
On Advancements of the Forward-Forward Algorithm

Mauricio Ortiz Torres, Markus Lange, Arne P. Raulf

German Aerospace Center (DLR), Institut for AI-Safety and Security
Sankt Augustin and Ulm, Germany

Abstract— The Forward-Forward algorithm has evolved in
machine learning research, tackling more complex tasks that
mimic real-life applications. In recent years, it has been
improved by several techniques to perform better than its
original version, handling a challenging dataset like CIFAR10
without losing its flexibility and low memory usage. We have
shown in our results that improvements are achieved through
a combination of convolutional channel grouping, learning rate
schedules, and independent block structures during training
that lead to a 20% decrease in test error percentage. Addi-
tionally, to approach further implementations on low-capacity
hardware projects, we have presented a series of lighter models
that achieve low test error percentages within (21±3)% and a
number of trainable parameters between 164,706 and 754,386.
This serves as a basis for our future study on complete
verification and validation of these kinds of neural networks.

I. INTRODUCTION

Given the interest in low-power hardware in aerospace
projects, we have that the Forward-Forward (FF) Algorithm
[1], as introduced by its author Geoffrey Hinton in 2022,
offers great potential for the realization of classification tasks
of lower memory consumption. The FF algorithm employs
two principles: First, the layers conforming to the network
are trained independently by measuring their gradients with
a locally defined “goodness” loss function, which measures
the sum of the squares of the activity vectors in each
layer. Second, the ground truth labels are overlaid on the
training dataset to generate a subset of positive and negative
datasets. The network is trained to maximize its goodness,
favored by positive data and disfavored by negative data.
The advantage of working with two forward passes shows
itself during the training phase, because, in contrast to the
traditional backpropagation, there is no need for storing
neural activities or stopping to propagate error derivatives.
This approach translates into lower memory requirements
during training and also the inference phase. The algorithm
has great flexibility for better hypertuning of its parameters
and also for the realization of faster and more efficient infer-
ences. Consequently, making it suitable for use in low-power
hardware and possible parallelizations during training [2]. In
this paper, we will present a summary of the latest research
regarding this algorithm and its performance. Moreover, we
will discuss the further improvements that have been made to
the general structure of the algorithm, as well as our studies
on lightweight FF models.

II. THE FORWARD-FORWARD (FF) ALGORITHM

A. Original approach

The architecture of the Forward-Forward algorithm is
structured as a traditional neural network. However, its
training procedure differs significantly, and it has two input
spaces. These input spaces are given by positive and negative
samples, which are created from the considered dataset of
interest. Their creation for example for MNIST [3] data is as
follows: Let Y = {y1, . . . , y10} be the set of labels, i.e., the
different numbers in the MNIST dataset. Take an arbitrary
image and its respective label vector yi. To construct positive
data samples, we one-hot encode yi and replace the first
pixels of the image with the generated one-hot vector. To
obtain a negative data sample from the chosen image, we
randomly pick a label that is not yi, e.g., yk ∈ Y , i ̸= k,
and one-hot encode it. We then replace the first pixels of the
image with the generated one-hot vector of the wrong label
yk. Thus, positive samples are overlaid with the correct label
and negative samples with an incorrect one. In contrast to the
usual backpropagation training, the FF algorithm operates
with two forward passes of the network. One positive pass
to adjust the weights of the hidden layer, al 1, such that
the goodness of each layer2, gl(x) =

∑
i(al(x))2

i , increases
for positive samples above a defined threshold value θ and
one negative pass to decrease the goodness of the negative
samples below the value of θ. During a pass through the
network, the output of each hidden layer is normalized to
only transmit the relative information and not the explicit
“goodness”-value from layer to layer.

The overall loss is

CFF = Cl
pos + Cl

neg =

ln[1 + exp(θ − gl(xpos))] + ln[1 + exp(gl(xneg) − θ)]. (1)

After the entire model has been trained under the “good-
ness” loss (1), the inference phase can be initiated by two
different methods, referred to as one-pass inference and
multi-pass inference. The “one-pass” inference works by
training a unique SoftMax/Sigmoid layer with a general
multi-classification loss function, such as the cross-entropy
loss. The input is constructed by the activity vectors of

1Note that the output of a hidden layer is sometimes referred to as the
activity vector of that layer.

