EUROGRAPHICS 2025/ D. Ceylan and T.-M. Li

Short Paper

Smaller than Pixels: Rendering Millions of Stars in Real-Time

S. Schneegansl , A. Kreskowski?®, and A. Gerndt!

1University of Bremen, Germany
2Bauhaus-Universitit Weimar, Germany
3German Aerospace Center (DLR)

Figure 1: With naive point-based rendering, stars in the centre of the screen will be too bright (left). To correct this, the projected size of
the stars has to be incorporated in the luminance computation (centre). For perspectively correct glaring, the glare must not be computed
in screen space, because else the stars will look flat in immersive scenarios (right, observe the now correct ellipsoidal glare around bright
stars). For these images, 50 million stars from the Gaia catalogue were rendered by our proposed software rasterizer. About 22 millions stars
were inside the frustum. Rendering the right view took about 8 ms at 4K resolution on an RTX 4070 Super.

Abstract

Many applications need to display realistic stars. However, rendering stars with their correct luminance is surprisingly difficult:
Usually, stars are so far away from the observer, that they appear smaller than a single pixel. As one can not visualize objects
smaller than a pixel, one has to either distribute a star’s luminance over an entire pixel or draw some kind of proxy geometry for
the star. We also have to consider that pixels at the edge of the screen cover a smaller portion of the observer’s field of view than
pixels in the centre. Hence, single-pixel stars at the edge of the screen have to be drawn proportionally brighter than those in
the centre. This is especially important for virtual-reality or dome renderings, where the field of view is large. In this paper, we
compare different rendering techniques for stars and show how to compute their luminance based on the solid angle covered by
their geometric proxies. This includes point-based stars, and various types of camera-aligned billboards. In addition, we present
a software rasterizer which outperforms these classic rendering techniques in almost all cases. Furthermore, we show how a
perception-based glare filter can be used to efficiently distribute a star’s luminance to neighbouring pixels. Our implementation
is part of the open-source space-visualization software CosmoScout VR.

CCS Concepts
¢ Computing methodologies — Real-time simulation;

1. Introduction

As instruments for observing the universe have become more pow-
erful, astronomers have collected ever-growing catalogues of stars.
There is a substantial interest in visualizing these stars in virtual
environments for scientific, educational, and entertainment applica-
tions. Also, for software-in-the-loop simulations of space missions
realistic star rendering is essential. The approach presented in this
paper has been developed for the VaMEx3-RGE project, in which
technology is developed for a future mission to Mars where an au-
tonomous robotic swarm will explore the Martian surface. In this

© 2025 The Author(s).

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20251029

project, the presented approach is used in an immersive mission-
control tool for mission planning and monitoring. In such appli-
cations, the correct rendering of stars is not trivial. The first chal-
lenge is to render individual stars with their correct luminance in a
perspectively correct manner. If this is done incorrectly, stars will
appear with varying brightness depending on their position on the
screen, or with an elliptical shape (see Figure 1). The second chal-
lenge is to rasterize many stars efficiently without causing a bottle-
neck in the rendering pipeline. The final challenge is proper glaring
to make the high dynamic range of stars perceivable.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0003-1847-4135
https://orcid.org/0000-0002-5032-7613
https://orcid.org/0000-0002-0409-8573
https://doi.org/10.2312/egs.20251029

2of 4 S. Schneegans, A. Kreskowski, and A. Gerndt / Rendering Millions of Stars in Real-Time

a) b) c) d)
Figure 2: All eight images of Orion’s belt share the same total lu-
minance prior to tone-mapping. Upper row: Single-pixel stars pro-
duce aliasing issues when jumping between discrete pixel positions
and their mutual luminance differences are difficult to perceive (a).
With our software rasterizer, the aliasing is mitigated, but the lu-
minance is still hard to see (b). If discs are used as representation,
the visualization gets clearer (c). Larger billboards with an addi-
tional glare produce better results but worse performance (d). The
bottom row uses the same configurations as above but 20 % of the

luminance is contributed by the glare filter presented in Section 5.
This makes bright stars more easy to spot especially for (a) & (b).

