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Abstract
This study presents the use of Event-Based Imaging Velocimetry (EBIV) for experimental jet flow

control, integrating a Bayesian optimization strategy to enhance mixing in a turbulent round jet. Ve-
locity fields are acquired using a pulsed low-power laser and an event-based vision camera, enabling
time-resolved, full-field measurements at kilohertz rates. A cost function based on the spatial average
of the turbulent kinetic energy is computed from EBIV measurements and used to optimize the actua-
tion parameters of two synthetic jets located inside the nozzle, in the plane of the EBIV measurement.
The proposed approach allows optimizing the control in a non-intrusive manner, with minimal sensor
cost and data latency. The impact of the optimal actuation is further assessed using Spectral Proper
Orthogonal Decomposition, which reveals the excitation of coherent structures across a broad spectral
range, including harmonics not directly excited. These results demonstrate the potential of EBIV as a
compact, high-throughput sensor tool for data-driven flow control and the development of active control
strategies.

1 Introduction
Jet flows are fundamental in numerous industrial applications, influencing propulsion efficiency,

mixing performance, and thermal regulation in aerospace, combustion, and chemical processes. Ef-
fective control of these flows can reduce noise, improve fuel-air mixing, and enhance overall system
performance. To this end, Active Flow Control (AFC) strategies, supported by data-driven methods,
are being developed to reduce energy losses and enhance adaptability in complex and unsteady flow
environments.

Traditionally, jet flow control optimization has relied on high-frequency, single-point sensing meth-
ods such as hot-wire anemometry and pressure transducers (Parekh et al., 1996; Zhou et al., 2020). These
techniques provide high-bandwidth data—often at kilohertz rates—making them suitable for feedback
control (Audiffred et al., 2024; Shaqarin et al., 2024). However, their intrusive nature and limitation to
point-wise measurements can hinder the capture of global flow dynamics. In jet flows, coherent struc-
tures such as vortex rings and shear-layer instabilities play a dominant role in determining mixing, noise
radiation, and flow development. Capturing these structures is essential for effective control.

Non-intrusive optical methods like Particle Image Velocimetry (PIV) have been used to obtain full-
field measurements of velocity and vorticity, offering rich spatial information that enhances state esti-
mation and control performance (Brunton and Noack, 2015). Yet, the high data rates, significant post-
processing requirements, and cost of high-speed cameras make PIV challenging to integrate into control
loops. Even applications as sensor for optimization of open-loop controllers is often prohibitive due to
the high cost of assessing each single control law.

Event-Based Imaging Velocimetry (EBIV), based on Event-Based Vision (EBV) sensors, offers a
promising solution to embed PIV in flow control. EBV sensors asynchronously detect changes in bright-
ness at each pixel, allowing for high temporal resolution with low data rates and reduced latency (Gallego
et al., 2022). Pulsed-EBIV (Willert, 2023) further improves the method by synchronizing event acquisi-
tion with pulsed illumination, addressing limitations related to sensor latency and noise. Recent studies



comparing EBIV and PIV measurements in air flows (Franceschelli et al., 2024) demonstrated the ca-
pability of EBIV to accurately capture key flow features and low-order flow representations, confirming
its potential as a fast and low-cost alternative for flow sensing.

The present study explores the use of EBIV as a flow diagnostic and evaluation tool within an open-
loop flow control experiment. The goal is to optimize actuation parameters to enhance mixing in a
turbulent round jet. A Bayesian Optimization (BO) algorithm (Blanchard et al., 2021; Mallor et al.,
2024) is employed to iteratively identify optimal control settings based on a reward function derived
from EBIV velocity fields, namely the maximization of the Turbulent Kinetic Energy (TKE).

The experimental setup consists of an air jet facility equipped with six synthetic jet actuators dis-
tributed azimuthally around the nozzle exit, and two loudspeakers in the stagnation chambers, providing
acoustic forcing. However, for this study, the control input is limited to two actuators located in the plane
of EBIV measurements. This reduced test case enables symmetric actuation relative to the measurement
plane and allows for efficient exploration of the parameter space, consisting of the two actuation fre-
quencies and one relative phase delay.

EBIV measurements are performed using a low-power pulsed laser module and an event-based cam-
era operating at kilohertz effective rates. The reward function is defined based on the spatial average
of TKE within a selected region of the flow field, capturing key topological features relevant to mixing
enhancement. This approach provides a rich and informative control signal without requiring intrusive
probes or extensive post-processing.

Overall, the integration of EBIV with BO offers a scalable, efficient framework for experimental
flow control, bridging the gap between high-resolution sensing and data-driven control design.