2The evaluation of the goodness loss function for positive/negative
samples is sometimes denoted as gl(xpos/neg) ≡ gl

pos/neg
.



Fig. 1. Flow diagram for the one-pass inference step.

each of the layers conforming the original network (Fig.
1). In particular, the activity vectors from the second3 to
the last layer of the network are concatenated into a new
vector that is later on used as input for the SoftMax layer.
The “multi-pass” inference works with the structure of the
trained network but with multiple generated overlaid images
as input. We employ the same procedure from the generation
of positive and negative data to create N possible overlaid
images for each of the N available labels. The overlaid
images are then used one at a time in the forward pass, and
the associated goodness values for each layer are collected
and added up. By sampling all the possible overlaid images,
we can collect the goodness for each layer and, with the use
of an argmax function, determine the final label of the image
(Fig. 2).

Fig. 2. Flow diagram for the multi-pass inference step.

B. Variations to the algorithm

Along with some improvements to the model topology
while using the original FF algorithm, there are several other
approaches that try to deal with some of its weaknesses.
We classify them according to the components that built the
algorithm, starting from the creation of better correlated input
data, improved training loss functions, more effective training
routines, and faster inference schemes.

3It was shown that using the first hidden layer as part of input in the
linear classifier leads to worse performance in the predictions [1].

a) Creation of input data: According to Hinton, the
creation of negative input data must be done such that
they have different long-range correlations but very similar
short-range correlations4. However, achieving this can be
more complicated when working with convolutional neural
networks (CNNs). This is because the label information
must be present over the entire image, ensuring that the
multiple filters applied in each layer can capture features
of the original image as well as the information on the
classification space. One way of creating such data is to use
learnable embeddings as the first layer of the network, as
suggested in studies by Wu et al. [2] and Dooms et al. [4].
Alternatively, more elaborate procedures can be employed,
such as the spatially extended labeling technique proposed by
Scodellaro [5]. The technique introduces a superposition of
the training dataset image with a second image of 2D Fourier
modes of the same size as the training image. The mapping
between labels and the specific characteristics of the Fourier
modes (wavelength, amplitude, and orientation) can be freely
chosen, allowing for the creation of multiple unique waves
corresponding to each label in the classification problem.

Another approach is presented by Xing Chen et al. [6],
where the creation of positive and negative samples is
based on the principles of Noise Contrastive Estimation.
Here, the input image is concatenated in two ways, either
with itself or with an incorrect class image, creating thus
a pair of positive+positive and positive+negative samples.
This way of creating negative data can be treated as “noise
data” and results in a distribution of negative examples that
maintain a strong contrastive signal which later on enhances
discriminative representations for learning.

One final approach consists of the substitution of positive
and negative samples with convolutional group channels [7].
Here the output of each convolutional l-layer used in the
network Y l ∈ RN×C×H×W 5 is subdivided into group input
channels Ŷ l

j ∈ RN×S×H×W , where S = C/J and J corre-
sponds to the numbers of classes present in the classification
problem. This approach allows each convolutional layer to
act as an independent classifier by having different goodness
scores for the J classes in the problem. In this construction,
a holistic goodness factor for each layer is defined as

Gl
n,j = 1

S × H × W

S∑
s=1

H∑
h=1

W∑
w=1

(Ŷ l
n,j,s,h,w)2 (2)

and subsequently an associated positive and negative good-
ness is created for each convolutional layer, having thus
gl

pos = Gl · ZT ∈ RN and gl
neg = Gl · (1 − ZT ), where

Z ∈ {0, 1}N×J is the one-hot encoded vector of the true
labels.

b) Loss functions: Variations of the loss function (1)
have been considered under the scope of distance metric
learning, where the construction of task-specific distance

4In the case of classical multi-layer perceptron (MLP), this can be easily
achieved with the procedure mentioned in Section II-A.

5We work with the NCHW format, where N : Number of data samples
in the batch, C : Image channels, H : Image height, W : Image width.



spaces gives better control over the distances from the data
samples and their respective classes. New loss functions
directly measure the discrepancy between projections of
input patterns and labels. One such measure is given by the
Symba loss function [4],

∑
n log[1+exp((gl

pos)n−(gl
neg)n)].

