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Abstract

The industrial sector is a major contributor to energy-related CO; emissions in Europe,
making the transition to renewable energy solutions essential. Decarbonization strategies
integrate renewable energy sources, power-to-heat technologies, and energy storage sys-
tems into existing production sites to enhance sustainability and flexibility. However, a key
challenge lies in designing energy systems that remain robust under long-term operational
uncertainties. Usually the design of each energy system component is discrete, as it is
manufactured in a predetermined size. Classical state-of-the-art coupled design and opera-
tional optimization methods are based on continuous design variables, which might give
sub-optimal solutions. This study overcomes this limitation by employing novel, computa-
tionally efficient robust quantum-classical discrete-design methods. Traditional approaches
often optimize operations for a single year due to the computational limitations of opera-
tional optimization algorithms, leading to designs that lack robustness. By incorporating
long-term operational uncertainties, this approach ensures that selected energy-system
configurations minimize both CO, emissions and costs while maintaining resilience to
variations in weather conditions and demand fluctuations. Robust discrete designs which
consider operational uncertainties show 12% less global warming impact (GWI) with 27%
higher total annualized cost (TAC) compared to designs based on operational optimization
without uncertainty. A novel quantum-assisted non-dominated sorting genetic algorithm
(QANSGA-II) shows accuracy up to 90%, which leads to 27% less computational effort than
the NSGA-II algorithm. This novel method can help industries to search larger and more
optimal robust discrete-design spaces for making decarbonization decisions.

Keywords: robust designs; quantum computing; coupled optimization; operational
uncertainties

1. Introduction

The intensifying climate crisis has elevated the urgency to decarbonize all sectors of
the global economy. Among these, the industrial sector stands out as one of the largest
consumers of energy and sources of greenhouse gas (GHG) emissions, particularly carbon
dioxide (CO,). Globally, industry accounts for nearly 24% of total direct CO, emissions from
fuel combustion [1]. The imperative to address these emissions is enshrined in major inter-
national frameworks such as the Paris Agreement, which aims to limit global temperature
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rise to well below 2 °C, and preferably 1.5 °C, above pre-industrial levels [2]. Achieving
this goal requires rapid and deep reductions in emissions from industry through electrifica-
tion, efficiency improvements, and integration of low-carbon energy technologies. In the
European context, the industrial sector represents approximately one-quarter of the EU’s
final energy consumption and is responsible for a significant share of energy-related CO,
emissions [3]. Much of this energy use is concentrated in energy-intensive industries, such
as chemicals, paper, steel, manufacturing and food processing.

The European Green Deal and the Fit for 55 package reinforce the region’s commitment
to climate neutrality by 2050, imposing stricter CO;, emission standards, increasing carbon
pricing mechanisms, and pushing for integration of renewable energy technologies in indus-
trial sectors [4]. However, these shifts pose challenges for existing energy infrastructures,
which are heavily reliant on fossil fuels and centralized energy-supply systems.

Smart energy utility systems offer a promising pathway for industrial decarbonization.
These systems are characterized by the integration of renewable energy sources (e.g., solar
photovoltaic, wind), power-to-heat technologies (e.g., heat pumps, electric boilers), and
multi-modal energy storage solutions (thermal and electrical) within industrial facilities [5,6].
Their benefits include reduced dependency on fossil fuels, improved energy flexibility, and
enhanced energy efficiency through local generation and optimized demand-response
strategies. These technologies enable the electrification of heat demand, a significant step
toward decarbonization, given that industrial heat accounts for more than 50% of final indus-
trial energy use in the EU [7]. Additionally, energy storage and smart controls allow these
systems to respond dynamically to fluctuating electricity prices and renewable availability,
increasing overall system resilience and process efficiency.

1.1. The Design Problem: Discreteness and Uncertainty

Designing smart energy supply systems for industrial environments is non-trivial. A
core challenge lies in the discrete nature of component sizing. Technologies like heat pumps,
batteries, and PV modules are available in pre-manufactured, discrete sizes, requiring formu-
lation of the design as a Mixed-Integer Nonlinear Programming (MINLP) problem. Unlike
continuous models, discrete decision-making restricts the solution space and introduces
non-convexities.

Adding to this complexity is the presence of long-term operational uncertainties. Key
uncertainties include the following:

*  Variability in renewable energy availability due to weather fluctuations.

*  Changes in industrial demand profiles, often driven by market cycles, process changes,
or scheduling.

