture measurements from five different networks at 17 stations are used as shown
in Figure 2. At Walnut Gulch, five stations from the FLUXNET2015 dataset [57] and
four stations from the Cosmic-ray Soil Moisture Observing System (COSMOS) [58,59] are
employed. At MOISST, one station from the Soil moisture Sensing Controller And oPtimal
Estimator (SoilSCAPE) project [60], and COSMOS, two stations from the US Climate
Reference Network (US-CRN) [61], and three stations from the Plate Boundary Observatory
to study the water cycle (PBO H2O) project [62] are used. Lastly, at Harvard Forest, one
station from COSMOS is employed (Figure 2).

3. Methods

In this study, the proposed P-band SAR moisture estimation method consists of a hy-
brid decomposition method and a subsequent moisture estimation procedure. The hybrid
decomposition method combines eigen- and model-based decomposition techniques to
separate P-band SAR signals into individual scattering mechanisms. For the determination
of the scattering components, the method is supported by a soil scattering model, the
first-order multi-layer small perturbation method (SPM) [63]. Subsequently, based on
the decomposed scattering components, the complex soil permittivity is estimated. The
individual processing steps of the method are shown in Figure 3 and explained in detail in
the following.
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3.1. Soil Scattering Based on Multi-Layer SPM

The first-order multi-layer SPM [63] is employed to model the scattering angle αModel
s ,

needed within the proposed hybrid decomposition method (cf. Section 3.2).
As shown on the right side of Figure 3, modeled complex backscatter channels, denoted

by σpp [–] for horizontal or vertical polarization, are required to estimate the model-based
αModel

s . In this study, σpp are modeled with the first-order solution of the multi-layer
SPM [63], which computes backscatter coefficients based on soil characteristics for multiple
soil layers with depth. The ability of this model to consider backscattering from multiple
subsurface layers qualifies it to be more suitable for analyzing P-band soil interactions than
a soil surface-only scattering model such as the SPM, also called Bragg model [27,64], as
shown in [63]. The multi-layer SPM computes first-order scattering from layered surfaces
by considering “multiple scattering processes between the boundaries” [63]. Since the
model was originally designed to compute backscattering coefficients σo

pp, it was adapted

in order to simulate complex backscatter channels σpp, where σo
pp =

∣∣σpp
∣∣2 holds. The

complex backscatter channels σpp are estimated by:

σpp =

√√√√√4πk2
0cos2θsξ2 ∗

(α
f1
pp
(
ks
⊥
)
∗ α

f ∗1
pp
(
ks
⊥
))

W f1

(
ks
⊥ − ki

⊥
)
+ 2R

{
α

f1
pp
(
ks
⊥
)
α

f ∗2
pp
(
ks
⊥
)}
∗

W f1 f2

(
ks
⊥ − ki

⊥
)
+
(

α
f2
pp
(
ks
⊥
)
∗ α

f ∗2
pp
(
ks
⊥
))
∗W f2

(
ks
⊥ − ki

⊥
)

 (1)

with α
f1
pp
(
ks
⊥
)

and α
f2
pp
(
ks
⊥
)

as coefficients related to the incident field, W f1(k⊥) and W f2(k⊥)
as the power spectral densities of the rough boundaries, and with W f1 f2(k⊥) as their joint
spectral density [63]. In detail, if the incident electric field is p-polarized, the first-order
p-polarized scattered electric field in the direction ks is a linear function of the Fourier
transforms of the rough boundary functions f1 and f2, with the corresponding coefficients
denoted by α

f1
pp
(
ks
⊥
)

and α
f2
pp
(
ks
⊥
)
. Lastly, the square root of a complex number is calculated

according to Moivre’s theorem [65]. The reader is referred to [63] for detailed information
on backscatter coefficient calculations.

In Table 2, the required input parameters of the multi-layer SPM for simulating σpp are
listed together with their respective values used in this study. Please note that the chosen
values are one possible approximation for the acquisition scenario in this study and may
need to be adapted for different scenarios and other studies.

Table 2. Required input parameters of the multi-layer SPM for σpp simulations with the applied
values in this study.

Parameter Value

Frequency, f [MHz] 430
Number of layers, N [–] 2

Incidence angle in range, θi, and azimuth, ϕi [◦] θi from AirMOSS; ϕi = 0
Scattering angle in range θs, and azimuth, ϕs

[◦] θs = θi; ϕs = 180

z-coordinates of the respective boundary layer,
d1 [cm] d1 = λ/2 = 34.86

Surface roughness parameters of each layer
[cm]

(vertical RMS height s, horizontal correlation
length l)

s1, l1, s2, and l2 are dependent on roughness
indicator derived from TanDEM-X (Table 3,

right column)

Autocorrelation function, ACF [–] Exponential
Complex permittivity εs = ε′s − jε′′s of each

layer [–]
εs1 : ε′s ∈ [6, 40], ε′′s ∈ [0, 10]

εs2 = εs1 + (10 + j0.5)
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Table 3. Surface roughness parameter sets of each layer (vertical RMS height s, horizontal correlation
length l) as input for the multi-layer SPM based on TanDEM-X derived roughness indicator RTDX .

Roughness Indicator from TanDEM-X [m] Input Roughness Parameters [cm]

RTDX < 5 s1 = 0.5; l1 = 30; s2 = 0.25; l2 = 60
5 ≤ RTDX < 10 s1 = 1.5; l1 = 25; s2 = 0.75; l2 = 50

10 ≤ RTDX < 15 s1 = 2; l1 = 20; s2 = 1; l2 = 40
RTDX ≥ 15 s1 = 3; l1 = 15; s2 = 1.5; l2 = 30

Following findings by [48] (cf. Section 1), the surface roughness parameters, required
for modeling P-band backscatter channels, are not fixed to static values in this study.
However, since no information on surface roughness is available for AirMOSS monitoring
sites with comparable spatial resolution, the DLR TanDEM-X DEM at 90 m resolution [66],
downloadable at https://download.geoservice.dlr.de/TDM90/ (accessed on 5 March 2021),
is used to derive a first-order roughness indicator for each site. For this, TanDEM-X
elevations were resampled to the AirMOSS resolution, converted to roughness values
with the GDAL DEM utility algorithm [67] in QGIS© [68], and scaled according to the
employed wavelength (λ = 69.72 cm). The resulting roughness values, giving the degree of
irregularity of the surface, serve as roughness indicators in this study. Hence, depending on
this roughness indicator RTDX (Table 3, left column), typical surface roughness parameter
sets for each layer (Table 3, right column) were fixed as model input to account for varying
roughness during simulations (from smooth to rather rough). It can be seen that the chosen
values for vertical RMS height s vary from 0.25 to 3 cm, and for horizontal correlation
length l from 15 to 60 cm. These values were fixed based on several sensitivity analyses
and after reviewing the literature.

Lastly, complex backscatter channels σpp, for respective horizontal and vertical polar-
ization, are used to calculate αModel

s . In this study, the formulation by [27] is used, valid for
0 ≤ αs ≤ π

2 :

αModel
s = tan−1

(
σHH − σVV
σHH + σVV

)
. (2)

In this study, αModel
s is calculated for realistic ranges of complex soil permittivity εs [–]

(real part: ε′s ∈ [6, 40], imaginary part: ε
′′
s ∈ [0, 10], with 0.1 < ε

′′
s /ε′s < 0.5).

3.2. Polarimetric Hybrid Decomposition Method

The hybrid decomposition method was originally introduced by [24] as an iterative
approach (cf. Section 1) specifically designed for L-band data. However, it is adapted
here to be applied in a non-iterative way to P-band observations, and for estimating
complex permittivity. As illustrated in Figure 3, the hybrid decomposition method separates
polarimetric SAR observations into individual scattering components (surface, dihedral,
and volume).

First, the polarimetric coherency [T] matrix is defined as:

[T] =

T11 T12 0
T∗12 T22 0
0 0 T33

 (3)

with T∗12 as complex conjugate. By assuming reflection symmetry of the observed media, the
correlation terms between co- and cross-polarized signals are zero (T13, T23, T31, and T32).
Reflection symmetry can be assumed for one, because the correlation terms that are set to
zero (due to reflection symmetry) are neither important for the decomposition, nor for the
soil permittivity estimation. Second, areas where this symmetry may be violated, such as
urban or high mountain regions, are not considered during the analyses (cf. Section 2) [27].

https://download.geoservice.dlr.de/TDM90/
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[T] can be decomposed into the three canonical scattering components of surface [Ts],
dihedral [Td], and volume [Tv]:T11 T12 0

T∗12 T22 0
0 0 T33

 = [Ts] + [Td] + [Tv]. (4)

The rank-3, model-based vegetation volume component [Tv] is described by:

[Tv] =
fv

2 + 2A2
p

V11 V12 0
V∗12 V22 0
0 0 V33

 (5)

with fv as volume scattering intensity, and Ap [–] as particle anisotropy, which describes the
shape of vegetation volume scatterers from vertical dipoles (Ap = 0) and spheres (Ap = 1)
to horizontal dipoles (Ap = ∞). fv is given by:

fv=
4V12cos(2αs)(T∗12−T12+(T12+T∗12)cos(2αs))+(T11−T22)(V11−V22)(cos(4αs)−1)−

√
RT

4V2
12−V2

11+2V11V12−V2
22+(4V2

12+(V11−V22)
2)cos(4αs)

(6)

with RT =
∣∣∣(2(T12− T∗12

)
(V11−V22)sin(2αs) +

(
2(T11− T22)V12−

(
T12 + T∗12

)
(V11−V22)

)
sin(4αs)

)2∣∣∣,
and the polarimetric scattering angle αs as model-based αModel

s [24,31] (cf. Section 3.1).
Further, the parameters for estimating the vegetation volume component are given by:

V11 =
(

Ap + 1
)2, (7)

V12 =
(

A2
p − 1

)
sinc(2∆ψ), (8)

V22 =
1
2
(

Ap − 1
)2
(1 + sinc(4∆ψ)), (9)

V33 =
1
2
(

Ap − 1
)2
(1− sinc(4∆ψ)), (10)

with ∆ψ [◦] as width of the orientation angle distribution, which describes the degree of
orientation of the vegetation volume from oriented (∆ψ = 0◦) to random (∆ψ = 90◦).

Hence, (4) can be rearranged together with (5) in order to determine the soil pa-
rameters from the individual soil scattering components ([Ts], [Td]), by subtracting the
volume component:

[Ts] + [Td] =

T11 T12 0
T∗12 T22 0
0 0 T33

− fv

2 + 2A2
p

V11 V12 0
V∗12 V22 0
0 0 V33

. (11)

As already mentioned, [24] originally proposed an iterative estimation procedure to
find the most suited volume descriptions, namely fv, Ap, and ∆ψ. However, since this
approach is computationally expensive and needs certain assumptions (bare soil regions in
the observation area) to be initialized, a non-iterative way for estimating fv is proposed here,
independent of bare areas, by employing the model-based αModel

s and a realistic parameter
space for vegetation volume parameters, with Ap ∈ [0, 1] and ∆ψ ∈ [0◦, 90◦].

Thus, together with αModel
s , the SAR measurements are decomposed into the two

eigen-based scattering angles αs and αd [◦], as well as the scattering intensities of surface
fs, dihedral fd, and volume fv [–] for multiple Ap− ∆ψ combinations. The ability of the
method to estimate five variables (αs, αd, fs, fd, and fv) out of four SAR observations
(|SHH |2, |SVV |2, |SHV |2, |SVH |2) is possible, since the ambiguity for αs and αd is solved
by assuming an orthogonality condition with αs = π/2− αd [27], meaning, if the decom-
posed polarimetric scattering angle α is smaller than or equal to 45◦, surface scattering is
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assumed, denoted by αs, whereas in the case α is greater than 45◦, dihedral scattering is
assumed, denoted by αd [24]. This way, in contrast to model-based-only approaches, the
proposed method needs no prior assumptions on vegetation characteristics, and provides
the advantage of incorporating actual SAR measurements.

The surface [Ts] and dihedral [Td] scattering components are defined in (12) and (13),
respectively, assuming that both are orthogonal rank-1 components [3,24]:

[Ts] = fs

 cos2αs −sinαs 0
−cosαs sin2αs 0

0 0 0

, (12)

[Td] = fd

sin2αd cosαd 0
sinαd cos2αd 0

0 0 0

. (13)

Finally, (11) can be reformulated to:

T11 T12 0
T∗12 T22 0
0 0 T33

− fv

V11 V12 0
V∗12 V22 0
0 0 V33

 =

 fscos2αs + fdsin2αd ( fd − fs)cosαd,ssinαd,s 0
( fd − fs)cosαd,ssinαd,s fdcos2αd + fssin2αs 0

0 0 0

 (14)

with the surface scattering intensities given by [24]:

fs,d
= 1

2 (T11 + T22 − fv ∗ (V11 + V22)

±
√∣∣∣−4

(
T22(T11 − fvT11) + (T12 − fvT12)

(
fvV12 − T∗12

)
+ fv( fvV11 − T11)V22

)
+ (T11 + T22 − fv ∗ (V11 + V22))

2
∣∣∣) (15)

and the eigen-based scattering angle α to separate contributions from surface and dihedral
scattering, given by [24]:

αs,d = acos


1 + 4 ∗

(
T∗12 − fvV12

T11 − T22 − fvV11 + fvV22 ±
√

RT

)2
− 1

2
 (16)

with RT =
∣∣∣T2

11 +(T22 + fvV11)
2 +4(T12− fvV12)(T∗12− fvV12)−2T11(T22 + fv(V11−V22))−2fv(T22 + fvV11)V22 + f2

vV2
22

∣∣∣.
In summary, from polarimetric SAR observations and simulated αModel

s , the decomposi-
tion results for αs, αd, fs, fd, and fv can be estimated for varying εs and individual Ap− ∆ψ
combinations. Hence, the proposed method overcomes the computationally expensive
iterative procedure as proposed in [24], and provides the possibility of including multiple
vegetation characteristics (Ap, ∆ψ) as suggested by [3] (cf. Section 1). In this study, not all
Ap− ∆ψ combinations are applied. Firstly, to ensure non-negative decomposed powers,
scattering intensities for any Ap−∆ψ combination that are smaller than zero are eliminated
for subsequent analyses in order to avoid possible overestimation of the volume scattering
component (cf. Section 1.). Secondly, the radar vegetation index (RVI) is used to exclude
unrealistic Ap− ∆ψ combinations. Here, the RVImodel is modeled according to [31,69] for
all Ap− ∆ψ combinations used within the approach. Afterwards, the data-based RVIdata is
calculated for every pixel based on the respective SAR backscatter observations. Finally,
all Ap − ∆ψ combinations, where the RVImodel deviates from RVIdata around the aver-
age value (RVImodel) of all RVImodel (RVImodel /∈ RVIdata ± RVImodel), are excluded from
further analyses.

3.3. Complex Permittivity Estimation

The P-band SAR moisture estimation method proposed in this study provides the
advantage of complex permittivity estimation. The real part of the permittivity εs

′ is
associated with energy or heat storage, and the imaginary part of the permittivity εs ′′
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is associated with energy or heat loss, often called dielectric loss factor [35,70]. Since
model-based αModel

s is used to estimate fv during the decomposition of polarimetric SAR
observations, decomposition results can be calculated for a realistic range of soil permittivity
values. Subsequently, by determining the closest fit between decomposed data-based
αData

s and model-based αModel
s for individual Ap− ∆ψ combinations (cf. Section 3.2.), the

corresponding εs value can be estimated.
For that, the absolute value of the modulus r [–] and phase angle φ [–] of the real (α′s)

and imaginary (α′′s ) parts of αData
s and αModel

s , respectively, are calculated:

rαs(εs, Ap, ∆ψ) =

∣∣∣∣√α′s2 + α
′′
s 2
∣∣∣∣, (17)

φαs(εs, Ap, ∆ψ) =

∣∣∣∣tan−1
(

α
′′
s

α′s

)∣∣∣∣. (18)

Afterwards, the smallest sum of the absolute differences between data- and model-
based rαs and φαs is used to determine εs:

εs(Ap, ∆ψ) = argmin
(∣∣∣rαData

s
− rαModel

s

∣∣∣+ ∣∣∣φαData
s
− φαModel

s

∣∣∣). (19)

Since complex εs are estimated for multiple Ap− ∆ψ combinations to cover realistic
vegetation volume characteristics (cf. Section 3.2), the final complex εs is the average
value of εs(Ap, ∆ψ) for all remaining realistic Ap−∆ψ combinations (non-negative surface
scattering powers, modeled RVImodel around data-based RVIdata) (cf. Section 3.2).

For comparison, permittivity can be converted to soil moisture and vice versa, by
employing dielectric mixing models, such as the one by Topp et al., [71], Dobson et al., [72],
or Mironov et al., [73]. An extended review of dielectric mixing models for soils can be
found in [74]. In this study, ε′s results are converted to soil moisture θ [vol.%] according to
the dielectric mixing model of [71].

Based on estimated complex εs from decomposed polarimetric SAR observations, one
possible application is the estimation of the penetration depth δp [cm]. In this study, the
well-known formulation of [75] is adapted to calculate δp [44]:

δp =
1
2
∗

 λ

2π
∗

 2

ε′s ∗
(√

1 + tan2
(
ε
′′
s /ε′s

)
− 1
)


1
2
. (20)

This formulation was chosen because almost all available equations to estimate δp
are comparable and mainly dependent on the attenuation factor α, a measure for the
penetration depth of an electromagnetic wave in a medium. However, this is one of the
first to be published and well known.

