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ABSTRACT

Mantle convection simulations are an essential tool for understanding how rocky planets evolve. However, the poorly known input
parameters to these simulations, the non-linear dependence of transport properties on pressure and temperature, and the long integration
times in excess of several billion years all pose a computational challenge for numerical solvers. We propose a physics-based machine learning
approach that predicts creeping flow velocities as a function of temperature while conserving mass, thereby bypassing the numerical solution
of the Stokes problem. A finite-volume solver then uses the predicted velocities to advect and diffuse the temperature field to the next time
step, enabling autoregressive rollout at inference. For training, our model requires temperature-velocity snapshots from a handful of simula-
tions (94). We consider mantle convection in a two-dimensional rectangular box with basal and internal heating, and pressure- and
temperature-dependent viscosity. Overall, our model is up to 89 times faster than the numerical solver. We also show the importance of dif-
ferent components in our convolutional neural network architecture such as mass conservation, learned paddings on the boundaries, and loss
scaling for the overall rollout performance. Finally, we test our approach on unseen scenarios and find that it is able to perform thermal evo-
lution well despite being trained on snapshots from steady-state simulations. However, when additional compressibility effects are included
in the energy equation or when the initial condition is too far out of the distribution of the training data, the network fails, leaving room for
future improvements.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0281832

I. INTRODUCTION
A. Motivation

Mantle convection plays a fundamental role in the long-term
thermal evolution of rocky bodies, such as Earth, the Moon, Venus,
Mercury, and Mars. Key processes that shape the evolution of a planet
over billions of years, including its potential habitability, such as volca-
nism, tectonics, and magnetic field generation, are all intricately related
to how the silicate mantle and crust transport heat from the deep inte-
rior to the surface (e.g., Schubert et al., 2001; Breuer and Moore, 2015;
and Tosi et al., 2014). Mantle rocks behave as a highly viscous fluid
over geological timescales in response to buoyancy forces induced by
extreme temperatures and pressures. As such, mantle convection is
modeled via a system of partial differential equations (PDEs) describ-
ing conservation of mass, momentum, and energy, which can be
numerically solved using dedicated codes (e.g., Tackley, 2008; Zhong
et al., 2008; H€uttig et al., 2013; and Bangerth et al., 2024).

Initial conditions and several parameters for mantle convection
simulations are poorly constrained and need to be extensively varied
in parameter studies to match sparse observations from satellites, tele-
scopes, and in situmeasurements (e.g., Tosi and Padovan, 2021). Since
simulations are computationally expensive, parameter studies are often
carried out using simplified models based on scaling laws. These laws
parameterize convective heat fluxes as a function of simulation param-
eters like the Rayleigh number and the rheological properties of rocks
(e.g., Reese et al., 1998; Dumoulin et al., 1999; Deschamps and Sotin,
2001; Korenaga, 2010; Thiriet et al., 2019; and Schulz et al., 2020).

Machine learning has started to overcome the limitations of scal-
ing laws by incorporating more physics, such as temperature- and
pressure-based dependence of the viscosity, and by predicting the
mean temperature (Shahnas and Pysklywec, 2020), one-dimensional
temperature profiles as a function of time (Agarwal et al., 2020) as well
as two-dimensional (2D) temperature fields (Agarwal et al., 2021) in
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time. Agarwal et al. (2021) modeled the spatiotemporal evolution of
the 2D temperature field in a Mars-like planet by first using convolu-
tional autoencoders to compress the data, followed by training a recur-
rent algorithm to perform time-stepping in the latent space. On the
one hand, this model is four orders of magnitude faster at inference
than the numerical solver and is able to effectively capture the diverse
flow patterns resulting from varying parameter combinations. On the
other hand, the authors acknowledged some shortcomings as well: (1)
the approach required 10525 simulations for training and evaluation,
making it unfeasible to regenerate such large datasets on high-
performance computing systems whenever the simulation setup is
modified – for example, when changing the domain geometry, the
number of parameters, or the viscosity formulation; (2) the model did
not predict other important variables such as pressure and velocity
fields; and (3) it failed to accurately capture fine-scale features, such as
small-scale downwellings arising from instabilities in the cold upper
boundary layer. Recent studies, however, have begun to address this
issue by developing models that can resolve such fine-scale features
more accurately (Pathak et al., 2020; Wu et al., 2022; and Yin et al.,
2023).

These limitations lead to the following question: Are machine
learning models of mantle convection doomed to subpar predictions,
despite training on thousands of simulations? We tackle this question
with a physics-based model that is trained on only 94 simulations and
is up to 89 times faster than the numerical solver.

B. Physics-based machine learning

It is worth zooming out of the specific case of mantle convection
to consider the wider efforts in physics-based machine learning for
PDEs. Raissi, Perdikaris, and Karniadakis (2019) are often cited as one
of the seminal papers where automatic differentiation is used to evalu-
ate the PDE terms, which are then incorporated into the loss function.
Several follow-up works have proposed improvements, such as for
overcoming spectral bias (Shishehbor et al., 2024), for better shock-
capturing in transonic flows (Wassing et al., 2025), for overcoming
local minima in multi-loss objectives (Liu et al., 2025), and for multi-
scale modeling (Wang et al., 2024b), to name a few.

While it is somewhat a matter of semantics, the term PINN
(physics-informed neural networks) is generally associated with meth-
ods where the inputs to the neural network are coordinate-based
points, and automatic differentiation (AD) is used to calculate the par-
tial derivatives of the outputs with respect to the inputs. However, con-
volutional neural networks (CNNs) (Pathak et al., 2020; Cheng et al.,
2021; Stachenfeld et al., 2022; and Brandstetter et al., 2023), graph neu-
ral networks (GNNs) (Brandstetter et al., 2023; Horie and Mitsume,
2023; 2024; Gladstone et al., 2024; and Lino et al., 2025), and attention
based architectures (Li et al., 2023; Zhou et al., 2024; Hao et al., 2023;
2024; and Holzschuh et al., 2025) have also been applied successfully
in some cases where accounting for the spatial structure of the inputs
is desirable. For example, Wandel et al. (2020) use CNNs to predict
flow variables and use a finite difference formulation in the form
of convolutional kernels to calculate the partial derivatives instead of
using AD. Notably, they do not use any data and solve the system of
equations in the training phase. While PINNs excel at solving individ-
ual PDE instances through coordinate-based learning, neural operators
like DeepONet (Lu et al., 2021; Wang et al., 2021) and Fourier Neural
Operators (Li et al., 2021; 2023a; 2023b; 2023c; and Wen et al., 2022)

take a different approach by learning mappings between function
spaces, making them particularly suitable for parametric studies.

Hybrid methods have also gained popularity. Solver-in-the-loop
methods (Um et al., 2021; List et al., 2022; Alieva et al., 2023; Wang
et al., 2024; and Kochkov et al., 2024) augment coarse-grid solutions
obtained from differentiable PDE solvers with a learned correction to
account for high-resolution features. In another hybrid paradigm,
computationally expensive components of traditional solvers are
substituted with learned approximations. Tompson et al. (2017)
replace the expensive pressure projection step in an incompressible
Euler solver with an unsupervised formulation to obtain divergence-
free velocity fields. The network is trained in the framework of several
time-steps where their CNN block can be repeatedly called after each
advection step, which helps establishing long-term stability. Other
examples of the hybrid solver paradigm are Bar-Sinai et al. (2019),
Greenfeld et al. (2019), Luz et al. (2020), and Kochkov et al. 2021).
Agarwal et al. (2025b) could be considered a hybrid approach, in
which learned one-dimensional temperature profiles serve as optimal
initial conditions for a 2D mantle convection solver, allowing it to
reach steady- or statistically-steady states 2.8 times faster than with
conventional initializations. Achieving this speedup at the cost of only
� 2min of training time is appealing. However, this benefit is limited
to scenario of the steady-state solution, rather than the full time-
stepping process. The latter is crucial in thermal evolution simulations,
where the system continues to evolve based on addition and removal
of heat. Our new hybrid approach instead targets acceleration of the
time-stepping itself, enabling faster simulation of the full temporal
evolution.

C. Our approach

We replace the most computationally expensive component of
mantle convection simulations – the solution of the mass and momen-
tum conservation equations (i.e., Stokes problem) – with a learned
CNN that predicts velocities as a function of temperature and enforces
mass conservation by design. The divergence-free velocities obtained
from the CNN via a PyTorch model are then fed into the Cþþ
numerical solver GAIA (H€uttig et al., 2013) via a Python interface to
perform a numerically inexpensive advection-diffusion step. In this
way, we are able to perform time-stepping without ever learning in
time. As we will see later, the mantle convection PDEs provide a strong
inductive bias on how to model in time and not accounting for it can
make the learning task more challenging. Our contributions in this
paper are as follows:

• To the best of our knowledge, this is the first physics-based
machine learning model in mantle convection.

• We introduce a scaling for learning velocity fields across several
orders of magnitude.

• We use learned paddings on the boundaries for enhanced
accuracy.

• We achieve stable predictions over tens of thousands of time-
steps without learning in time.

• We evaluate this model on unseen scenarios such as thermal evo-
lution at inference time and demonstrate the strengths and short-
comings of our approach.

We use a similar architecture to the one introduced by Tompson
et al. (2017) but need more trainable parameters for our Stokes
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problem as opposed to their Poisson problem. In our case, pressure
projection is not necessary, as the network conserves mass through
constraints. This is similar to how Wandel et al. (2020) enforce mass
conservation. However, we adopt a data-driven approach for the
momentum equation instead of a purely physics-based one. Not need-
ing training data from the solver is attractive, but reaching the effi-
ciency and accuracy of computational fluid dynamic codes with
machine-learning-based solvers is an active area of research (Grimm
et al., 2022; Wandel et al., 2025). Our hybrid approach instead learns
on high-quality samples from the solver. All the machine learning
code developed and used is available here: https://github.com/agsid-
dhant/PBML_Mantle_Convection.