*  Volatility in energy prices, influenced by regulatory, geopolitical, and market dynamics.

These uncertainties can drastically affect the performance of a given system design.
Therefore, robustness, defined as the ability of a system to maintain near-optimal perfor-
mance across a wide range of future conditions, is a critical design requirement [8,9].

1.2. Limitations of Classical Optimization Approaches

Traditional energy system design approaches often use coupled design and operational
optimization models, typically formulated as Nonlinear Programming (NLP) or Mixed-
Integer Linear Programming (MILP) problems. While these models can generate feasible
system configurations, they suffer from three major limitations:

¢ Local optima and suboptimality: MILP and NLP models are especially susceptible
to local optima instead of finding the global one, particularly in high-dimensional,
non-convex design spaces.
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¢  Computational constraints: Coupled design—-operation optimization is computation-
ally intensive. As a result, most studies limit the operational optimization to a single
representative year [10], which fails to capture multi-year variability in renewable
energy and demand profiles.

¢ Lack of robustness: Designs optimized for a single scenario often perform poorly
when subjected to real-world uncertainties. This lack of robustness can lead to higher
operational costs or emissions when actual conditions deviate from modeled ones [11].

1.3. Robust Design and Hybrid Optimization

To address the previously mentioned shortcomings, robust optimization and scenario-
based stochastic programming have emerged as promising alternatives [12]. Robust opti-
mization seeks solutions that perform well across all plausible realizations of uncertainties,
not just in average conditions. However, these approaches further increase the complex-
ity and dimensionality of the optimization problem. State-of-the-art robust optimization
methods in energy systems solve linear problems to avoid large complexities [13,14].

In this context, multi-objective evolutionary algorithms (MOEAs) such as NSGA-II
have been widely adopted due to their ability to handle complex, nonlinear, multi-modal
search spaces and simultaneously optimize competing objectives (e.g., cost and CO,
emissions) [15]. Yet, even these advanced heuristics face challenges in efficiently exploring
the vast, discrete-design space.

1.4. Novel Contributions of This Study

This study introduces a novel hybrid optimization framework to design robust smart
energy utility systems under long-term uncertainties. Key contributions include:

*  Quantum-classical MINLP design method: At the design level, the discrete-design
space is explored using an NSGA-II multi-objective genetic algorithm enhanced with
QA. Specifically, QA is integrated into the mutation operator to escape local optima
and accelerate exploration of high-quality, discrete-design solutions—a novel method
in energy systems research [16,17].

e Explicit handling of long-term uncertainties: The methodology incorporates multi-
year operational scenarios derived from historical and future predicted weather and
demand data, ensuring robustness to variability.

*  Application to a real-world industrial case in Germany: The framework is demonstrated
on a case study involving a food and cosmetic industry site in Germany, offering insights
into practical decarbonization strategies for mid-sized European manufacturers.

This study reports the robust quantum-assisted discrete design of industrial smart
energy utility systems with long-term operational uncertainties for a food and cosmetic
industry in Germany. The following sections include the materials and methods, results and
conclusion. Section 2 first explains the uncertainty scenarios used for the robust optimiza-
tion. Then, it considers the basic fundamentals of quantum computing for combinatorial
optimization followed by presentation of the novel Quantum-Assisted Non-dominated
Sorting Algorithm (QANSGA). Section 3 discusses in detail the effects of uncertainty on
optimal designs. It also provides a comparison between NSGA and QANSGA in terms of
computational time and accuracy. Section 4 summarizes the methods used, briefly describes
the outcomes and considers the scope for future work.

2. Materials and Methods
2.1. Energy System Design Under Uncertainty

The field of energy system design has evolved to incorporate various uncertainties,
ranging from techno-economic parameters to environmental and operational variables.
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Pfenninger and Keirstead [18] emphasize the importance of using long-term historical
and synthetic time series for demand and weather modeling to avoid over fitting to a
single-year profile. Several studies have attempted to incorporate uncertainty via scenario-
based approaches [19,20], while others use robust optimization frameworks, particularly in
distributed energy systems and micro-grids [21,22]. However, these methods often rely on
linear approximations or limit the problem scale to maintain tractability.