The direct difference between positive and negative goodness
values reinforces the discrepancies between highly correlated
positive and negative samples. Furthermore, Wu et al. pro-
poses a loss function [2], max(m + (gl

pos)n − (gl
neg)n, 0) +

λ(gl
neg)n, that introduces a mixture between absolute and

relative distances from the goodness measures in terms of
a margin m and regularization λ variables. In the case of
convolutional channel-wise competitive learning, the team
from Andreas Papachristodoulou [7] introduces a channel-
wise loss function, defined as,

Cl = − 1
N

N∑
n=1

log
(

exp((gl
pos)n)∑J

j=1 exp(Gl
n,j)

)
. (3)

This method supports competitive learning through the chan-
nel dimension by calculating the probability of the target
class over the total goodness score for each sample. Hence,
this function works as a traditional cross entropy loss with
goodness scores. Normalizing the goodness scores further
supports a competitive class dynamic by balancing the scores
and encouraging the increase of value for correct predictions
and a decrease for the incorrect classes.

c) Training routines: Research on parallel training in
neural networks, as conducted by Laskin et al. [8] and
Xiong et al. [9], has led to explorations on architectures that
benefit from allowing error signals to propagate through a
neural network during training. By studying different training
architectures on layer-wise trained models, it has been shown
that these architectures can lead to an asynchronous layer-
wise parallelism with a low memory footprint. The training
architectures can be split into four types: 1) the traditional
backpropagation, 2) the greedy local update6, 3) the overlap-
ping local update, and 4) the chunked local update. In these
architectures, each group of layers is trained independently
and learned through an auxiliary loss function, which updates
the weights within the group. On the overlapping local
update, the network is trained under a series of overlapped
n-layers from the original network and composed of n-
subsequent layers, in which every new group takes the
last layer from the previous group as its initial layer. The
chunked local update proceeds in building several chunks
of n-layers sequentially ordered through the entire network
without overlapping with other layers.

This way of training outperforms the original individual
layer-wise training by having continue communication of
the learned features in between layers. This approach has
been shown to result in quick improvements on the learned
features at each layer, as demonstrated by Dooms et al.
[4], who found that this method can lead to significant
enhancements in feature learning. Intuitively, there is a
cooperation in the layers building the block to either enhance

6Which in this case corresponds to the FF original training procedure.

the local understanding of data or focus to increase the
representations usefulness for the next layer. Furthermore,
Wu et al. [2] propose an alternative approach, suggesting that
random direct feedback connections can be integrated into
the blocks to replace traditional back-propagation, allowing
for more efficient weight updates using the calculated loss
functions.

d) Faster inference: Using all activity vectors of a trained
neural network might, for obvious reasons, be inefficient. Im-
proved algorithms therefore directly employ the predictions
estimated from each layer or a group of layers building the
network. In the original paper, the model uses the activity
vectors from the second-to-last layer. Dooms et al. [4] have
shown that in more complex neural networks, the initial
layers can be either detrimental or unnecessary for making
accurate predictions, highlighting the importance of selecting
the most relevant layers for analysis. The best results are thus
obtained by considering the final layer or the last three layers
of the model. Other studies like the one from Aminifar et al.
[10] propose an approach to achieve lightweight inference by
introducing a confidence variable in each layer, which allows
for the selective inclusion of activity vectors and results in
significant reductions in inference time.

Even though the original purpose of the algorithm focuses
on its use in classification problems, the range of applicabil-
ity of the algorithm or its underlying principles is investigated
for unsupervised learning as well. In one study, Hwang et al.
[11] introduce the Unsupervised learning Forward-Forward
models (UFF), which train with the usual loss functions
and without special inputs. However, the models are built
up with cells instead of layers and are based on different
unsupervised deep learning models, ranging from an auto-
encoder- to a generative adversarial network-cell. Another
study from Kumar et al. [12] build upon the FF algorithm
to develop a novel variance-capturing auto-encoder, that
allows to efficiently update data-driven models in real-time.
Highlighting the model’s capacity to learn fault detection and
isolation in industry processes.

III. RESULTS & ANALYSIS

We have developed an improved algorithm that has the
following characteristics:

1) Creation of convolutional group channels for posi-
tive/negative sampling (Figure 3).

