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Introduction

Hydroclimatic risk arises from the possibility of too much or too little water, where the
amount is primarily dictated by weather and climate. Associated risk quantifications can be
human-centric or related to environmental sustainability. Towards this end, scientists working
within this broad domain study the distribution and dynamics of water in built and natural
environments. However, not all sub-processes contributing to system dynamics are resolved
at the studied scales [1,2]; therefore, any quantitative analysis is fraught with a cascading
chain of uncertainties. For example, in relation to fluvial hazards, there might be inadequate
information to characterize the infiltration capacity of a watershed, uncertainties related to
the exceedance probability of regional rainfall under climate change, stochastic variability in
flood-related erosion along an inhabited river bank, or uncertainty in observed inundations
during past events.

The effort to study and quantify such uncertainties has been ongoing for several
decades [1,3,4]. Beyond the forecast skill-related benefits of probabilistic predictions over
their deterministic counterparts, one compelling reason to make uncertainties explicit is their
crucial role in supporting risk-based decision-making[5,6]. Here, we discuss the necessity of
uncertainty quantification and communication for allowing individuals to utilize risk and loss
aversion. Risk-averse agents have a preference for certain outcomes over uncertain ones [7]
and loss-averse agents prioritize avoiding losses over profiting from equivalent gains [8].
Using this line of reasoning, we support the research thrust towards more uncertainty-aware
models.

Considering all possibilities

Without a quantitative or semi-quantitative conception of uncertainty, we are bound to the
realm of ambiguity and ambiguity aversion [9]. When probabilities are assigned to event
spaces, all potential outcomes are assigned a value, ensuring that even low-probability but
potentially catastrophic events are accounted for. This is especially important in addressing
hydroclimatic risks, such as those related to flash floods, debris flows, erosion along coastal
waterfront, outburst floods and landslides due to glacial melting, riverine inundation extents,
droughts, etc. Additionally, behavioral sciences have shown that people can have tendencies
of loss aversion and/or risk aversion in a variety of decision-making contexts. For example,
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in prospect theory [10], the value function is s-shaped but asymmetrical, with more sensi-
tivity to losses. Similarly, behavioral game theory incorporates psychological and behavioral
insights into traditional game theory, studying how humans deviate from purely rational
agents [11]. To allow for individuals to use these preferences and risk attitudes during hydro-
climatic warning or design decisions, people would need to be aware of the uncertainties in
quantitative analysis and forecasts.

Formally speaking, the posterior predictive distribution (Eq. 1), in particular, provides
the conditional probability of a hazard occurring, given available data [p(Zpredict | Zobs ) ]. The
right-hand side of the equation represents marginalization - i.e. the probability-weighted
sum of conditional predictions - over model assumptions, multiple model structures [M],
parameters [6] and input forcings [x] - which are beset with deep uncertainties due to climate
change. This enables a detailed uncertainty analysis. Furthermore, Bayesian updating refines
predictions, narrowing the range of plausible options as new data becomes available. When
there are no observations to condition the model structures and parameters, we can use prior
distributions [p(8), p(M)] based on expert opinion or transfer learning, which will provide a
wider range of possibilities than an observations-constrained prediction.

Predictive likelihood Posterior over 6 Input Posterior over M
P(Zpredict | Zobs) = Z / fp(zpredict | Q,M,X) p(e | Zobs’M) P(x) dx do p(M | Zobs) (1)

MemM

Uncertainty analysis - capturing system variability (aleatoric uncertainty) and knowl-
edge deficits (epistemic uncertainty) - also relies on many assumptions, and, therefore, it can
miss many components (some may focus on parameter uncertainty and not consider model
structure uncertainty). However, such an analysis can be consequential as the spread of the
predictive distribution can already trigger different preferences to accommodate loss and
risk aversion of end users. Take, for example, evacuating a flood-risk zone or seeking more
locally-sourced data to reduce uncertainty about building damage.

To be clear, not all individuals show such risk attitudes within the context of hydrocli-
matic hazards. For those who do utilize such preferences, there are arguments that these aver-
sions can lead to suboptimal decision-making [12]. However, in many other contexts, the
decision which avoids catastrophic risk is preferable, even if, based on inaccurate assump-
tions, it appears to have lower expected utility [13]. Ultimately, a loss- or risk-averse deci-
sion will only be possible when there is a sense of some nontrivial chance of unaffordable
loss. In this way, while we do not claim that loss- or risk-averse decision-making is preferable
in all contexts, what we want to stress is that an awareness of the uncertainty is necessary to
allow individuals to utilize these preferences in their decision-making. However, determinis-
tic model-based assessments are unable to provide such crucial information to the decision-
makers.

Uncertainty-aware models

As we transition from parsimonious to highly parameterized models to characterize hydro-
climatic risk [14], it is crucial to understand associated modeling uncertainties. Parsimo-
nious models often make their assumptions explicit, whereas highly parameterized models
may obscure them. At a regional level, high-impact hydroclimatic events tend to occur infre-
quently; therefore, before deploying such models for planning and design decisions, it is rec-
ommended to test that they are reliable in extrapolatory scenarios. This consideration tran-
scends the debate between model parsimony, complexity, and explainability—it represents
an orthogonal axis of progress (Fig 1). Any model architecture can be enhanced by attempts
to address parametric, input, model-structure, and/or observational uncertainties. Therefore,
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Fig 1. A schematic comparison of deterministic and probabilistic models. The complexity of the model is orthogo-
nal to uncertainty awareness. You can have parsimonious or highly parameterized models, and they can be extended
into probabilistic counterparts. In the didactic example (bottom panel), the difference in the output of two floodwater
segmentation algorithms [15] captures the need for uncertainty quantification - the deterministic output misses a
whole flooded channel.

https://doi.org/10.1371/journal.pwat.0000387.9001

Monte Carlo simulations (in the most generic sense), which explore the effect of all probable
model inputs to identify all probable outcomes, are foundational to reliable risk estimation
and communication.

Beyond improving risk quantification and forecast reliability, methods that help make
uncertainties explicit can meaningfully inform decisions in the face of systemic risks, allowing
individuals or communities to err on the side of caution. Although there are diverse risk atti-
tudes towards various hydroclimatic hazards, we echo the opinion that requisite uncertainty
awareness is required to employ those preferences in making decisions.
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