2 Experimental Set-up

2.1 Jet facility
The experiments are conducted in the air jet facility located inside the anechoic chamber at Universidad
Carlos III de Madrid (Moreno et al., 2024). The setup consists of a round jet issuing from a nozzle with
an exit diameter of D = 20mm. To ensure turbulent boundary layer conditions in the nozzle, a tripping
device is installed at the beginning of the nozzle contraction section. The flow is seeded with 1µm
diameter droplets of Di-Ethyl-Hexyl-Sebacate (DEHS). The total mass flow is generated by combining
two pressurized lines: one supplying clean air and the other seeded air. Both lines are regulated using
dedicated mass-flow controllers, which maintain a constant total mass flow rate and consistent seeding
density throughout the experimental campaign.
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Figure 1: Experimental set-up (left) showing the jet facility and event-based camera, and corresponding
EBIV-based control architecture (right) implemented for jet flow control experiments.

A low-cost laser module (Lasertree LT-4LDS-V2), originally developed for engraving applications
and delivering an optical power of 20 W, is used for flow illumination. The laser beam is pulsed and
shaped into a thin light sheet of approximately 1 mm thickness through a set of lenses. The resulting
laser plane is aligned with the longitudinal midplane of the jet.

Flow measurements are acquired using a Prophesee EVK-4 EBV camera featuring the IMX636
sensor, with a full resolution of 1280×720 pixels2. The sensor sensitivity can be tuned to specific



experimental conditions by adjusting its internal biases. To maximize the usable bandwidth for positive
events only—which are the only events useful for EBIV applications—the biases are typically configured
to suppress negative events entirely. In this setup, the biases were set as follows: Diff-ON = -56, Diff-
OFF = 107, High-pass filter = 76, Low-pass filter = 31, and Refractory period = -20.

A 50 mm objective lens was used, providing a spatial resolution of approximately 19.3 pixels/mm
and resulting in a field of view of approximately 3.3× 1.8D2. The objective aperture f# is set to 4.6.
The laser module is controlled by an Analog Discovery device, which provides a square-wave signal
controlling the pulsation frequency and the pulse width of the laser pulse. This signal is also sent to the
EBV camera, enabling synchronization of the laser pulse with the event stream. A dedicated workstation
manages the entire setup: it acquires and processes data from the EBV camera, defines the control law
and its optimization, and handles the actuation.

2.2 Synthetic jet actuation
The actuation system combines two types of forcing mechanisms. First, two counter-facing loud-

speakers are flush-mounted inside the stagnation chamber to provide purely acoustic excitation. Second,
six synthetic jets are azimuthally distributed around the nozzle, positioned one nozzle diameter upstream
of the exit. Each synthetic jet actuator consists of a loudspeaker connected to a 3D-printed waveguide.
These actuators are connected to the nozzle outlet via flexible silicone tubes and can be operated inde-
pendently to allow phase- and frequency-specific control.

The experimental rig is illustrated in Figure 1, highlighting the arrangement of the jet facility, actu-
ated nozzle assembly and the EBV camera. Control signals are generated using a National Instruments
Compact-RIO 9045 (cRIO) system equipped with a NI-9263 module. The signals are then amplified by
an 8 indipendent channel amplifier (Sirus I-Amp 8.150). All loudspeakers used in the setup, both for the
stagnation chamber and the synthetic jets, are Dayton Audio ND65-4 compact models.

A detailed characterization of the synthetic jet actuators has been performed using hot-wire anemom-
etry, measuring the exit velocity of the jets. A mapping of the peak exit velocity Up as a function of
actuation frequency f and signal amplitude to the amplifier V0p was obtained. An example of the char-
acterization result is shown in Figure 2, showing the isolines for different desired Up. For the current
experiment, a constant Up is imposed for all actuators. From a practical standpoint, the signal amplitude
required for each loudspeaker is selected from the isoline corresponding to the target Up, based on the
chosen actuation frequency.
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Figure 2: Characterization of the synthetic jet actuators. Isolines of the peak velocity Up for values
Up = {1.5, 3, 6, 8, 10, 15, 18}m/s, plotted as a function of actuation frequency f and input signal
amplitude V0p.



2.3 Bayesian Optimization
BO is a sample-efficient global optimization strategy for expensive black-box functions. It relies

on two key components: a probabilistic surrogate model, typically a Gaussian Process (GP), and an
acquisition function to guide the search (Garnett, 2023) .