Sensitivity studies and analyses with other published formulations for δp,
e.g., [41,43,45,76], showed overall similar results (R2 > 0.99) with small deviations
(σ < 5 cm). In fact, deviations were only noticeable at very low permittivity.

Since δp is only dependent on complex permittivity and wavelength (frequency)
(cf. Equation (20)), it is considered in this study as permittivity-based penetration depth to
analyze potential depths for P-band signals. For a better understanding of how δp behaves
across varying permittivity levels at P-band (430 MHz), modeling results are displayed in
Figure 4. It can be seen that δp decreases with increasing permittivity, as expected. Further,
δp estimates significantly decrease with increasing ε

′′
s , proving the importance of ε

′′
s for

δp calculations.
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Figure 4. Variations in penetration depth estimates for P-band frequency (430 MHz) along varying real ε′s
and imaginary ε′′s parts of complex permittivity based on the formulation from [44,75] (cf. Equation (20)).

4. Results

In this section, the results of the P-band SAR moisture estimation method are presented,
comprising filtered and decomposed SAR signals, estimated complex permittivity, and
soil moisture, as well as permittivity-based penetration depths. Furthermore, the results
are related to in situ measurements from various networks (cf. Section 2) to compare the
complex permittivity estimates.

4.1. Decomposition Results

Based on the proposed hybrid decomposition method, the relative indices Ps/Pt, Pd/Pt,
and Pv/Pt for soil, dihedral, and volume are estimated to analyze the normalized contribu-
tion of each scattering mechanism. The indices are calculated based on the decomposition
results for scattering angles and intensities according to [3].

In Figure 5, only the dominant scattering mechanisms, characterized by their relative
indices, are shown for each AirMOSS monitoring site. Apparent data gaps (white areas in
Figure 5) in the results originate from filtering for specific land cover classes and incidence
angles prior to the processing (cf. Section 2). Here, brown regions represent dominant soil
scattering, meaning the normalized contribution of soil scattering is the highest of all three
contributions. Accordingly, beige regions represent dominant dihedral scattering, while
dark green regions represent dominant volume scattering.

It can be seen that Walnut Gulch is mainly characterized by volume scattering, with
dihedral scattering in the eastern part of the site, where cultivated crops are the main
land cover class, as well as soil and dihedral scattering in the western part of the site
near the Green Valley south of Tucson (Figure 2, Section 2). In this particular region, the
influence of the incidence angle is evident since dominant volume scattering is mixed with
dominant soil scattering, despite the same land cover class (shrublands). Here, the incidence
angles vary across the entire possible range, from 30◦ to 50◦, and the terrain heights are
lowest, which leads to dominant soil scattering components instead of dominant volume
scattering contributions (Figure 5A). At the monitoring site MOISST, dihedral scattering
is dominant in the eastern part around the city Stillwater (Figure 5B), where the land is
predominantly covered by grassland/herbaceous and smaller evergreen forests (Figure 2,
Section 2). In contrast, regions mainly characterized by cultivated crops show dominant
volume scattering, e.g., in the center of the site. Again, the results are influenced by the
varying incidence angles, for instance, in the center of the site, where higher incidence
angles lead to rather dominant soil scattering (Figure 5B). Lastly, Harvard Forest shows
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primarily dihedral scattering with only some regions in the northern part of the monitoring
site, where soil or volume scattering are dominant (Figure 5C).
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Figure 5. Estimated normalized, relative power indices representing dominant soil (Ps/Pt), dihedral
(Pd/Pt), or volume (Pv/Pt) scattering at the AirMOSS monitoring sites. The average values of the most
dominant scattering mechanism of all dates are displayed (Figure 1, Section 2). White data gaps originate
from initial filtering of the input parameters. (A) Walnut Gulch, AZ, USA. (B) MOISST, OK, USA.
(C) Harvard Forest, MA, USA.

For a comparison of all decomposition results for varying years, Figure 6 displays the
average probability distribution function (PDF) of the normalized scattering contributions
at each monitoring site. It can be seen that the PDF for soil scattering peaks at the lowest
value but with the highest probability at Harvard Forest, while at Walnut Gulch and
MOISST the normalized soil scattering is located between dihedral and volume scattering
as second dominant scattering contribution, respectively (Figure 6, first row).

The dihedral scattering contribution is lowest at Walnut Gulch and MOISST but highest
at Harvard Forest (Figure 6, second row), while the volume scattering contribution is highest
at Walnut Gulch but lowest at Harvard Forest, with MOISST in between (Figure 6, third
row). Moreover, there are hardly any differences in the estimated PDFs of all three relative
indices between the years 2013 and 2015. Only the PDF for soil scattering contribution at
Harvard Forest slightly decreases from 2013 to 2015, whereas the PDF for dihedral and
volume scattering slightly increases (Figure 6, right column).

In summary, the monitoring site mainly covered by shrub/scrub (Walnut Gulch)
displays the lowest dihedral and the highest volume scattering, while the monitoring
site covered by forests (Harvard Forest) displays almost exclusively dihedral and the
lowest vegetation scattering. The mixed monitoring site covered by grassland/herbaceous
or cultivated crops (MOISST) shows almost balanced contributions of soil or volume
scattering with dihedral scattering being predominant in regions of grassland/herbaceous
and volume scattering in regions with extensive agriculture.
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4.2. Results for Complex Soil Permittivity and P-Band Penetration Depth

In Figure 7, the real ε′s and imaginary ε
′′
s part of the estimated complex soil permittivity

εs, determined with the proposed P-band SAR moisture estimation method (cf. Section 3.3),
are displayed for the main land cover classes for each monitoring site and date (Table 1).

Walnut Gulch, covered by shrub/scrub (cf. Section 2), shows the overall lowest
permittivity results with a median value of εS = 11.2− j1.5. At the monitoring site MOISST,
the main land cover class grassland/herbaceous shows slightly higher permittivity results
with a median value of εS = 14.9− j1.7. The latter is in contrast to the second dominant land
cover class cultivated crops (cf. Section 2) with a median value of εS = 13.8− j1.5. However,
the results for cultivated crops span the largest value ranges of all classes and monitoring
sites with the real part of permittivity varying from 6 to 31 and the imaginary part of
permittivity varying from 1 to 3.2. The three main land cover classes, deciduous, mixed, and
evergreen forest (cf. Section 2), at Harvard Forest display the overall smallest value ranges
and the highest permittivity results with comparable median values of ~εS = 16− j1.8.
Hence, the forest site Harvard Forest, characterized by a cold humid continental climate
(cf. Section 2), shows the highest permittivity with the smallest deviations, while the driest
monitoring site, mainly covered by shrub/scrub due to the arid climate (Walnut Gulch),
shows the lowest permittivity results. The monitoring site characterized by a temperate
climate and grassland/herbaceous or cultivated crops (MOISST) displays permittivity
results in between.
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Figure 7. Estimated real ε′s (left) and imaginary ε′′s (right) part of complex soil permittivity for main
land cover classes of the AirMOSS monitoring sites Walnut Gulch, MOISST, and Harvard Forest. The
results are displayed for all acquisition dates (Figure 1, Section 2). x̃ represents the respective median
value, n is the total amount of values per boxplot.

Converted to soil moisture, Walnut Gulch revealed values in a range from 12.6 vol.%
to 34 vol.% with a median value of 18.8 vol.%. At MOISST, values ranged from 12.6 vol.%
to 47.5 vol.% with a median value of 27.5 vol.%, and at Harvard Forest from 25.6 vol.% to
32.6 vol.% with a median value of 29.3 vol.%.

Based on the complex permittivity results, the penetration depth δP for each monitor-
ing site is estimated according to Equation (20) (cf. Section 3.3). In Figure 8, areal results for
δP are displayed for every AirMOSS monitoring site. At all sites, δP varies in comparable
ranges from 5.7 cm, 5.4 cm, or 7.7 cm to 35 cm, with the majority of values from 20 cm to
35 cm. Walnut Gulch and MOISST show higher variations in results according to varying
land cover classes, for instance, lower depths in regions where grassland/herbaceous or
forests are dominant, and greater depths where shrublands or cultivated crops are domi-
nant (Figure 2, Section 2). In contrast, at Harvard Forest only small deviations in results are
observed with the majority of δP values being at around 25 cm. The two slightly apparent
vertical stripes in the results with overall higher δP values originate from varying incidence
angles of the sensing system across the monitoring site (Figure 8C).

In detail, variations in δP are largest, where land cover is rather heterogeneous. For
instance, the monitoring site Harvard Forest, which is almost fully covered by forests
(Figure 2, Section 2), displays the smallest deviations in results and a homogeneous map
of δP across the entire site (Figure 8C). In contrast, in the eastern part of the monitoring
site Walnut Gulch around the city Elfrida, highest variations in δP are estimated because
in that region the land cover is a rather heterogeneous mixture of cultivated crops, grass-
land/herbaceous, and shrub/scrub. Further, in the center of the site Walnut Gulch at the
Whetstone Mountains, which are covered by forests, the estimated δP are lower than in the
surrounding areas, where shrub/scrub is dominant (Figure 2, Section 2). In the western
part of Walnut Gulch, at the dip east of the Green Valley (Figure 2, Section 2), δP are lowest
(Figure 8A).
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For detailed analyses, δP results are displayed in Figure 9 for the main land cover
classes of the three monitoring sites. As can be seen in the upper plot of Figure 9, the land
cover classes for forests (deciduous, evergreen, and mixed) at Harvard Forest have the
lowest δP values of all landcover classes at ~24.6 cm, with the smallest variations in results,
varying from ~22.8 cm to ~26.4 cm only. In contrast, at Walnut Gulch the highest median
δP value is estimated at 27 cm, varying in the range from 16.8 to 35 cm. The results at
the monitoring site MOISST display a median δP of 25.1 cm for grasslands/herbaceous
and 25.7 cm for cultivated crops with the largest deviations in the latter land cover class
(varying from 13.6 to 35 cm). Accordingly, PDFs in the lower plot of Figure 9 display the
highest densities with the narrowest distributions for forest land cover classes, peaking
from 24 to 25 cm, while other land cover classes reveal more distributed results, covering a
broader range of δP estimates at lower densities (Figure 9).

4.3. Comparison of Permittivity Estimates with In Situ Measurements

For a comparison of the estimated soil permittivity with in situ soil moisture measure-
ments at single locations (cf. Section 2), the results for ε′s are converted to soil moisture
θ [vol.%] according to the dielectric mixing model of [71].

In Figure 10, retrieved θ, based on the proposed P-band SAR moisture estimation
method and P-band SAR measurements, are compared with in situ measured θ at the driest
AirMOSS site, Walnut Gulch in Arizona. While retrieved values are in the range from
12.6 vol.% to 34 vol.% with a highest PDF from 12.5 vol.% to 19 vol.%, in situ measurements
vary from 2.6 vol.% to 15.4 vol.% with the PDF peaking at 6.7 vol.%. Conducted statistical
tests between retrieved and in situ measured θ values with a correlation coefficient (R2) [–]
and medium root-mean square error (RMSE) [vol.%] of R2 = 0.2 and RMSE = 14.1 vol.%
confirm a clear overestimation of retrieved θ compared to in situ measurements. The main
reason for the low correlation could be the discrepancy between measuring depths since
available in situ values are measured near the soil surface at ~0–5 cm, while for retrieved θ,
based on decomposed P-band SAR observations, penetration depths proved to vary from
16.8 cm to 35 cm with median δP at 27 cm (Figure 9).
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Figure 10. Comparison of retrieved soil moisture values, estimated with the proposed P-band SAR
method and converted from permittivity according to the dielectric mixing model from [71], with in situ
measured soil moisture values from various networks (cf. Section 2) at the AirMOSS monitoring site
Walnut Gulch, AZ. x̃ represents the respective median value, n is the total amount of values per boxplot.

In Figure 11, the comparison is shown for the AirMOSS test site Harvard Forest.
While retrieved θ vary in the range from 25.6 vol.% to 32.6 vol.%, with the PDF peaking at
29.3 vol.%, in situ measurements vary from 25.6 vol.% and 38.8 vol.%, with a median value
of 32.4 vol.%.
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Figure 11. Comparison of retrieved soil moisture values, estimated with the proposed P-band SAR
method and converted from permittivity according to the dielectric mixing model from [71], with in
situ measured soil moisture values from various networks (cf. Section 2) at the AirMOSS monitoring
site Harvard Forest, MA. x̃ represents the respective median value, n is the total amount of values
per boxplot.

Hence, with estimated R2 = 0.5 and RMSE = 4.6 vol.%, results show that the humid
forest site displays a higher correlation and lower error between retrievals and in situ
measurements compared to the arid site Walnut Gulch (Figure 10), despite the same
discrepancy between measuring depths. In situ measurements are again only available
from the soil surface at ~0–5 cm, while retrieval results showed average penetration depths
around 24.6 cm, overall varying from 22.8 to 26.4 cm (Figure 9).

Lastly, the comparison of θ values is conducted for MOISST (Figure 12). Only for this
site, in situ measurements for comparisons are available from the soil surface (~0–5 cm)
and also for greater soil depths at ~5–10 cm and ~10–20 cm. The median values of in situ
measured θ are increasing with greater measuring depths, from 16.4 vol.% near the soil
surface to 24 vol.% at a soil depth of ~10–20 cm. Concurrently, the in situ value ranges are
decreasing with greater soil depths, displaying the smallest deviations in measurements at
a depth of ~10–20 cm, varying from 19.3 vol.% to 32.3 vol.%. In comparison, retrieved θ vary
between 12.6 vol.% and 47.5 vol.% with a median value of 26.4 vol.%. Conducted statistics
show R2 = 0.09 and RMSE = 13.5 vol.% for 0–5 cm, R2 = 0.13 and RMSE = 12 vol.% for
5–10 cm, and R2 = 0.09 and RMSE = 12.2 vol.% for 10–20 cm. Hence, retrieval results
correlate slightly worse with in situ measurements from the top-soil at ~0–5 cm com-
pared to other measuring depths, and display the smallest difference in median values of
~2.4 vol.% with in situ measurements at the greatest measuring depth (~10–20 cm). How-
ever, estimated θ at MOISST showed a median penetration depth of 25.7 cm, with most
values varying from 13.6 to 35 cm for landcover class cultivated crops (Figure 9). Hence,
there is still a discrepancy between measuring depths, which explains a remaining differ-
ence between in situ (10–20 cm) and SAR-based soil moisture estimates.
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Figure 12. Comparison of retrieved soil moisture values, estimated with the proposed P-band
SAR method and converted from permittivity according to the dielectric mixing model from [71],
with in situ measured soil moisture values from various networks (cf. Section 2) at the AirMOSS
monitoring site MOISST, OK. x̃ represents the respective median value, n is the total amount of values
per boxplot.

5. Discussion

In comparison to model- or eigen-based decomposition methods, the hybrid decompo-
sition technique proposed in this study combines both methods and further employs a soil
scattering model suitable for P-band. Hence, the proposed P-band SAR moisture estimation
method continues the efforts of [24], an iterative approach for soil moisture estimation
applied to L-band observations, and of [3], the first hybrid decomposition method applied
to P-band SAR data by assuming volume scattering as a cloud of randomly oriented dipoles
(cf. Sections 1 and 3.2). Furthermore, the method proposed here is non-iterative with re-
duced algorithm complexity and, hence, computationally less expensive. It needs no prior
assumptions on initial vegetation conditions since it allows the application of a wide range
of vegetation cover characteristics in comparison to [3]. Lastly, it is the first of its kind, to
the best of our knowledge, for complex soil permittivity estimation from (P-band) SAR
data. The well-known problem of decomposition methods to overestimate the volume
scattering components (cf. Section 1), e.g., [9,27,33], is solved by excluding any vegeta-
tion characterization from further analyses, where scattering intensities become negative
(cf. Section 3.2). However, this is only feasible since multiple vegetation characterizations
can be considered.

By applying the proposed P-band SAR moisture estimation method to SAR observa-
tions at three AirMOSS monitoring sites with varying land cover classes, the scattering
contributions of surface, dihedral, or volume mechanisms could be estimated. Results show
dominant dihedral scattering over forests at the site Harvard Forest in Massachusetts, and
dominant volume scattering over shrub/scrub at the site Walnut Gulch in Arizona as well
as over cultivated crops at the site MOISST in Oklahoma. Further, it is interesting to notice
that cultivated crops at Walnut Gulch in Arizona show dominant dihedral scattering while
cultivated crops at MOISST in Oklahoma display dominant volume scattering (Figure 5).
This may be due to the different types and phenological stages of cultivated vegetation.
Hence, results in this study suggest dominant dihedral scattering for increasing vegetation
volume (height, density) at P-band. These results concur with previous studies. For exam-
ple, [77] found strong dihedral scattering for P-band measurements across a boreal forest
in Canada. They concluded that at P-band the ground and trunks contribute with more
relevance to the SAR signal than the branches and leaves, since with “smaller scatterers
compared to the wavelength” [77], these layers become more transparent to the incident
wave compared to higher frequencies such as L- or C-band. This is supported by findings
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of [19] across the AirMOSS monitoring site MOISST, where results also demonstrated that
vegetation is more transparent at P-band than at L-band, and that woody vegetation is
needed for dihedral scattering to appear in P-band. Similarly, Ref. [78] estimated dominant
dihedral scattering contributions due to mainly trunk–ground interactions in P-band SAR
signals across eucalyptus species in woodlands on the east coast of Australia. Analogue
results at L- or C-band, however, revealed predominant volume scattering from branches
and leaves (C-band) or a mix of dihedral and volume scattering, depending on the polariza-
tion (L-band). They concluded that with multiple frequencies and polarizations, individual
subsets of forest structures could be analyzed [78]. In contrast, findings from [3], which are
based on the same AirMOSS dataset employed in this study, showed increasing volume
scattering with increasing vegetation. In the case of the monitoring site Harvard Forest,
they found mainly volume scattering and less dihedral scattering, contrary to the results
presented. One reason may be that the applied method in [3] only considers one type of
vegetation (randomly oriented dipoles) across the entire study area, and did not employ
any soil scattering model for the determination of the volume intensity component prior to
the decomposition of SAR signals. However, the results in this study are supported by the
fact that overall lower penetration depths into the soil could be estimated across forests
compared to shrub/scrub (Figure 9, Section 4.2.). Over forests, such as at Harvard Forest,
P-band microwaves are able to penetrate through vegetation but less into soils, and interact
more with trunks. In smaller and less densely vegetated areas such as shrub/scrub at
Walnut Gulch, P-band microwaves are able to penetrate deeper into soils but interact more
with present branches and leaves due to the absence of trunks (2nd scattering center for
dihedral scattering), and thus display a higher volume scattering contribution in contrast to
forests. Hence, the characterization of vegetation types within the decomposition method
should be carefully addressed. Choosing only one type of representative will likely lead to
a biased estimation of volume scattering in P-band SAR signals.