2. Background and Related Work

In some applications, stars can be visualized as static background
images. However, this is not suitable if the user can travel to them.
In this case, stars have to be drawn as individual point light sources.
Often, they are not drawn as single pixels but as small discs or
larger billboards. This improves the visualization as the human vi-
sual system is not good at distinguishing the luminance of very
small light sources [Bla46]. Adding an artificial glare helps to in-
crease the perceived luminance of overexposed areas [KMSO05].
However, this requires rather large billboards and, with many stars
in the scene, may result in high overdraw and therefore drastically
reduced rendering performance.

Some space visualizations such as Cosmographia [Sem] and Ce-
lestia [Cel] employ screen-aligned billboards to represent stars.
This approach has the drawback that stars will be circular on the
screen which makes them appear more elliptical towards the edge
of the screen. Other tools, such as CosmoScout VR [SZGG22] or
GaiaSky [SJMS18] draw stars as camera-facing billboards to avoid
this issue. However, neither of the authors describe how they com-
pute the brightness of the billboards. This step however is crucial
to achieve a correct compositing with other lit objects in the scene.

We use the Hipparcos star catalogue and the Gaia star cata-
logue. Together, these catalogues contain more than 1.8 billion
stars. Level-of-detail algorithms exist to render such large star cat-
alogues in real-time [SJMS18]. Such algorithms select a subset of
stars to render based on their brightness and distance to the camera.
In this paper, we do not aim to present a new level-of-detail ap-
proach but rather focus on how to correctly and efficiently rasterize
many stars at once. Our approach is orthogonal to level-of-detail
approaches and can therefore be used in combination with exist-
ing level-of-detail algorithms, potentially increasing the number of
stars such a system can render. Hence, we will not attempt to render
the full Gaia catalogue but demonstrate our methods on a few tens
of millions of the brightest stars.

We implemented all techniques in the visualization software
CosmoScout VR [SFGG25]. In this software, the luminance of the
scene is written to a 32 bit floating point render target. When all
scene geometry has been rendered, the average luminance is com-
puted by a series of parallel reductions using compute shaders. It is
then used to compute an exposure value according to [PTYGOO0].
Ultimately, filmic tone mapping [Dui] is used to reduce the dy-
namic range before displaying the image.

3. The First Challenge: Rendering a Single Star

We can not directly visualize a star as it usually appears smaller
than a pixel. Instead, some sort of proxy representation has to be
chosen. The smallest possible representation is the pixel that the
star appears on. Single-pixel stars promise a good performance
but require a glare filter and produce artefacts when jumping be-
tween pixel positions. Small anti-aliased camera-aligned discs pro-
vide better visual quality but are more expensive to render.

3.1. Star Representations

We implemented point-based stars both using pixel-sized point
primitives and using a custom software rasterizer. The latter is de-
scribed in Section 4. Camera-aligned discs were implemented us-
ing a geometry shader emitting a quad for each star. A fragment
shader then draws a normalized circular gradient to create an anti-
aliased disc. We also implemented a variant which produces larger
billboards with a built-in glare effect (see Figure 2).

The solid angle A of the disc is a configurable parameter. Choos-
ing the right size is difficult as smaller stars are more likely to create
flickering but increase the drawing performance. We also observed
that stars which are off-screen produce still a significant amount of
performance overhead. Using the geometry shader to cull stars out-
side the frustum can help to reduce this overhead. The performance
is evaluated in more detail in Section 4.2.