Given an objective function f (x) : S ⊆ Rd → R, where f is a scalar-valued objective function that
maps the input parameters x to a real-valued cost, and S denotes the s-dimensional input space, BO aims
to solve:

xopt = argmin
x∈S

f (x) (1)

The observed outputs are modeled as evaluations corrupted by noise:

y(x) = f (x)+ ε, ε ∼ N (0,σ2
ε) (2)

The surrogate GP model assumes:

f (x)∼ GP (µ(x),k(x,x′)) (3)

with a mean function µ(x) (often zero) and a covariance function k(x,x′). We employ the Radial Basis
Function (RBF) kernel:

k(x,x′) = σ
2
f exp

(
−∥x−x′∥2

2λ2

)
(4)

Given n observations D = {(xi,yi)}n
i=1, the posterior predictive distribution at a test point x∗ is

Gaussian with:

µ(x∗) = k⊤
∗ (K +σ

2
εI)−1y (5)

σ
2(x∗) = k(x∗,x∗)−k⊤

∗ (K +σ
2
εI)−1k∗ (6)

where k∗ is the vector of covariances between x∗ and the training inputs, and K is the kernel matrix.
To guide sampling, we employ the Expected Improvement (EI) acquisition function:

EI(x∗) = E [max( fbest − f (x∗)−ξ,0)] (7)

Under Gaussian assumptions, EI has a closed-form expression:

EI(x∗) = ( fbest −µ(x∗)−ξ)Φ(Z)+σ(x∗)φ(Z) (8)

Z =
fbest −µ(x∗)−ξ

σ(x∗)
(9)

where Φ(·) and φ(·) denote the CDF and PDF of the standard normal distribution, respectively, and ξ> 0
encourages exploration.

This approach efficiently balances exploration and exploitation, making BO well-suited for optimiz-
ing costly or noisy functions.

2.4 EBIV processing
Figure 1 presents a schematic of the EBV camera integration within the control loop. The event data
associated with each laser pulse are accumulated over a defined time window, termed the accumulation
time, starting from the laser triggers and generating pseudo-images. These are then processed using
conventional PIV algorithms to extract instantaneous velocity fields (Willert, 2023). At each control
episode, short sequences of events are recorded, processed, and analyzed to evaluate the control cost
function and determine the next control action.

More specifically, the presented results are obtained considering a jet bulk velocity Ub = 1.8m/s,
resulting in a Reynolds number Re ∼ 2400. The laser is pulsed at a frequency fEBIV = 1500Hz with a
pulse width corresponding to 20% of the laser duty cycle, i.e. 130µs. For each control episode, time-
resolved sequences with a duration of 5 seconds are acquired with the EBV camera. Subsequently, a set
of 500 randomly distributed pseudo-images pairs are generated. An in-house PIV software is used to
process the images using a multi-pass multi-grid approach resulting in a final Interrogation Window (IW)



of 32x32 pixels2 with a 50% overlap. The camera is mounted with its short sensor side aligned along
the jet axis, thereby using the full width of the sensor in the spanwise direction to capture possible
large lateral expansions of the flow. This configuration results in a resolved field of view spanning
approximately 1.5 < x/D < 3.1 in the streamwise direction and −1.6 < y/D < 1.6 in the cross-stream
direction.

The obtained two-dimensional velocity field is denoted as U = [u;v] ∈RNp×Nt , where u and v are the
streamwise and cross-stream velocity components, respectively, and Np and Nt are the number of grid
points and time snapshots. The corresponding fluctuating fields [u′;v′] are obtained by subtracting the
mean velocity field Ū from each instantaneous snapshot.

The ensemble-averaged TKE field is defined as:

TKE(x,y) =
1
2

(
u′2(x,y)+ v′2(x,y)

)
(10)

The overbar indicates the ensemble-averaging operation.
To enhance mixing, the optimization reward yi is defined as the spatial average of the TKE field

over a selected region Ω ⊂ R2, which includes only the points where ū ≥ 0.2 ūmax, with ūmax being the
maximum value of the mean streamwise velocity field:

yi =
1
|Ω|

∫
Ω

TKE(x,y)dΩ, with Ω = {(x,y) | ū(x,y)≥ 0.2 ūmax} (11)

This threshold helps excluding regions where low velocities may result in artificially elevated TKE
values due to measurement artifacts. The total time required to perform, acquire, process, and evaluate
each control law is approximately one minute.

To ensure reliable measurements, each episode is repeated twice. If the second evaluation of yi
differs by more than 3.5% from the first, a third measurement is performed. The final reward yi is then
computed as the average of the two closest values. If no third repetition is required, yi is taken as the
average of the first two measurements. The 3.5% repeatability threshold was determined based on a
dedicated measurement repeatability study.

Although the experimental setup is designed to accommodate the optimization of eight actuators, in
this study we restrict our analysis to the two synthetic jets located in the EBIV measurement plane —
namely, those driven by actuation signals f3 and f6, as indicated in Figure 1. The optimization is limited
to three control parameters, i.e. s = 3: the actuation frequencies f3 and f6 of the two synthetic jets, and
their relative phase shift ∆φ. This choice allows us to explore a reduced parametric space while focusing
on control actions that are symmetric with respect to the EBIV evaluation plane.

