
The Forward-Forward Algorithm, introduced by 

Geoffrey Hinton in 2022, offers potential for low-

power hardware in aerospace projects. Layers are 

trained independently using a "goodness" loss 

function such that the goodness is maximized with 

positive data. This approach reduces memory 

requirements during training and inference, making it 

suitable for low-power hardware and parallelization. 

The algorithm allows for flexible hypertuning and 

efficient inferences, with recent research leading to 

further improvements and lightweight models.

ABSTRACT: The Forward-Forward algorithm has evolved in machine learning research, tackling more complex tasks that 
mimic real-life applications. In the last years, it has been improved by several techniques to perform better than its original 
version, handling a challenging dataset like CIFAR10 without losing its flexibility and low memory usage. We have shown in 
our results that improvements are achieved through a combination of learnable embeddings, learning rate schedules, and 
independent block structures during training that lead to a 20% decrease in test error percentage.

Fig. 2: Flow diagram for the inference step 
in our improved algorithm. 
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Model name
Channels; 

Kernel Size
Trainable

Parameters
Inference

Training 
Error [%]

Test 
Error [%]

FF_tiny
[3, 50, 50, 50, 50]; 

[3, 3, 3, 4]
164,706

One-pass 15.3 24.4

Multi-pass 17.9 24.1

FF_small
[3, 50, 50, 70, 70]; 

[3, 3, 3, 4]
239,266

One-pass 12.3 23.4

Multi-pass 14.8 23.1

FF_medium
[3, 50, 50, 100, 150]; 

[3, 3, 3, 4]
484,506

One-pass 8.0 21.5

Multi-pass 10.1 20.7

FF_optimal
[3, 50, 50, 100, 160, 160];

[3, 3, 3, 4, 3]
754,386

One-pass 2.0 19.6

Multi-pass 2.4 19.3

FF_deep
[3, 130, 130, 260, 260, 260, 510]; 

[3, 3, 3, 5, 3, 3]
4,131,346

One-pass 1.2 18.8

Multi-pass 1.8 18.2

Dataset Layers Inference
Training 
Error [%]

Test 
Error [%]

MNIST

MLP One-pass 8.6 8.0

MLP Multi-pass 7.3 7.2

CNN One-pass 4.5 4.4

CNN Multi-pass 4.9 5.0

CIFAR10

MLP One-pass 39.2 39.3

MLP Multi-pass 41.1 41.2

CNN One-pass 20.5 44.3

CNN Multi-pass 44.8 48.3

VARIATIONS TO THE ALGORITHM

Variations of the Forward-Forward algorithm have 

been explored to address its weaknesses. These 

include creating better correlated input data, 

improving training loss functions, and developing 

more effective training routines and inference 

schemes. Techniques such as spatially extended 

labeling, learnable embeddings, and Noise 

Contrastive Estimation have been used to create 

positive and negative samples. One approach 

substitutes the positive and negative samples with 

convolutional group channels. New loss functions 

based on convolutional channel-wise competitive

learning have been proposed to measure 

discrepancies between input patterns and labels. 

Additionally, parallel training architectures and 

lightweight inference methods have been 

investigated to improve efficiency. 

Fig. 1: Flow diagram for the one-pass and multi-pass inference step.

We have developed with an improved algorithm that 

has the following characteristics:

• Creation of convolutional group channels for 

positive/negative sampling (see Figure 2).

• Training through chunked local updates that 

alternate between iterations.

• Realization of inference based on the activity 

vectors from the last two layers of the model.

• Use of the channel-wise loss function: 

𝐶𝑙 = −
1

𝑁
෍

𝑛=1

𝑁

log
exp 𝑔𝑝𝑜𝑠

𝑙
𝑛

σ𝑙=1
𝐿 exp 𝐺𝑛,𝑗

𝑙
,

where, 𝐺𝑛,𝑗
𝑙 =

1

𝑆×𝐻×𝑊
σ𝑠=1
𝑆 σℎ=1

𝐻 σ𝑤=1
𝑊 ෠𝑌𝑛,𝑗,𝑠,ℎ,𝑤

𝑙 2
, and 

෠𝑌𝑗
𝑙 ∈ ℝ𝑁×𝑆×𝐻×𝑊, where 𝑆 = 𝐶/𝐽, and 𝐽 corresponds to 

the number of classes present in the classification 

problem.1 Our results in Table 1 show that the 

algorithm works correctly as a classifier and has 

similar results when employing either of the two 

inference options. In Table 2, we show a list of the 

studied light FF models, their respective architectures, 

and their test results. The models has a test error of 

(21±3)% and offer a different range of trainable 

parameters. Our smallest network, FF_tiny, has 96% 

less parameters compared to FF_deep, but is subject 

to the highest test error of 24.1%. In contrast, 

FF_optimal conserves a test error below 20% and a 

parameter reduction of 81% in comparison to our 

largest model.

Table 1: Test results of FF algorithm, for MNIST and CIFAR10 datasets.

Table 2: Architectures and test results from the light FF models trained under the CIFAR10 datasets with the improved FF algorithm.

1
We work with the NCHW format, where N : Number of data samples in the batch, C : Image channels, H : Image height, W : Image width.
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The FF algorithm continues to evolve, showing 

potential for low-power hardware. Improved 

versions perform better than the original, with a 

20% decrease in test error percentage. Lighter FF 

models achieve low test error percentages (21±3%) 

with fewer parameters (164,706-754,386), 

comparable to state-of-the-art models but smaller 

in size. These models offer high performance while 

keeping a smaller size. Further investigations will 

focus on verifying and validating these neural 

networks.

On Advancements of the Forward-Forward Algorithm

ORIGINAL APPROACH

The Forward-Forward algorithm's architecture is 

similar to a traditional neural network, but its 

training procedure differs significantly. It uses two 

input spaces: positive and negative samples created 

from the dataset by overlaying images with correct 

or incorrect labels. For example, in the MNIST 

dataset, an image is overlaid with its correct label to 

create a positive sample, and with an incorrect label 

to create a negative sample.

The algorithm operates with two forward passes: 

one positive pass to increase the "goodness" of 

each layer for positive samples, and one negative 

pass to decrease it for negative samples. The 

goodness loss function of each layer is measured by 

the logistic function of the sum of the squares of its 

activity vectors minus some threshold 𝜃, i.e., 

𝐶𝐹𝐹 = 𝐶𝑝𝑜𝑠
𝑙 +𝐶𝑛𝑒𝑔

𝑙 =

ln 1+ exp 𝜃 −𝑔𝑙 𝑥𝑝𝑜𝑠 + ln 1+ exp 𝑔𝑙 𝑥𝑛𝑒𝑔 −𝜃

During training, the output of each hidden layer is 

normalized to transmit relative information. After 

training, the inference phase can be initiated using 

two methods: one-pass inference and multi-pass 

inference. One-pass inference involves training a 

SoftMax/Sigmoid layer with a general multi-

classification loss function, using the concatenated 

activity vectors of the original network as input. 

Multi-pass inference uses the trained network with 

multiple generated overlaid images as input, 

collecting goodness values for each layer and 

determining the final label using an argmax 

function (see Figure 1). 