To address the uncertainty in design process, we generated a 4-year random profile with
Monte Carlo simulation based on historical data for the region of Herzberg, Germany. We
took 2023 as the base year, as the preliminary investigation of the case study started in 2023,
and step-by-step, all the changes in the particular food industry have been carried out. The
reference historical profile for the food and cosmetic industry we have used as the case study
in Herzberg, Germany, is shown in blue in Figure 1. Solar radiation of a particular location
generally is quite predictable compared to other renewable sources such as wind. According
to DWD (German Meteorological Service), Global Horizontal Irradiance (GHI) in Germany
is increasing by 3.4 kw/m? [23]. By taking 2023 as the base year, we additionally created
a 4-year long solar radiation profile. The electricity price profile is shown in Figure 2. We
have not considered uncertainties in demand profiles and investment costs. It is advisable to
include those uncertainties in future work due to their implications for design decisions.
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Figure 1. Solar radiation in Herzberg, Germany.
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Figure 2. Electricity prices with uncertainty.
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Discrete component sizing is often addressed through MILP or MINLP formulations.
For example, Dhariwal et al. (2017) [24] explore MILP-based optimizations for building en-
ergy systems, but scalability becomes a bottleneck. The inclusion of nonlinear performance
curves (e.g., for heat pumps or batteries) makes MILP insufficient, necessitating MINLP
formulations, which are harder to solve to global optimality. Recent reviews (e.g., [25])
stress the trade-off between model realism and computational tractability, with most large-
scale design studies opting for reduced model complexity to ensure solvability. Figure 3
shows the superstructure of the energy system components which are considered for the
energy system design of the food industry. Kansara et al. (2024) [26] presented a coupled
design and operation optimization with nonlinear thermal interaction. We consider the
same superstructure for this study with the component sizes included in Table 1.

-—r
[
[
(]
11
Demand
[
Electricity — Heat — Gas —
EB - Electricboiler ST - Solar Thermal Collector HH - Heathub
GB - Gasboiler PV_- Photovoltaic EH - Electricityhub
HP - Heatpump BAT - Battery GG - Gasgrid
TES - Thermal Energystorage EG - Electricitygrid

Figure 3. Energy system components in a superstructure [27].

Table 1. Discrete designs of energy components.

Components Sizes Unit
GB [0,25,50,75,100,125,150, 175,200, 225, 250] kw
EB 0,25, 50,75,100,125,150, 175,200, 225, 250] kw
HP [0,25,50, 75,100,125, 150, 175, 200, 225, 250] kW
PV [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] m?
ST [0,25,50, 75,100,125, 150, 175, 200, 225, 250] m?
TES [0,200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800,2000] kWh
BAT [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] kWh

Kansara et al. (2023) [27] described coupled optimization with continuous capacity
sizes of energy components. As explained previously, in this study, we focused on solving
coupled optimization for discrete designs.

Evolutionary algorithms like the non-dominated sorting genetic algorithm NSGA-II
have been widely adopted for multi-objective energy optimization [26,28]. Their ability
to find Pareto-optimal solutions makes them suitable for balancing cost, emissions, and
other performance metrics. However, performance depends heavily on the efficiency of
genetic operators and diversity of the population. To address stagnation in local optima,
several studies have proposed hybridization with local search methods, surrogate models,
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or even data-driven heuristics [29]. The integration of quantum optimization techniques
into NSGA-II still remains under-explored, particularly in the energy system context. This
study explores quantum-enhanced NSGA-II for optimizing designs of integrated energy
system components.

2.2. Quantum Computing for Combinatorial Optimization
2.2.1. Fundamentals of Quadratic Unconstrained Binary Optimization

Quantum annealing (QA), implemented in systems such as D-Wave, has emerged as a
viable tool for solving Quadratic Unconstrained Binary Optimization (QUBO) problems.
Applications in logistics, finance, and molecular biology have demonstrated its potential in
escaping local optima in large combinatorial spaces [30]. Initial studies in energy systems
have shown its feasibility in unit commitment problems and transmission network design.
However, its integration into evolutionary design algorithms, especially as a mutation
accelerator in discrete multi-objective settings, remains a novel frontier, one that this study
explores and demonstrates in an applied industrial context.

To tackle discrete optimization problems with QA, one generally needs access to spe-
cialized quantum hardware, like the systems offered by D-Wave. D-Wave’s approach to QA
centers is based on finding the lowest energy state of a system, which can be mathematically
represented as a Quadratic Unconstrained Binary Optimization (QUBO) problem [31].