The paper is organized as follows. In Sec. IIA, we introduce the
governing PDEs and the setup of the simulations. In Sec. II B, we pro-
vide an overview of the dataset and discuss the scaling of velocities. We
then present the architecture of the CNN used as a Stokes surrogate
model in Sec. II C, followed by two baseline models for comparison in
Sec. IID. In Sec. III, we discuss our main findings: training details (Sec.
IIIA); velocity predictions from the Stokes model (Sec. IIIB); time-
evolution using a U-net (Sec. III C); performance of our Stokes model
across different parameters during rollout (Sec. IIID); speedup analysis
compared to the numerical solver and other baselines (Sec. III E); abla-
tion studies of key components, where one component at a time is
removed to assess its impact on performance (Sec. III F); and perfor-
mance of our model on some unseen scenarios (Sec. IIIG). Finally, we
conclude by summarizing the main findings of this paper.

II. METHODS
A. Mantle convection equations

The large-scale deformation of crystalline mantle rocks over geo-
logical timescales is typically modeled as the dynamics of a viscous
fluid with negligible inertia, leading to the so-called Stokes flow. We
assume the Boussinesq approximation, whereby the flow is treated as
incompressible, and the only density variations considered are those
due to temperature changes in the buoyancy force term (e.g., Schubert
et al., 2001). In the non-dimensional form, the conservation equations
of mass, momentum, and thermal energy for a creeping fluid heated
from below and from within in a 2D Cartesian geometry read

r � u ¼ 0; (1a)

�rpþr � g ruþ ðruÞT
� �� �

¼ RaT ey; (1b)

@T
@t

þ u � rT ¼ r2T þ Q: (1c)

Here, u is the velocity vector with horizontal and vertical components
u and v, p is the dynamic pressure, i.e., the flow-driving pressure per-
turbation given by the difference between the total pressure and the
hydrostatic pressure that is implicitly used to define a static reference
state (see, e.g., Sec. VIA of Schubert et al., 2001), T is the temperature,
ey is the unit vector in the vertical direction, Q is the internal heating
rate, and g is the dynamic viscosity, which depends on temperature
and depth (i.e., hydrostatic pressure) as

gðT; yÞ ¼ exp �log ðcÞT þ log ðbÞð1� yÞð Þ; (2)

where y is the height (y ¼ 0 at the bottom of the domain and y ¼ 1 at
the top) and the parameters c and b denote the maximum viscosity

contrasts due to temperature and depth, respectively. Ra is the
Rayleigh number,

Ra ¼ q g a dT D3

g0 j
; (3)

where q is the density, g is the gravitational acceleration, a is the coeffi-
cient of thermal expansion, dT is a temperature scale, D is the height
of the domain, j is the thermal diffusivity, and g0 is a reference
(dynamic) viscosity. Ra is thus the ratio of buoyancy forces due to ther-
mal expansion that drive convection to resistive forces due to thermal
diffusion and viscosity that inhibit it.

As can be seen from Eq. (1b), for a fluid with negligible inertia,
the velocities have no memory of previous time-steps and are fully
determined by the temperature field and the resulting viscosity field.
These velocities then determine how the temperature field is advanced
in time in Eq. (1c) via advection and diffusion. Heat sources and sinks
can be optionally added and can even vary in time – for example, due
to radioactive decay, which is relevant for planetary interior evolutions.

We solve the aforementioned equations in a 2D rectangular box
with an aspect-ratio of four. All boundaries are impermeable (zero
normal velocity) and free-slip (zero shear stress). The top and bottom
boundaries are isothermal, while the sidewalls are insulating. This
translates into the following set of Dirichlet and Neumann boundary
conditions:

• Left: u ¼ 0, @v
@x ¼ 0, @T

@x ¼ 0
• Right: u ¼ 0, @v

@x ¼ 0, @T
@x ¼ 0

• Top: v ¼ 0, @u
@y ¼ 0, T ¼ 0

• Bottom: v ¼ 0, @u
@y ¼ 0, T ¼ 1

B. Dataset and scaling

We use the same dataset as in Agarwal et al. (2025b), where the
simulations attain a statistical steady-state after typically advancing the
solution for tens of thousands of time-steps. While discovering steady-
states of the mantle convection simulations is of great interest to the
mantle convection community, we note that our model enables fast
time-stepping and can be applied to evolution scenarios as well. In
fact, we will apply the model learned on this steady-state dataset to an
evolution scenario later, where the internal heat source is no longer
constant but decays in time.

The dataset is generated with the finite-volume code GAIA on a
uniform grid of 128� 506 cells. Mass and momentum conservation
are solved with the MUMPS direct solver (Amestoy et al., 2001; 2019),
while the energy equation is solved with an iterative solver. The dataset
consists of 128 simulations, of which 94 are used for training, 16 for
cross-validation, and 18 for testing - all chosen randomly. Three simu-
lation parameters are randomly sampled from a uniform distribution
to generate the dataset: Q (between 0 and 10), b (between 1 and 100),
and c (between 106 and 1010). The Rayleigh number in Eq. (1b) is set
to 1. The vigor of convection is influenced through an effective
Rayleigh number through the temperature- and pressure-contrasts.
The range of parameters yields effective Rayleigh number values rang-
ing from 104 (when c ¼ 106 and b ¼ 100) to 1010 (when c ¼ 1010

and b ¼ 1).
In Fig. 1, we visualize the range of each field by drawing a line

from the minimum to the maximum of each simulation. Temperature
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(a), viscosity (b), and pressure (c) are well-behaved. For viscosity, we
can take the log10 and divide by 8 so that it varies from approximately
�1 to 0. However, the minimum and maximum velocities (d, e) span
different orders of magnitudes – for some simulations, these span large
ranges, whereas for the others, these remain much more limited. There
are two issues with the standard normalizations such as min-max scal-
ing, mean-standard deviation scaling, and log scaling. First, we do not
want to shift the mean of the velocities but only divide by some con-
stant both sides of Eq. (1a), so that mass conservation is not violated.
Second, dividing by the overall maximum of the velocities would still
leave simulations with values spanning a significantly smaller range
compared to the wide ranges spanned by other simulations. As the
magnitude of the velocity field is correlated with the simulation param-
eters, we fit a linear regression model through the maximum values of
u and v as a function of the simulation parameters and obtain the fol-
lowing scaling (shown here up to two significant digits):

velocity scaler ¼ 5 e0:18Q c0:43 b�0:46: (4)

Dividing the velocity fields by the above factor brings the simulations
within a more homogeneous range. This is shown in Fig. 1(f) for u and
Fig. 1(g) for v, where we compute the range as maximum minus mini-
mum value of velocities for all the time-steps in a simulation. We nor-
malize the ranges by the maximum values to facilitate comparison of
scaled and unscaled velocities. When unscaled, there is a very small dif-
ference between the maximum and minimum value of velocities from
each simulation. However, by scaling, we push most of the simulations
to have a higher range [Fig. 1(h)] by one order of magnitude or more.

Our CNN thus learns on scaled velocity fields, which we can sim-
ply multiply by Eq. (4) to recover the actual, unscaled magnitudes at
inference time. This technique was motivated by our experience with a
simpler set of simulations, where only Ra was varied, and a uniform
viscosity was used. In this case, velocities and pressure can still vary by
several orders of magnitude, but the magnitudes vary approximately
linearly with Ra. Scaling the fields by Ra enabled us to obtain good pre-
dictions. Thus, this approach is a multi-parameter extension with
some modifications: viscosity is no longer constant, and Ra is always 1,
but different parameters drive the scales now.

C. Machine learning model

1. Convolutional neural network

CNNs have been widely adopted in a variety of machine learning
models for PDEs on uniform grids. As shown in Fig. 2(a), the CNN
acts as a surrogate model for the velocities induced by the temperature
field. The main input to the CNN is the temperature field, but we fur-
ther enrich it with the viscosity field calculated via Eq. (2). We also add
coordinates of the numerical grid as is sometimes done in coordinate-
based neural networks (Serrano et al., 2023; Catalani et al., 2024) and
graph neural networks (Lam et al., 2023; Wei and Freris, 2024).
Finally, even though the simulation parameters b and c are already
contained in the viscosity field and Q is irrelevant for Eqs. (1a) and
(1b), we explicitly pass these three parameters as inputs to the CNN.
This is because these parameters are used to scale the velocities as per
Eq. (4) and, therefore, provide some additional contexts to the network
besides the temperature and viscosity fields on the magnitudes with
which it should predict each scaled velocity field. This is useful because
the scaling is not perfect, i.e., it is not an exact fit. The predicted veloci-
ties are then fed to the numerical solver to advect the temperature field.
In this way, the model can be used autoregressively – outputs of the
model become the input at the next time step. We use the same archi-
tecture as Tompson et al. (2017) [Fig. 2(b)], which was designed for
modeling linear algebraic systems. First, the input – structured as a
tensor of (batch, channels, height, and width) – is turned into a more
detailed internal representation through a layer of convolutions. The
resulting representation has more number of channels than the num-
ber of input variables to the CNN.We downsample this representation
five times (creating five levels) by a factor of 2 using average pooling.
Average pooling reduces the resolution of data by replacing local
regions within a window (2� 2 in this case) with their average value,
helping the model retain general patterns while discarding fine-
grained details. This allows the network to process features of different
scales at different levels. The receptive field, or the region of the input
that influences a particular output, grows with each level, so that the
coarsest level spans almost the entire domain. This is important for
PDEs where one point in input can impact any other point in the out-
put. At each resolution (i.e., level), the representation is independently

FIG. 1. The ranges of different fields in the simulations (a)–(e). Scaling the velocities brings the ranges across different simulation parameters closer to each other (i) and (j).
For ease of visualization, we normalize the u and v range for the scaled and unscaled cases by dividing them by the maximum (f), (g), and (h).
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processed with a series of convolutions before being upsampled via
bicubic interpolation to the original resolution. Upsampling refers to
the process of increasing the spatial resolution of feature maps so that
the output matches the original input size. The upsampled features
from all levels are concatenated instead of summed, allowing the net-
work to learn how to combine this information through another series
of convolutions. This differs slightly from the original U-net architec-
ture where the information is downsampled and upsampled through
an autoencoder-style architecture with skip connections between the
encoder (that successively decreases resolution) and decoder part (that
successively increases resolution) at each resolution (Ronneberger
et al., 2015). Skip connections create direct links between representa-
tions from earlier layers to later layers by addition or concatenation.
Skip connections link encoder and decoder layers at matching resolu-
tions, allowing fine-grained spatial information lost during downsam-
pling to be reintroduced during upsampling. U-nets favor learning
incremental updates to the inputs due to skip connections at each level.
This is more sensible when learning time-stepping between states,
whereas the architecture of Tompson et al. (2017) seems more efficient
for learning output variables (e.g., u, v) as a function of different input
variables (e.g., g;T).