3.2. Luminance and Colour of a Star Representation

For each star from the catalogue, we know its absolute magnitude
magps, its distance to the camera d in parsecs, and its effective
black body temperature 7T, in Kelvin. The star’s colour is com-
puted based on T, s according to [HH21]. The apparent magnitude
magy = magaps +5-10g10(0.1- d) describes how bright the star ap-
pears from the observer’s point of view. We use this to compute the
surface brightness S of the star representation using its solid angle
A in arcseconds”. This can be used to compute the luminance L of
the star representation in cd/ m?:

S =magy+2.5-logio(A) (1)
L=10.8-10" 107045 2)

For single-pixel stars, the solid angle A of a pixel needs to be com-
puted. As this is smaller at the edge of the screen as opposed to
the center, point-based stars are rendered brighter towards the bor-
der. From the perspective of the user, this is correct. If discs are
used, the solid angle is constant for all stars, but their projected
size differs depending on the screen-space position. Hence, points
and discs will contribute the same luminance to the render target
regardless of their screen-space position.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



S. Schneegans, A. Kreskowski, and A. Gerndt / Rendering Millions of Stars in Real-Time 30f4

304 —*— Software Rasterizer ,,: 4 ::
g Point Primitives V4 §d
o —«- Disc Billboards (/ }//
g 201 —e - Discs with Glare z
= #
= //f Fad
< ol '
g 104 /’/ P
-——
04 ===
2.5 5 10 25 50 960 1920 2880 3840

Total Number of Stars [millions] Horizontal Resolution [pixels]

Figure 3: Star-render times (without glare computation) for a 16:9
view of the Milky Way core. About 25 % of the stars were inside the
frustum. The left chart has been recorded at 4k resolution, the right
chart with 50 million stars, both on an RTX 4070 Super.

4. The Second Challenge: Rendering Many Stars

As large star representations are expensive to render, we propose
to render the stars as small as possible and add a glare effect in
a post-processing step. This way, our approach scales much better
with the number of stars in the scene.

4.1. A Software Rasterizer for Stars

As mentioned in Section 3, drawing stars as single pixels results in
artifacts. Hardware smoothing of points exists, but the implemen-
tation is vendor specific, so we cannot know how much luminance
a smooth point will actually contribute to the render target. Mul-
tisampling is another option, but it is computationally expensive.
Because of this and since small primitives tend to stall the GPU
pipeline [KSW21], we wrote a software rasterizer for stars.

Our rasterizer uses a compute shader with a spin-lock to atomi-
cally update the render target, similar to [GKLR13]. For each star,
we upload five floating point values: its 3D position, mag,ps, and
T, 7. Each thread processes one star. First, it computes the screen-
space position of the star, and if it is outside the frustum, processing
is stopped. Then it evaluates how much luminance would need to
be written to a single pixel and distributes this over a 2x2 pixel area,
weighted by the distance of the star to the pixel centers. This gives
a smooth transition when a star moves across the screen. We pack
both the luminance and 7, as half floats into a 32-bit integer tex-
ture. The luminance is blended additively, 7,7 is mixed with the
previous value using a weighted average. The mapping from Ty ¢
to colour is actually not linear which leads to a small colour shift in
areas where many stars overlap. In the future, we plan to investigate
packing the colour directly into the 16 bits. Finally, the texture is
drawn with a full-screen pass to the main render target, computing
the colour based on the mixed temperature value.

4.2. Performance Evaluation

Figure 3 shows render times for different resolutions and various
numbers of stars. The software rasterizer scales better with the stars
count than native point rendering. It also performs better across
all tested resolutions. Interestingly, the performance decreases for
small screen resolutions. This is most likely due to an increased
number of collisions when writing to a texel of the atomic image.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

_
A
)

CIE Glare Index (A=30, p=0.6)
----- PSF according to J. Vos
—-= Our approach
Gaussians with increasing o
and decreasing weight

x —— Stiles-Holladay Disability Glare

—_

(=
©
s

,_\

5}
4
.

,_‘

5}
4
.

Normalized Glare Intensity
g

30 45 60 75 90
Visual Angle 0 [degrees]

Figure 4: Our glare function is very similar to empirically deduced
glare functions from the literature. It is the sum of several Gaussian
kernels with consecutively doubling standard deviations and halv-
ing weights. Graphs are normalized to 1 at 6 = 2°.