A QUBO problem is mathematically defined by the following objective function:

N N N
E(X):ZQH-XH—Z Z Qij'Xi'Xj:XT'Q'X (1)

i=1 i=1 j=i+1

where X = (X1, Xp,..., Xy) " € {0,1}N is an N-dimensional vector of binary decision vari-
ables and Q;; is a real-valued coefficient matrix representing the interactions between these
variables. For a QUBO problem (1) characterized by a quadratic form X " QX, an equivalent
Hamiltonian is constructed. QA is then used to identify the ground state of this Hamilto-
nian, which corresponds to the optimal solution of (1). For this reason, expressing a discrete
optimization problem in QUBO form is suitable for execution on D-Wave’s QA hardware.

When solving QUBO problems on a D-Wave quantum computer, each binary variable
in the given problem needs to be mapped to a qubit, the basic computational unit of the
quantum annealer. However, current quantum annealers have a limited number of available
qubits, which restricts the size and complexity of the QUBO problems they can handle. This
means that, to ensure computational feasibility for large-scale optimization problems, it is
essential to minimize the number of variables in the QUBO formulation. This can be achieved
through careful discretization of any continuous variables and by avoiding redundant penalty
terms in the QUBO. Ultimately, creating compact and efficient QUBO formulations is crucial
for successfully leveraging quantum annealers in complex optimization challenges.

2.2.2. Methodology for Robust Optimization with the Quantum-Assisted
Genetic Algorithm

As explained in Section 2.1, this study tries to solve discrete-design decisions under
uncertainty of renewable sources and energy prices. As explained in Section 2.2.1, quantum
annealing is capable of solving binary decisions efficiently and computationally faster
compared to classical computing in particular conditions. We developed a novel quantum-
enhanced classical NSGA-II algorithm which can be used to find robust discrete decisions
of coupled design—operation energy optimization problems.

This section details the iterative process of the robust discrete design algorithm, focus-
ing on how candidate energy-system designs are evaluated and refined across generations
using a hybrid optimization approach. It is shown in Algorithm 1.
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Algorithm 1 Robust discrete design with quantum-assisted NSGA-II algorithm

Require: Set of available discrete energy system component designs D giscrete
Require: Long-term operational uncertainty scenarios S (e.g., historic and future demands,
weather conditions, energy prices)
Require: NSGA-II parameters: Population size Npop, number of generations Gmax,
crossover rate P,, mutation rate P,
Require: Quantum Annealer parameters: (QUBO mapping)
Require: NLP Operational Optimization solver parameters
1: Initialize NSGA-II population Py with Npop random candidate designs from Dgjscrete-
22 G=0;
3: while G < Gpnax do

4: for each candidate design X; € P do
5: for each uncertainty scenario s € S do
6: Solve ming (Cop(X;, d,s)) subject to G(X;,d,s) < 0,H(X;,d,s) = 0.
7: > Operational dispatch d; Operational Cost Cop; Constraints G, H
8 Calculate annual cost TAC(X;, s) and CO, emissions GWI(X;,s).
9: end for
10: Calculate the robust fitness for X;:
11: Fi(X;) = Aggregate, ¢ (C(Xj,s)) > E[C(X;,s)] or maxses C(X;, )
12: F(X;) = Aggregate, ¢ (E(X,s)) > E[E(Xj,s)] or maxges E(Xj, 5)
13: end for
14: Apply NSGA-II Genetic Operators:
15: Selection: Pparents < Select(Pg) based on non-dominated sorting
16: Crossover: Pyffspring < Crossover(Pyarents)-
17: Mutation (Quantum-Assisted):
18: For Xy € Pyffspring, formulate sub-problem as QUBO: min, {01} zTQz.
19: Submit QUBO to Quantum Annealer.
20: Decode quantum solution z* to obtain mutated discrete design variables X;.
21: Incorporate X into Poffspring-
22: Combine parent and offspring populations: Peompined = P6 U Poffspring-
23: Perform Non-dominated Sorting and Crowding Distance Calculation on Peompined-
24: Select the next generation’s population Pg1 with Npop candidates from the non-

dominated fronts.

25: G=G+1;

26: end while

27: return The set of Pareto-optimal robust discrete designs (Pg, ), representing trade-offs
between minimized total annualized cost and CO; emissions, resilient to long-term
operational uncertainties.

The core of the algorithm operates within a loop, iterating for a predefined number of
generations, Gmax, in each generation G:

1. Candidate Design Evaluation (cf. lines 3-9): In Algorithm 1, for every candidate
design X; currently in the population Pg, the performance is rigorously assessed
through a lower-level operational optimization.