We use the Gaussian Error Linear Unit (GELU) as our activation
function, which has been empirically shown to outperform ReLU and
ELU (Hendrycks and Gimpel, 2016) on a wide variety of tasks. Unlike
ReLU, which zeroes out negative values, or SELU, which is typically
used for self-normalizing fully connected architectures, GELU provides
stable gradients and expressive nonlinearities better suited to our spa-
tially structured data. GELU is defined as the product of the input x
and the cumulative distribution function of a standard Gaussian distri-
bution, which is computed using the error function:

GELUðxÞ ¼ x � UðxÞ ¼ x � 1
2

1þ erf
xffiffiffi
2

p
� �� �

: (5)

2. Mass conservation

As in Wandel et al. (2020), we enforce mass conservation in our
incompressible flow by predicting a vector potential a, whose curl pro-
vides divergence-free components of velocity. This approach is based
on the Helmholtz decomposition (e.g., Aris, 2012). Working in two
dimensions, we need to predict only one component of a, which corre-
sponds to the stream function, az , or simply, a

u ¼ @a
@y

; v ¼ � @a
@x

: (6)

The derivatives are calculated as central finite differences using fixed
convolutional filters [see Fig. 2(d)]. These are conveniently carried out
on the Graphics Processing Unit (GPU) as is all the training of the
CNN. Since the stream function is defined up to a constant, as in
Wandel et al. (2020), we subtract the mean of the output from a to
keep the values bounded; this does not change the derivatives of a. We
further multiply the output of CNN by an empirically determined fac-
tor of 10 (so that a is now ten times the CNN output) to help limit the
numerical values of the final layer to a reasonable range, typically not
far beyond �1 and 1. This keeps gradients smaller and activations in
the sensitive range of the GELU activation function, making optimiza-
tion more stable and efficient. We experimented with scaling factors of
1, 10, and 100 and found that a factor of 10 yielded the lowest loss dur-
ing training. While the optimal range of a is not known a priori, this
experiment hints that �10 to 10 is approximately the numerical range
that a needs to fit this dataset. In the future, one can also consider ini-
tializing the multiplicative factor with 10 and then optimizing it with
the rest of the network parameters. Different values of dx only serve as
a multiplicative factor for Eq. (1a) that have little bearing on mass con-
servation in this case with a uniform grid. This is also the reason
behind the form of the velocity scaling of Eq. (4): divergence-free net-
work velocities multiplied by this factor remain divergence-free. In

FIG. 2. Our hybrid physics-based model
for time-stepping. (a) We use a data-
driven approach to model the primary
computational bottleneck in mantle con-
vection simulations: solving the Stokes
equation. The velocities predicted by the
convolutional neural network (CNN) can
be fed to the numerical solver for time-
stepping. (b) The CNN architecture is
inspired by Tompson et al. (2017) for
modeling solutions of linear systems as a
function of the right-hand-side of the equa-
tion. (c) Instead of standard padding meth-
ods (such as zero paddings), we use
boundary-learned convolutions. A unique
set of filters is responsible for predicting
each corner and each edge as well as the
interior domain. (d) Mass conservation is
enforced by predicting a field whose curl
yields divergence-free velocity compo-
nents u and v.
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practice, with single precision training of the network, multiplying the
velocities with large scaling factors might violate mass conservation
beyond an acceptable threshold. Hence, we train with double precision,
leaving further optimization of training precision for future work. One
such strategy could be to use single precision for the trainable weights
of the network and to use double precision only for computing the
velocities from a using convolutional filters. It would be interesting to
see if such a network would predict well across the different magni-
tudes of velocities that are present in our dataset.

Finally, we note that when computing the derivatives of a with
respect to x and y using central finite differences, the resulting velocity
fields are reduced in size by two grid points in each respective dimen-
sion (one at each boundary) due to the stencil not being defined at the
domain edges. We proceed with padding these velocities as per the
necessary boundary conditions: we pad with the exact boundary value
for Dirichlet boundary conditions, and, for Neumann boundary condi-
tions, we copy the value of the adjacent cell where the derivatives must
be zero. This inevitably makes the mass conservation inexact as the
velocities at the boundaries are not calculated from a using Eq. (6) but
simply padded. Therefore, we compute Eq. (1a) just at the boundaries
and plug it into the loss function during training as a soft constraint,
while, on the interior domain, mass conservation is already satisfied
(down to double machine precision). An alternative to this would be
to pad the network output a with either learned values or values
derived in a way that the boundary conditions would be satisfied.
However, the model was unable to learn a compatible padding. Setting
up and solving a linear system would also be an option. Either way, it
is not clear if a formulation of a exists that can simultaneously (1) sat-
isfy the free-slip and impermeable boundary conditions, (2) conserve
mass at boundaries, and (3) be consistent with a finite-volume based
numerical solver. This highlights one of the challenges in physics-
based machine learning, namely, learning in a consistent manner with
the data from the PDE solver. It is also worth noting that, no matter
what values we prescribe at the boundaries, the solver will overwrite
them in exactly the same way as we do by either assigning an exact
value for a Dirichlet condition or by copying the adjacent value for a
Neumann condition. We later assess the effectiveness of a hard con-
straint vs a soft constraint in rollout performance, i.e., how well the
model performs when its predictions are used repeatedly over several
time steps. In the soft constraint version, the CNN predicts the veloci-
ties directly, and the mass conservation equation calculated on these
velocities is plugged into the loss function.

3. Learned boundary paddings

When convolving at the edges of the domain, the input to each
layer must be padded if one wishes to maintain the original spatial
dimensions after convolution. After a lot of experimentation, we found
that typically used paddings such as zeros and replicate (i.e., copying
the adjacent value) are detrimental for accuracy on the edges. This
shortcoming became evident upon advecting the temperature field
with the predicted velocities: errors on the boundaries would give rise
to artificial “bubbles” of hot material that would rapidly rise and desta-
bilize the solution. Alguacil et al. (2021) showed some advantage of
using a spatial context of 0 or 1 to help CNN learn on the boundaries,
but we found it to be insufficient when combined with replicate
padding.

We employed the “boundary learned convolution” from
Innamorati et al. (2020), which learns the padding on the boundaries
itself by decomposing the domain and learning a separate set of filters
responsible for predicting the interior domain as well as all the edges and
corners [see Fig. 2(c)]. The learned filters are applied to the spatial con-
text of each subdomain to reproduce the original width and height. The
intuition here is that the fields such as temperature and velocities, but
also images in general, might have non-trivial yet smooth spatial extrap-
olations. In this case, adding zeros might create artifacts that the CNN
has to learn to overcome. Using a unique set of filters for each subdo-
main increases the count of trainable parameters by a factor of 9. With
the exception of the interior filter, which is applied to the entire domain
and produces g0, all the “extra” filters are applied to significantly smaller
subdomains (edges and corners) and, therefore, do not significantly
increase the overall time complexity. Consequently, a network with same
total parameter count but regular convolutions would be slower.

4. Loss function

We use mean absolute error (MAE) between the true and predicted
fields as our loss function. Mean squared error is another commonly
used metric, which, due to squaring of the error, tends to weigh outliers
and higher-magnitude deviations more. However, in our task, where the
magnitudes of samples differ from each other, we opt for MAE to avoid
weighing higher-magnitude samples more as all samples contain physi-
cally meaningful information. Furthermore, as we tend to reach small
MAE values (below 10�3), squaring this value might make the gradients
smaller and slow down convergence of the loss function. Despite the
scaling described in Eq. (4), the velocities can still vary significantly. In
particular, the high velocity values will now be smaller due to the scaling.
Therefore, to ensure that, within each batch, proper weight is given to
the lower velocity magnitudes, we scale the loss by dividing it by the
range of each example in the batch. We clip this loss scaling at 10 to
avoid creating too much imbalance between the examples,

Snorm ¼ clip
1

maxðxtrueÞ �minðx trueÞ ; 1; 10
� �

: (7)

For given bounds a and b, the clip function limits the value x, which
can take as follows:

clipðx; a; bÞ ¼ minðmaxðx; aÞ; bÞ: (8)

We further add a factor of 10 on the boundaries to penalize errors
there more heavily than in the interior of the domain,

Sbc ¼
1þ 10; on boundaries;

1; otherwise:

(
(9)

These values are somewhat arbitrary, and one could certainly optimize
them further at the cost of more computational resources. However,
we perform an ablation study to assess the impact of removing the loss
scaling terms. The loss is calculated as

Lðxtrue; xpredÞ ¼
1
N

X
jðxtrue � xpredÞ � Snorm � Sbcj; if scale loss;

1
N

X
jðxtrue � xpredÞj; otherwise:

8>><
>>:

(10)
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We add mass conservation to the loss function if mass is conserved as
a soft constraint. If the curl-based formulation is used, we only use the
mass conservation calculations on the boundaries. The mass conserva-
tion term is calculated as

Lmass ¼ 1
N

X @u
@x

þ @v
@y

����
����: (11)

Finally, we found that the central-differences-based curl formulation
produced some oscillations in the y direction for u and in the x direc-
tion for v. Applying Gaussian filtering to a did not seem to reduce
these artifacts. Instead, we learn (i.e., optimize the network’s learnable
parameters by minimizing the mismatch between the ground truth
and the network output) not only on the velocities but also on their
derivatives. The intuition behind this is that artifacts become even
more prominent when their derivatives are calculated so they can be
effectively penalized,

Lderiv ¼ 1
N

X @utrue
@y

� @u
@y

����
����þ 1

N

X @vtrue
@x

� @v
@x

����
����; (12)

The overall loss term can now be calculated as

Ltotal ¼
Lu þ Lv þ LT

3
; if T is predicted;

Lu þ Lv
2

; otherwise;

8>><
>>: (13)

Ltotalþ ¼
1
N

X
Lmass; if soft constraint;

1
Nbc

X
Lmass; bc; if curl� based constraint;

8>>><
>>>:

(14)

Ltotalþ ¼ Lderiv; if derivative loss term is included: (15)

Note that þ ¼ means addition of a new quantity on the right-hand
side to an existing quantity on the left-hand side.

