Long-Term Analysis of Driver Behaviour in the Dilemma Zone at a Signalized Intersection

Clemens Schicktanz (clemens.schicktanz@dlr.de), Kay Gimm Institute of Transportation Systems | German Aerospace Center (DLR)

Problem

- High risk of accidents in the yellow interval, where vehicles enter the dilemma zone (DZ) [1]
- Traffic behaviour in the DZ has been studied, but day vs. night differences remain unexplored [2]

Solution

• Use high-resolution trajectory data from AIM Research Intersection [3] to quantify night vs. day driving behaviour

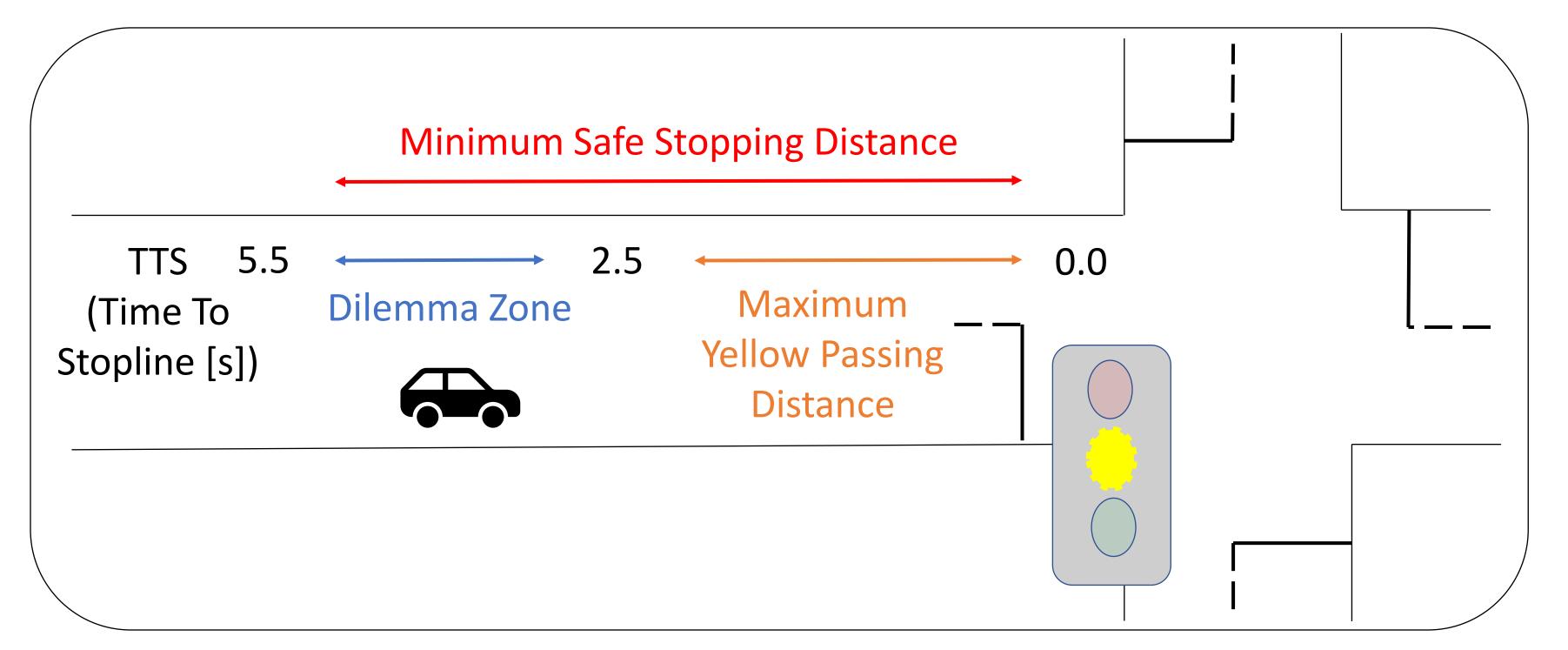


Figure 1: Symbolic representation of dilemma zone according to [2].

Figure 2: Proportional distribution of behaviour in the dilemma zone over time (left) and overall day vs. night (right).

	Distance (m)				Speed (m/s)				Acceleration (m/s²)			
Behaviour	1	2	3	4	1	2	3	4	1	2	3	4
Day	26	36	44	37	9	10	11	9	0.5	0.4	0.3	0.4
Night	32	41	46	38	11	12	12	13	0.4	0.4	0.4	0.0
Difference	6	5	2	1	2	2	1	4	-0.1	0.0	0.1	-0.4

Table 1: Mean values of key variables related to driver behavior according to [2].

Abstract

- Analyzed 27 days of trajectory data from a signalized high-traffic urban intersection [3]
- Out of 614,615 recorded traffic participants, 32,260 were in the dilemma zone. Their behavior was classified into four groups (Fig. 2).
- At night, the probability of running a red light is 13% higher, and running a yellow light is 8% higher compared to daytime. Thus, drivers are 21% more likely not to stop at night.

Definition Dilemma Zone

- Concept introduced in the 1960s [1]
- Refers to the area at a signalized intersection where, at the onset of yellow, drivers cannot safely stop before the stop line or clear the intersection (see Fig. 1) [1]

Method

- 1. Record videos and extract trajectory data
- 2. Identify the traffic signal relevant for each object
- 3. Extract the corresponding stop line crossed by the object from the digital map
- 4. Compute distance to stop line (DTS) and time to stop line (TTS)
- 5. Identify objects in the dilemma zone if 2.5 s < TTS < 5.5 s at the onset of yellow
- 6. Classify behaviour of objects in DZ:
 - 1. Go (with yellow)
 - 2. Passed with red
 - 3. Stop
 - 4. Stop after stop line
- 7. Compute behaviour shares over time (Fig. 2)
- 3. Compare relative day (6 AM–10 PM) vs. night (10 PM–6 AM) distributions of behaviour (Fig. 2)
- Compute and compare descriptive statistics for driver behaviour at the onset of yellow (Table 1)

Results

- Extracted 614,615 trajectories from video recordings (July-September 2025) [4]
- 32,260 objects identified in the DZ (5%)
 - 31,916 during daytime
 - 344 during nighttime
- Behavioral change from day → night (see Fig. 2):

Go with yellow: 26 % → 34 %
Passed with red: 32 % → 45 %
Stop: 41 % → 21 %
Stop after stop line: 1 % → 0 %

References

- 1] Gazis, D.C.; Herman, R.; Maradudin, A. The Problem of the Amber Signal Light in Traffic Flow. Oper. Res. 1960, 8, 112–132.
- [2] Papaioannou, P., Papadopoulos, E., Nikolaidou, A., Politis, I., Basbas, S., & Kountouri, E. (2021). Dilemma Zone: Modeling Drivers' Decision at Signalized Intersections against Aggressiveness and Other Factors Using UAV Technology. *Safety*, 7(1), 11. https://doi.org/10.3390/safety7010011
- [3] Knake-Langhorst, S., & Gimm, K. (2016). AIM Research Intersection: Instrument for traffic detection and behavior assessment for a complex urban intersection. Journal of large-scale research facilities.
 - One day of data is publicly available: Schicktanz, C., Klitzke, L., Gimm, K., Knake-Langhorst, S., Rizzo, G., Mosebach, H. H., Liesner, K., & Scholz, M. (2025). DLR Urban Traffic dataset (DLR UT) v1.3.0. Zenodo. https://doi.org/10.5281/zenodo.15754836