*  Operational Optimization (cf. lines 6-7): To evaluate X;’s robustness, its oper-
ational performance is simulated across each long-term uncertainty scenario s
from the set S. For a given X; and s, a Nonlinear Programming (NLP) problem
is solved. This NLP aims to minimize the operational cost Cop(X;, d,s), where
d represents the operational dispatch variables (e.g., hourly energy flows, stor-
age charging/discharging). This minimization is subject to a set of constraints
G(Xj,d,s) < 0 (inequality constraints) and H(X;,d,s) = 0 (equality constraints),
which model the energy balance, component operational limits, and other system
requirements. From the solution of this NLP problem, the annual cost C(Xj, s)
and CO, emissions E(X;, s) for design X; under scenario s are determined.
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*  Robust Fitness Calculation (cf. lines 10-12): After evaluating the operational
performance across all scenarios, the robust fitness values for X; are calculated.
Two objective functions, F; (X;) and F,(X;), represent the robust total annualized
cost and robust CO, emissions, respectively. These are obtained by aggregat-
ing the scenario-specific TAC(X;,s) and GWI(X;j,s) over all scenarios s € S.
Common aggregation methods include taking the expected value (E[-]) or the
worst-case (maxgcs) performance across scenarios, depending on the desired
level of robustness.

2. Application of NSGA-II Genetic Operators (cf. lines 14-21): Once all candidate designs
in the current population are evaluated, NSGA-II applies its core genetic operators to
evolve the population:

*  Selection (cf. line 15): Parents for the next generation, Ppgrents, are selected from Pg.
This selection process prioritizes individuals that are on non-dominated fronts
(i-e., not inferior to any other solution in all objectives) and those that contribute
to a diverse Pareto front (achieved through crowding distance calculation).

*  Crossover (cf. line 16): Offspring designs, Pyfspring, are generated by combining
the genetic material of selected parents through a crossover operator.

*  Mutation (Quantum-Assisted) (cf. lines 17-21): A crucial step for exploring the
discrete-design space efficiently is the quantum-assisted mutation. For selected
offspring designs Xy, a sub-problem involving the modification of discrete-design
variables is formulated as a QUBO problem, represented as min, ¢ g1} zTQz.
QUBO formulation for discrete design follows the representation shown in [32].
This QUBO problem is then submitted to a QA. The solution z* returned by the
quantum annealer is decoded to yield new, mutated discrete-design variables X,’(,
which are then incorporated back into the offspring population. This quantum as-
sistance aims to facilitate more effective exploration of the discrete-design space,
potentially discovering novel and improved solutions that might be difficult for
classical mutation operators to find.

3. Population Update (cf. lines 22-25): After applying genetic operators, the parent
population Pg and the newly generated offspring population Pyfgpring are com-
bined to form P.ompined- Non-dominated sorting and crowding distance calculations
are performed on this combined population. Finally, Npop individuals are selected
from the resulting non-dominated fronts to form the next generation’s population,
Pc1, ensuring that the population always maintains its size and prioritizes better,
diverse solutions.

This iterative process continues until the maximum number of generations (Gmax) is
reached, at which point the algorithm returns the final set of Pareto-optimal robust discrete
designs. These designs represent the optimal trade-offs between minimizing TAC and CO,
emissions while demonstrating resilience to long-term operational uncertainties.

A detailed explanation of the optimization problem, component modeling, objective
functions and constraints is given in [27].

2.3. Scenario Selections for Optimization

As explained in Section 2.1, we considered original and simulated profiles to ensure
optimized design under uncertainties over a longer period of time. The profiles generated
are 4-years long, which is quite long when operational optimization is considered, as the
time-step of the operational optimization is 1 h. This means that the operation has to be
optimized for each design population for 35,040 time-steps, which is computationally very
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expensive. The scenarios must be selected in a way that captures the different uncertainties
and provides robust designs through optimization.

The algorithm is fully implemented in Python 3.10, leveraging the ‘tsam’ package for
effective time-series aggregation [33]. For this aggregation, we selected a period size of
15 days (Nd = 15) and a total of four representative periods (Np = 4). This relatively large
period size was chosen specifically to minimize the overall number of periods, thereby
reducing the impact of circular conditions at the boundaries of each representative period.
Furthermore, these aggregated values are set to correspond to the minimum storage
capacities for Thermal Energy Storage (TES) (200 kWh) and Battery Energy Storage (BAT)
(200 kWh) systems to prevent inefficient or unnecessary charging cycles.