D. Baselines

We consider two different prediction models, each with a specific
purpose.

1. Numerical solver with suboptimal settings

The velocities predicted by the CNN are relatively accurate but
still exhibit some discrepancies compared to the ground truth solution
obtained from our numerical PDE solver. Given that advection is still
possible using these slightly erroneous velocities, it is natural to ask
how an imperfect solver would perform in terms of both accuracy and
computational speedup. To this end, we consider as first option solving
the mass and momentum equations only every 100th time step. If our
model outperforms this benchmark, it would suggest that we can pro-
duce meaningful temporal interpolations, despite the training data
being available only at every 100th time step. Notably, 100 was also the
number of skips required to achieve a speedup comparable to that pro-
vided by the CNN. On the one hand, this baseline is somewhat unfair
to our best model, since we could likely skip several steps before reach-
ing the error level of the solver with 100 momentum skips. On the
other hand, the suboptimal solver is readily available without the need
for data or training. We note that “skip” is used in two different

contexts in this work: in the framework of machine learning models, it
refers to skip connections in the neural network architecture, whereas
in this context, when using the numerical solver, it refers to skipped
solutions of the momentum equations and thereby the skipped velocity
updates.

As a second option, we consider an iterative solver running on
the same GPU used for CNN inference. As the iterative solver is slower
than the direct solver, we use an under-relaxation factor of 0.99 to still
achieve some speedup with respect to the direct CPU baseline and to
evaluate its performance against the CNN.

2. U-net for learning in time

For our second model, we choose a simple U-net architecture to
explore how well time-stepping can be learned. In this case, we no lon-
ger rely on the numerical advection-diffusion solver but instead learn
to predict from the velocities and temperature at a given time step
based on the state at the previous time step, the grid coordinates, the
viscosity, and the time step dt.

To keep the architecture as close as possible to our Stokes surro-
gate model, we downsample the original resolution 5 times (encoder
part) and upsample it back to the original resolution (decoder part)
using the same operations. At every level, the encoder and decoder
each contain 3 convolutional layers. Information is passed at each level
from encoder to decoder through skip connections via concatenation
of channels. We train four different versions:

(1) U-net-1: We match the overall parameter count of the network
to our Stokes surrogate model without our proposed techniques,
i.e. boundary-learned convolution and curl-based mass
conservation.

(2) U-net-2: We match the inference time of a single time-step
from the network to that of a single u, v prediction of the Stokes
model without our techniques.

(3) U-net-3: We match parameter count and use our techniques.
(4) U-net-4: We match inference time and use our techniques.

III. RESULTS AND DISCUSSION
A. Training details for the Stokes model

After some trial-and-error of different hyperparameters (parame-
ters that are set before training and affect how the model learns) in our
Stokes surrogate model, we found that 16 5� 5 filters, processing fea-
tures 6 times at each level, provided a good balance between speed and
accuracy for predicting the flow velocities. Unless otherwise stated, all
results are presented with this architecture. We train on a single GPU
as we use a small batch size of 16, which has been shown to improve
generalization and contribute to stable rollouts, as observed in Agarwal
et al. (2021). We aim for 150 epochs (one pass through the training
and validation data) and reduce the learning rate (the step size used to
update model parameters during training) by a factor of 0.5 every 20
epochs. In practice, not all networks reach 150 epochs as we sometimes
terminate training early to manage training costs. The model we pre-
sent the results for and refer to as “our best model” required about
5 days of training time to reach 80 epochs on an NVidia V-100 GPU.
We note that we do not train on all the snapshots (system states at
time-steps) available (training set: 217813, cross-validation (cv) set:
44049, test set: 42872). For each simulation, we pick the first 200
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snapshots and then randomly select up to 800 more as large portions
of the time-series are in a statistical steady-state and do not have as
much variability as the earlier time-steps. By doing so, we effectively
pick 1=3 of the stored snapshots, which allows us to load all the data in
the CPU memory and train different networks in parallel. Since we
only saved every 100th snapshot from the solver to begin with, this
means that for each simulation, we use only 1=300 of the snapshots
with respect to the original temporal resolution of the solver. One
could further speedup training by processing larger batches on multi-
ple GPUs and evaluate generalization performance. Finally, training in
single or mixed precision could also help, if mass conservation is still
satisfactorily satisfied and if velocities with different orders of magni-
tude can be learned effectively.

B. Velocity predictions with the Stokes model

In Fig. 3, we show examples of u, v predictions from two different
test-set simulations. The errors reach up to 5% of the maximum mag-
nitude of the true velocity in the second sample. This is quite high for

a scientific machine learning study. However, we must keep in mind
that a single model is learning on velocities across a few orders of mag-
nitude from a handful of simulations. We deliberately picked two
extreme cases from our test set here to demonstrate learning across dif-
ferent magnitudes. This error might also not be the most informative
metric, as our goal is to advect the temperature using these velocities.
While fitting a larger network could help reducing the errors, it might
come at the cost of a lower generalization capability to unseen simula-
tions, potentially leading to unstable rollouts. A larger network would
also be slower at inference time (i.e., at predicting after the network
has been trained). On average, we find that our best model predicts
velocities ut ; vt that are approximately 14 times more accurate than if
one were to simply take the velocities at the last available time step
(ut�100, vt�100) from the solver.

C. U-net predictions for time-stepping

As described in Sec. IID2, we train four different U-nets as base-
lines to compare against our method. We plot the training curves in

FIG. 3. Examples of velocity predictions compared to ground truth from the direct solver for two different unseen simulations (a) and (b) and (c) and (d) characterized by widely
different parameters leading to relatively low (a) and (b) and high velocities (c) and (d). A single model is able to learn across four orders of magnitude. The prediction error is
divided by the absolute maximum value and displayed as a percentage error in the right column.
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Fig. 4 alongside our best model. Our techniques of boundary-learned
convolution and loss scaling improve the loss attained during training
compared to their counterparts without these techniques. Without
them, we observe some artifacts where the network seems to mix up
the fields in certain regions near the top boundary. This could be
because the input to the network differs from the output. This high-
lights the challenge of learning with U-nets beyond incremental
updates to the input as the system states evolve in time. However, we
are able to overcome these artifacts with the boundary-learned convo-
lution and possibly also due to loss scaling. In fact, U-Net-4 (the same
inference time network with our techniques) outperforms our best
Stokes surrogate model in terms of training and validation loss on
velocities [Fig. 4(b)].

Nevertheless, as we rollout autoregressively during inference time
with our best U-net on a mere 16 steps (� 16� 100 simulation time-
steps), the solution quickly diverges [Fig. 4(c)]. Several tricks have been
suggested for overcoming this accumulation of errors during rollout
(e.g., Lippe et al., 2023) such as training on multiple time-steps. As
training on multiple time-steps would increase the memory

requirements by tracking a longer graph, the so-called “pushforward”
trick does not track gradients in the rollout during training except for
the last time step. In this way, the network learns to overcome non-
trivial errors that tend to accumulate. This, however, still comes at the
cost of increased training time and intuitively makes the learning task
more challenging as the network has to learn to de-noise the input in
addition to learning a relation between the left-hand side and the
right-hand side of a system of PDEs.

Thus, a large array of machine learning methods remains to be
explored for directly time-stepping in mantle convection besides the
recurrent learning approach of Agarwal et al. (2021). These methods
are attractive for their significant speedups, ability to process several
simulations at once in batch, and end-to-end differentiability with sim-
ple models built in open-source frameworks like PyTorch.
Nevertheless, we would like to offer an alternate perspective here.
From Eq. (1b), we know that the velocities at a given time are depen-
dent on temperature but are not directly a function of velocities at the
previous time step – this would not be the case for non-linear, strain-
rate dependent rheologies (e.g., Schulz et al., 2020). Learning new

FIG. 4. (a) U-net schematic for predicting from state at time t to state at t þ 1. (b) Four different U-nets are trained to evaluate if different parameter counts and components
like boundary-learned convolution improve the prediction accuracy. These are plotted alongside our best Stokes surrogate model that predicts velocities (solid gray lines). (c)
When rolling out autoregressively with the best performing network (dashed black lines), the predictions diverge within 16 steps.
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velocities as a function of the previous velocities can, thus, introduce
questionable correlations in our model. Although the best U-net out-
performs the Stokes surrogate model in single-step velocity predic-
tions, it fails to roll out, perhaps because it is conditioned on and
sensitive to previous velocities. A more physics-based improvement to
this U-net would be to learn two different networks: one that learns
ut ; vt as a function of Tt (like our Stokes surrogate) and then another
network that learns Ttþ1 as a function of Tt , ut , and vt . These could be
optimized together or separately, but, either way, it would be interest-
ing to explore how well the advection-diffusion operation can be
learned. Given that we only have access to time steps sampled at inter-
vals of 100, it remains an open question what the most effective
approach is for learning this operator.

Would the network (say f) be more accurate if we trained it using
a 100-step rollout – i.e., by repeatedly applying the network to predict
each intermediate step from t1 to t100 as f ðf ðf ðt1Þ1Þ2…Þ100 – or by
directly learning the mapping from the initial state t1 to the final state
t100 as f ðt1Þ100 in a single step? This small thought experiment could
be further extended to directly learning Tt100 ¼ f ðTt1Þ but would any
features in the network look like velocity fields without explicitly
encoding Eq. (1c) and what would be the data-efficiency of such a net-
work? The answer to the first question is no, and to the second, proba-
bly poor. Agarwal et al. (2021) showed that it is possible to skip
velocities and learn this direct mapping from one temperature field to
the next 200th, but at the cost of 10000 training simulations. One can
seemingly trade-off data-efficiency and causality for faster time-
stepping. For fields where various simulation setups exist in the form
of geometries, heat sources, viscosity models, parameter variations,
phases transitions, and melting models, data-efficiency can be an
important consideration. This can be further viewed through the lens
of Buitrago et al. (2025) who demonstrate the benefits of learning on
multiple time-steps in the past through a “memory” for systems with
partially observable (e.g., missing spatial points) or corrupt states (e.g.,
noise or uncertainty). Agarwal et al. (2021) benefited from using 16
time-steps as inputs to their Long-Short-Term-Memory network, pos-
sibly because they learn only on T, and the missing velocities as well as
the skipped time steps can be seen as an extreme case of missing
observables.