Based on the best fit between simulations and decomposition results, the complex soil
permittivity was estimated. Analyses concur with the investigated land cover classes and
the climatic circumstances at each monitoring site. Lowest soil permittivity was estimated
across shrub/scrub in the hot deserts of Arizona, while the highest permittivity with the
smallest deviations in results was determined over forests in Massachusetts, characterized
by cold humid continental climates. Accordingly, results at the monitoring site in Oklahoma
with a temperate climate displayed soil permittivity in between the former ranges. Lastly,
the smallest deviations in results are found in the forest land cover classes, while the largest
deviations in results are found for pixels classified as cultivated crops. This fits varying
phenological stages of different vegetation types and irrigation situations on agricultural
managed lands (Figure 7, Section 4.2).

Converted permittivity to soil moisture was then compared at single locations with in
situ measurements. Unfortunately, in situ soil moisture values mainly of the top-soil layer
(0–5 cm) are available for comparison, while P-band SAR penetration depth estimates
indicate deeper penetration into the soil (mainly around 20–30 cm). Thus, the highest
correlation with the lowest deviations was found at Harvard Forest, and the lowest corre-
lations at MOISST, but with slightly increasing correlations for measurements at greater
soil depths. Overall, correlations are low and RMSEs are high. The main reason for this
is the discrepancy between sensing depths. While in situ soil moisture values are mainly
measured near the soil surface at ~0–5 cm, the estimated soil moisture is based on P-
band SAR observations, which proved to have penetration depths mainly from 20 cm to
35 cm. Thus, retrievals correlate less with near-surface soil moisture measurements but will
more likely correlate with measurements at deeper soil depths, as indicated at MOISST
(Figure 12, Section 4.3). At Walnut Gulch, for instance, retrievals are clearly overestimating
in situ measurements, showing the highest error (cf. Section 4.3). Several studies revealed
increasing soil moisture with greater soil depth until a certain point, e.g., [51,79–81]. For
example, [80] showed increasing soil moisture values with increasing soil depth from 5 cm
to 30 cm at Kendall, Arizona (Figure 2, Section 2). Further, in hot desert regions such as
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Walnut Gulch, the soil surface layer as a land–atmosphere boundary is highly influenced
by climate and weather conditions and, hence, the surface tends to dry out faster than the
soil layers below [79]. Another source for error is the spatial discrepancy between field
measurements and SAR-based observations. While the in situ measurements are point
values from single locations (cf. Figure 2, Section 2), the estimated results based on the
AirMOSS dataset have a spatial resolution of ~100 m.

Based on the estimated complex soil permittivity, permittivity-based penetration
depths were calculated, leading to overall P-band depths from 5 to 35 cm. Highest varia-
tions occur in regions, where the land cover is rather heterogeneous or where influences
of different phenological stages of the vegetation or irrigation situations lead to varying
permittivity estimates. In detail, at the humid forest site the smallest penetration depths at
a median value of 24.5 cm with the smallest deviations in results were estimated. Corre-
spondingly, the driest monitoring site shows the greatest variations in penetration depths
over cultivated crops, varying mainly from 16.8 to 35 cm around a median value of 27 cm.
This is in accordance with previous studies. The authors of [40] showed that P-band can
provide soil moisture retrievals for a depth greater than 10 cm when using a frequency
lower than 0.5 GHz, while [46] estimated similar P-band penetration depths, varying from
15 to 36 cm, showing significant annual seasonality depending on the soil moisture content.

Lastly, following the assumption of [52], P-band penetration depths between 6.97 and
34.86 cm are realistic (cf. Section 1), which is almost exactly the value range estimated
in this study (5 to 35 cm). Hence, depending on soil permittivity and vegetation cover
characteristics, P-band is able to penetrate several decimeters into the soil, enabling the
estimation of RZSM.

6. Conclusions and Outlook

In this study, a method for complex soil permittivity and permittivity-based penetra-
tion depth estimation based on P-band SAR data is proposed and implemented. For that,
a hybrid decomposition technique is set up for separating fully polarimetric P-band SAR
observations into individual scattering mechanisms (soil, dihedral, volume).

The proposed method extracts the soil scattering component by applying a hybrid
(eigen- and model-based) decomposition method and incorporating a soil scattering model
suitable for P-band frequency, the multi-layer SPM. To the best of our knowledge, this
method is the first of its kind for complex soil permittivity estimation from P-band SAR
data. The approach is only limited to fully polarimetric SAR observations as co- and
cross-polarized coherency matrix elements are needed within the decomposition. Further,
although the proposed approach provides the ability to consider many different types of
vegetation structures, the characterization of varying vegetation types within the hybrid
decomposition method should be carefully addressed.

Comparisons of retrieved soil moisture with in situ measurements show lower to
medium correlations, proving the overall larger penetration of P-band microwaves into
soils, since results match less with top-soil layer measurements but more with deeper
(~20 cm) measurements. The lack of possibility to analyze retrieval results, presented in
this study, with comparable soil moisture measurements, originating at least from similar
soil depths, proves the need for measurements at greater soil depths. Overall, P-band
penetration depths from 5 to 35 cm were estimated, depending on regional climate and
land cover characteristics and heterogeneity.

In summary, the proposed method was further adapted and revised in order to over-
come many drawbacks of previous decomposition methods (e.g., overestimation of volume
scattering component, consideration of one single vegetation type, missing multi-layer
structures for soil scattering at P-band), and to be applicable for complex soil permittivity
estimation. Presented decomposition and complex permittivity results agree well with
climate and soil conditions at the three different monitoring sites, proving the feasibility of
the method. Further, estimated P-band penetration depths are in accordance with previous
studies and confirm the overall higher penetration ability of P-band compared to L-band
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microwaves. In addition, strong dihedral scattering contributions in the SAR signal at
P-band over forests, as shown in Figure 8 (cf. Section 4.2), are encouraging the development
of an approach for soil moisture estimation under forests based on the dihedral scattering
component instead of the soil scattering component, as proposed by [82].

Finally, since the proposed method only needs fully polarimetric P-band SAR mea-
surements, it can be used to estimate complex soil permittivity and potential P-band
penetration depths from space based on the SAR data of the upcoming BIOMASS mission
(cf. Section 1) [13].
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A B S T R A C T   

An approach for estimating vertically continuous soil moisture profiles under varying vegetation covers by 
combining remote sensing with soil (hydrological) modeling is proposed. The approach uses decomposed soil 
scattering components, after the removal of the vegetation scattering components from fully polarimetric P-band 
SAR observations. By comparing these with hydrological simulations, soil moisture profiles from the soil surface 
until a soil depth of 30 cm (assumed average P-band penetration depth) are estimated. Here, the hydrological 
model HYDRUS-1D, as a representative of any soil hydrological model, is employed to simulate an ensemble of 
realistic soil moisture profiles, which are used for a multi-layer soil scattering model to obtain forward modeled 
soil scattering components. Compared to the decomposed SAR-based soil scattering components, the most 
appropriate soil moisture profile from the ensemble is estimated. The approach is able to provide physically 
(hydraulic) more meaningful soil moisture profile shapes than currently existing profile estimation approaches, 
like polynomial fitting to few measurements at discrete soil depths. Results are presented across eight in situ 
measuring stations in the U.S. within six test sites of NASA’s Airborne Microwave Observatory of Subcanopy and 
Subsurface (AirMOSS) mission between 2013 and 2015. In-depth analyzes and validations with in situ measured 
soil moisture information demonstrate the feasibility of the proposed approach. Overall, estimated soil moisture 
profiles at the different sites match the varying local climate, vegetation cover, and soil conditions. Coefficients 
of determination between estimated and in situ measured soil moisture values vary between 0.48 and 0.92, while 
unbiased errors range from 1.4 vol% to 3.7 vol%, and Fréchet distances (analyzing the similarity of profile 
shapes) vary between 0.1 and 0.2 [− ].   

1. Introduction 

Although soil moisture as part of the geosphere accounts for only 
~0.0089% of the total water on Earth (Dingman, 2015), it significantly 
contributes to the characterization of the Earth’s climate (Bojinski et al., 
2014). Soil moisture links exchanges between the land and the atmo
sphere, and connects the water and carbon cycles through 

evapotranspiration (Dingman, 2015). In weather forecasting and 
climate modeling, the soil moisture distribution and variability across 
the vertical soil column is evident since it has direct impact on land- 
atmosphere coupling, evapotranspiration as well as heat and water ex
changes (Dingman, 2015; Dirmeyer et al., 2016; Feddes et al., 2001). For 
example, the current state of the soil moisture variability across the 
vertical soil column, the so-called soil moisture profile, controls how fast 
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water can infiltrate and percolate vertically through the soil as well as 
how quickly a soil dries out (Ford et al., 2014). Hence, it controls, for 
instance, crop and plant growth, soil erosion, landslides, and forest fires. 
Up to now, soil moisture and its vertical variability is mainly treated 
secondarily in climate modeling (Vereecken et al., 2022). However, 
several studies showed that unrealistic initial assumptions on soil 
moisture impact the forecast skill of models, stating that remotely sensed 
soil moisture can have great potential in improving climate modeling by 
describing the coupled land-atmosphere behavior more realistically 
(Dirmeyer et al., 2018; Koster et al., 2011). For instance, the second 
phase of the Global Land-Atmosphere Coupling Experiment (GLACE-2) 
was intended to investigate how more realistic land surface initializa
tions, notably soil moisture, would improve the forecast skill of climate 
models. Results showed that in many regions realistic initializations, for 
example from remotely sensed soil moisture observations, can signifi
cantly improve this skill (Koster et al., 2011). 

Up to now, remote sensing approaches allow the estimation of soil 
moistures at the soil surface from L-band measurements (He et al., 2016; 
Jagdhuber et al., 2015), or at deeper soil depths within the root zone 
from P-band measurements (Etminan et al., 2020; Fluhrer et al., 2022; 
Tabatabaeenejad et al., 2015). These approaches represent the behavior 
of moisture across the soil profile from the soil surface until the sensing 
depth of the microwave with just one single uniform value. Estimating 
only single soil moisture values from few radar measurements, however, 
is prone to errors and often impractical due to the high number of un
knowns compared to the available number of measurements (Konings 
et al., 2014). 

Further, the soil moisture variability with depth cannot be estimated 
from single remote sensing observations despite the fact that the radar 
backscatter is able to provide information about soil moisture discon
tinuities. However, knowledge about the soil moisture profile is of 
utmost importance in climate research and many environmental appli
cations, like land surface, weather and climate monitoring (Walker 
et al., 2001), or agricultural production and food security (Almendra- 
Martín et al., 2021). 

There already exist different approaches to estimate soil moisture 
profiles by using land surface modeling or remote sensing data assimi
lation techniques. The simplest approach to estimate a soil moisture 
profile is from soil moisture information at discrete soil depths by fitting 
a polynomial function of certain degree through the few known points. 
The soil moisture information for that can originate from in situ field 
measurements, L- and P-band remote sensing techniques, or from 
models. Overall, the polynomial approach is rather imprecise and 
physically less robust since this mathematical assumption on very few, 
sometimes just three moisture values, can only represent high level 
simplifications of the reality, although there are recent attempts to 
improve the polynomial soil moisture profile estimation, e.g., (Sadeghi 
et al., 2016). Further, attempts have been made to retrieve RZSM values 
from prognostics describing the ‘average deviations from the equilib
rium profile’ (Reichle et al., 2017), or by evaluating the degree of as
sociation or coupling strength between near surface and in situ root zone 
soil moistures, e.g., (Ford et al., 2014; Short Gianotti et al., 2019). Here, 
assumptions on theoretical relationships ignore the lack of trans
ferability of soil moisture dynamics across spatio-temporal scales. 
However, soil moisture in the subsurface responds slower to changes and 
is less variable compared to near-surface soil moisture (Ford et al., 2014; 
Short Gianotti et al., 2019). This means, the link between both is highly 
complex especially after a precipitation event. Another method for soil 
moisture profiles estimation is the comparison of the observed back
scatter from radars with simulated backscatters based on forward 
models (Konings et al., 2014). However, a radar signal includes all po
tential scattering mechanisms from soil, vegetation, and the combina
tion of both. Hence, the vegetation volume covering the soil also has to 
be modeled and considered in backscatter simulations, which requires 
certain assumptions and adds additional complexity to the modeling. 
Lastly, several soil moisture approaches have been published based on 

land data assimilation. For that, spatially or temporally coarse soil 
moisture in situ measurements or satellite-derived soil moisture infor
mation are used in a land surface model together with auxiliary infor
mation, such as precipitation or soil characteristics. In this way, 
enhanced model calibration, spatially or temporally upscaled soil 
moisture information, or RZSM estimates across the vertical soil profile 
can be achieved (Lei et al., 2020; Liu et al., 2011; Tangdamrongsub 
et al., 2020). The advantages of the proposed approach compared to 
assimilation are, for one, that no prior information on soil moisture 
conditions across the vertical soil profile has to be known, neither from 
in situ measurements, nor satellite-derived. Second, no dense time series 
of remote sensing observations is required as input, as the comparison of 
decomposed P-band SAR data and model simulations can be done for 
every time step individually. However, assimilating temporally coarse 
remote sensing data, as available from the AirMOSS mission (~4–5 dates 
per year), is not sufficient enough for valid results. Lastly, the decom
posed remote sensing estimate can be compared directly with model 
simulations without the need for model adaptions. 

Besides remote sensing, soil states, like soil moisture, can be modeled 
with hydrological models based on measured atmospheric (e.g. precip
itation, solar radiation, wind speed) and soil (e.g. temperature, matric 
potential, conductivity) parameters. In hydrological modeling, one of 
the general equations for predicting and describing one-dimensional 
water movement in (partially) saturated or unsaturated soils is the 
well-known Richards equation (Dingman, 2015), a combination of the 
mass conservation law (continuity principle) and the Darcy-Buckingham 
equation (Sadeghi et al., 2016). The Richards equation is a partial dif
ferential and highly nonlinear equation due to the dependence of the 
hydraulic conductivity and the soil water content on the soil matric 
potential. This means, a closed-form analytical solution of the equation 
is impossible, except for special cases with many simplifications and 
certain boundary conditions (Dingman, 2015). However, these can only 
lead to approximate solutions and are not generally applicable. There 
exist many hydrological models to numerically solve the Richards 
equation by either employing “a finite difference, finite volume, or finite 
element approximation in space” (Farthing and Ogden, 2017), e.g., the 
Flux-Penn State Integrated Hydrologic Model (Shi et al., 2013), the 
ParFlow (Ashby and Falgout, 1996), or the RichardsFOAM (Orgogozo 
et al., 2014). 

In this study, a joint approach of remote sensing and soil hydrolog
ical modeling is proposed for the estimation of continuous soil moisture 
profiles. The approach compares decomposed polarimetric P-band SAR 
estimates with respective simulations from the HYDRUS-1D (soil hy
draulic model). The advantage of the proposed approach is, for one, that 
vegetation scattering contributions to the total SAR signal are removed 
before the comparison. Second, unlike in standard hydrological 
modeling, less assumptions on initial conditions are made in order to 
decrease potential sources for errors within simulations. That way, the 
proposed approach allows the comparison of actual observed SAR 
measurements with a set of hydrological simulations in order to estimate 
the most probable soil moisture profile. 

The approach is supposed to lead to physically (hydraulic) more 
meaningful soil moisture profile shapes than mathematical approxima
tions like polynomial fittings. Further, it provides the advantage of 
estimating continuous soil moisture profiles under varying vegetation 
covers (from grassland to forests) and for different climates. 

2. Data sources 

In this study, the polarimetric P-band SAR dataset from the Airborne 
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) 
campaign, compiled between 2012 and 2015 by the National Aero
nautics and Space Administration (NASA), is used. During the AirMOSS 
campaign, fully polarimetric SAR signals at a center frequency of 430 
MHz, with a high radiometric calibration accuracy of 0.5 dB, and a noise 
equivalent of − 40 dB were recorded across ten sites in Northern and 
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Central America. It was the first P-band airborne mission fully dedicated 
to RZSM estimation. Each monitoring site was revisited at least three 
times every campaign year and covers an area of ~25 × 100 km at ~90 
m spatial resolution (Alemohammad et al., 2018). Detailed information 
on the campaigns and the instrument can be found in, e.g., (Alemo
hammad et al., 2018; Chapin et al., 2012). 