The clustered data represent four scenarios (periods) with 15 days’ data in each
scenario. This clustering follows the K-medoids method [33]. K-medoids is a partitioning
clustering algorithm that selects actual data points, called medoids, to represent the center
of each cluster. The algorithm iteratively assigns each data point to its closest medoid
based on a chosen distance metric. Subsequently, it updates the medoids by selecting new
data points that minimize the sum of dissimilarities within their respective clusters. This
approach makes K-medoids particularly robust to outliers and allows for its application
with any arbitrary distance function.The clustering centers are chosen in a way that also
includes extreme events to make the optimization robust. Each scenario (51, S2, S3, S4) has
360 time-steps which considers possible uncertainties. With this approach, we can reduce
the time-steps from 35,040 to 1440, as shown in Figure 4.
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Figure 4. Different scenarios clustered for computational relaxation.

3. Results

The coupled design and operation optimization was performed for 1440 time-steps,
including the four different scenarios described in Section 2.3. As explained in Section 2.2.2,
the novel quantum-assisted NSGA-II (QANSGA-II) is applied on the design level to opti-
mize discrete decisions. The results are compared with those obtained from NSGA-II on
the design level. This section is divided into four subsections. First, Section 3.1 explains the
original optimized continuous designs of the integrated energy system of the industrial site.
Then, the continuous designs are compared with the discrete designs optimized with the
same original coupled optimization using NSGA-II on a design level. Section 3.2 compares
the discrete designs for the reference year and uncertain scenarios. This subsection follows
a detailed analysis for comparison of the different results. Considering the discrete sizes of
the design variables, there are a total of 66 discrete variables. This also includes the size 0 for



Energies 2025, 18, 4258

10 of 16

all design variables, which relates to the existence of the component in the decarbonization
concept. Each discrete variable is embedded as a binary variable in QUBO for solving it on
the quantum annealer [31]. Finally, Section 3.3 compares the discrete-design Pareto fronts
solved with NSGA-II and QANSGA-IIL.

3.1. Objective Comparison of Continuous and Discrete Designs

Figure 5 shows the integrated energy system of the industrial site, whose sizes have
been optimized with coupled design and operation optimization, as explained in [26],
using continuous design variables. In this paper, we optimized designs with discrete sizes.
A comparison of the optimized discrete sizes of the components with original continuous
designs can be seen in Figure 6.
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Figure 5. Integrated optimized energy system of the case study [26].

Comparison of continuous designs and discrete designs (reference year 2023)
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Figure 6. Comparison of continuous and discrete designs for a reference year.

It can be seen that the discrete designs are larger than the continuous designs as the
algorithm seeks to select the nearest available discrete designs from the optimal continuous
designs. This is reflected in the larger sizes of ST, TES-1, TES-2 and HP. PV remains the same
as it is fixed by the industrial stakeholder. The optimal discrete design of EB is reduced
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compared to the optimal continuous design. The reason for this reduction in EB size is
increase in the size of all the other heat-supplying components. This decreases the backup
demand of EB in case of peak loads.

Table 2 shows the objective values for optimal continuous and discrete designs. It can
be seen that discrete designs have higher TAC and lower GWI compared to continuous
designs due to large energy components. TAC is increased by 5% whereas GWI is decreased
by 3.7%.

Table 2. Objective comparison of continuous and discrete designs.

Type of Designs TAC (k€) GWI (t/a)
Continuous 140 107
Discrete 147 103

3.2. Discrete Design Comparison for a Reference Year and Uncertain Scenarios

Figure 7 shows the discrete design comparison for the operation optimized for the
reference year and the operation optimized considering four uncertain scenarios. It can be
seen that due to inclusion of uncertainties while optimizing the design and operation of
the energy system, the optimized design for renewable energy-based components turns
out to be more conservative compared to the case when uncertainties over a longer period
of time are not considered.

Comparison of discrete designs for reference year and uncertain scenarios
1600

1500 | HEEM Reference year designs

[ Designs under uncertain scenarios

1400
1400

[~
=
2

1000

2
2

600

Size (kW), (kWh), (m?)

200

TES1
Components

Figure 7. Comparison of discrete designs for a reference year and uncertain scenarios.