D. Rollout performance for different parameters

In contrast to direct time-stepping with the U-net, we are able to
produce a stable rollout for tens of thousands of time-steps using our
hybrid approach. The velocities predicted by our Stokes model are
used to advance the temperature field using the numerical advection-
diffusion solver in GAIA. To make all runs comparable, we run the
advection-diffusion solver with a Courant number of 1, although the
implicit solver allows for higher numbers.

Figure 5 shows three qualitatively different unseen simulations
from the test set. These include sluggish convection with low frequency
characteristics [Figs. 5(a) and 5(b)], vigorous convection with higher
frequency structures and a thinner upper thermal boundary layer
[Figs. 5(e) and 5(f)], and an intermediate case in Figs. 5(c) and 5(d),
but with a non-monotonic time-series where the mean temperature
initially decreases and then increases before stabilizing. With the
exception of the sluggish convection case, our model outperforms the
suboptimal numerical solver in matching convection patterns such as
pronounced undulations in the shape of the stagnant lid as well as in

the horizontally averaged temperature profile. The momentum skips
and the resulting errors in the velocities are especially detrimental dur-
ing the initial transient phase of vigorous convection, causing the inter-
mediate case to miss the trough in the mean temperature curve of row
(c) in Fig. 5 - this is undesirable in thermal evolution scenarios, where
the history of the planet can contain clues to inferring certain parame-
ters and, thus, requires accurate time-series modeling.

For the sluggish case, the predictions by our model still capture
the correct pattern of convection [Fig. 5(b)], but the mean quantities
fare slightly worse than the suboptimal solver. This is likely a conse-
quence of the loss scaling of Eq. (7) as it assigns up to 10 times more
weight to more vigorously convecting simulations. Reducing the maxi-
mum clipping value (e.g., from 10 to 8) could help mitigate this issue
and result in a more favorable balance, but this issue ultimately high-
lights the challenge of learning a single model on disparate scales.

We also found that the prediction accuracy diminishes signifi-
cantly when extrapolating in the parameter space, highlighting another
drawback of our approach. Again, the suboptimal solver performs bet-
ter than our model when extrapolating. We were able to successfully
run 16 out of 18 simulations in our test set. One run produced non-
physical lid structures while another diverged after a few thousand
steps. We mark these cases in Fig. 6 and notice that this region of the
parameter space is quite challenging. This is true not only from a phys-
ical standpoint of high Q and c driving vigorous convection but also
from a data point of view, as the failed case (red cross) is clearly
beyond our training data range, and the nonphysical case (yellow cir-
cle) sits right on the edge of the Q-c envelope. In the future, we would
like to add some additional training points at the exact corners of the
parameter space, i.e., 8 more training simulations.

E. Comparison of speedups

To evaluate the speedup of the model, we select an unseen simu-
lation from the test set and run four different models on the same
CPU/GPU architecture using the same numerical settings. We run (1)
the original direct solver on a CPU, (2) the direct solver with 100
momentum skips on a CPU, (3) an iterative solver (BiCGStab) with
under-relaxation factor of 0.99 on a GPU, and (4) our ML model on a
GPU. Note that without under relaxation in our setup, the iterative
solver on the GPU is actually slower than the direct solver on a CPU.
Figure 7(c) shows that our model not only achieves the highest
speedup of the four but also has the lowest error in mean quantities
with respect to the original solver. This is understandable for the direct
solver with momentum skips but rather unexpected for the iterative
solver. Indeed, we see that the lid distribution for the iterative solver
looks very realistic, but the error in the mean temperature seems to
accumulate in this case. This is likely because we use an under-
relaxation factor of 0.99, which means that the velocities solved for are
not as accurate as those predicted by the direct solver. In other words,
we perform an advection-diffusion step in time with a slightly errone-
ous velocity as we use under relaxation. As in Figs. 5(a) and 5(b), we
do not expect this increased accuracy of our method to hold up across
the entire parameter range, but it further underscores the promise of
machine learning for mantle convection simulations. Direct solvers are
rarely used in fine grid resolutions and in three dimensions (3D) due
to prohibitive memory requirements. Although it remains to be seen
how such a convolutional network would scale to 3D, this result
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FIG. 5. Evaluation of rollout performance on three qualitatively different simulations (a) and (b), (c) and (d), and (e) and (f). For each simulation, we plot the ground truth (runs
with the direct solver) in the first column, followed by the prediction (either baseline of 100 momentum skips or the ML model) in the second, the horizontally average tempera-
ture profile in the third, and the mean temperature as a function of time in the fourth.
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suggests that ML for the Stokes problem in 3D has the potential to
offer significant cost-accuracy benefits with respect to an iterative
solver.

We report the best speedups here when a single run is executed
on a V100 GPU. In practice, however, this speedup is throttled by the
exchange of data between the Python and Cþþ code as more runs are
launched on a single machine in parallel. This is not ideal for larger
campaigns, and we would like to address it in the future. One possibil-
ity would be to infer the ML model directly in Cþþ and achieve even
greater speedups. Better GPUs than the V100 can further extend this
advantage.

F. Different ablations in the Stokes model

We now present the importance of specific components of our
CNN through ablations, where we remove one component at a time

while keeping the rest of the architecture unchanged. Figure 8(a)
highlights the importance of enforcing mass conservation for pro-
ducing a stable rollout. We add mass conservation as a soft con-
straint to the loss function in Eq. (14) and observe that the overall
mass conservation curve in dashed red is going down in Fig. 8(a).
However, it is likely just a reflection of the velocity predictions get-
ting better. In our case, where we have ground truth data available
at every spatial point in the domain, the mass conservation is not
much more than a transformation of data that does not seem to
convey any more information during the training. Note that when
we enforce mass conservation as a hard constraint using the curl-
based formulation, the loss on the interior domain is 0 up to double
machine precision. The gray solid curve in Fig. 8(b) has higher val-
ues than double-precision zero because of the boundaries. Finding a
way to include a curl-based constraint here could further improve
accuracy. Nevertheless, the mass conservation error on boundaries

FIG. 6. Parameter space of the training
and test sets. We achieve stable rollout
on all the simulations in the test set,
except when extrapolating in the high Q-
high b space (e.g., yellow circle or red
cross).

FIG. 7. Comparison of accuracy and speedup with respect to a direct solver on the CPU of (a) direct CPU solver with 100 momentum skips on the CPU, (b) iterative solver
with an under-relaxation factor of 0.99 on the GPU, and (c) our model with the ML-based Stokes solver running on the GPU.
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decreases as the network predicts better and better velocities.
We also tried to multiply the mass conservation loss term with a
factor to give it more weight but found that it conflicted with the
other terms in that it deteriorated the loss values of velocities. This
is a well-known issue with physics-based losses and could be
addressed in future work (Liu et al., 2025).

Next, rollout performance was highly sensitive to errors on the
boundaries. Zero padding outperforms replicate padding, but we still
observe a severe artifact in Fig. 8(d) near the upper-left corner of the
domain, where the stagnant lid is “pinched” and some other smaller,
more difficult to see inaccuracies appear at the bottom corners. Since
the boundary-learned convolution introduces a lot more trainable
parameters, we also match the parameter count of the zero padding
network by increasing the filter count from 16 to 64. Unfortunately,
this deteriorated the performance even more as larger models can be

more prone to diverge during rollout. We calculated the test set MAE
on each boundary for the learned padding and compared it those of
the zero padding networks. In Table I, we list these as relative

FIG. 8. Results of different ablations, where we change one component of the model at a time. The cross-validation loss is plotted in the first column in solid gray for our best
model and the ablated model in dashed red (a)–(e).

TABLE I. We compute the MAE on the boundaries for every fifth sample in our entire
test set for different paddings and plot them with respect to the MAE on the learned
padding (boundary-learned convolution).

Relative improvement
of learned padding ð"Þ Left Right Top Bottom

to zeros padding with 16 filters 8.03 2.78 1.63 2.82
to zeros padding with 64 filters 3.42 2.03 0.99 1.52
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improvements and notice that the learned padding is up to 8 times
more accurate than zero padding.

Finally, we evaluate the importance of learning on derivatives of
the velocities [Eq. (12)] and find modest improvements in the MAE of
horizontally averaged temperature profile and the mean temperature
over time. When the loss is not scaled [Eq. (7)], the presence of the
derivative term seems to create some imbalance in loss terms, but the
deterioration in the MAE values stems mainly from the lack of loss
scaling. When loss scaling and the derivative term are both taken out,
the MAE is 2:804� 10�3 for the temperature profile and 1:294
�10�3 for the mean temperature vs time curve. To summarize, both
the loss tricks seem to help.

G. Toward a general Stokes model

With our physics-based machine learning approach, we are able
to learn from a relatively small training dataset and generate high-
quality predictions. We now test the robustness of this approach on
the following unseen scenarios, some of which are out-of-distribution
(OOD), i.e., predicting on significantly different data than what the
network was trained on. To do so, we modify some aspect of the simu-
lation presented in Figs. 5(e) and 5(f).

One, we apply our Stokes surrogate model to an energy equation
that differs from the one used to generate the training data.
Specifically, we use the Extended Boussinesq Approximation (EBA),
where the mass and momentum equations are unchanged, but the
energy equation contains two extra terms (adiabatic heating and shear
heating) associated with the degree of compressibility in the form of a
Dissipation number (Di) (King et al., 2010). We run a simulation with
a low Di ¼ 0:1, which leads to a small adiabatic temperature gradient
between the top and bottom boundary layers and renders this an
OOD example. As we see from Figs. 9(a) and 9(b), our model fails to
accurately match the ground truth, both in terms of mean quantities
and the convection patterns including the noticeable thinning of the
lid at the top corners. The solver with momentum skips fares slightly
better. Nevertheless, we believe that including some data from EBA
runs could alleviate this problem, possibly without introducing addi-
tional input variables such as Di to our Stokes surrogate model.