The proposed approach is validated and analyzed thoroughly with 
comparison to in situ field measurements. The focus in this study is on 
SAR pixels (where in situ data from measuring stations are available) 
within six AirMOSS sites in the U.S. (Fig. 1). These sites are “Howland 
Forest” in Maine, “Duke Forest” in North Carolina, “Metolius” in Oregon, 
“MOISST” in Oklahoma, “Tonzi Ranch” in California, and “Walnut 
Gulch” in Arizona. Information and locations on the investigated Air
MOSS monitoring sites and the in situ measuring stations are shown in 
Fig. 1 and Table 1. 

Fig. 1 shows that two sites are located at the east and three sites on 
the west coast of the U.S., with one site in the center. Hence, the climate 
regimes vary between cold humid continental climate with warm sum
mers and significant precipitation in all seasons (Dfb), temperate climate 
with mild, dry, or hot summers (Csa, Csb, Cfa), and arid climate of a 
desert with warm summers (BSk) (Peel et al., 2007). 

The soil textures indicate different types of a loamy soil (Fig. 1), 
while the landcover classes vary from grasslands, pastures or shrublands 
of woody savannas (with forest canopy cover between 30 and 60% and 
forest height exceeding 2 m) to evergreen needleleaf forests (Homer 
et al., 2015). Further, the amount of available dates for every AirMOSS 
site, where SAR measurements were recorded, vary between 13 and 22, 
with three to ten dates per year (in total 143 dates) (Table 1). 

For hydrological simulations of soil moisture profiles (see Sec. 3.2.), 
input parameters from in situ measuring stations of the AmeriFlux 
network (AmeriFlux, 2022) and the US Climate Reference Network (US- 
CRN) (Bell et al., 2013) are used. For the subsequent validation of re
sults, soil moisture measurements at multiple depths from the same in 
situ networks are used (Fig. 1, Table 1). The focus in this study is on 
presenting and validating the proposed method for estimation of 
continuous soil moisture profiles from combined P-band polarimetry 
and soil modeling. Nevertheless, obtained results are additionally 
compared to two well-known soil moisture products: the European 
ReAnalysis (ERA5) land product from the European Centre for Medium- 
Range Weather Forecasts (ECMWF) (Muñoz Sabater, 2019), and the 
project AirMOSS L4 mission product (Crow et al., 2016). The ERA5-land 
dataset is a reanalysis product combining available observations with 
model data based on physics. The core is the Carbon Hydrology-Tiled 
ECMWF Scheme for Surface Exchanges over Land (CHTESSEL). For 
the ERA5-land soil moisture, for example, a total of >800 in situ sensors 
from various networks around the globe are used to initialize the model 
(Muñoz-Sabater et al., 2021). In contrast, the AirMOSS L4 product is 
based on mathematically integrating (polynomials) the AirMOSS L2/L3 
product (Moghaddam et al., 2016), which provides soil moisture esti
mates at specific depths by using the AirMOSS P-band SAR observations 
along with several models (vegetation, ground surface scattering, sub
surface scattering), with the Penn State Integrated Hydrologic Model 
(PIHM) and auxiliary information (e.g., land cover classes, soil texture) 
(Crow et al., 2016). However, no in-depth comparison of the different 
methods for soil moisture estimation is performed and could be done in a 
follow-on study, outlining in detail the differences in algorithms, and 
consequently, results. 

3. Methods 

In this study, a combined technique of remote sensing and soil hy
drological modeling is proposed for estimating continuous soil moisture 
profiles. As outlined in Fig. 2, the polarimetric soil scattering angle αSAR

s 
can be determined from radar remote sensing, by decomposing the 
observed SAR signals into the individual scattering mechanisms (soil, 

dihedral, and volume) (Fluhrer et al., 2022). 
From hydrological modeling, simulated soil moisture profiles θSMPn 

from HYDRUS-1D can be used as input to the multi-layer small pertur
bation method (SPM) (Tabatabaeenejad and Moghaddam, 2006) to 
forward model the backscatter coefficients from several soil layers, and 
calculate their polarimetric soil scattering angle αModel

s n. In the end, the 
soil moisture profile is estimated from the best fit between αSAR

s and all 
αModel

s n. 
Here, the comparison between decomposed SAR data and forward 

simulations is performed on the level of the polarimetric soil scattering 
angle αs instead of directly comparing the observed and modeled 
backscatter coefficients. One reason is, that the observed backscatter 
coefficients contain scattering from all mechanisms (soil, dihedral, 
volume) and not only soil scattering. Another reason is that from remote 
sensing fully polarimetric backscatter coefficients are available, while 
from electromagnetic forward modeling only co-polarized (HH, VV) 
backscatter coefficients are obtainable. Hence, the use of αSAR

s after the 
decomposition ensures remotely sensed information from the soil scat
tering component only but without loss on information since all 
observed co- and cross-polarized (HH, VV, HV, VH) backscatter co
efficients are used within the decomposition. 

It is important to emphasize that soil hydrological modeling does not 
simulate backscatters. A hydrological model (in this study the HYDRUS- 
1D) is used to compute soil moisture profiles, which in turn are used for 
backscatter simulations based on an electromagnetic model, in this 
study the multi-layer SPM. 

In the following, both procedures to estimate the respective soil 
scattering angle αs and the joint technique will be described in more 
detail. 

3.1. Decomposed polarimetric soil scattering angle from P-band SAR 
observations 

The polarimetric soil scattering angle αSAR
s is estimated by decom

posing the observed P-band SAR signal into individual scattering com
ponents by applying the hybrid decomposition method from (Fluhrer 
et al., 2022). This method separates the reflection symmetric, polari
metric coherency matrix [T] from observed SAR signals into the three 
scattering components (surface [Ts], dihedral [Td], and volume [Tv]): 
⎡

⎢
⎢
⎣

T11 T12 0
T*

12 T22 0
0 0 T33

⎤

⎥
⎥
⎦ = [Ts] + [Td] + [Tv], (1)  

where T*
12 is the complex conjugate (Fluhrer et al., 2022). The volume 

component is defined by 

[Tv] =
fv

2 + 2A2
p

⎡

⎢
⎢
⎣

V11 V12 0
V*

12 V22 0
0 0 V33

⎤

⎥
⎥
⎦, (2)  

where fv is the volume scattering intensity, Ap [ − ] is the particle 
anisotropy, and Vxx [ − ] are the parameters to estimate the volume 
component. The Vxx parameters are based on Ap and the width of the 
orientation angle distribution Δψ , describing ‘the degree of orientation 
of the vegetation volume from oriented (Δψ = 0◦) to random (Δψ =
90◦)’ (Fluhrer et al., 2022). Similar to the study of (Fluhrer et al., 2022), 
realistic parameter spaces for both variables are used, with Ap ∈ [0,1]
and Δψ ∈ [0◦, 90◦]. Further, all Ap − Δψ combinations leading to nega
tive powers are excluded in further analyses. This way, multiple, valid 
vegetation representatives ensure an improved removal of the vegeta
tion component. Lastly, the eigen-based soil scattering angle αSAR

s can be 
estimated: 
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Fig. 1. Overview of employed in situ measuring stations at AirMOSS monitoring sites in the U.S.: (A) US-Ho1, Howland Forest, ME. (B) US-Me6 (Metolius Young Pine 
Burn), Metolius, OR. (C) US-Ton, Tonzi Ranch, CA. (D) Durham 11 W, Duke Forest, NC. (E) US-SRS (Santa Rita Savanna), Walnut Gulch, AZ. (F) US-Var (Vaira Ranch 
Ione), Tonzi Ranch, CA. (G) Stillwater 2 W, MOISST, OK. (H) Stillwater 5 WNW, MOISST, OK. Political state boundaries on the top of the U.S. are from (Homeland 
Infrastructure Foundation-Level Data (HIFLD), 2012). The soil texture triangle at the bottom (modified after (Sandrock and Afshari, 2016)) show indications on soil 
textures for every station (Table 1). 

A. Fluhrer et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 305 (2024) 114067

5

αSAR
s = acos

⎛

⎜
⎝

(

1 + 4*

(
T*

12 − fvV12

T11 − T22 − fvV11 + fvV22 −
̅̅̅̅̅̅
RT

√

)2)− 1
2

⎞

⎟
⎠, (3)  

with RT =

⃒
⃒
⃒T2

11 +
(
T22 + fvV11

)2
+ 4
(
T12 − fvV12

)(
T*

12 − fvV12
)
−

2T11
(
T22 + fv(V11 − V22)

)
− 2fv

(
T22 + fvV11

)
V22 + f2

v V2
22

⃒
⃒
⃒ (Fluhrer 

et al., 2022). For more details on the hybrid decomposition and removal 
of the vegetation component, the reader is referred to (Fluhrer et al., 
2022; Jagdhuber et al., 2015). 

In summary, for every observed SAR signal, one αSAR
s is estimated 

from the soil scattering component after removing the dihedral and 
volume scattering components. 

3.2. Modeled soil scattering angle based on coupled HYDRUS-1D and 
multi-layer SPM simulation 

The HYDRUS-1D (Šimůnek et al., 2013) soil hydraulic model is used 
for simulating one-dimensional water flow with heat and vapor trans
port in variably saturated, homogeneous soils. The model numerically 
solves a modified version of the Richards equation by using the linear 
finite element method (Šimůnek et al., 2013): 

Table 1 
Information on AirMOSS monitoring sites and in situ measuring stations.  

AirMOSS site Amount of dates (2013/2014/ 
2015) 

climate In situ station In situ network NLCD Land Cover Class Soil texture (Fig. 1) 

Howland Forest, 
ME 

21 
(8/8/5) 

Dfb US-Ho1 AmeriFlux (Hollinger, 
2021) 

Evergreen Needleleaf 
Forests 

Sandy Loam 

Duke Forest, NC 
22 
(8/10/4) Cfa Durham 11 W US-CRN Pasture / Hay Loam 

Metolius, OR 
21 
(5/7/9) 

Csb US-Me6 AmeriFlux (Law, 2021) 
Evergreen Needleleaf 
Forests 

Sandy Loam/ Loamy 
Sand 

MOISST, OK 
19 
(6/9/4) Cfa 

Stillwater 2 W 
US-CRN Grassland / Herbaceous 

Sandy Loam/ Loam 
Stillwater 5 
WNW 

Loam 

Tonzi Ranch, CA 
13 
(3/6/4) Csa 

US-Ton 
AmeriFlux (Ma et al., 
2021) Woody savanna 

Loam 
US-Var 

AmeriFlux (Ma et al., 
2022) Grassland 

Walnut Gulch, AZ 15 
(5/4/6) 

BSk US-SRS AmeriFlux (Vivoni, 2022) Woody Savanna / 
Shrubland 

Sandy Loam  

Fig. 2. Flow chart of the proposed joint technique combining remote sensing and soil (hydrological) modeling for estimation of soil moisture profiles.  
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∂θ
∂t

=
∂
∂x

[

K
(

∂h
∂x

+ cosα
)]

− S, (4)  

where θ is the volumetric water content [L3/L3], t is the time [T], x is the 
spatial coordinate [L], h as the soil matric potential [L], α giving the flow 
direction (= 0 [◦] for vertical flow), S is the sink term [L3/L3/T] to ac
count for root water uptake, and K is the unsaturated hydraulic con
ductivity function [L/T]. For simulations, the soil hydraulic properties, 
the soil water retention, θ(h), and soil hydraulic conductivity, K(h), 
functions are given by the Van Genuchten-Mualem analytical model, 
which uses the statistical pore-size distribution model of (Mualem, 
1976): 

θ(h) =

⎧
⎪⎨

⎪⎩

θr +
θs − θr

[1 + |αh|n ]m
h < 0

θs h ≥ 0
, (5)  

K(h) = KsSl
e

[
1 −

(
1 − S1/m

e

)m
]2
, (6)  

Se =
θ − θr

θs − θr
, (7)  

where θr and θs are residual and saturated water contents [L3/L3], Ks is 
the saturated hydraulic conductivity [L/T], Se is the effective saturation 
[− ] given by (7), α is the inverse of the air-entry value (or bubbling 
pressure) [L− 1], n is the pore-size distribution index [− ], m = 1 − 1/n, 
and l is the pore-connectivity parameter [− ], which is assumed to be 
equal and set to 0.5 (Mualem, 1976). The Van Genuchten-Mualem pa
rameters for every simulation are calculated in this study based on the 
pedotransfer function (PTF) of (Tóth et al., 2015) and input parameters 
from SoilGrids™ at 100 m spatial resolution (Nauman et al., 2017). 

Additionally, to account for non-compensated water uptake by plant 
roots during simulations, the sink term S in (4) is calculated after the 
root-water uptake model from (Feddes et al., 1978), and the root water 
uptake stress response function after (Cai et al., 2018). 

Within simulations, a non-uniform spatial variation of the potential 
extraction term is chosen by assuming a linearly decreasing water up
take distribution across the root zone (until assumed root depth) 
(Šimůnek et al., 2013). The assumed root depth, limiting the zone where 
root water uptake can occur within the vertical soil profile, was set at the 
soil depth of − 1 m except for landcover class ‘forests’, where roots were 
assumed to expand across the entire soil profile. The heat transport 
parameters, namely the volume fraction of solid phase (Qn = 0.6 [ − ]) 
and organic matter (Qo = 0.0001 [ − ]), the longitudinal thermal dis
persivity (λL = 6 [cm]), and the heat capacities of solid phase (Cn =

1.43327*1014), organic matter (Co = 1.8737*1014) and water (Cw =

3.12035*1014) 
[
J/m3/

◦C
]
, are fixed for all HYDRUS-1D simulations 

(Nakhaei and Šimůnek, 2014; Šimůnek et al., 2013). The parameters in 
the employed thermal conductivity function after (Chung and Horton, 
1987), namely b1, b2, and b3 [W/m/

◦C], are depending on the respective 
sand, clay and silt fractions from SoilGrids™ (Nauman et al., 2017) for 
every SAR pixel. 

The required meteorological and atmospheric input parameters at 
daily time scales, namely precipitation [mm], net solar radiation [MJ/ 
m2], sunshine hours [h], potential evaporation [mm], air temperature 
[◦C], soil temperatures (for upper & lower boundary of the soil profile) 
[◦C], average humidity [%], and wind speed [km/d], are taken from the 
in situ measuring stations (see Sec. 2.). Here, the number of sunshine 
hours per day was estimated from the measured incoming shortwave 
radiation. For that, the sum of hours per day, where the incoming 
shortwave radiation exceeded 120

[
W/m2] (World Meteorological Or

ganization, 2021) is calculated. The incoming shortwave radiation was 
taken from in situ measurements at every AmeriFlux station. For all other 
stations, namely Stillwater 2 W, Stillwater 5 WNW, and Durham 11 W 
(Table 1), the ERA5-land reanalysis product (Muñoz Sabater, 2019) is 

used. 
Overall, the chosen simulation set-up in HYDRUS-1D assumes time- 

dependent atmospheric boundary conditions with variable runoff 
(Table 2) at the soil surface, and time-independent atmospheric 
boundary conditions with free drainage (∂h/∂x = 0) at the bottom of the 
profile. For heat transport, the first-type Dirichlet boundary condition at 
the soil surface (ponded infiltration) with zero gradient (continuous 
temperature profile) at the bottom was chosen. Further, no hysteresis in 
soil water retention and hydraulic conductivity is assumed, and initial 
water flow conditions are specified in terms of the soil matric potential 
(Šimůnek et al., 2013). For that, the absolute value of the minimum 
allowed soil matric potential on the soil surface is set to − 100,000 [cm] 
(Cai et al., 2018), and the initial soil matric potential across the soil 
profile is kept variable (Table 2). 

The HYDRUS-1D soil moisture profiles θSMPn, where n stands for one 
simulation within the ensemble, are always simulated on daily basis for 
one entire year with a three-month initialization period, in order to align 
initial conditions with given weather conditions. Lastly, a total of 101 
simulation nodes, which were distributed non-linearly across the soil 
profile with decreasing density from the soil surface to the lower 
boundary of the determined soil column, have been defined. The input 
parameters that were kept flexible within simulations in order to mini
mize the amount of initial assumptions, and to calculate a variety of 
potentially occurring soil moisture profiles, are listed in Table 2. This 
means that for every in situ measuring station (Fig. 1, Table 1) and every 
AirMOSS acquisition year (2013 to 2015) 735 simulations were per
formed, respectively. All simulated HYDRUS-1D soil moisture profiles 
θSMPn are then converted to soil permittivity εSMPn according to the 
dielectric mixing model of (Mironov et al., 2009), and used as an 
ensemble input for backscatter simulations with the multi-layer SPM 
(Tabatabaeenejad and Moghaddam, 2006) (Fig. 2). Previous studies 
showed that at P-band, penetration depths between 10 cm to 30 cm soil 
depth are realistic for the investigated soil conditions in this study 
(Fluhrer et al., 2022; Konings et al., 2014). Hence, only the simulated 
soil moisture profile values of individual soil layers from the surface 
until a soil depth of 30 cm are considered for backscatter simulations in 
order to align with remotely sensed P-band SAR observations. For an 
assumed soil depth of 2 m during hydrological simulations, 36 indi
vidual soil moisture layers from the corresponding HYDRUS-1D simu
lation nodes between 0 and 30 cm are considered for backscatter 
simulations with the multi-layer SPM. For an assumed soil depth of 4 m, 
24 individual soil moisture layers are considered (Table 3). This 
assumption on maximum soil depth of 30 cm for comparison is 
reasonable although, of course, the penetration depth of P-band SAR 
signals varies with different soil and vegetation cover conditions (i.e., 
moisture, texture, density, etc.). It can be further improved in the future 
when sufficient information on penetration depths are available. 