The reason for this larger design is the increase in solar radiation by 3.4%; additionally,
the average electricity price of the uncertainty scenarios is 120% higher than in the reference
year. Both higher electricity price and higher available solar radiation force the renewable
energy components to be larger and consume more renewable energy sources. That leads
to larger ST and TES-1. Due to increase in the electricity price, the HP size reduces as the
HP operation will be more expensive. Smaller HP size causes the size of the back-up EB
to be larger. This increases the TAC by 27% due to the increase in electricity prices and
larger components. Because of larger renewable components and storage capacity, GWI is
decreased by 12%, as shown in Table 3.



Energies 2025, 18, 4258

12 of 16

GWI (t/a)

200

180 4

160

140 4

120 4

100 4

Table 3. Objective comparison of reference year and uncertain scenarios.

Type of Designs TAC (€) GWI (t/a)
Continuous 147 103
Discrete 187 91

3.3. Pareto Comparison with Original NSGA-II and Quantum-Assisted NSGA-II

Figure 8a shows a comparison of the Pareto fronts for TAC and GWI using NSGA-II
and QANSGA-II for the uncertain scenarios with 1440 operational time-steps. It can be seen
that NSGA-II performs better in terms of lower objective values. QANSGA-II converges
to suboptimal solutions and QANSGA-II uses quantum mutation at every generation G
of NSGA-II during design optimization. Figure 8b shows the same comparison but with
uncertain scenarios trimmed to 360 time-steps. The reduction in operational time-steps
results in similar QANSGA-II performance as NSGA-II. Quantum-assisted mutation uses
surrogate QUBO which is solved on D-Wave QA. For state-of-the-art QA, it is very difficult
to handle a large number of variables due to the limited number of qubits available on
a quantum computer. That is why QANSGA-II performs better with fewer operational
time-steps. A higher number of time-steps makes surrogate QUBO very large and gives
suboptimal solutions from QA, and, eventually, the hybrid mutation leads to overall
suboptimal solutions. However, with fewer operational time-steps, QUBO is efficiently
solved on QA and gives better results in whole optimization.

200

& MSGA-II & NSGA-IL
: - & OANSGA-IL 180 : ® (CANSGA-II
—_ 160
=}
=)
; 140
o
120
*y
e -
L[] ..‘u YT ] e B 100
m.-l
T T T T T T T T 80 T T T T T T T
130000 140000 150000 160000 170000 180000 190000 200000 120000 140000 150000 160000 170000 180000 190000 200000
TAC (€) TAC (€)

(a) (b)

Figure 8. (a) Comparison of Pareto fronts of NSGA-II (black dots) and QANSGA-II (red dots)
(1440 time-steps), and (b) comparison of Pareto fronts of NSGA-II (black dots) and QANSGA-II
(red dots) (360 time-steps); both the Pareto fronts show multi-objective designs for Total Annualized
Cost (TAC) and Global Warming Impact (GWI).

Figure 9 shows the Pareto fronts for different mutation strategies. The black Pareto
front represents design solutions with only NSGA-II on the design level. The red Pareto
front shows QANSGA-II design points with quantum solutions injected to NSGA-II solu-
tions in every generation G. The blue Pareto front shows QANSGA-II design points with
quantum solutions injected to NSGA-II solutions in every second generation. This relaxes
the quantum part of the problem. Thus, it does not need to optimize surrogate QUBO in
every mutation step but in every second mutation step, which allows QUBO to be solved
efficiently and search a wider discrete-design space. At the same time, it contains more
information from the NSGA-II mutation, which results in solutions which are near to the
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optimum. However, NSGA-II alone performs better in terms of minimum objective values
compared to QANSGA-II, as depicted in Figure 9.

200
& [NSGA-I
= ™ & Every generation QANSGA-II

180 ® & Every second generation QAMNSGA-T]
—_ 160 4
3=}
=
; 140 1
o

120

100 4

130000 140000 150000 160000 170000 180000 190000 200000

TAC (€)

Figure 9. Comparison of Pareto fronts of NSGA-II (black dots) and QANSGA-II (red dots) and
(blue dots) with different mutation strategies; all the Pareto fronts show multi-objective designs for
Total Annualized Cost (TAC) and Global Warming Impact (GWI).