2) Use of the channel-wise loss function (3).
3) Training through chunked local updates that alternate

in between iterations.
4) Realization of inference based on the activity vectors

from the last two layers of the model.
Given the original and our improved algorithm, the differ-

ent features explained in Section II-A and II-B are explored
with a series of tests that give a particular focus on the
plausible constructions of the network for the MNIST and
CIFAR10 [13] datasets. While working with the original
algorithm we employed for the MNIST dataset, a topology
of 784×500×100 for the MLP; and two convolutional layers
of 32 and 64 filters plus a linear layer of 256 × 100 for the



Fig. 3. Flow diagram for the inference step in our improved algorithm.
The black arrows emphasize the creation of group channels and the use of
the one-hot encoded matrix Z for the calculation of holistic goodness Gl.

CNN. For CIFAR10, we considered a topology of 3072 ×
3072 × 2000 × 1000 for the MLP, and four convolutional
layers of 128, 264, 512, 1024 filters for the CNN. Our results
in Table I show that the algorithm works correctly as a
classifier and has similar results when employing either of
the two inference options. One drawback of the one-pass
inference is the additional softmax training time required
to obtain the same order of error obtained from the multi-
pass inference. Nevertheless, our tests have shown that the
traditional one-pass inference results in less error percentage
and faster inference times.

By adopting the improvements discussed in Section II-B,
we repeated the same tests and obtained the results shown
in Table II. In the improvements, we have employed a more
elaborate network topology [4] which was trained using 300
epochs, where each layer consists of a batch normalization
layer, followed by the convolution layer, a ReLU activation
function, and an optional maxpool layer. Hence, using six
convolutional layers of 128, 264 to 512 filters, with three
maxpool applications. This model will be denominated by
the name FF deep.

TABLE I
TEST RESULTS WITH THE FF ALGORITHM USING THE

MNIST AND CIFAR10 DATASETS.

Dataset Layers Inference Training Test Inference
Error [%] Error [%] Time [s]

MNIST MLP One-pass 8.6 8.0 0.6
MLP Multi-pass 7.3 7.2 2.2
CNN One-pass 4.5 4.4 0.1
CNN Multi-pass 4.9 5.0 1.9

CIFAR10 MLP One-pass 39.2 39.3 0.1
MLP Multi-pass 41.1 41.2 0.2
CNN One-pass 20.5 44.3 1.4
CNN Multi-pass 44.8 48.3 4.5

The results show a considerable test error percentage
reduction by more than 20% compared to the original
algorithm. A multi-step learning rate schedule was necessary
for better stability and convergence of the results. From all
the improved techniques, we want to highlight the convolu-

TABLE II
TEST RESULTS WITH THE IMPROVED FF ALGORITHM USING THE

MNIST AND CIFAR10 DATASETS.

Dataset Layers Inference Training Test Inference
Error [%] Error [%] Time [s]

MNIST CNN One-pass 0.2 0.8 1.7
CNN Multi-pass 0.2 0.7 1.4

CIFAR10 CNN One-pass 1.2 18.8 2.1
CNN Multi-pass 1.8 18.2 1.8

tional channel grouping [7] since this approach increases the
network’s capacity to learn intraclass features. This method
alone is responsible for allowing the model to obtain 27%
in test errors. Additionally, the channel-wise loss enforces
a way of training mutually exclusive filters that contribute
to the most important features needed for each class. Later
on, with the depth of the network, these features attain more
complex representations and build up a unique set of filters
for each class that are not directly shared with other classes.

The improved approach enables faster inference times
for the multi-pass scheme, however, it is still subject to
greater inference times depending on the number of acti-
vation vectors. This characteristic is avoided by the one-pass
inference step because it’s only dependent on the final trained
model that initially considered the number of activity vectors
before training. Given that the improved algorithm has an
independent block structure during training, the benefits from
efficient hyperparameter tuning of the models are still present
in this case. Also, the features extracted at previous layers by
the channel-wise competitive learning are efficiently passed
to further layers to enhance the representations of the entire
network. Hence continuously increasing the accuracy of all
the network’s layers.