The first-order solution of the multi-layer SPM computes backscatter 
coefficients σo

pp from multiple subsurface layers by considering “multiple 
scattering processes between the boundaries” (Tabatabaeenejad and 
Moghaddam, 2006), suitable for analyzing P-band soil interactions. The 
required input parameters for modeling σo

ppn and their respective values, 

Table 2 
Static values of input parameters for HYDRUS-1D soil moisture profile 
simulations.  

HYDRUS-1D input parameter Static values 

Depth of soil profile [m] 2, 4 
Maximum allowed soil matrix potential at 

the soil surface [cm] 
0, − 1, − 5, − 10 

Initial soil matric potential across the soil 
profile [cm] 

− 250, − 500, − 1000, − 2000, 
− 4000, − 8000, − 16,000 

Distribution of the initial soil matric 
potential across the soil profile [− ] Static, decreasing 

Upper boundary condition for water flow 
[− ] 

Runoff, zero runoff (water can 
accumulate at the surface)  
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approximated for the acquisition scenario in this study, are listed in 
Table 3. 

Due to the fact that no roughness information for any soil layers are 
available for the AirMOSS monitoring sites or in situ measuring stations, 
the DLR TanDEM-X DEM at 90 m resolution (Rizzoli et al., 2017) was 
used to get first-order roughness indicators for every SAR pixel. For that, 
the TanDEM-X elevations were converted with the GDAL DEM utility 
algorithm (GDAL/OGR contributors, 2021) in QGIS© (QGIS Develop
ment Team, 2021) to roughness values, giving the degree of irregularity 
of the surface, and scaled to the employed AirMOSS wavelength at P- 
band (λ = 69.72 [cm]) to account for the reduced impact of surface 
roughness at P-band than at X-band. Thus, depending on the estimated 
roughness indicator RTDX (Table 4, left column) for every SAR pixel, 
typical surface roughness parameter sets for each layer i (Table 4, right 
column) are fixed as input for the multi-layer SPM to account for varying 
layer roughness (from smooth to rather rough). 

The modeled σo
ppn [− ], for horizontal and vertical polarization, are 

then used to calculate for every simulation the model-based αModel
s n after 

(Cloude, 2010), valid for 0 ≤ αs ≤
π
2 : 

αModel
s n = tan− 1

(
σo

HHn − σo
VV n

σo
HHn + σo

VV n

)

. (8)  

3.3. Joint technique of remote sensing and hydrological modeling for soil 
moisture profile estimation 

From remote sensing, one αSAR
s value for every resolution cell and 

recording date can be estimated (see Sec. 3.1.). From soil hydrological 
modeling, an ensemble of αModel

s n for n simulations can be calculated for 
every resolution cell and recording date based on varying initial settings 
(see Sec. 3.2.). In order to determine the most suited soil moisture profile 
for every resolution cell and recording date, the observed remote sensing 
information is compared with all hydrological modeling outputs. In 
detail, the actual observed αSAR

s from measured SAR observations is used 

to select the most suited soil moisture profile from hydrological 
modeling. The smallest absolute differences between αSAR

s and all αModel
s n 

is then used to estimate the final soil moisture profile: 

θSMP = argmin
( ⃒
⃒αSAR

s − αModel
s n

⃒
⃒
)

(9) 

In Fig. 3A, the ensemble of simulated soil moisture profiles θSMPn, 
based on HYDRUS-1D, are displayed at station US-SRS, Walnut Gulch, 
AZ, on the 12th of July in 2014. It can be seen that the different as
sumptions on initial model conditions lead to various soil moisture 
profile shapes. For every simulated soil moisture profile θSMPn, the pro
cedure described in Sec. 3.2. is applied to obtain the model-based αModel

s n. 
Finally, the best fit between αSAR

s and all αModel
s n is estimated (Fig. 3B). A 

sensitivity study was conducted to analyze the estimation procedure 
regarding potential multiple solutions and uncertainties of the best fit. It 
was found that the method estimates the global minimum (always only 
one single best fit) with 2nd best and higher best fits deviating at least 
1.75% from the best one. In the end, the comparison of the SAR- 
extracted soil information is indicative for selecting the appropriate 
soil moisture profile. For one, the estimated θSMP profile fits best to in situ 
measurements (green stars in Fig. 3B). Second, although the upper soil 
moisture conditions cannot be confirmed by in situ observations, the 
decrease in soil moisture values between 0 cm and 3.8 cm soil depth 
match the apparent soil and meteorological conditions, as described in 
detail in Sec. 4. 

4. Results 

In this study, the Pearson’s coefficient of determination R2, the un
biased root mean square error (ubRMSE), giving the error between 
curves without the mean bias (Maity, 2022), and the Fréchet distance F 
(Fréchet, 1906), representing the curve shape similarity, are employed 
for statistical analyses. F provides the similarity of curves taking into 
account not only absolute values but also the ordering of points along 
the investigated curves (Eiter and Mannila, 1994). Further, since 
auxiliary products are only available at discrete soil depths (i.e. symbols 
in Fig. 4), a polynomial function of 2nd order is applied to combine these 
values in order to estimate the approximate profile shapes for compar
ison. Although it is known that polynomials are physically unrealistic 
and can only give an approximate of the vertical soil moisture variability 
(see Sec. 1.), it is used in this study to be able to compare not only results 
at two to three discrete measuring depths but also across the entire soil 
column to evaluate the shape of the estimated soil moisture profiles. 

In total, three types of typical soil moisture profiles could be 
observed within all estimated results, depending on prior precipitation 
events and soil conditions. As shown in Fig. 4A, a typical drying profile 
with increasing soil moisture at increasing soil depths was estimated 
when, at the respective station, no precipitation occurred at least seven 
days prior to the recording date. The soil dries at different rates, ac
cording to the soil type and texture, from the soil surface towards deeper 
soil layers. In contrast, a typical wetting profile could be observed when, 
at this station, precipitation occurred some days before the recording 
date (Fig. 4B). The soil moisture profile decreases with increasing soil 
depth since the water infiltrates from the soil surface downwards to the 
deeper soil layers. The depth of the inflection point varies depending on 
the infiltration rate and elapsed time since the rain event. In the pre
sented example, the decrease in soil moisture values at the top (from 0 
cm to − 4.5 cm) of the soil is rather rapid and the profile below is rather 
dry at ~18 vol% because of the local conditions around the station US- 
SRS. At this station in Arizona an (hyper-)arid climate with warm 
summers led to predominantly shrublands on top of sandy loam soils 
(62% sand fraction, ~19% silt and clay fractions) (Fig. 1, Sec. 2.). This 
means, precipitation is less frequent and water can infiltrate rather 
quickly into the uppermost soil layers. At other stations with different 
soil and landcover conditions, e.g. at the forest station US-Ho1, the 
decrease in soil moisture values was less rapid and more continuous. 

Table 3 
Required input parameters for the multi-layer SPM to simulate σo

ppn, with the 
applied values in this study.  

Parameter Value 

Frequency, f [MHz] 430 

Number of layers, N [− ] 
36 (for soil profile depth of 2 m), 24 (for soil 
profile depth of 4 m) 

Incidence angle in range, ϕi, and 
azimuth, φi [◦] 

ϕi from AirMOSS; φi = 0 

Scattering angle in range ϕs, and 
azimuth, φs [◦] 

ϕs = ϕi; φs = 180 (backscattering) 

z-coordinates of the respective 
boundary layers [cm] 

Increasing from λ/10 (6.97) at the soil surface 
to λ/2 (34.86) at the profile bottom 

Surface roughness parameters of 
each layer i [cm] 
(RMS height s, correlation 
length l) 

si and li are dependent on a roughness indicator 
derived from TanDEM-X (Table 4) 

Autocorrelation function, ACF 
[− ] Exponential 

Permittivity εSMPn of each layer i 
[− ] 

From HYDRUS-1D simulated and converted soil 
permittivity profiles εSMPni  

Table 4 
Surface roughness parameter sets for each layer i (RMS height s, correlation 
length l; step size equals number of layers) within the multi-layer SPM based on 
TanDEM-X derived roughness indicators RTDX.  

Roughness Indicator From Tandem-X 
[M] 

Input Roughness Parameters 
[CM] 

RTDX < 5 si = 0.5 − 0 ; li = 30 − 60 
5 ≤ RTDX < 10 si = 1.5 − 0.75 ; li = 25 − 50 
10 ≤ RTDX < 15 si = 2 − 1 ; li = 20 − 40 
RTDX ≥ 15 si = 3 − 1.5 ; li = 15 − 30  
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Lastly, saturated profiles at higher moisture values with almost no 
variation across the vertical soil column were estimated after heavy 
precipitation events prior to the recording date (Fig. 4C). Unfortunately, 
no soil moisture comparison data could be found for soil depths between 
0 to − 5 cm to confirm the upper conditions. However, it can be seen that 
all three estimated profiles from the proposed method (SAR with hy
drological modeling) fit best to the in situ measurements with overall 
highest correlation coefficients, lowest ubRMSE and smallest Fréchet 
distances, hence, highest similarity not only in absolute values but also 
in profile shape along the vertical soil column (Table 5, upper rows). 
Further, statistics are overall better between estimated profiles and in 
situ measurements compared to statistics between in situ measurements 
and auxiliary products (ERA5-land, AirMOSS L4) (Table 5, lower rows). 
While significantly high R2 ≥ 0.93 are found between estimated soil 
moisture profiles and in situ measured profiles, overall lower R2 ≤ 0.64 
are found between in situ measurements and auxiliary products. Corre
spondingly, overall higher ubRMSE and F are found, except for the 
wetting profile at station US-SRS (Fig. 4b), where the same ubRMSE of 1 
vol% for all comparisons and slightly better F between in situ measure
ments and the AirMOSS L4 product are found (Table 5). 

In this study, soil moisture profiles are only shown from the soil 
surface until a depth of 30 cm, since this part of the simulated soil 
moisture profiles are used for comparison with P-band SAR observations 
(see Sec. 3.2.). In the following, soil moisture profiles are presented first 
for all measuring stations (see Sec. 4.1.), and then detailed analyzes are 
performed at two selected stations (see Sec. 4.2.). 

4.1. Soil moisture profile results for all measuring stations 

In Figs. 5 and 6, estimated soil moisture values between 0 cm to − 30 

cm soil depth for all available AirMOSS dates are compared with cor
responding auxiliary profiles. Here, individual plots of kernel density 
estimates show the conditional distribution of values with indications on 
the density of values (the darker the color, the higher the amount of 
values) and the fitted linear regression (solid line). First, the measuring 
stations with landcover types forest (Fig. 5, 1st and 2nd row), woody 
savanna (Fig. 5, 3rd row) or shrublands (Fig. 5, 4th row) are displayed 
(Fig. 1, Sec. 2.). Noticeable is the overestimation of soil moisture values 
from all three auxiliary products at the two forest stations, with more 
significant overestimation at the more homogeneously vegetated sta
tion, US-Ho1, covered by dense forests (Fig. 5, 1st row). At the less 
densely vegetated forest station, US-Me6 (Fig. 1, Sec. 2.), estimated soil 
moisture values range between 10 vol% and 38 vol%, while in situ 
measurements only indicate values between 2 vol% and 22 vol%. Here, 
the rather dry in situ measured values (highest density at 6.9 vol%) are 
overestimated with the proposed approach, similar to the ERA5-land 
product. In contrast, good agreement between estimated values and 
the AirMOSS L4 product can be observed, with highest density of values 
around the 1:1 line (Fig. 5, 2nd row). Further, at the woody savanna 
station, US-Ton, the highest density of values is located close to the 1:1 
line, with a slight overestimation of rather dry in situ measurements and 
ERA5-land values. Noticeable at this station are the two additional, very 
dominant accumulations of values. 

One at low estimated soil moisture values around 18 vol% and high 
in situ measurements around 37 vol%. And one around the 1:1 line be
tween 35 vol% and 40 vol%. This means, correlations between esti
mated and in situ measured soil moisture values increase, when in situ 
measured values increase, but with some exceptions, where higher field 
measurements are in turn underestimated with the proposed approach 
(Fig. 5, 3rd row). Unfortunately, no AirMOSS L4 soil moisture profiles 

Fig. 3. Visualization of the estimation procedure to determine the best fitting soil moisture profile θSMP from all simulated θSMPn by comparing SAR observations 
with soil modeling. (A) Ensemble of simulated θSMPn from HYDRUS-1D based on varying initial conditions (Table 2, Sec. 3.2.) at station US-SRS, Walnut Gulch, AZ, 
on the 12th of July 2014. (B) Estimated soil moisture profile θSMP at station US-SRS, Walnut Gulch, AZ, on the 12th of July 2014, in comparison to in situ observations 
from the same day. 
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are available at this station and two others (Fig. 6). Lastly, at the desert 
station US-SRS in Arizona, similar patterns as describe before can be 
seen. While estimated soil moisture values range between 10 vol% and 
45 vol%, in situ measurements range between 10 vol% and 20 vol%. 
Again, the estimated values overestimate the rather dry in situ mea
surements (highest density at 8.8 vol%), similar as to the AirMOSS L4 
product, which, at this station, shows the smallest value range of all 

(between 8.4 vol% to 17.3 vol%). Only the ERA5-land product achieves 
similar value ranges compared to the estimated values, with the highest 
density of values deviating approximately 6 vol% from the perfect fit 
(1:1 line) (Fig. 5, 4th row). 

When analyzing all results at the pasture station Durham 11 W 
(Fig. 6, 3rd row), most estimated and in situ measured soil moisture 
values are close to the 1:1 line, with a tendency to an overestimation of 

Fig. 4. Typical profile shapes of estimated soil moisture profiles based on the proposed approach in comparison with auxiliary soil moistures products of the same 
day. (A) Drying profile on the 21st of October 2014 at station Stillwater 2 W, MOISST, OK (no precipitation). (B) Wetting profile on the 12th of July 2014 at station US- 
SRS, Walnut Gulch, AZ (51.6 mm of precipitation in the week before the recording date). (C) Saturated profile on the 17th of June 2013 at station Stillwater 5 WNW, 
MOISST, OK (in total 57.6 mm of precipitation two days before the recording date). The y-axis is stretched between 0 cm and − 10 cm to emphasize the most dynamic 
part of the soil moisture profile. 

Table 5 
Statistical measures between estimated (upper rows) or in situ measured (lower rows) soil moisture profiles and auxiliary profiles displayed in Fig. 4.  

Statistical measure Drying profile Wetting profile Saturated profile  

Estimated vs. Estimated vs. Estimated vs.  

In Situ ERA5 AirMOSS L4 In Situ ERA5 AirMOSS L4 In Situ ERA5 AirMOSS L4 

R2 [− ] 0.95 0.71 0.61 0.93 0.64 0.57 0.95 0.58 0.22 
ubRMSE [vol%] 0.3 1.2 1.6 1 1.1 2.1 0.3 2 0.1 
F [− ] 0.02 0.08 0.1 0.08 0.1 0.09 0.07 0.1 0.2  

In situ vs. In situ vs. In situ vs.  

ERA5 AirMOSS L4 ERA5 AirMOSS L4 ERA5 AirMOSS L4 

R2 [− ] 0.61 0.45 0.59 0.37 0.64 0.13 
ubRMSE [vol%] 2 2 1 1 2 0 
F [− ] 0.09 0.12 0.15 0.05 0.06 0.09  
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estimated moisture values for decreasing in situ measurements. In 
contrast, the comparison between estimated values and the ERA5-land 
product shows a slight underestimation, as most ERA5-land soil mois
ture values are in the range of 38 vol% to 42 vol%, whereas most esti
mated values range between 22 vol% and 40 vol% (Fig. 6, 3rd row). 
Lastly, analyzing the results at the two grassland and one shrubland 
station (Fig. 6, 1st, 2nd and 4th row) similar results as those for the pre
viously described stations can be seen, except for the station Stillwater 2 
W in Oklahoma (Fig. 6, 2nd row). Here, estimated and in situ measured 
soil moisture values are closest to the 1:1 line with lowest deviations, 
confirmed by the overall highest correlation of all stations with a R2 of 

0.92 (Table 6). Similar to the first station at the AirMOSS site Tonzi 
Ranch, US-Ton (Fig. 5, 3rd row), the second shrubland station US-Var 
also shows a large variety in soil moisture values with several accumu
lation spots (Fig. 6, 4th row). The highest density of estimated and in situ 
measured values, however, are located at the 1:1 line, which explain the 
clearly higher R2 of 0.81 compared to the R2 of just 0.59 at US-Ton. 

Further, compared to all other stations, these two stations in Cali
fornia show the overall highest ubRMSE of 2.9 vol% and 3.7 vol%, 
respectively (Table 6). In Table 6, the statistical measures between 
estimated soil moisture profiles and the corresponding auxiliary prod
ucts (upper rows) as well as between in situ measurements and ERA5- 

Fig. 5. Comparison of estimated soil moisture values for all layers from soil depths between 0 cm to − 30 cm, with auxiliary soil moisture products of the corre
sponding same recording day (including all AirMOSS overflight dates between 2013 and 2015). 1st row: US-Ho1, Howland Forest, ME. 2nd row: US-Me6, Metolius, 
OR. 3rd row: US-Ton, Tonzi Ranch, CA. 4th row: US-SRS, Walnut Gulch, AZ. 
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land or AirMOSS L4 products (lower rows) are displayed. In general, 
when comparing the estimated soil moisture profiles with all auxiliary 
products, the R2 varies between 0.32 and 0.94, the ubRMSE ranges from 
0.7 vol% to 3.7 vol%, and the F varies between 0.07 and 0.26 [− ]. In 
detail, the overall highest R2, lowest ubRMSE and smallest F are found 
between estimated soil moisture profiles and the ERA5-land product. 
This simply means, that the proposed method and the reanalysis method 
for soil moisture estimation agree well for soil depths between − 7 cm 
and − 30 cm (ERA5-land values are available for − 7 cm and − 28 cm), 

where changes in the soil moisture profile are less prominent (see Sec. 
1). 