5. The Final Challenge: Adding a Proper Glare

Experiments have shown that the amount of perceived veiling lumi-
nance (or glare) as a function of the angle 0 in degrees between the
visual axis and a point light source roughly follows Ly,;(8) o 1/6?
[Vos03]. Figure 4 graphs several models for this relationship in-
corporating factors such as age or ocular pigmentation which have
been proposed in the literature. As it is not viable to convolve the
entire frame with a large 2D kernel, glare is often simulated using
multiple 1D Gaussians [KMSO05]. In fact, we observed that 1 /62
specifically can be approximated with a series of weighted Gaus-
sians with exponentially increasing standard deviations. Equation 3
shows a standard Gaussian with an additional weight factor of 1/c:

92

f(8,0) = e 3)

1
—
62\/2n
Summing multiple of these weighted Gaussians produces a func-
tion which converges to ¢/ 6% with ¢ being a constant factor. Even
if this is often implemented similarly, we are not aware of any work
which has explicitly shown this relationship:

. u i 1
Jim ¥ r(02)~ @
This function and the individual Gaussians are graphed in Figure 4.
The maximum relative error compared to ¢/ 67 is less than 1% for
0.2° < 0 < 90° already for n = 10. This emphasizes that simulating
glare with a series of weighted Gaussians is a good approximation
for the veiling luminance perceived by the human visual system.

a) b) )

Figure 5: Usually, Gaussion kernels are decomposed into a hori-
zontal (solid) and a vertical (dashed) pass in screen space (a). De-
composing into a radial and a circular component would produce
perspectively correct results, but suffers from a singularity at the
vanishing point of the view axis (b). We use an alternative pattern
in view space which is more stable and produces similar results (c).



40of4 S. Schneegans, A. Kreskowski, and A. Gerndt / Rendering Millions of Stars in Real-Time

— Max Luminance

Glare Composite

+ e —1\
Luminance — 1 N
Normalization —_ _, Weighted _
v ~ _ Blending
Iterative Gauss N E a
Convolution ~ —» Glare MipMap

Exposure
Computation

|

Tone
Mapping

N

mix

Figure 6: As the resolution of the mipmap pyramid used for glare computation halves with each level, the standard deviation of the Gaussian
effectively doubles. The levels are blended using consecutively halved weights. Star brightness is exaggerated for visualization purposes.

5.1. Implementation Details

Our glare-computation pipeline is shown in Figure 6. The glare is
computed using a mipmap pyramid. The base level of the pyra-
mid has half the resolution of the render target. The levels of
the pyramid are updated with several compute passes and contain
successively more blurred versions of the scene. In a final pass,
the mipmap levels are combined using efficient bi-cubic texture
lookups [SHO5] with the weight of each level being 1/ 2'. The result
is then mixed with the render target.

We implemented two variants: The first decomposes the Gaus-
sian kernel into a horizontal and a vertical component in screen
space. This produces a circular glare which is very fast as only a
few samples are required but not perspectively correct. The second
variant decomposes the Gaussian kernel in view space (see Fig-
ure 5). This produces a more realistic glare but is computationally
more expensive. Example images are shown in Figure 1.

5.2. Performance Evaluation

As we know the maximum scene luminance for the current frame,
we can scale the glare luminance to fit into half floats. Hardware
bilinear interpolation can be used to sample the average of four
pixels in the previous level of the pyramid. Also, the glare pyramid
can be computed with a relatively low resolution and still produce a
smooth glare thanks to the bi-cubic texture filtering. Computing the
screen-space glare took about 0.34ms at Full-HD resolution and
0.74 ms at 4k resolution on an RTX 4070 Super. The asymmetric
correct glare took about 0.41 ms and 1.38 ms respectively.

6. Summary and Future Work

In this paper, we have evaluated several techniques for rendering
stars in a space simulation. We have shown that rendering stars as
small as possible and adding glare in a post-processing step scales
best with the number of stars and usually provides the best perfor-
mance. For this, we proposed a software rasterizer for stars which
performs better than native point-based rendering. We have also
shown that a high-quality glare effect can be achieved on modern
hardware with very little performance overhead.

