
The Forward-Forward Algorithm, introduced by

Geoffrey Hinton in 2022, offers potential for low-

power hardware in aerospace projects. Layers are

trained independently using a "goodness" loss

function such that the goodness is maximized with

positive data. This approach reduces memory

requirements during training and inference, making it

suitable for low-power hardware and parallelization.

The algorithm allows for flexible hypertuning and

efficient inferences, with recent research leading to

further improvements and lightweight models.

ABSTRACT: The Forward-Forward algorithm has evolved in machine learning research, tackling more complex tasks that
mimic real-life applications. In the last years, it has been improved by several techniques to perform better than its original
version, handling a challenging dataset like CIFAR10 without losing its flexibility and low memory usage. We have shown in
our results that improvements are achieved through a combination of learnable embeddings, learning rate schedules, and
independent block structures during training that lead to a 20% decrease in test error percentage.

Fig. 2: Flow diagram for the inference step
in our improved algorithm.

Mauricio Ortiz Torres*, Markus Lange**, Arne P. Raulf***

German Aerospace Center (DLR)
Institut for AI-Safety and Security, Sankt Augustin & Ulm
* mauricio.ortiztorres@dlr.de, ** markus.lange@dlr.de, *** arne.raulf@dlr.de

Model name
Channels;

Kernel Size
Trainable

Parameters
Inference

Training
Error [%]

Test
Error [%]

FF_tiny
[3, 50, 50, 50, 50];

[3, 3, 3, 4]
164,706

One-pass 15.3 24.4

Multi-pass 17.9 24.1

FF_small
[3, 50, 50, 70, 70];

[3, 3, 3, 4]
239,266

One-pass 12.3 23.4

Multi-pass 14.8 23.1

FF_medium
[3, 50, 50, 100, 150];

[3, 3, 3, 4]
484,506

One-pass 8.0 21.5

Multi-pass 10.1 20.7

FF_optimal
[3, 50, 50, 100, 160, 160];

[3, 3, 3, 4, 3]
754,386

One-pass 2.0 19.6

Multi-pass 2.4 19.3

FF_deep
[3, 130, 130, 260, 260, 260, 510];

[3, 3, 3, 5, 3, 3]
4,131,346

One-pass 1.2 18.8

Multi-pass 1.8 18.2

Dataset Layers Inference
Training
Error [%]

Test
Error [%]

MNIST

MLP One-pass 8.6 8.0

MLP Multi-pass 7.3 7.2

CNN One-pass 4.5 4.4

CNN Multi-pass 4.9 5.0

CIFAR10

MLP One-pass 39.2 39.3

MLP Multi-pass 41.1 41.2

CNN One-pass 20.5 44.3

CNN Multi-pass 44.8 48.3

VARIATIONS TO THE ALGORITHM

Variations of the Forward-Forward algorithm have

been explored to address its weaknesses. These

include creating better correlated input data,

improving training loss functions, and developing

more effective training routines and inference

schemes. Techniques such as spatially extended

labeling, learnable embeddings, and Noise

Contrastive Estimation have been used to create

positive and negative samples. One approach

substitutes the positive and negative samples with

convolutional group channels. New loss functions

based on convolutional channel-wise competitive

learning have been proposed to measure

discrepancies between input patterns and labels.

Additionally, parallel training architectures and

lightweight inference methods have been

investigated to improve efficiency.

Fig. 1: Flow diagram for the one-pass and multi-pass inference step.

We have developed with an improved algorithm that

has the following characteristics:

• Creation of convolutional group channels for

positive/negative sampling (see Figure 2).

• Training through chunked local updates that

alternate between iterations.

• Realization of inference based on the activity

vectors from the last two layers of the model.

• Use of the channel-wise loss function:

𝐶𝑙 = −
1

𝑁
෍

𝑛=1

𝑁

log
exp 𝑔𝑝𝑜𝑠

𝑙
𝑛

σ𝑙=1
𝐿 exp 𝐺𝑛,𝑗

𝑙
,

where, 𝐺𝑛,𝑗
𝑙 =

1

𝑆×𝐻×𝑊
σ𝑠=1
𝑆 σℎ=1

𝐻 σ𝑤=1
𝑊 ෠𝑌𝑛,𝑗,𝑠,ℎ,𝑤

𝑙 2
, and

෠𝑌𝑗
𝑙 ∈ ℝ𝑁×𝑆×𝐻×𝑊, where 𝑆 = 𝐶/𝐽, and 𝐽 corresponds to

the number of classes present in the classification

problem.1 Our results in Table 1 show that the

algorithm works correctly as a classifier and has

similar results when employing either of the two

inference options. In Table 2, we show a list of the

studied light FF models, their respective architectures,

and their test results. The models has a test error of

(21±3)% and offer a different range of trainable

parameters. Our smallest network, FF_tiny, has 96%

less parameters compared to FF_deep, but is subject

to the highest test error of 24.1%. In contrast,

FF_optimal conserves a test error below 20% and a

parameter reduction of 81% in comparison to our

largest model.

Table 1: Test results of FF algorithm, for MNIST and CIFAR10 datasets.

Table 2: Architectures and test results from the light FF models trained under the CIFAR10 datasets with the improved FF algorithm.

1
We work with the NCHW format, where N : Number of data samples in the batch, C : Image channels, H : Image height, W : Image width.

INTRODUCTION

THE FORWARD-FORWARD (FF) ALGORITHM

CONCLUSION

RESULTS & ANALYSIS

The FF algorithm continues to evolve, showing

potential for low-power hardware. Improved

versions perform better than the original, with a

20% decrease in test error percentage. Lighter FF

models achieve low test error percentages (21±3%)

with fewer parameters (164,706-754,386),

comparable to state-of-the-art models but smaller

in size. These models offer high performance while

keeping a smaller size. Further investigations will

focus on verifying and validating these neural

networks.

On Advancements of the Forward-Forward Algorithm

ORIGINAL APPROACH

The Forward-Forward algorithm's architecture is

similar to a traditional neural network, but its

training procedure differs significantly. It uses two

input spaces: positive and negative samples created

from the dataset by overlaying images with correct

or incorrect labels. For example, in the MNIST

dataset, an image is overlaid with its correct label to

create a positive sample, and with an incorrect label

to create a negative sample.

The algorithm operates with two forward passes:

one positive pass to increase the "goodness" of

each layer for positive samples, and one negative

pass to decrease it for negative samples. The

goodness loss function of each layer is measured by

the logistic function of the sum of the squares of its

activity vectors minus some threshold 𝜃, i.e.,

𝐶𝐹𝐹 = 𝐶𝑝𝑜𝑠
𝑙 +𝐶𝑛𝑒𝑔

𝑙 =

ln 1+ exp 𝜃 −𝑔𝑙 𝑥𝑝𝑜𝑠 + ln 1+ exp 𝑔𝑙 𝑥𝑛𝑒𝑔 −𝜃

During training, the output of each hidden layer is

normalized to transmit relative information. After

training, the inference phase can be initiated using

two methods: one-pass inference and multi-pass

inference. One-pass inference involves training a

SoftMax/Sigmoid layer with a general multi-

classification loss function, using the concatenated

activity vectors of the original network as input.

Multi-pass inference uses the trained network with

multiple generated overlaid images as input,

collecting goodness values for each layer and

determining the final label using an argmax

function (see Figure 1).