With focus on the in situ observations, R2 between 0.48 and 0.92 are 
reached in comparison with the estimated soil moisture profiles. 
Further, F varies between 0.1 and 0.23 [− ], overall confirming the high 
similarity in profile shapes along the vertical soil column, since F varies 
in total between 0 (identical lines) and 0.4 (no similarity between lines) 
in this study. In absolute values (ubRMSE varying between 1.4 vol% and 
3.7 vol%) the estimated results deviate from the in situ measured soil 

Fig. 6. Comparison of estimated soil moisture values for all layers from soil depths between 0 cm to − 30 cm, with auxiliary soil moisture products of the corre
sponding same recording day (including all AirMOSS overflight dates between 2013 and 2015). 1st row: Stillwater 5 WNW, MOISST, OK. 2nd row: Stillwater 2 W, 
MOISST, OK. 3rd row: Durham 11 W, Duke Forest, NC. 4th row: US-Var, Tonzi Ranch, CA. 
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moisture profiles. However, the overall profile shapes are very well 
captured with this approach. The reasons why the in situ measurements 
fit a bit less to the estimated profile results (compared to the ERA5-land 
results) are, on the one hand, because they are constantly really low. For 
example, at the forest station US-Me6 in Oregon no in situ measured soil 
moisture value exceeds 24 vol%, and in average a soil moisture value of 
just 9.5 vol% was observed. On the other hand, because they vary quite 
much along the profile, indicating a high change in soil moistures within 
only a few cm of soil depth. Here, the highest change within in situ 
measured soil moisture values are observed at the forest station US-Me6 
with a change of 13.2 vol% between − 10 cm (7.1 vol%) and − 30 cm 
(20.3 vol%) soil depth. Further, in average soil moisture differences of 
6.3 vol% within just 20 cm soil depth (between − 10 cm and − 30 cm) 
are measured at this station across all dates. 

Lastly, comparing estimated soil moisture profiles with the AirMOSS 
L4 product, the lowest R2 of all stations and products can be found at the 
forest station US-Ho1. Here, the AirMOSS L4 product almost always 
significantly underestimates the estimated profiles. This is exacerbated 
by the fact, that the AirMOSS L4 products almost always leads to more or 

less uniform soil moisture profiles, showing no changes is soil moisture 
values across the vertical soil column, as displayed in the three examples 
of Fig. 4. 

For comparison, additional statistics between in situ measurements 
and the two auxiliary soil moisture products are conducted. At some 
stations, the statistics between in situ measurements and the ERA5-land 
or AirMOSS L4 product are better (i.e., US-Ho1), but at others not (i.e., 
Stillwater 2 W). The slightly better performance of the two auxiliary 
products at the homogeneous forest station US-Ho1, with higher R2 and 
lower ubRMSE and F, is the consequence of the already described 
overestimation of estimated values compared to the in situ measure
ments (Fig. 5, 1st row). Overall however, no clear pattern can be found 
when comparing the performance of statistics at all stations, dates and 
depths. 

4.2. Detailed analyses at the two measuring stations US-Ho1 and 
Stillwater 2 W 

In this section, results for estimated soil moisture profiles are 

Table 6 
Statistical measures between estimated (upper rows) or in situ measured (lower rows) soil moisture profiles from 0 cm to − 30 cm soil depth and auxiliary products at all 
measuring stations and all available AirMOSS dates. R2 gives Pearson’s coefficient of determination, ubRMSE the unbiased error, and F the Fréchet distance.  

Statistical measure Estimated results vs. Station   

US-Ho1 US-Me6 US-Ton US-SRS Durham 11 W Stillwater 5 WNW Stillwater 2 W US-Var 

R2 [− ] 
In situ 0.52 0.71 0.59 0.49 0.48 0.59 0.92 0.81 
ERA5-land 0.78 0.87 0.79 0.9 0.76 0.89 0.94 0.88 
AirMOSS L4 0.32 0.49  0.81  0.76 0.86  

ubRMSE [vol%] 
In situ 1.84 1.38 3.69 2.47 1.86 1.61 2.89 2.92 
ERA5-land 1.05 0.95 0.77 1.47 1.41 1.05 1.32 1.46 
AirMOSS L4 1.67 1.65  1.88  0.71 1.29  

F [− ] 

In situ 0.22 0.17 0.19 0.23 0.13 0.22 0.1 0.19 
ERA5-land 0.26 0.13 0.12 0.1 0.09 0.13 0.1 0.13 
AirMOSS L4 0.17 0.07  0.21  0.17 0.14   

In situ results vs.         

R2 [− ] ERA5-land 0.53 0.69 0.89 0.43 0.53 0.66 0.9 0.56  
AirMOSS L4 0.62 0.41  0.52  0.54 0.79  

ubRMSE [vol%] ERA5-land 1.32 1.48 0.77 1.4 2.45 1.06 3.37 1.38  
AirMOSS L4 1.2 1.9  1.13  1.5 3.88  

F [− ] ERA5-land 0.08 0.06 0.05 0.17 0.21 0.11 0.1 0.07  
AirMOSS L4 0.07 0.16  0.02  0.08 0.13   

Fig. 7. Comparison of estimated soil moisture values between 2013 and 2015 at specific depths with auxiliary soil moistures products at monitoring stations US-Ho1, 
Howland Forest, ME. (A) Top soil depths (0–15 cm). (B) Deeper soil depths (15–30 cm). 
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analyzed in more detail at two selected stations, the most homogeneous 
forest station US-Ho1, and the grassland station Stillwater 2 W (Fig. 1 & 
Table 1, Sec. 2.). 

In Figs. 7 and 8, auxiliary soil moisture values at actual measuring 
depths are compared to the respective estimated soil moisture values. 
The measuring depths are hereby divided into two groups, top soil and 
deeper soil depths. This way, different layers of the soil moisture profiles 
can be analyzed in addition. In situ measurements at station US-Ho1 are 
available from the AmeriFLX network at − 10 cm and − 20 cm, and at 
station Stillwater 2 W from the US-CRN network at − 5 cm, − 10 cm, and 
− 20 cm soil depth (see Sec. 2.). ERA5-land soil moisture values are 
available for soil depths at − 7 cm and − 28 cm, while the AirMOSS L4 
product provides values for the integrals between 0 and 10 cm and 
10–40 cm. For the latter, the average depths at − 5 cm and − 25 cm were 
considered for comparison. This simplification does not affect the ana
lyzes since the AirMOSS L4 product, as shown before, almost always 
results in more or less uniform soil moisture profiles (Fig. 4). 

At the forest station, US-Ho1, estimated soil moisture values at 
deeper soil depths (Fig. 7B) overestimate auxiliary soil moisture prod
ucts considerably more than estimated values at top soil depths 
(Fig. 7A). Here, results are almost always beyond 40 vol%, while 
auxiliary values mostly range between 20 vol% to 40 vol%. This is also 
supported by statistical measures since the R2 between estimates and in 
situ measurements decreases from 0.68 for top soil depths to 0.61 for 
deeper soil depths. In contrast, the R2 between estimates and ERA5-land 
or AirMOSS L4 values increases from 0.67 to 0.77 or 0.2 to 0.26 from top 
soil to deeper soil depths due to less variations within results. This is 
confirmed by the improved ubRMSE from 5.5 vol% to 2.7 vol% for 
ERA5-land, and from 6.5 vol% to 4.6 vol% for AirMOSS L4. Moreover, 
the probability density plots (PDFs) next to the scatterplots show that at 
this station the auxiliary products are not overlapping and deviate from 
another. The value ranges of the ERA5-land and AirMOSS L4 products 
hardly overlap with the in situ measured values at top soil depths 
(Fig. 7A). Only at deeper soil depths, the value ranges of the AirMOSS L4 
product and the in situ measured ones converge (Fig. 7B). 

In contrast, at measuring station Stillwater 2 W in Oklahoma, esti
mated values are overall closer to auxiliary values with always higher 
correlations for top soil values (Fig. 8). Here, the R2 between estimates 
and in situ measurements decreases from 0.41 for top soil depths to 0.08 
for deeper soil depths. Similar, the R2 decreases from 0.43 for top soil 

depths to 0.15 for deeper soil depths between estimates and ERA5-land 
values, as well as from 0.58 for top soil depths to 0.55 for deeper soil 
depths between estimates and AirMOSS L4 values. Further, auxiliary 
products at this station are more overlapping since the value ranges 
clearly overlap with another as shown in the PDFs of Fig. 8. Only for 
deeper soil depths, the in situ measurements reach considerably higher 
values compared to the ERA5-land and AirMOSS L4 product (Fig. 8B). 

5. Discussion 

In this study, soil moisture profile shapes for drying, wetting and 
saturated soil conditions are estimated (Fig. 4, Sec. 4.). In order to obtain 
continuous soil moisture profiles, the decomposed SAR remote sensing 
scattering component of the soil is compared to soil hydrological sim
ulations with HYDRUS-1D, converted to a soil scattering component by 
the multi-layer SPM scattering model. The comparison of the soil com
ponents is performed on the level of the polarimetric soil scattering 
angle αs (see Sec. 3.). In previous studies, soil moisture retrieval ap
proaches are mainly conducted on the level of backscattering, e.g. 
(Huang et al., 2021; Kim and Liao, 2021; Konings et al., 2014). This way, 
remotely sensed backscatter coefficient can be used without the pre
ceding application of a decomposition technique. However, since SAR 
backscatter coefficients contain scattering mechanisms of all targets 
within the SAR footprint (soil, vegetation, and the combination of both), 
this circumstance in turn complicates the modeling of backscattering. In 
order to compare SAR backscatter coefficients with modeled backscat
ters, the combined soil and vegetation scattering has to be modeled first. 
Fortunately, in this study, only soil scattering has to be modeled since 
the decomposed soil scattering component of the total SAR signal is used 
for comparison. Certainly, the application of a decomposition method to 
extract the soil scattering from the SAR signal is not that simple and 
requires certain preconditions, like fully polarimetric SAR observations. 
However, as emphasized in Sec. 3., the comparison on the level of αs 
instead of backscatters has several advantages (e.g., no modeling of 
complex vegetation). Nevertheless, one of the main restrictions of this 
approach, for sure, is the correct removal of the vegetation component 
from the SAR signal. As outlined in many previous studies, e.g. (He et al., 
2016; Jagdhuber, 2012; Sato et al., 2012; van Zyl et al., 2011), 
decomposition techniques tend to overestimate the vegetation scat
tering component, which leads to (physically impossible) negative 

Fig. 8. Comparison of estimated soil moisture values between 2013 and 2015 at specific depths with auxiliary soil moistures products at monitoring station 
Stillwater 2 W, MOISST, OK. (A) Top soil depths (0–15 cm). (B) Deeper soil depths (15–30 cm). 
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decomposed powers (Fluhrer et al., 2022). Similar to the study of 
(Fluhrer et al., 2022), this problem is solved here by allowing multiple 
vegetation representations (see Sec. 3.1.), instead of fixing them to, for 
instance, ‘a cloud of randomly oriented dipoles’ (Alemohammad et al., 
2018). This potential overestimation of vegetation during the decom
position is considered as one of the reasons why at the dense forest 
station US-Ho1 an overestimation of in situ measurements occurs (Fig. 5, 
Sec. 4.1.). Here, an improved removal of the vegetation scattering 
component by, for instance, including machine learning, may even 
decrease the overestimation of soil moisture profile estimates as indi
cated by (Fluhrer et al., 2022). Another reason could be that, as shown 
from (Fluhrer et al., 2022), in strongly vertically oriented vegetated 
areas, like the boreal forest at US-Ho1, the dihedral scattering mecha
nism is dominant in the total SAR signal. However, in this study the soil 
scattering mechanism is considered within the retrieval, which hence, 
may not be representative enough under dense and strongly oriented 
forests. This explanation is strengthend by the fact that at the other, less 
vegetated stations overall higher correlations with less pronounced 
overestimation are determined. Further, the highest correlation between 
estimates, based on this approach, and in situ measurements are found at 
the grassland station Stillwater 2 W (Sec. 4.). Also other studies, e.g. 
(Lucas et al., 2004; Moghaddam and Saatchi, 1995), outlined ‘that at P- 
band the ground and trunks contribute with more relevance to the SAR 
signal than the branches and leaves‘(Fluhrer et al., 2022), leading to 
dominant dihedral scattering components. However, using the dihedral 
scattering components instead of the soil scattering component is not an 
option for the proposed method. The main reason is that the estimation 
of soil moisture profiles with depth requires SAR observations from a 
comparable integral of the soil surface until the main scattering center 
within the soil. Here, the actual sensitivity depth of the soil part within 
the dihedral scattering component has to be further analyzed 
beforehand. 

One of the advantages of the proposed approach is that profiles can 
be estimated more continuously along their vertical gradient and 
without the assumptions of empirical mathematical functions (i.e. 
polynomials of certain degree), e.g. (Etminan et al., 2020; Sadeghi et al., 
2016; Tabatabaeenejad et al., 2015). As shown in the results section, no 
auxiliary soil moisture values could be found for continuous validation 
with soil depth since in situ measurements are done once between 0 and 
5 cm soil depth or lower. However, this circumstance in turn emphasizes 
the need for the proposed approach (or similar ones), since it is able to 
provide continuous soil moisture profiles also for near-surface soil 
depths, and hence, capture this most variable uppermost part of soil 
moisture profiles more closely and reliable. This is of utmost importance 
since, as outlined in section one, near-surface soil moisture responds 
faster to environmenal changes because of, e.g., precipitation or evap
oration, and is more variable compared to subsurface soil moisture. 
Further, the approach provides the advantage that simulations are not 
restricted to a single model set-up. Admittingly, the simulation of an 
ensemble of soil moisture profiles for varying model set-ups and 
potentially for different locations is computationally expensive. How
ever, the practicality of the proposed approach benefits from the 
circumstance, that the computationally highly expensive hydrological 
model simulations can be done independently from processing of the 
remote sensing observations, e.g., on HPC (high performance 
computing) clusters. Further, the model simulations only need to be 
done once for the desired time series and can then be endlessly analyzed 
for different remote sensing observations (in case the model set-up fits 
the remote sensing set-up). Hence, the final comparison of hydrological 
model outputs and remote sensing observations for soil moisture profile 
estimation is less computationally expensive and can further be done for 
every SAR observation date separately, enabling, e.g., parallel process
ing. This allows soil moisture profile simulations to be less prone to 
errors since variable assumptions on critical input parameters, such as 
the initial pressure head or the upper soil condition, reduce the potential 
for erroneous model runs. Here, the decomposed SAR observations, after 

the removal of the vegetation and double-bounce scattering compo
nents, is employed to provide the most realistic simulation compared to 
actual observations and hence, the most suited initial model set-up. In a 
follow-on study, this approach could be even used to analyze and 
improve initial model conditions and their susceptibility to errors. 
Additionally, since remote sensing is able to provide areal observations, 
simulations could be improved even in regions, where less or no in situ 
point measurements for initializing the model are available, similar as 
outlined from (Ottlé et al., 1989). For instance, results indicate a po
tential need for improving the estimation of the soil hydraulic input 
parameters during model simulations, since the model was not able to 
capture dry soil conditions (i.e. below 8 vol%), e.g. at station US-SRS in 
Arizona, or overestimated soil moisture values at the dense forest station 
US-Ho1 in Maine (Fig. 5, Sec. 4.1.). At the dry station US-SRS, the 
highest deviations between estimated soil moisture profiles and in situ 
measurements are found during extended dry downs with no precipi
tation event, where the in situ measured soil moistures are most variable. 
Here, high changes in in situ measured soil moisture could be found 
within only a few centimeters of soil (see Sec. 4.1.). This raises the 
question of how reliable in situ soil moisture measurements are, when 
only few measurements at specific dates are picked out (instead of 
looking at continuous time series). Further, results at the woody savanna 
station, US-Ton, showed that static initial model parameters, such as the 
soil texture, are a strong assumption, which can lead to opposing soil 
moisture profiles (Fig. 5, 3rd row, Sec. 4.1.). Here, static soil conditions 
prevent that changes in soil hydraulic properties, due to precipitation or 
root water uptake, can be captured correctly in HYDRUS-1D model 
simulations. Not only depend the soil hydraulic properties on soil 
texture, but several studies showed that soil texture mediates the soil 
moisture dynamics to some degree (Case and Staver, 2018), and affect 
the soil moisture retention (Bouma and Bryla, 2000; Sperry and Hacke, 
2002). Soil texture composition and its spatio-temporal variability de
termines how soils response to precipitation events due to its effect on 
water infiltration and surface runoff. For one, soils with low water 
permeability (e.g. clay soils) are more susceptible to high rates of water 
runoff, which decreases the available moisture in the soil (Case and 
Staver, 2018). Second, the study of Sperry and Hacke showed that rather 
loamy soils can have lower soil water potentials, and hence, lower soil 
moisture (Dingman, 2015), during summers than rather sandy soils, 
despite the higher precipitation over the loam site (Sperry and Hacke, 
2002). Although, soil types are not that different at employed measuring 
stations (Fig. 1, Sec. 2.), this finding can be confirmed to some extent at 
the two in detail investigated stations, US-Ho1 and Stillwater 2 W (see 
Sec. 4.2.). While at the grassland station Stillwater 2 W the overall 
precipitation sum during the summer months (1164.9 mm) and the clay 
percentage (11%) is higher compared to at the forest station US-Ho1 
(sum of 1092.8 mm, and 7% of clay), Stillwater 2 W shows overall 
lower soil moisture profile values (Figs. 5 & 6, Sec. 4.1., Figs. 7 & 8, Sec. 
4.2.). In average, during the summer months at Stillwater 2 W, soil 
moisture profile values of 33.3 vol% are estimated compared to that at 
US-Ho1 of 46.6 vol%. These results also confirm the influence of vege
tation cover on soil moisture profile results, since the influence of soil 
textures is potentially higher in non-vegetated areas (Gómez-Plaza et al., 
2001). Further, studies proved that changes in soil textures over time 
due to plant and root growth influences how water flows in soils (Fatichi 
et al., 2020), and hence, affect the soil moisture profiles. In order to 
improve the performance of the proposed approach, or soil hydraulic 
models in general, variable soil texture or structure information over 
time during model simulations should be considered, but can not be 
realized in common models until now. Additional analyses between in 
situ measurements and the two auxiliary soil moisture products showed 
that sometimes, the auxiliary products outperform the proposed 
approach with better statistics. This is true, for example, for the dense 
forest station US-Ho1 due to the overestimation of retrieved soil mois
ture values (Fig. 5, Table 6). In the end however, all products showed 
reasonable results, but the proposed method has the advantage of 
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continuous determination of soil moisture information with depth 
without the assumption of non-physical polynomials and is able to 
provide soil moisture information at depths, where other in situ or 
remote sensing products cannot provide any continuous information 
with depth (mainly 0–5 cm). 