The proposed algorithm presents some specific character-
istics that make it very suitable for low-capacity hardware
projects. Firstly, avoiding backpropagation allows for fewer
gradients to be computed during training, and all activa-
tion vectors do not need to be kept in memory for the
backward pass. This has the advantage that the model can
learn while pipelining sequential data through the network
without saving the activity vectors of intermediate layers
or propagating error derivatives. The independent training
of each layer or block presents better regulation on the
hyperparameters of the model and thus results generally
in better convergence of its gradients. This also prevents
further propagation of vanishing or exploding gradients to
subsequent layers. The algorithm reduces the computational
process by requiring fewer activity vectors during inference,
especially by the multi-pass inference scheme, where the
new algorithm eliminates the need to create overlaid images.
Finally, accelerations on parallel computing architectures can
be achieved due to the training independence of each layer.

To tackle further implementations on low-capacity hard-
ware projects, we have explored the possibilities of lighter
FF models based only on CNN layers with the mentioned
configuration of techniques. The goal was to achieve a no-
ticeable reduction in parameters, because the FF deep model



is based on an architecture in [4] where their shallow network
has trained 4,100,000 parameters for the last two activation
vectors in the inference phase. In Table III we show a list of
the studied light FF models along with the FF deep model
and their respective architectures7. Similarly, in Table IV the
results on all the light FF models are provided. The models
have a test error of (21±3)% and consider a different range
of trainable parameters. Our smallest network, FF tiny, has
96% less parameters compared to FF deep, but is subject
to the highest test error of 24.1%. In contrast, FF optimal
conserves a test error below 20% and a parameter reduction
of 81% in comparison to our largest model.

TABLE III
LIGHT FF MODELS ARCHITECTURES TRAINED WITH

THE IMPROVED FF ALGORITHM.

Model Channels; Trainable
name Kernel Size Parameters

FF tiny [3, 50, 50, 50, 50]; 164,706
[3, 3, 3, 4]

FF small [3, 50, 50, 70, 70]; 239,266
[3, 3, 3, 4]

FF medium [3, 50, 50, 100, 150]; 484,506
[3, 3, 3, 4]

FF optimal [3, 50, 50, 100, 160, 160]; 754,386
[3, 3, 3, 4, 3]

FF deep [3, 130, 130, 260, 260, 260, 510]; 4,131,346
[3, 3, 3, 5, 3, 3]

TABLE IV
LIGHT FF MODELS TEST RESULTS WITH THE

IMPROVED FF ALGORITHM USING THE CIFAR10 DATASET.

Model Inference Training Test
name Error [%] Error [%]

FF tiny One-pass 15.3 24.4
Multi-pass 17.9 24.1

FF small One-pass 12.3 23.4
Multi-pass 14.8 23.1

FF medium One-pass 8.0 21.5
Multi-pass 10.1 20.7

FF optimal One-pass 2.0 19.6
Multi-pass 2.4 19.3

FF deep One-pass 1.2 18.8
Multi-pass 1.8 18.2

During training, the models are trained using 50-70
epochs. Such a small value shows that the training methods
employed lead to quick convergence of the gradients. Never-
theless, a careful use of the MultiStep learning schedule with
3-5 milestones in between the epochs and γ ∈ {0.1, 0.2}8,
pushes the models to the optimal 18% test error. The training
process was susceptible to unstable gradients that propagate
through the whole network, given our training technique,
because of our choice to obtain shallow networks. This set
of light FF models offers broad flexibility to realize further
analysis on low-power hardware, without giving up accuracy
on the models. In particular, we are employing this flexibility

7The underline numbers in the kernel size denote that the maxpool
operation was also used at that same location of the network.

8For the MultiStepLR class defined in PyTorch, γ is associated with the
multiplicative factor of learning rate decay.

in an upcoming work on the verification and validation of
FF models.

For the case of the FF optimal model, we balanced
the trade-off between parameter reduction and test error
by considering three characteristics. First, using a tested
minimum number of 160 filters at the final convolutional
layer to generate test errors under 20% for all runs. Second,
adding the same number of filters in the final layer enabled
the model to stabilize the results and permits efficient reuse
of learned features to achieve richer representations. Lastly,
employing four milestones on the learning rate schedules fur-
ther stabilized the gradients without decreasing the individual
layer accuracy.

It is worth mentioning that further compression techniques
can be utilized with this algorithm, like the case of quanti-
zation schemes. We have considered this idea for the case
of the FF deep model by using the quantization framework
Brevitas from Xilinx.9 The provided tools are well adapted
for our use case, since they offer a series of individual
quantize layers that behave analogously to those in traditional
neural networks. We were able to construct the same model
in their quantized version and carry out quantization-aware
training. This resulted in a test error of 22.3% for layers with
2 bit-widths. Further exploration in this area is needed, but
the initial results show that the procedure is indeed possible.