Two, we run a thermal evolution simulation by introducing a
time-decaying heat source. We run the simulation until a non-
dimensional time t ¼ 0:056, which roughly corresponds to 4.5 � 109

years for a Mars-like planet. A decay constant is set to reduce the heat
production [Q in Eq. (1c)] by a factor of 10 over the entire evolution.
As a consequence, the simulation no longer enters a statistical steady-
state but continues evolving with a decreasing mean temperature. Our
model outperforms the baseline and produces a very realistic-looking
convection pattern. This approach has some parallels to parametrized
1D thermal evolution models, which rely on scaling laws to predict
convective heat fluxes that are then used to advance the mean temper-
ature through a global energy balance equation (e.g., Stevenson et al.,
1983; Gurnis, 1989; Solomatov, 1995; Korenaga and Jordan, 2003;
Grott et al., 2011; and Drilleau et al., 2021). In some respects, our
approach can be seen as an extension of these methods in that it ena-
bles the prediction of the full spatiotemporal evolution of velocities
and temperature from a purely steady-state dataset.

Three, we try different initializations for the same simulation as
also done in Agarwal et al. (2025b). The model failed completely when
initialized with a cold profile (zero temperature everywhere apart from

the bottom boundary), as this lies far outside the distributions of pro-
files in our training set. The solver with momentum skips, on the other
hand, still managed to follow the solution, although not perfectly. As
opposed to the cold start, our model fared better when starting with a
profile with a temperature of 0.75 everywhere except a small linearly
increasing thermal boundary layer of 0.05 on top and bottom. Yet,
upon visually inspecting an animation of the simulation, we found that
our model does not mimic the solver in the conductive growth of the
boundary layers in the initial phase. This is because the minimum
internal temperature present in the training set is 0.8, making this case
slightly OOD. The fact that our model can still enter the statistical
steady-state is interesting. We never teach the network to follow any
trajectory or reach a certain end point. This behavior more likely hints
at the inherent property of this type of flows: regardless of the initial
transient stages, the flow will tend to reach the same statistical steady-
state. It remains to be seen if this property can be exploited to discover
steady-states even faster. Nevertheless, despite all the physics-based
components in our model, it is a sobering reminder that ML models
can struggle on OOD examples. In that respect, terminology such as
neural solvers or ML-based simulations can be confusing as a certain
degree of robustness is expected from solvers. As an example of a study
that shows significant OOD capabilities, Ranade et al. (2022) take a
data-driven approach for learning machine learning models on local
domains in space but then infer iteratively like a solver to propagate
information globally and arrive at an equilibrium solution of the PDE.

Finally, we use the profile prediction model from Agarwal et al.
(2025b) to initialize our simulation and our prediction models and
find that our model convincingly outperforms the baseline as can be
seen in Figs. 9(e) and 9(f). This is encouraging, as our model has never
seen this type of initial condition in the training dataset, but the hori-
zontally averaged temperature field is, of course, well within the distri-
bution of the training set. Multiple models can thus be combined to
further accelerate mantle convection simulations.

While it is essential to be aware of the limitations of these models,
at the same time, these OOD cases provide a template for extending
the training dataset. Training data from different initializations and
the EBA energy equation can be seamlessly introduced into our exist-
ing model. It would also be interesting to extend the setup to different
viscosity functions than in Eq. (2). Doing so would require a different
way of scaling the velocities – we would like to be independent of the
parameters b and c, as other formulations of viscosity include different
parameters. For instance, one could instead scale the velocity based on
the minimum value of the viscosity field. The velocity scaling would
also need to be explored if more complex physics were introduced, e.g.,
in the form of pressure- and temperature-dependent thermal expan-
sivity and thermal conductivity, phase transitions, and melting.
Higher-order optimizers (e.g., Gupta et al. 2018; Vyas et al., 2025)
could also be interesting for learning across several orders of magni-
tude. Finally, in future work, we would like to explore discretization
invariance and learning as a function of different geometries. Neural
fields (Serrano et al., 2023; Catalani et al., 2024; and Knigge et al.,
2024) have shown promise in memory-efficient learning on arbitrary
computational grids.

IV. CONCLUSION

We present a novel physics-based machine learning approach for
mantle convection simulations. We learn a single model to predict
flow velocities spanning four orders of magnitude as a function of
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FIG. 9. Performance of the baseline and the ML model on three unseen scenarios: (a) and (b) Extended Boussinesq Approximation (EBA), (c) and (d) thermal evolution, and
(e) and (f) starting from the steady-state profile.
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three parameters controlling viscosity and internal heating rate. These
velocities are then fed to a numerical finite-volume solver to perform
advection-diffusion of the temperature field and to obtain the next
time step. We found this approach promising for stable predictions
over thousands of time-steps, an active area of research in machine
learning for PDEs. On the contrary, we were unable to achieve stable
rollout by learning in time, despite reaching lower validation losses on
the velocities during training. Overall, our model provides a speedup
of 89 times, compared to the numerical solution computed with a
direct solver.

Our model is stable across the parameter space, except when
approaching high values of the internal heating rate (Q) and of the
parameter controlling the temperature dependence of the viscosity (c),
as this region of the parameter space is not represented in our sparse
training dataset of 94 simulations. We also demonstrated the strengths
of our model by removing one component at a time. Mass conserva-
tion plays a decisive role. Using boundary-learned convolutions, we
obtain up to 8-times more accurate solutions on the boundaries than
in the case of zero padding, which further enhances our rollout
performance.

Finally, we tested our model on some unseen scenarios. When
using a different energy equation including additional compressibility
effects, we found that our model fails as the input temperature fields
contain an adiabatic gradient in the convecting part, which is not con-
sidered in the simulations of our training set. We also tried to start our
model from a cold profile but found this was too far away from the
training set.

A particularly promising result is the ability to perform a thermal
evolution simulation based on a purely steady-state dataset. This shows
the versatility of our formulation, as it is already able to generalize in
this instance. Physics-based machine learning promises accurate and
data-efficient modeling of mantle convection simulations.

ACKNOWLEDGMENTS

This work was funded by the PLAGeS (Physics-based Learning
Algorithms for Geophysical flow Simulations) project through the
German Ministry of Education and Research BMBF (Project Nos.
16DKWN117A and 16DKWN117B) under the “Deutschen Aufbau-
und Resilienzplans” (DARP). DARP is part of NextGenerationEU’s
“Aufbau- und Resilienzfazilit€at” (ARF) by the European Union.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Siddhant Agarwal: Conceptualization (lead); Data curation (support-
ing); Formal analysis (lead); Funding acquisition (supporting);
Investigation (lead); Methodology (lead); Software (lead); Validation
(lead); Visualization (lead); Writing – original draft (lead); Writing –
review & editing (supporting). Ali Can Bekar:Conceptualization (sup-
porting); Methodology (supporting); Writing – original draft (support-
ing); Writing – review & editing (supporting). Christian H€uttig:
Conceptualization (supporting); Methodology (supporting); Resources
(supporting); Software (supporting); Writing – review & editing

(supporting). David S. Greenberg: Conceptualization (supporting);
Funding acquisition (equal); Project administration (equal);
Supervision (supporting); Writing – review & editing (supporting).
Nicola Tosi: Conceptualization (supporting); Data curation (lead);
Funding acquisition (equal); Methodology (supporting); Project
administration (equal); Resources (equal); Supervision (lead); Writing
– review & editing (lead).

DATA AVAILABILITY

Some sample data from the simulations as well as model weights
for the trained networks are available in Agarwal et al. (2025a). These
can be used to predict velocities here https://github.com/agsiddhant/
PBML_Mantle_Convection. The Github repository contains all the
machine learning code used in this paper. The simulations were gener-
ated at the German Aerospace Center (DLR). The complete derived
data supporting the findings of this study are available from the corre-
sponding author upon reasonable request. Furthermore, GAIA is a
proprietary code of the DLR and users interested in working with it
should contact Nicola Tosi (nicola.tosi@dlr.de) and Christian H€uttig
(christian.huettig@dlr.de).

REFERENCES
Agarwal, S., Tosi, N., Breuer, D., Padovan, S., Kessel, P., and Montavon, G., “A
machine-learning-based surrogate model of Mars’ thermal evolution,”
Geophys. J. Int. 222, 1656–1670 (2020).

Agarwal, S., Tosi, N., H€uttig, C., Greenberg, D., and Bekar, A. (2025a).
“PBML_Mantle_Convection,” Zenodo, V. 0.0.1, Dataset https://doi.org/
10.5281/zenodo.15088589

Agarwal, S., Tosi, N., H€uttig, C., Greenberg, D. S., and Bekar, A. C., “Accelerating
the discovery of steady-states of planetary interior dynamics with machine
learning,” J. Geophys. Res.: Mach. Learn. Comput. 2, e2024JH000438, https://
doi.org/10.1029/2024JH000438 (2025b).

Agarwal, S., Tosi, N., Kessel, P., Breuer, D., and Montavon, G., “Deep learning for
surrogate modeling of two-dimensional mantle convection,” Phys. Rev. Fluids
6, 113801 (2021).

Alguacil, A., Pinto, W. G., Bauerheim, M., Jacob, M. C., and Moreau, S., “Effects
of boundary conditions in fully convolutional networks for learning spatio-
temporal dynamics,” in Machine Learning and Knowledge Discovery in
Databases. Applied Data Science Track, edited by Y. Dong, N. Kourtellis, B.
Hammer, and J. A. Lozano (Springer International Publishing, Cham, 2021),
pp. 102–117.

Alieva, A., Hoyer, S., Brenner, M., Iaccarino, G., and Norgaard, P., “Toward accel-
erated data-driven Rayleigh–B�enard convection simulations,” Eur. Phys. J. E
46, 64 (2023).

Amestoy, P., Buttari, A., L’Excellent, J.-Y., and Mary, T., “Performance and scal-
ability of the block low-rank multifrontal factorization on multicore architec-
tures,” ACM Trans. Math. Software 45, 1–26 (2019).

Amestoy, P., Duff, I. S., Koster, J., and L’Excellent, J.-Y., “A fully asynchronous
multifrontal solver using distributed dynamic scheduling,” SIAM J. Matrix
Anal. Appl. 23, 15–41 (2001).

Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics (Courier
Corporation, 2012).

Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T.,
Myhill, R., and Naliboff, J. (2024). “Aspect v3.0.0,” Zenodo. https://doi.org/
10.5281/zenodo.14371679

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P., “Learning data-driven dis-
cretizations for partial differential equations,” Proc. Natl. Acad. Sci. U. S. A.
116, 15344–15349 (2019).

Brandstetter, J., van den Berg, R., Welling, M., and Gupta, J. K., “Clifford neural
layers for PDE modeling,” arXiv:2209.04934 (2023).