In this study, estimated soil moisture profiles match the local climate 
and soil conditions. On the one hand, lower soil moisture values are 
estimated at drier measuring stations, like US-SRS or US-Var, and higher 
soil moisture values are found at wetter measuring stations, like US-Ho1 
(Figs. 5 & 6, Sec. 4.1.). Further, the steepest profile shapes with rather 
quick changes in soil moisture values across the profile could be found at 
the driest station, US-SRS in Arizona, as shown in Fig. 4 (see Sec. 4.1.). 
By contrast, the most uniform profile shapes with less variabilities in soil 
moisture values across the vertical profile were estimated at the wet and 
most dense forest station US-Ho1 in Maine. Hence, the statement from 
(Wu et al., 2002) ‘that soil wetness influences how quickly soil wet
ting/drying moves through the soil column’ (Ford et al., 2014) can be 
confirmed here. On the other hand, analyses regarding average soil 
moisture profiles for respective dry and wet seasons of the three years 
(not shown) confirm that during the wet seasons soil moisture is more 
independent of the soil depth as variabilities across the vertical soil 
column average out, as demonstrated in (Konings et al., 2014). Further, 
deeper soil depths have an overall higher persistence of soil moisture 
than near the surface, as described by (Georgakakos and Bae, 1994), 
since the highest variabilities are always found in the uppermost part of 
the soil moisture profiles due to land-atmosphere interactions and 
feedback. Further, several studies have shown that near-surface and root 
zone soil moisture are correlated (Ford et al., 2014; Short Gianotti et al., 
2019; Akbar et al., 2018). Hence, combining L-band and P-band mi
crowave observations may even advance soil moisture profile ap
proaches and help to analyze the complex link between near-surface and 
subsurface soil moisture in the future. 

6. Conclusions 

An approach for estimating continuous soil moisture profiles by 
combining remotely sensed SAR observations and soil hydraulic model 
simulations is proposed in this study. The advantages of this approach 
are, for one, the usage of soil scattering information from remotely 
sensed SAR observations after the removal of vegetation scattering from 
the total signal by a polarimetric decomposition. Hence, solely the soil 
component without influences of the vegetation are employed and no 
vegetation scattering effects have to be simulated. Second, regarding the 
soil hydraulic model, a variable set-up of initial assumptions is less prone 
to model errors. Instead of using just one model realization, as done in 
standard climate modeling, with potentially false initial assumptions, an 
ensemble of (realistic) simulations with varying initial assumptions is 
created, and then compared to actual SAR observations in order to 
receive the most realistic model set-up and soil moisture profile 
simulation. 

The estimated soil moisture profiles are analyzed in the context of 
varying climatic and soil conditions as well as validated against several 
auxiliary soil moisture products (in situ measurements, the ERA5-land 
reanalysis, and the AirMOSS L4). Overall, estimated results agree with 
satisfying accuracy to in situ measurements and other auxiliary products 
(ERA5-land reanalysis and AirMOSS L4 mission products). The co
efficients of determination between estimates and in situ values vary 
between 0.48 and 0.92. The lowest correlations could be found at rather 
dry desert stations since the employed soil hydraulic model almost al
ways overestimates values. Here, higher correlations might be achieved 
by improving model initialization parameters, like the soil hydraulic 
properties, or using non-static soil property information over time. 
However, the achieved low Fréchet distances, varying between 0.1 and 
0.23, showed, that the shape of estimated soil moisture profiles overall 
fit well to in situ measured profiles, what is needed in climate modeling 
(see Sec. 1.). 

In summary, the proposed approach enables the possibility to esti
mate continuous soil moisture profiles with reasonable shape and ac
curacy based on remotely sensed observations and hydrological 
simulations. However, because of the coarse temporal resolution of the 
AirMOSS SAR observations (recorded from an airplane), no continuous 
time series analyzes for soil moisture estimations could be performed. 
Although, theoretically, estimations of timely-dense soil moisture pro
files are feasible with this approach, since model simulations can be 
performed at any temporal scale. Changes in long-term soil moisture 
profile estimations are important as indicators, e.g., for emerging 
droughts, with direct impact on agricultural productivity and food se
curity (Almendra-Martín et al., 2021). Further, temporally continuous 
SAR observations would provide the opportunity to evaluate the per
formance of the HYDRUS-1D and its ability to capture temporal varia
tions in soil moisture. 

The first P-band SAR observations from space will be available from 
ESA’s BIOMASS mission from 2024 onwards with a three-daily repeat 
pass configuration and 50 m to 200 m resolution (Gelas et al., 2021). As 
our approach makes use of SAR signals in combination with hydrolog
ical simulations, this opens the potential for the assimilation of 
BIOMASS mission data into hydrological models, using the multilayer 
SPM as observation operator for comparison with P-band SAR scattering 
angle observations, to finally update the upper soil states in the pre
diction step. 

Lastly, the proposed approach can be easily used for estimating soil 
moisture profiles in space. In this study, estimations and analyses are 
conducted at selected in situ measuring stations only since all required 
input parameters are available from detailed field measurements at high 
quality, and in order to evaluate the overall performance of the proposed 
method. However, since remote sensing observations are available over 
larger areas, only the hydrological model would have to be initialized 
and driven with the required input parameters in space at comparable 
spatial resolution. Hence, with this approach the generation of soil 
moisture profile maps for providing soil moisture information in the 
horizontal, vertical, and z-direction are possible and will be analyzed in 
an add-on study. 
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Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., 
Moreira, A., 2017. Generation and performance assessment of the global TanDEM-X 
digital elevation model. ISPRS J. Photogramm. Remote Sens. 132, 119–139. https:// 
doi.org/10.1016/j.isprsjprs.2017.08.008. 

Sadeghi, M., Tabatabaeenejad, A., Tuller, M., Moghaddam, M., Jones, S., 2016. 
Advancing NASA’s AirMOSS P-band radar root zone soil moisture retrieval 
algorithm via incorporation of Richards’ equation. Remote Sens. 9, 17. https://doi. 
org/10.3390/rs9010017. 

Sandrock, C., Afshari, S., 2016. alchemyst/ternplot: DOI version (v1.1.0). Zenodo 
[Accessed 05/15/2020]. Zenodo. https://doi.org/10.5281/ZENODO.166760. 

Sato, A., Yamaguchi, Y., Singh, G., Park, Sang-Eun, 2012. Four-component scattering 
power decomposition with extended volume scattering model. IEEE Geosci. Remote 
Sensing Lett. 9, 166–170. https://doi.org/10.1109/LGRS.2011.2162935. 

Shi, Y., Davis, K.J., Duffy, C.J., Yu, X., 2013. Development of a coupled land surface 
hydrologic model and evaluation at a critical zone observatory. J. Hydrometeorol. 
14, 1401–1420. https://doi.org/10.1175/JHM-D-12-0145.1. 

Short Gianotti, D.J., Salvucci, G.D., Akbar, R., McColl, K.A., Cuenca, R., Entekhabi, D., 
2019. Landscape water storage and subsurface correlation from satellite surface soil 
moisture and precipitation observations. Water Resour. Res. 55, 9111–9132. https:// 
doi.org/10.1029/2019WR025332. 
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5 Synthesis 

In this chapter, answers to the previously posed overarching research questions 

(see chapter 1.3) are given. In addition, the synthesis of the three presented research 

articles is discussed. 

5.1 Answers to Research Questions 

In chapter 1.3, three overarching research questions guiding the presented study 

were posed for analyzing remotely sensed microwave observations regarding 

geophysical soil parameter estimation. Based on the presented research articles, the 

following answers and conclusions can be given: 

1. How can the combination of active and passive microwave remote sensing 

data be used to determine soil roughness parameters, and what are the 

advantages and disadvantages? 

Microwave observations from radar and radiometer sensors can be combined 

through a quasi-linear relationship between the active backscatter and passive 

emissivity based on their covariation (Eqs. (8) & (9), chapter 1.2). This covariation-

based approach provides the advantage of simultaneous estimation of both soil 

surface roughness parameters, the vertical RMS height 𝑠 and the horizontal correlation 

length 𝑙. By combining active radar and passive radiometer measurements, the 

potential parameter search space for possible solutions is reduced, as shown in Figure 

1 of article I (Fluhrer et al., 2020). Hence, the space for potential retrieval errors is 

reduced. Further, individual strengths are amplified while certain limitations are 

mitigated. For example, radar observations are sensitive to soil moisture and achieve 

a high spatial resolution (in terms of meters). In contrast, radiometer measurements 

are more sensitive to soil surface roughness and yield rather coarse spatial resolutions 

(in terms of kilometers). Thus, by combining both, the susceptibility of radar sensors 

to soil moisture and the susceptibility of radiometer sensors to surface roughness is 

reduced, and the better spatial resolution of radar sensors enhances resulting 

roughness maps in comparison to, for instance, radiometer-only approaches. 

Drawback of the covariation-based approach is the assumption of a linear relationship 

between active radar and passive radiometer measurements. As outlined by the study 

of (Zeng et al., 2022), this assumption generally holds but can significantly be affected 

by environmental factors, such as the amount of vegetation cover and particularly 

small or large dynamics in soil moisture conditions. In this study, this assumption is 

acceptable since only bare or low vegetated areas in dry (semi) deserts are analyzed. 

Therefore, article I provides the basis for simultaneous soil surface roughness 
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parameter estimation. However, continuing research on the covariation-based 

approach regarding vegetation covers and its variation is necessary. Another future 

research question would be to what degree the linear relationship holds true in order 

to fully explore the combination of active and passive microwave observations. 

2. How do longwave (P-band) microwaves behave in interactions with different 

soil types and vegetation covers in terms of scattering mechanisms, soil 

moisture, and penetration depth? 

Analyses showed that P-band microwaves at low frequencies (~430 MHz) can 

penetrate up to 5 cm to 35 cm through vegetation and into the soil, depending on the 

vegetation cover and soil characteristics (i.e., density, moisture, texture) that were 

investigated in this study. It was shown that at the dense forest campaign site in 

Harvard Forest, Massachusetts, on the more humid east coast of the U.S., soil 

permittivity (moisture) is higher, and hence, penetration depths are lower compared 

to other, less dense vegetated sites, such as the grassland site in Oklahoma. The lowest 

soil moisture and hence, highest penetration depths were found at the dry and sandy 

desert site in Arizona on the southern west coast of the U.S. (Fluhrer et al., 2022). In 

addition, after the separation of the total P-band SAR signal into individual scattering 

mechanisms by applying a hybrid decomposition technique, it was found that across 

the agricultural site in Oklahoma and the shrubland site in Arizona the volume 

scattering mechanism is dominant, compared to the soil- or dihedral-only scattering 

mechanisms. In contrast, over the dense forest site Harvard Forest, MA, the dihedral 

scattering mechanism is dominant. The strongly oriented vertical trunks of the trees 

and the overall higher penetration ability of P-band microwaves into the soil lead to 

this dominant dihedral scattering mechanism. Hence, it was found that at P-band, only 

SAR pixels with dominant soil scattering should be used for soil moisture retrievals. 

In contrast, in case of dominant dihedral scattering, an adapted approach is more 

suited for strongly vertical oriented forest types and designed to estimate soil and 

vegetation moisture. However, analyses also showed, that the removal of the 

vegetation component from the total SAR signal can only be an approximation and 

never be exact, leading to remaining artifacts of volume scattering in the extracted soil 

scattering component. Here, on-going research and the incorporation of, for example, 

machine learning can improve the extraction of relevant scattering components for 

moisture retrievals. 
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3. How can polarimetric active microwave remote sensing and soil hydrological 

modeling be combined for the estimation of vertically continuous soil 

moisture profiles? 

The standard way to combine active microwave remote sensing with soil hydrological 

modeling is the comparison of radar backscatter observations and simulations, e.g., 

(Konings et al., 2014). On the one hand, polarimetric SAR systems record the 

backscatter coefficients of the land surface at co- (HH, VV) and cross- (HV, VH) 

polarizations. On the other hand, an ensemble of simulated soil moisture information 

from hydrological modeling based on varying input parameters can be used in an 

electromagnetic scattering model to compute representative backscatter coefficients at 

co-polarizations. Hence, by comparing the co-polarized SAR observations with the co-

polarized simulations, soil moisture can be estimated. In this study, however, the 

comparison of remote sensing and hydrological modeling (including a soil scattering 

model) is done on the level of the polarimetric soil scattering angle 𝛼𝑠. This provides a 

more sophisticated and improved retrieval of soil moisture information, because soil 

moisture is estimated based on the soil scattering mechanism directly (after the 

removal of the vegetation scattering component) instead of using the total SAR signal, 

which contains all types of scattering. Second, no information is lost in the comparison 

with model simulations, since all co- and cross-polarized backscatter coefficients are 

used in the decomposition of the total SAR signal into individual scattering 

mechanisms (fully polarimetric approach). When using only co-polarized backscatters 

observations, important information gets lost since cross-polarized backscatters are 

particularly sensitive to vegetation structures and underlying soil characteristics 

(Jagdhuber 2012). 

5.2 Discussion 

The main drawbacks of remote sensing from space are the limitation of microwave 

sensors to narrow frequency bands within the electromagnetic spectrum and their 

rather coarse spatial resolution (predominantly passive remote sensing) (see chapter 

1.2). Further, with regard to data availability, many frequencies are occupied by 

various applications, such as communications and navigation (Federal 

Communications Commission, 2022), and hence, not available for research sensors. 

Luckily, microwave sensors can be installed on any platform and thus, be used at field 

scale on a tower, e.g. (O’Neill et al., 2006), on UAVs, e.g., (Luo et al., 2019) and from 

airplanes, e.g., (Chapin et al., 2012), at sometimes lower temporal (ability to fly 

depends on weather and costs) but therefore significantly higher spatial resolution (in 

the order of tens of meters). The advantages and drawbacks of airborne and space-
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borne remote sensing are shown and investigated in detail in this study. For one, due 

to the lack of operating P-band satellites in orbit, airborne SAR observations from 

NASA’s AirMOSS mission are employed to provide basic as well as advanced 

knowledge on the scattering and penetration behavior of P-band microwaves across 

various landcover and soil types. In turn, the drawback of airborne acquisitions is, that 

only a small number of recording dates are available for every year, which is not 

sufficient enough for continuous time series evaluations and assessments of time-

dynamic processes. Further, analyses showed that the varying incidence angles (20° to 

60°) as a result of the airborne acquisition geometry has significant impact on the 

retrieval results (Fluhrer et al., 2022). This problem is obsolete in satellite remote 

sensing because of the static recording from one orbit at almost constant incidence 

angles across the swath, e.g., (Entekhabi et al., 2014). In return, satellite remote sensing 

faces some other difficulties, such as the much coarse spatial resolution or the 

challenge of ionospheric distortions at L- and P-band for the different polarization 

records due to atmospheric heterogeneities (Grima et al., 2015). The spatial resolution 

of the employed L-band active and passive microwave data from NASA’s SMAP 

mission (Entekhabi et al., 2014) at ~36 km limits the feasible applications, and analyses 

can only provide large-scale roughness patterns as indication on land surface 

heterogeneity.  

Regardless of whether airborne or space-borne observations are analyzed, a very 

well-known problem in the field of polarimetry and decomposition techniques is the 

overestimation of the vegetation scattering component (Cloude, 2010; He et al., 2016; 

van Zyl and Kim, 2008), which needs to be subtracted before soil moisture retrievals. 