Table 4 shows a computational time comparison between NSGA-II and QANSGA-II
with different mutation strategies. QANSGA-II-1 (red dots in Figure 9) injects quantum solu-
tions in the mutation step at every generation, whereas QANSGA-II-2 (red dots in Figure 8)
does it every second generation. The classical part of the optimization is solved on an 11th
Gen Intel(R) Core(TM) i7-1185G7 with 16 GB RAM and the quantum approach is solved on
a D-Wave Advantage-4 System and NSGA-II (50 Gax) shows the highest computational
effort. QANSGA-II-1 (red dots in Figure 9) is 47% faster than NSGA-II. Overall, QANSGA-II
reduces the number of NSGA-II generations Gmax required to reach the optimal solution
due to quantum solutions injection, which reduces the overall computational time of any
QANSGA-II version. Additionally, QANSGA-II-2 is 27% faster than NSGA-II. Every second
generation, quantum mutation injection increases the total number of required generations
Gmax to 41 to reach the optimal solution compared to QANSGA-II-1, which requires only
32 generations Gmax. Following Figure 9 and Table 4, the best trade-off between accuracy
of results and computational effort is provided by QANSGA-II-2, which allows quantum
mutation injection at every second generation of NSGA-II.

Table 4. Computational time comparison NSGA-II vs. QANSGA-II.

Algorithm Computational Time (h)

NSGA-II 15.6
QANSGA-II-1 with quantum mutation in every generation 8.2
QANSGA-II-2 with quantum mutation in every generation 11.3

4. Conclusions

This study introduces a robust, quantum-assisted optimization framework for the
decarbonization of industrial energy systems, addressing the critical challenge of designing
systems that perform optimally under long-term operational uncertainties. The proposed
approach departs from traditional methods that typically rely on continuous design vari-
ables and optimize operations for only a single representative year. Such simplifications
often result in designs that are either sub-optimal or lack robustness in real-world fluctuat-
ing conditions.
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To overcome these limitations, we developed and implemented a mixed-integer non-
linear programming (MINLP) framework using discrete sizing of components, reflecting
actual manufacturing constraints, and integrated it with a novel quantum-assisted non-
dominated sorting genetic algorithm (QANSGA-II). This method enables the exploration of
robust design solutions that account for multi-year operational variability in weather and
energy prices. A comparative analysis was performed between continuous and discrete
sizing methods under operational uncertainty using the classical NSGA-II algorithm. The
results show that switching from continuous to discrete-design sizing increases the total
annualized cost (TAC) by approximately 5%, while delivering a 3.7% reduction in global
warming impact (GWI). This highlights the environmental advantage of discrete, realistic
designs even when incurring a moderate cost penalty.

Discrete robust designs resulted in 12% lower GWI and 27% higher TAC compared
to reference year designs, emphasizing the trade-off between sustainability and economic
performance when uncertainty is accounted for. Importantly, QANSGA-II-2 achieved up to
90% accuracy based on the root mean squared error (RMSE) with 27% less computational
effort than the conventional NSGA-II, demonstrating its potential.

In summary, the study demonstrates that robust discrete design under uncertainty
not only provides more resilient and sustainable solutions, but also when paired with effi-
cient quantum-classical optimization techniques, becomes computationally tractable. These
findings contribute a practical and forward-looking method to support the transition of
industrial systems toward low-carbon operations and are applicable to optimization model-
ers exploring hybrid quantum-classical methods. The state-of-the-art quantum annealers
have a limited number of qubits (ca. 5000) [31], which restricts the size of problem to be
solved on the state-of-the-art quantum annealers. The quantum computer is on its way to
becoming scalable by adding more qubits and more robust by decreasing errors. In future
work, QANSGA-II can be improved to search a larger discrete-design space and increase
performance of the coupled optimization.
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The following abbreviations are used in this manuscript:

MILP Mixed-Integer Linear Problem

MINLP Mixed-Integer Nonlinear Problem

NLP Nonlinear Problem

TAC Total Annualized Cost

GWI Global Warming Impact

NSGA Non-dominated Sorting Genetic Algorithm

QANSGA  Quantum-Assisted Non-dominated Sorting Genetic Algorithm
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GHG Greenhouse Gas
MOEA Multi-Objective Evolutionary Algorithm
DWD Deutsche Wetterdienst
GHI Global Horizontal Irradiance
GB Gas Boiler
EB Electric Boiler
HP Heat Pump
PV Photovoltaic
ST Solar Thermal
TES Thermal Energy Storage
BAT Battery
QUBO Quadratic Unconstrained Binary Optimization
QA Quantum Annealing
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