Brandstetter, J., Worrall, D., and Welling, M., “Message passing neural PDE solv-
ers,” arXiv:2202.03376 (2023).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 086624 (2025); doi: 10.1063/5.0281832 37, 086624-16

VC Author(s) 2025

 09 Septem
ber 2025 11:57:51

https://github.com/agsiddhant/PBML_Mantle_Convection
https://github.com/agsiddhant/PBML_Mantle_Convection
mailto:nicola.tosi@dlr.de
mailto:christian.huettig@dlr.de
https://doi.org/10.1093/gji/ggaa234
https://doi.org/10.5281/zenodo.15088589
https://doi.org/10.5281/zenodo.15088589
https://doi.org/10.1029/2024JH000438
https://doi.org/10.1103/PhysRevFluids.6.113801
https://doi.org/10.1140/epje/s10189-023-00302-w
https://doi.org/10.1145/3242094
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.5281/zenodo.14371679
https://doi.org/10.5281/zenodo.14371679
https://doi.org/10.1073/pnas.1814058116
http://arxiv.org/abs/2209.04934
http://arxiv.org/abs/2202.03376
pubs.aip.org/aip/phf


Breuer, D. and Moore, W. II, “Dynamics and thermal history of the terrestrial
planets, the moon, and io,” in Treatise on Geophysics, 2nd ed., edited by G.
Schubert (Elsevier, Oxford, 2015), Vol. 10, pp. 255–305.

Buitrago, R., Marwah, T., Gu, A., and Risteski, A., “On the benefits of memory for
modeling time-dependent PDEs,” in The Thirteenth International Conference
on Learning Representations (ICLR, 2025); available at https://openreview.net/
pdf?id=o9kqa5K3tB.

Catalani, G., Agarwal, S., Bertrand, X., Tost, F., Bauerheim, M., and Morlier, J.,
“Neural fields for rapid aircraft aerodynamics simulations,” Sci. Rep. 14, 25496
(2024).

Cheng, L., Illarramendi, E. A., Bogopolsky, G., Bauerheim, M., and Cuenot, B.,
“Using neural networks to solve the 2d Poisson equation for electric field com-
putation in plasma fluid simulations,” arXiv:2109.13076 (2021).

Deschamps, F. and Sotin, C., “Thermal convection in the outer shell of large icy
satellites,” J. Geophys. Res. 106, 5107–5121, https://doi.org/10.1029/
2000JE001253 (2001).

Drilleau, M., Samuel, H., Rivoldini, A., Panning, M., and Lognonn�e, P., “Bayesian
inversion of the Martian structure using geodynamic constraints,” Geophys. J.
Int. 226, 1615–1644 (2021).

Dumoulin, C., Doin, M.-P., and Fleitout, L., “Heat transport in stagnant lid con-
vection with temperature- and pressure-dependent Newtonian or non-
Newtonian rheology,” J. Geophys. Res. Solid Earth 104, 12759–12777, https://
doi.org/10.1029/1999JB900110 (1999).

Gladstone, R. J., Rahmani, H., Suryakumar, V., Meidani, H., D’Elia, M., and
Zareei, A., “Mesh-based GNN surrogates for time-independent PDEs,” Sci. Rep.
14, 3394 (2024).

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., and Kimmel, R., “Learning to opti-
mize multigrid PDE solvers,” in International Conference on Machine Learning
(PMLR, 2019), pp. 2415–2423.

Grimm, V., Heinlein, A., and Klawonn, A., “A short note on solving partial differ-
ential equations using convolutional neural networks,” in Domain
Decomposition Methods in Science and Engineering XXVII. DD 2022, Lecture
Notes in Computational Science and Engineering Vol. 149, edited by Dost�al, Z.
et al. (Springer, Cham, 2024).

Grott, M., Breuer, D., and Laneuville, M., “Thermo-chemical evolution and global
contraction of mercury,” Earth Planet. Sci. Lett. 307, 135–146 (2011).

Gupta, V., Koren, T., and Singer, Y., “Shampoo: Preconditioned stochastic tensor
optimization,” in Proceedings of the 35th International Conference on Machine
Learning, Proceedings of Machine Learning Research Vol. 80 (PMLR, 2018),
pp. 1842–1850; available at https://proceedings.mlr.press/v80/gupta18a.html.

Gurnis, M., “A reassessment of the heat transport by variable viscosity convection
with plates and lids,” Geophy. Res. Lett. 16, 179–182 (1989).

Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anandkumar, A., Song, J., and
Zhu, J., “Dpot: Auto-regressive denoising operator transformer for large-scale
PDE pre-training,” arXiv:2403.03542 (2024).

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu,
J., “Gnot: A general neural operator transformer for operator learning,” in
International Conference on Machine Learning (PMLR, 2023), pp. 12556–
12569.

Hendrycks, D. and Gimpel, K., “Gaussian error linear units (gelus),”
arXiv:1606.08415 (2016).

Holzschuh, B., Liu, Q., Kohl, G., and Thuerey, N., “PDE-transformer: Efficient
and versatile transformers for physics simulations,” arXiv:2505.24717 (2025).

Horie, M. and Mitsume, N., “Physics-embedded neural networks: Graph neural
PDE solvers with mixed boundary conditions,” arXiv:2205.11912 (2023).

Horie, M. and Mitsume, N., “Graph neural PDE solvers with conservation and
similarity-equivariance,” arXiv:2405.16183 (2024).

H€uttig, C., Tosi, N., and Moore, W., “An improved formulation of the incom-
pressible Navier-Stokes equations with variable viscosity,” Phys. Earth Planet.
Inter. 220, 11–18 (2013).

Innamorati, C., Ritschel, T., Weyrich, T., and Mitra, N. J., “Learning on the edge:
Investigating boundary filters in CNNs,” Int. J. Comput. Vision 128, 773–782
(2020).

King, S. D., Lee, C., van Keken, P. E., Leng, W., Zhong, S., Tan, E., Tosi, N., and
Kameyama, M. C., “A community benchmark for 2-D Cartesian compressible
convection in the Earth’s mantle,” Geophys. J. Int. 180, 73–87 (2010).

Knigge, D. M., Wessels, D., Valperga, R., Papa, S., Sonke, J.-J., Bekkers, E. J., and
Gavves, S., “Space-time continuous PDE forecasting using equivariant neural
fields,” in The Thirty-Eighth Annual Conference on Neural Information
Processing Systems (NeurIPS, 2024); available at https://openreview.net/
forum?id=wN5AgP0DJ0.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S.,
“Machine learning–accelerated computational fluid dynamics,” Proc. Natl.
Acad. Sci. U. S. A. 118, e2101784118 (2021).

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Kl€ower,
M., Lottes, J., Rasp, S., D€uben, P et al., “Neural general circulation models for
weather and climate,” Nature 632, 1060–1066 (2024).

Korenaga, J., “Scaling of plate tectonic convection with pseudoplastic rheology,”
J. Geophys. Res. Solid Earth 115, B11405, https://doi.org/10.1029/
2010JB007670 (2010).

Korenaga, J. and Jordan, T. H., “Physics of multiscale convection in earth’s man-
tle: Onset of sublithospheric convection,” J. Geophys. Res. Solid Earth 108,
2333, https://doi.org/10.1029/2002JB001760 (2003).

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet,
F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S.,
Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.,
“Learning skillful medium-range global weather forecasting,” Science 382,
1416–1421 (2023).

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A., “Fourier neural operator with
learned deformations for PDEs on general geometries,” J. Mach. Learn. Res. 24,
1–26 (2023a).

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and
Anandkumar, A., “Fourier neural operator for parametric partial differential
equations,” arXiv:2010.08895 (2021).

Li, Z., Kovachki, N., Choy, C., Li, B., Kossaifi, J., Otta, S., Nabian, M. A., Stadler,
M., Hundt, C., Azizzadenesheli, K. et al., “Geometry-informed neural operator
for large-scale 3D PDEs,” Adv. Neural Inf. Process. Syst. 36, 35836–35854
(2023b).

Li, Z., Shu, D., and Barati Farimani, A., “Scalable transformer for PDE surrogate
modeling,” Adv. Neural Inf. Process. Syst. 36, 28010–28039 (2023).

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., and
Anandkumar, A., “Physics-informed neural operator for learning partial differ-
ential equations,” arXiv:2111.03794 (2023).

Lino, M., Pfaff, T., and Thuerey, N., “Learning distributions of complex fluid sim-
ulations with diffusion graph networks,” arXiv:2504.02843 (2025).

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., and Brandstetter, J., “PDE-
refiner: Achieving accurate long rollouts with neural PDE solvers,” in Thirty-
seventh Conference on Neural Information Processing System (NeurIPS, 2023);
available at https://openreview.net/forum?id=Qv6468llWS.

List, B., Chen, L.-W., and Thuerey, N., “Learned turbulence modelling with differ-
entiable fluid solvers: Physics-based loss functions and optimisation horizons,”
J. Fluid Mech. 949, A25 (2022).

Liu, Q., Chu, M., and Thuerey, N., “ConFIG: Towards conflict-free training of
physics informed neural networks,” in The Thirteenth International Conference
on Learning Representations (ICLR, 2025); available at https://openreview.net/
forum?id=APojAzJQiq.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E., “Learning nonlinear
operators via deeponet based on the universal approximation theorem of opera-
tors,” Nat. Mach. Intell. 3, 218–229 (2021).

Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh, I., “Learning algebraic multi-
grid using graph neural networks,” in International Conference on Machine
Learning (PMLR, 2020), pp. 6489–6499.

Pathak, J., Mustafa, M., Kashinath, K., Motheau, E., Kurth, T., and Day, M.,
“Using machine learning to augment coarse-grid computational fluid dynamics
simulations,” arXiv:2010.00072 (2020).

Raissi, M., Perdikaris, P., and Karniadakis, G. E., “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comp. Phys. 378, 686–707
(2019).