In the future, we plan to investigate whether a tile-based raster-
izer could further improve the performance. Avoiding the spin-lock
like [SKW22] could also be beneficial, however an implementation
of atomic additive color blending will not be trivial. Also, adding a
level-of-detail algorithm to our system so that we can visualize the
full Gaia star catalogue is an interesting avenue for future work.

Acknowledgements

This work is supported by the German Aerospace Center (DLR)
Space Administration with financial means of the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK)
on the basis of a decision by the German Bundestag as part of
the VaMEx3-RGE project (SONA2204A). Open Access funding en-
abled and organized by Projekt DEAL.

References

[Bla46] BLACKWELL H. R.: Contrast thresholds of the human eye. J.
Opt. Soc. Am. 36, 11 (Nov 1946), 624-643. 2

[Cel] CELESTIA DEVELOPMENT TEAM: Celestia: Real-Time 3D Visual-
ization of Space. Open-Source Software. Accessed: 2024-12-13. URL:
https://celestiaproject.space/. 2

[Dui] DUIKER H.-P.: Filmic tonemapping for real-time rendering. Pro-
ceedings of ACM SIGGRAPH Courses. ACM 28, 701-711. 2

[GKLR13] GUNTHER C., KANZOK T., LINSEN L., ROSENTHAL P.: A
GPGPU-based pipeline for accelerated rendering of point clouds. Jour-
nal of WSCG 21 (2013). 3

[HH21] HARRE J.-V., HELLER R.: Digital color codes of stars. As-
tronomische Nachrichten 342, 3 (2021), 578-587. 2

[KMS05] KRAWCZYK G., MYSZKOWSKI K., SEIDEL H.-P.: Perceptual
effects in real-time tone mapping. In Proceedings of the 21st Spring
Conference on Computer Graphics (New York, NY, USA, 2005), SCCG
’05, Association for Computing Machinery, p. 195-202. 2, 3

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive into
Nanite virtualized geometry. In ACM SIGGRAPH 2021 Courses, Ad-
vances in Real-Time Rendering in Games, Part 1 (2021), ACM. 3

[PTYGOO] PATTANAIK S. N., TUMBLIN J., YEE H., GREENBERG
D. P.: Time-dependent visual adaptation for fast realistic image display.
In Proceedings of SIGGRAPH 00 (USA, 2000), ACM, pp. 47-54. 2

[Sem] SEMENOV B.: WebGeocalc and cosmographia: Modern tools to
access OPS SPICE data. In 2018 SpaceOps Conference, p. 2366. 2

[SFGG25] SCHNEEGANS S., FLATKEN M., GILG J., GERNDT A.: Cos-
moScout VR, Jan. 2025. doi:10.5281/zenodo.14748678. 2

[SHO5] S1GG C., HADWIGER M.: Fast third-order texture filtering. GPU
gems 2 (2005), 313-329. 4

[SIMS18] SAGRISTA A., JORDAN S., MULLER T., SADLO F.: Gaia
Sky: Navigating the GAIA catalog. [EEE transactions on visualization
and computer graphics 25, 1 (2018), 1070-1079. 2

[SKW22] ScHUTZ M., KERBL B., WIMMER M.: Software rasterization
of 2 billion points in real time. Proc. ACM Comput. Graph. Interact.
Tech. 5,3 (July 2022). 4

[SZGG22] SCHNEEGANS S., ZEUMER M., GILG J., GERNDT A.: Cos-
moScout VR: A Modular 3D Solar System Based on SPICE. In 2022
IEEE Aerospace Conference (AERO) (2022), pp. 1-13. 2

[Vos03] Vos J. J.: On the cause of disability glare and its dependence
on glare angle, age and ocular pigmentation. Clinical and experimental
optometry 86, 6 (2003), 363-370. 3

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.


https://celestiaproject.space/
https://doi.org/10.5281/zenodo.14748678