IV. CONCLUSION

The research on the Forward-Forward algorithm keeps
evolving into further areas of machine learning and pursues
more demanding tasks close to real-life applications. The
algorithm continues to show its great potential for usage in
low-power hardware, given its capabilities of layer- or block-
wise training, and its simplified computational process. In our
results, we have seen that the improved algorithm performs
better than the original one by showing an approximate 20%
decrease in test error percentage. Moreover, it can handle
more challenging datasets without losing its flexibility.

The improvements in the generation of input data and
training routines open the possibility for different learning
configurations that allow a faster and more efficient flow of
information between the layers. However, the group archi-
tectures must be limited since otherwise they could fall back
into traditional backpropagation and lose the benefits from
the FF architecture. The presented lighter FF models show
how this configuration of techniques leads to a broad range
of smaller models that still achieve low test error percent-
ages within (21±3)% and a number of trainable parameters
between 164,706 and 754,386. Hence, these models have a
high performance comparable to those analyzed in state-of-
the-art FF papers while keeping a considerably smaller size.
As a next step, we will investigate the benefits provided by
these kinds of models to achieve complete verification and
validation of the neural network.

9The framework is available in the Github: https://github.com/
Xilinx/brevitas



REFERENCES

[1] Geoffrey Hinton. The Forward-Forward Algorithm: Some Preliminary
Investigations. arXiv e-prints, page arXiv:2212.13345, December
2022.

[2] Yujie Wu, Siyuan Xu, Jibin Wu, Lei Deng, Mingkun Xu, Qing-
hao Wen, and Guoqi Li. Distance-Forward Learning: Enhancing
the Forward-Forward Algorithm Towards High-Performance On-Chip
Learning. arXiv e-prints, page arXiv:2408.14925, August 2024.

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[4] Thomas Dooms, Ing Jyh Tsang, and Jose Oramas. The Trifecta: Three
simple techniques for training deeper Forward-Forward networks.
arXiv e-prints, page arXiv:2311.18130, November 2023.

[5] Riccardo Scodellaro, Ajinkya Kulkarni, Frauke Alves, and Matthias
Schröter. Training Convolutional Neural Networks with the Forward-
Forward algorithm. arXiv e-prints, page arXiv:2312.14924, December
2023.

[6] Xing Chen, Dongshu Liu, Jeremie Laydevant, and Julie Grollier.
Self-Contrastive Forward-Forward Algorithm. arXiv e-prints, page
arXiv:2409.11593, September 2024.

[7] Andreas Papachristodoulou, Christos Kyrkou, Stelios Timotheou, and
Theocharis Theocharides. Convolutional channel-wise competitive
learning for the forward-forward algorithm. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(13):14536–14544, Mar. 2024.

[8] Michael Laskin, Luke Metz, Seth Nabarro, Mark Saroufim, Badred-
dine Noune, Carlo Luschi, Jascha Sohl-Dickstein, and Pieter Abbeel.
Parallel Training of Deep Networks with Local Updates. arXiv
e-prints, page arXiv:2012.03837, December 2020.

[9] Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local
contrastive representation learning. Advances in neural information
processing systems, 33:11142–11153, 2020.

[10] Amin Aminifar, Baichuan Huang, Azra Abtahi, and Amir Amini-
far. LightFF: Lightweight Inference for Forward-Forward Algorithm.
arXiv e-prints, page arXiv:2404.05241, April 2024.

[11] Taewook Hwang, Hyein Seo, and Sangkeun Jung. Employing
Layerwised Unsupervised Learning to Lessen Data and Loss Re-

quirements in Forward-Forward Algorithms. arXiv e-prints, page
arXiv:2404.14664, April 2024.

[12] Deepak Kumar, Umang Goswami, Hariprasad Kodamana, Mano-
jkumar Ramteke, and Prakash Kumar Tamboli. Variance-capturing
forward-forward autoencoder (vffae): A forward learning neural net-
work for fault detection and isolation of process data. Process Safety
and Environmental Protection, 178:176–194, 2023.

[13] Alex Krizhevsky. Learning multiple layers of features from tiny
images. University of Toronto, 05 2012.