This is solved in this study by including a large variety of vegetation characteristics 

during the modeling part, and by performing a pre-selection of realistic vegetation 

scattering components (excluding negative decomposed powers, using the radar 

vegetation index (RVI) to filter for outliers). However, this approach can be extended 

by assuming not only three scattering mechanisms (soil, vegetation, and double-

bounce from combination of soil and vegetation) in the total SAR signal, but include a 

forth component to account, for instance, for pixel heterogeneity due to man-made 

objects and structures like (obliquely) oriented urban buildings, as done by (Yajima et 

al., 2008; Yamaguchi et al., 2011). 

The presented research study deals with active and passive microwave remote 

sensing observations of different spatial and temporal resolutions. It is always 

necessary to carefully review which type of remote sensing data is needed for a specific 

research study. For example, remote sensing applications for weather monitoring and 

forecasting need a high temporal resolution because changes in weather can appear 

within just a few hours. Hence, sensors onboard of geostationary satellites are 
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required, as, for example, the Meteosat third generation (MTG) program from the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), 

which is significantly advancing Europeans geostationary meteorological satellite fleet 

(Holmlund et al., 2021), and the Geosynchronous Interferometric Infrared Sounder 

(GIIRS) onboard of a weather satellite (Ma et al., 2021). In contrast, when analyzing 

seasonal changes in soils and vegetation covers over an entire growing period, high 

temporal resolution can be traded for a high spatial resolution. This means, sensors 

onboard of polar sun-synchronous satellites are more useful with revisit times of two 

(e.g., Entekhabi et al., 2014) to 16 (e.g., Ihlen and Zanter, 2019) days but potentially 

high (in the order of meters) spatial resolution to be able to distinguish between 

different fields or even species and habitats. In this study, on the one hand, radar and 

radiometer observations from the SMAP mission are used with moderate temporal 

resolution (2-3 days) and rather coarse spatial resolution (36 km) in order to investigate 

the potential of the proposed active-passive microwave retrieval approach for 

simultaneous soil surface roughness estimation (Fluhrer et al., 2020). Since surface 

roughness changes mainly occur after precipitation, through wind effects or 

agricultural practices (Marzahn et al., 2012; Marzahn and Ludwig, 2009), the chosen 

dataset fits the research design and enables the investigation of large-scale land surface 

heterogeneity. In this study, the focus was more driven by the fact that the proposed 

approach needs active and passive microwave measurements with comparable 

acquisition geometry, spatio-temporal resolution and recording time, which cannot be 

found that easily among operating microwave remote sensing sensors. On the other 

hand, airborne SAR data at good spatial resolution (~ 90 m) but coarse temporal 

resolution (4 to 5 dates per year) are employed for soil moisture retrieval analyses 

(Fluhrer et al., 2024, 2022). Since soil moisture changes may occur within just a few 

meters, a high (in the order of centimeters to meters) spatial resolution is required. 

However, due to the airborne acquisition and lack of currently existing P-band 

satellites in orbit, the coarse temporal resolution of the employed AirMOSS dataset 

prohibits any time series analyses, although in situ measurements and soil 

hydrological modeling outputs are available at high temporal resolution. Here, a 

comparable high temporal resolution of the P-band SAR microwave data would 

significantly enhance the presented research but is unfortunately not obtainable at the 

time of finalizing the research study. 

Up to now, studies for estimating soil moisture profiles from the land surface up 

to the upper root zone generally include polynomial fitting (e.g., (Sadeghi et al., 2016)), 

regression (e.g., (Jackson et al., 1987; Zotova and Geller, 1985)), knowledge-based 

approaches with a priori information (e.g., (Mkrtchjan et al., 1988; Ragab, 1995)), 

inversion (e.g., (Entekhabi et al., 1994)), combinations of remote sensing data with soil 
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water balance or hydrological models (e.g., (Bernard et al., 1986; Konings et al., 2014; 

Ragab, 1995)), and assimilation (e.g., (Crosson et al., 2002; Tobin et al., 2020)). All of 

these techniques have their individual strengths and limitations. The drawbacks are 

model-specific and include a high-degree of simplification of reality (e.g., polynomial 

fitting, regression), a lack of transferability from one study area to another (e.g., 

regression), a high demand for a priori knowledge on the hydrological state of the 

investigated soil (e.g., knowledge-based approach), as well as a demand for multiple 

remote sensing datasets (e.g., inversion). In this study, remote sensing data with soil 

models (hydraulics and electromagnetics) are combined. This way, the knowledge 

gained from remote sensing is merged with model simulations based on physical, 

hydrological laws (i.e., Richards equation) in order to extend the retrieval of lateral soil 

moisture (as can be done from remote sensing alone) to vertically continuous profiles 

(not possible with single-pass space-borne remote sensing). Hence, the proposed 

approach is able to provide soil moisture information continuously with depth from 

remote sensing combined with modeling. Conducted sensitivity analyses showed that 

soil moisture profile simulations based on the hydrological model can vary 

significantly depending on pre-defined model constraints, such as initial assumptions 

on certain input parameters, like the initial pressure head and the upper boundary 

condition for water flow. By using an ensemble-based set-up of hydrological model 

simulations in combination with observed information from remote sensing, vertically 

continuous and physically realistic soil moisture profiles with reasonable accuracy in 

absolute values as well as in profile shapes can be estimated. At some stations (dense 

forest and dry semi-desert), an overestimation of in situ measurements lead to a 

decrease in correlations. Despite this decrease in correlations, it was found that the 

shape of the estimated soil moisture profiles fit quite well to in situ measurements and 

low Fréchet distances, which represent the shape similarity. This similarity in shape is 

an important outcome that is necessary, for instance, in weather forecasting and 

climate modeling (Dirmeyer et al., 2016; Koster et al., 2010). 

For the comparison of electromagnetic model simulations and remote sensing 

observations, knowledge on the scattering and penetration behavior of the 

microwaves is required. It was found that for increasing vegetation volume (forests), 

the dihedral scattering mechanism becomes the dominant mechanism at P-band 

wavelengths, which is in line with previous studies, e.g., (Lucas et al., 2004; 

Moghaddam and Saatchi, 1995). This fact influences the soil moisture retrieval 

performance and hence, estimation of penetration capabilities, since the extracted soil 

scattering component (used for the soil moisture retrieval) may be too weak to retrieve 

reliable soil moisture information across strongly stem-dominated (vertically oriented) 

forests. 
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6 Conclusions  

In this research study, microwave remote sensing observations of low frequencies 

(430 MHz to 1.4 GHz) are analyzed regarding their scattering behavior, their 

interaction with soil and/or vegetation, and their applicability for retrieval of 

important soil parameters. The presented results confirmed the feasibility of the 

proposed methods and showed them to be consistent with either atmospheric 

conditions, soil characteristics or in situ field measurements.  

The proposed L-band active/passive microwave retrieval approach highlighted 

the benefits of combining radar and radiometer observations for a joint estimation of 

geophysical parameters. It could be demonstrated that with this approach realistic soil 

surface roughness patterns across bare and low vegetated areas can be estimated. The 

approach can even be extended for vegetated soils in an add-on study and hence, 

provide global, time- variable surface roughness maps of horizontal (𝑙) and vertical 

soil roughness (𝑠). These are needed, for instance, in electromagnetic, weather and 

climate, runoff as well as soil erosion models. The main drawback of this approach is 

the coarse spatial resolution of the radiometer data. Here, latest research seeks to 

improve the spatial resolution of passive microwave remote sensing, e.g., (Sugihara El 

Maghraby et al., 2018; Luetzner et al., 2022), which in turn would improve the soil 

roughness retrieval approach and its possible applications. 

Thorough P-band SAR data analyses also confirmed the great potential of low 

frequency radar data for soil moisture estimation and emphasize the demand for 

temporally and spatially high-resolution P-band observations at global scale. Detailed 

analyses regarding the scattering behavior of the P-band SAR signal across various 

types of landscapes showed that over dense forests the decomposed dihedral 

scattering mechanism is dominant in the total SAR signal compared to soil- or 

vegetation-only scattering. This finding originates from the strong vertical structure of 

tree trunks and showed to concur with previous studies. Hence, based on the 

presented study and results, on-going research regarding soil and vegetation moisture 

estimation from P-band dihedral scattering components is recommended. At the time 

of writing, only soil moisture can be estimated from the extracted soil scattering 

components of the total SAR signal. However, by analyzing the dihedral scattering 

component of the P-band SAR signal, soil and vegetation moisture can be estimated 

simultaneously, enabling global vegetation moisture maps in volumetric units from 

active remote sensing observations (not available from polarimetric SAR at the time of 

this writing).  
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Overall, knowledge about the penetration depth of microwaves is of enormous 

importance with regard to the determination of geophysical quantities as well as the 

assessment of sensing volumes and actual sensitivity of remote sensing. Through the 

combination of microwave remote sensing and soil hydrological modeling, and the 

subsequent derived soil moisture profiles, which indicate the variation in soil moisture 

between the land surface to the upper root zone, it is confirmed that soil moisture can 

be highly variable with depth, depending on soil type and atmospheric conditions. 

And since the propagation behavior of an electromagnetic wave is highly dependent 

on moisture, the wave penetration ability plays an important role in soil moisture 

estimation. Based on the estimated complex soil permittivity from P-band SAR signals 

it is shown that soil penetration depths of P-band microwaves are 5 cm to 35 cm for 

given soil conditions. However, the calculation of the penetration depth is limited on 

the sensor frequency and the complex soil permittivity, although it is known that the 

penetration capability of microwaves depends on many more factors, such as sensor 

characteristics (e.g., incidence angle, transmitted energy, band width) and soil 

characteristics (e.g., texture, bulk density, microstructure) (see chapter 1.2). Hence, 

more sophisticated equations for defining the penetration depth may improve 

microwave remote sensing estimates.  

In addition, estimated soil moisture variation with soil depth depends on the soil 

hydrological modeling with HYDRUS-1D, which can always only approximate the 

reality. Here, research regarding the initial hydraulic soil conditions (i.e., Van 

Genuchten parameters) or employed sub-models (i.e., the root water uptake model) 

could improve hydrological model simulations and currently insufficient model 

performances across very dry desert regions (see chapter 4). In addition, a combination 

of L- and P-band remote sensing information can enhance the estimation of soil 

moisture profiles, especially near the soil surface (first 5 cm in depth) where in situ 

measurements are insufficiently available. Further, the removal of the volume 

scattering component during the hybrid decomposition technique is identified as an 

option for enhancing soil moisture (profile) estimation from fully polarimetric SAR 

data. Here, machine learning can be implemented to improve the modeling of the 

volume scattering prior to the extraction of the soil scattering component from the total 

SAR signal. Overall, all on-going research regarding P-band SAR scattering 

decomposition and moisture estimation is relevant in the context of the upcoming 

BIOMASS mission from ESA and the future SNOOPI mission from NASA (see chapter 

1.2). Although, BIOMASS will not be allowed to record microwave data at P-band over 

North America and Central Europe, especially interesting regions, like the tropical rain 

forest, can be analyzed and investigated with this mission.
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7 Outlook 

In this PhD study, remote sensing observations from always one sensor system 

together with suitable models are used for geophysical parameter estimation. In the 

last years, machine learning has shown to be able to exceed the limits of possibilities 

not only in satellite remote sensing. With data fusion techniques and artificial 

intelligence approaches significant advances in science are feasible. The possibilities in 

this direction seem endless and are developing rapidly. For example, by combining 

observations from multiple sensors (e.g., radar, radiometer, optical, hyperspectral, 

infrared) and by employing machine learning (e.g., support vector machines, ensemble 

algorithms) or artificial neural networks, more advanced estimation of important 

parameters, like soil moisture (Ben Abbes and Jarray, 2023; Singh and Gaurav, 2023; 

Yuan et al., 2019), or improved downscaling of spatially coarse resoluted satellite data 

(Zhao et al., 2018) are possible. Hence, it will be interesting, e.g., to combine high 

resolution P-band satellite observation of the BIOMASS mission with already available 

higher frequency (L- to C-band) satellite (i.e., Sentinel-1, ALOS PALSAR, SMAP) and 

optical (i.e., Landsat, MODIS) data through data fusion techniques, and analyze the 

different compartments of the tropical and temperate rainforests, which are known for 

the different vegetation and moisture levels from forest floor and understory to the top 

of the canopy. Here, remote sensing sensors with varying microwave frequencies 

record different layers due to their specific penetration capabilities. Moreover, all the 

planned future satellite missions, like BIOMASS, NASA-ISRO SAR (NISAR) (Rosen 

and Kumar, 2021), Radar Observing System for Europe at L-band (ROSE-L) (Davidson 

and Furnell, 2021), ESA’s Sentinel-1 next generation (NG) (Torres et al., 2023), and 

many other, promise constantly growing availability of spatially and temporally high 

resolution remote sensing data, which can only advance Earth system research. 

Last but not least, not only data fusion of different remote sensing systems can 

facilitate advanced Earth system and climate change research, but also assimilation of 

remote sensing parameters in hydrological modeling. Varying assimilation techniques 

of remotely sensed soil parameters, such as soil moisture, in hydrological models 

already improve model performances (Montzka et al., 2013). Here, research regarding 

the assimilation of, for instance, high resolution soil moisture patterns from remote 

sensing in hydrological models, such as the mesoscale hydrological model (mHm) 

(Samaniego et al., 2010) and Weather Research and Forecasting model (WRF-Hydro) 

(Fersch et al., 2020), may facilitate the prediction accuracy of models, and improve our 

understanding of essential hydrological and environmental processes within 

ecosystem.
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List of Symbols 

𝛼 Attenuation factor, [-] 

𝛼𝑃−𝑃𝑃 Intercept of linear regression for given polarization 𝑃, [-] 

𝛼𝑠 Soil scattering angle, [°] 

𝛽𝑃−𝑃𝑃 Slope of linear regression for given polarization 𝑃, called covariation 

parameter, [-] 

𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎  Data-based covariation parameter, [-]  

𝛽𝑃−𝑃𝑃 
𝑀𝑜𝑑𝑒𝑙 Model-based covariation parameter, [-] 

𝛿𝑃 Penetration depth, [cm] 

𝑒 Euler’s number, mathematical constant ~2.71828, [-] 

𝜀 Actual permittivity of a dielectric, [𝐹/𝑚] 

𝜀0  Permittivity of vacuum, [𝐹/𝑚]; 𝜀0 =  8.85 ∗ 10
−12 [𝐹/𝑚] 

𝐸𝑃 Emissivity for given polarization 𝑃, [-] 

𝜀𝑟  Relative permittivity, [-] 

𝜀𝑠 Soil permittivity, [-] 

𝜀𝑠
′ Real part of the soil permittivity, [-] 

𝜀𝑠
′′ Imaginary part of the soil permittivity, [-] 

𝐹 Fréchet distance, [-] 

𝐻𝑅 Passive roughness parameter, [-] 

𝑗 Imaginary unit to describe a complex number, [-] 

𝑘 Wave number, [cm-1] 

𝑘𝑠 Wave number scaled vertical RMS height 𝑠, [-] 

𝑘𝑙 Wave number scaled horizontal correlation length 𝑙, [-] 

𝑙 Horizontal correlation length, [cm] 

𝜆 Wavelength, [cm] 
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𝜇𝑟 Relative magnetic permeability, [-] 

𝜔 Effective vegetation scattering albedo, [-] 

𝜔𝑓 Angular frequency, [rad/s] 

𝜋 Mathematical constant, the ratio of a circle’s circumference to its 

diameter, [-] 

𝑅 Pearson’s correlation coefficient [-] 

𝑅2 Pearson’s coefficient of determination, [-] 

𝑠 Vertical root mean square height, [cm] 

𝑆 Siemens, unit of electric conductance, susceptance, and admittance, 

[kg−1⋅m−2⋅s3⋅A2] 

|𝑆𝑃𝑃|
2 Backscattering coefficient for given polarization 𝑃, [dB]  

𝜎 Soil conductivity, [𝑆/𝑚] 

𝜏 Vegetation optical depth, [Np]  

𝜃𝑠  Soil moisture, [-] or [vol.%] 
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List of Abbreviations 

AirMOSS Airborne Microwave Observatory of Subcanopy and Subsurface 

ALOS Advanced Land Observing Satellite 

CONUS Continental United States 

DEM Digital Elevation Model 

ESA European Space Agency 

EUMETSAT European Organization for the Exploitation of Meteorological 

Satellites 

I2EM improved Integral Equation Model 

IEEE Institute of Electrical and Electronics Engineer 

IPCC Intergovernmental Panel on Climate Change 

ISRO Indian Space Research Organization 

GEO Geostationary 

GHz Gigahertz 

GIIRS Geosynchronous Interferometric Infrared Sounder 

mHm mesoscale hydrological model 

MHz Megahertz 

MODIS Moderate-resolution Imaging Spectroradiometer 

MTG Meteosat Third Generation 

NASA National Aeronautics and Space Administration 

NG Next Generation 

NISAR NASA-ISRO SAR 

NMM3D Numerical Maxwell Model in 3D 

𝑃 Polarization 

PALSAR Phased Array type L-band Synthetic Aperture Radar 
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RMS Root Mean Square 

𝑅𝑀𝑆𝐸 Root Mean Square Error 

ROSE-L Radar Observing System for Europe in L-band 

RVI Radar Vegetation Index 

SAR  Synthetic Aperture Radar 

SMAP Soil Moisture Active Passive 

SMOS Soil Moisture Ocean Salinity 

SNOOPI SigNals Of Opportunity P-band Investigation 

SPM Small Perturbation Method 

UAV Unmanned Aerial Vehicles 

𝑢𝑏𝑅𝑀𝑆𝐸 unbiased Root Mean Square Error  

U.S. United States 

WRF Weather Research and Forecasting 
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