Ranade, R., Hill, D. C., Ghule, L., and Pathak, J., “A composable machine-
learning approach for steady-state simulations on high-resolution grids,” in
Advances in Neural Information Processing Systems, edited by A. H. Oh, A.
Agarwal, D. Belgrave, and K. Cho (Curran Associates Inc., 2022), p. 16.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 086624 (2025); doi: 10.1063/5.0281832 37, 086624-17

VC Author(s) 2025

 09 Septem
ber 2025 11:57:51

https://openreview.net/pdf?id=o9kqa5K3tB
https://openreview.net/pdf?id=o9kqa5K3tB
https://doi.org/10.1038/s41598-024-76983-w
http://arxiv.org/abs/2109.13076
https://doi.org/10.1029/2000JE001253
https://doi.org/10.1093/gji/ggab105
https://doi.org/10.1093/gji/ggab105
https://doi.org/10.1029/1999JB900110
https://doi.org/10.1038/s41598-024-53185-y
https://doi.org/10.1007/978-3-031-50769-4_1
https://doi.org/10.1007/978-3-031-50769-4_1
https://doi.org/10.1016/j.epsl.2011.04.040
https://proceedings.mlr.press/v80/gupta18a.html
https://doi.org/10.1029/GL016i002p00179
http://arxiv.org/abs/2403.03542
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2505.24717
http://arxiv.org/abs/2205.11912
http://arxiv.org/abs/2405.16183
https://doi.org/10.1016/j.pepi.2013.04.002
https://doi.org/10.1016/j.pepi.2013.04.002
https://doi.org/10.1007/s11263-019-01223-y
https://doi.org/10.1111/j.1365-246X.2009.04413.x
https://openreview.net/forum?id=wN5AgP0DJ0
https://openreview.net/forum?id=wN5AgP0DJ0
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1038/s41586-024-07744-y
https://doi.org/10.1029/2010JB007670
https://doi.org/10.1029/2002JB001760
https://doi.org/10.1126/science.adi2336
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2111.03794
http://arxiv.org/abs/2504.02843
https://openreview.net/forum?id=Qv6468llWS
https://doi.org/10.1017/jfm.2022.738
https://openreview.net/forum?id=APojAzJQiq
https://openreview.net/forum?id=APojAzJQiq
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2010.00072
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.5555/3600270.3601534
pubs.aip.org/aip/phf


Reese, C., Solomatov, V., and Moresi, L.-N., “Heat transport efficiency for
stagnant lid convection with dislocation viscosity: Application to Mars and
Venus,” J. Geophys. Res. 103, 13643–13657, https://doi.org/10.1029/
98JE01047 (1998).

Ronneberger, O., Fischer, P., and Brox, T., “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

Schubert, G., Turcotte, D. L., and Olson, P., Mantle Convection in the Earth and
Planets (Cambridge University Press, 2001).

Schulz, F., Tosi, N., Plesa, A.-C., and Breuer, D., “Stagnant-lid convection with
diffusion and dislocation creep rheology: Influence of a non-evolving grain
size,” Geophys. J. Int. 220, 18–36 (2020).

Serrano, L., Boudec, L. L., Koupaï, A. K., Wang, T. X., Yin, Y., Vittaut, J.-N., and
Patrick, G., “Operator learning with neural fields: Tackling PDEs on general
geometries,” in Thirty-Seventh Conference on Neural Information Processing
Systems (Curran Associates Inc., 2023), p. 31.

Shahnas, M. H. and Pysklywec, R. N., “Toward a unified model for the thermal
state of the planetary mantle: Estimations from mean field deep learning,”
Earth Space Sci. 7, e2019EA000881 (2020).

Shishehbor, M., Hosseinmardi, S., and Bostanabad, R., “Parametric encoding with
attention and convolution mitigate spectral bias of neural partial differential
equation solvers,” Struct. Multidiscip. Optim. 67, 128 (2024).

Solomatov, V. S., “Scaling of temperature- and stress-dependent viscosity convec-
tion,” Phys. Fluids 7, 266–274 (1995).

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer, M., Pfaff, T., Godwin, J.,
Cui, C., Ho, S., Battaglia, P., and Sanchez-Gonzalez, A., “Learned coarse models
for efficient turbulence simulation,” arXiv:2112.15275 (2022).

Stevenson, D. J., Spohn, T., and Schubert, G., “Magnetism and thermal evolution
of the terrestrial planets,” Icarus 54, 466–489 (1983).

Tackley, P. J., “Modelling compressible mantle convection with large viscosity
contrasts in a three-dimensional spherical shell using the yin-yang grid,” Phys.
Earth Planet. Inter. 171, 7–18 (2008).

Thiriet, M., Breuer, D., Michaut, C., and Plesa, A.-C., “Scaling laws of convection
for cooling planets in a stagnant lid regime,” Phys. Earth Planet. Inter. 286,
138–153 (2019).

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin, K., “Accelerating
Eulerian fluid simulation with convolutional networks,” in Proceedings of the
34th International Conference on Machine Learning - Volume 70, ICML’17
(JMLR.org, 2017), pp. 3424–3433.

Tosi, N., Breuer, D., and Spohn, T., “Evolution of planetary interiors,” in
Treatise on Geophysics, 2nd ed., edited by G. Schubert (Elsevier, 2014), pp.
185–208.

Tosi, N. and Padovan, S., “Mercury, moon, mars: Surface expressions of mantle
convection and interior evolution on stagnant-lid bodies,” in Mantle
Convection and Surface Expressions, edited by H. Marquardt, M. Ballmer, S.
Cottar, and J. Konter (AGU Monograph Series, 2021), Chap. XVII.

Um, K., Brand, R., Yun, F., Holl, P., and Thuerey, N., “Solver-in-the-loop:
Learning from differentiable physics to interact with iterative PDE-solvers,”
arXiv:2007.00016 (2021).

Vyas, N., Morwani, D., Zhao, R., Shapira, I., Brandfonbrener, D., Janson, L., and
Kakade, S. M., “SOAP: Improving and stabilizing shampoo using Adam for lan-
guage modeling,” in The Thirteenth International Conference on Learning
Representations (ILCR, 2025); available at https://openreview.net/
forum?id=IDxZhXrpNf.

Wandel, N., Schulz, S., and Klein, R., “Metamizer: A versatile neural optimizer for
fast and accurate physics simulations,” in The Thirteenth International
Conference on Learning Representations (ICLR, 2025); available at https://wan-
deln.github.io/Metamizer_webpage/.

Wandel, N., Weinmann, M., and Klein, R., “Learning incompressible fluid dynam-
ics from scratch-towards fast, differentiable fluid models that generalize,” in
International Conference on Learning Representations (ICLR, 2020); available at
https://openreview.net/pdf/a304e46c25faf8b1991a7580669d779b3c3e2cd6.pdf.

Wang, Q., Ren, P., Zhou, H., Liu, X.-Y., Deng, Z., Zhang, Y., Chengze, R., Liu, H.,
Wang, Z., Wang, J.-X., Wen, J.-R., Sun, H., and Liu, Y., “P2c2net: PDE-
preserved coarse correction network for efficient prediction of spatiotemporal
dynamics,” in The Thirty-Eighth Annual Conference on Neural Information
Processing Systems (NeurIPS, 2024); available at https://openreview.net/
forum?id=motImXq3B1.

Wang, S., Wang, H., and Perdikaris, P., “Learning the solution operator of para-
metric partial differential equations with physics-informed deeponets,” Sci.
Adv. 7, eabi8605 (2021).

Wang, Y., Yao, Y., Guo, J., and Gao, Z., “A practical PINN framework for multi-
scale problems with multi-magnitude loss terms,” J. Comput. Phys. 510, 113112
(2024b).

Wassing, S., Langer, S., and Bekemeyer, P., “Adopting computational fluid
dynamics concepts for physics-informed neural networks,” in AIAA SciTech
2025 Forum (American Institute of Aeronautics and Astronautics, 2025).

Wei, L. and Freris, N. M., “Multi-scale graph neural network for physics-
informed fluid simulation: Multi-scale graph neural network for physics-
informed fluid simulation,” Vis. Comput. 41, 1171–1181 (2024).

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and Benson, S. M., “U-
FNO—An enhanced Fourier neural operator-based deep-learning model for
multiphase flow,” Adv. Water Resour. 163, 104180 (2022).

Wu, T., Maruyama, T., and Leskovec, J., “Learning to accelerate partial differen-
tial equations via latent global evolution,” arXiv:2206.07681 (2022).

Yin, Y., Kirchmeyer, M., Franceschi, J.-Y., Rakotomamonjy, A., and Gallinari, P.,
“Continuous PDE dynamics forecasting with implicit neural representations,”
arXiv:2209.14855 (2023).

Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M., “A benchmark
study on mantle convection in a 3-D spherical shell using CitcomS,” Geochem.
Geophys. Geosyst. 9, Q10017 (2008).

Zhou, H., Ma, Y., Wu, H., Wang, H., and Long, M., “Unisolver: PDE-conditional
transformers are universal PDE solvers,” arXiv:2405.17527 (2024).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 086624 (2025); doi: 10.1063/5.0281832 37, 086624-18

VC Author(s) 2025

 09 Septem
ber 2025 11:57:51

https://doi.org/10.1029/98JE01047
https://doi.org/10.1093/gji/ggz417
https://doi.org/10.5555/3666122.3669215
https://doi.org/10.5555/3666122.3669215
https://doi.org/10.1029/2019EA000881
https://doi.org/10.1007/s00158-024-03834-7
https://doi.org/10.1063/1.868624
http://arxiv.org/abs/2112.15275
https://doi.org/10.1016/0019-1035(83)90241-5
https://doi.org/10.1016/j.pepi.2008.08.005
https://doi.org/10.1016/j.pepi.2008.08.005
https://doi.org/10.1016/j.pepi.2018.11.003
http://arxiv.org/abs/2007.00016
https://openreview.net/forum?id=IDxZhXrpNf
https://openreview.net/forum?id=IDxZhXrpNf
https://wandeln.github.io/Metamizer_webpage/
https://wandeln.github.io/Metamizer_webpage/
https://openreview.net/pdf/a304e46c25faf8b1991a7580669d779b3c3e2cd6.pdf
https://openreview.net/forum?id=motImXq3B1
https://openreview.net/forum?id=motImXq3B1
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1016/j.jcp.2024.113112
https://doi.org/10.1007/s00371-024-03402-6
https://doi.org/10.1016/j.advwatres.2022.104180
http://arxiv.org/abs/2206.07681
http://arxiv.org/abs/2209.14855
https://doi.org/10.1029/2008GC002048
https://doi.org/10.1029/2008GC002048
http://arxiv.org/abs/2405.17527
pubs.aip.org/aip/phf