Moreover, since the reward signal is based on two-dimensional measurements centered on the jet
axis, the actuation space ( f3, f6) is assumed to be symmetric. Specifically, each control input xi =
( f3, f6,∆φ) is considered equivalent to its mirrored counterpart x j = ( f6, f3,−∆φ), and thus both are
expected to yield the same output yi = y j. As a result, the effective search space is reduced by half,
further simplifying the optimization problem.

Lastly, it should be noted that providing system observations only in the longitudinal plane inherently
restricts the ability to properly evaluate control actions to those that are symmetric with respect to the
laser sheet. Actuation components with a net effect in the direction normal to the measurement plane
may produce flow responses that cannot be reliably captured by the two-dimensional measurements. For
this reason, further optimization campaigns involving additional actuators enforce a constraint of zero
net injected momentum in the direction normal to the EBIV plane, ensuring that the effects of the control
inputs remain observable and quantifiable within the measurement domain.

3 Results
The optimization process was repeated multiple times using different initial samples and exploration

parameters ξ. Despite minor variations, the results consistently identified the same optimal regions for
reward maximization. An example of the resulting optimization map is shown in Figure 3 (left), where
the reward values yi are plotted as a function of the actuation frequencies f3 and f6, expressed in terms
of Strouhal numbers as Sti = fiD/Ub. The symmetry of the map with respect to the bisector is due to the
hypothesis of actuation specularity discussed in Section 2.4. As a refence value, the y(x) evaluated in
the uncontrolled case is ∼ 1.75 px2.

Overall, the actuation frequency corresponding to St ∼ 0.35 appears to be the most effective. This
frequency matches the typical vortex shedding frequency of an uncontrolled jet (Hussain and Zaman,
1981; Gutmark and Ho, 1983), suggesting that mixing enhancement is particularly sensitive to actuation
tuned to Kelvin–Helmholtz instability dynamics. The global maximum in the optimization map occurs



Figure 3: Left: optimization map showing the distribution of the reward y(x) as a function of the actua-
tion Strouhal numbers St3 and St6. The white diamond represent the optimal condition, compared in 3.1
to the uncontrolled case. Right: convergence history of the reward yi over the optimization iterations,
with the 10-samples moving average shown in red.

when the second actuator operates at approximately twice the frequency of the first, i.e., St3 ∼ 0.35 and
St6 ∼ 0.7. The phase shift ∆φ did not exhibit a consistent trend in relation to the reward maximization.

The right panel of Figure 3 shows the evolution of the reward yi over the course of 400 optimization
iterations. The dashed blue line represents the raw reward values, while the solid red line indicates a
moving average computed over the last 10 samples. The convergence trend demonstrates a progressive
increase in performance as the optimizer explores more effective actuation parameters. The full set
of 400 iterations was completed over approximately six hours of experimental time, highlighting the
feasibility of real-time optimization within practical time constraints.

3.1 Comparison of Uncontrolled and Optimally Controlled Cases
The uncontrolled and optimally controlled jet configurations are now compared to assess the impact

of the control strategy on the flow dynamics. For both cases, extended EBIV acquisitions were car-
ried out and post-processed using a multi-frame PIV algorithm with a seven-image stencil. From each
dataset, 10,000 time-resolved velocity snapshots — corresponding to approximately 600 convective time
units — were extracted and used to compute and compare key flow characteristics.

The optimal control configuration corresponds to actuation parameters ( f3, f6,∆φ)= (63 Hz,31 Hz,207◦),
which translate to non-dimensional Strouhal numbers of (St3,St6) = (0.34,0.7). The point is reported
also in the map Fig.3 as the white diamond.

Figure 4 presents a comparison between the uncontrolled and optimally controlled jet configurations.
The left panels show the spatial distribution of the ensemble-averaged TKE. The uncontrolled case
(top) exhibits a more symmetric and confined distribution, while the optimally controlled case (bottom)
displays enhanced energy levels and the development of off-axis high-TKE structures, consistent with
the imposed actuation. Note that the color scales differ between the two plots to better resolve each
flow’s features.

The right panel shows the Power Spectral Density (PSD) of the streamwise velocity fluctuations at
the point (x/D,y/D) = (2.5,0), marked by a white circle in the TKE maps. The optimally controlled
case presents a pronounced peak at the actuation frequency and its harmonics. In contrast, the uncon-
trolled case shows a broader, less energetic spectrum typical of natural jet dynamics.

To further analyze the spatial footprint of the coherent structures observed in the spectral analysis,
Spectral Proper Orthogonal Decomposition (SPOD) is applied at three selected frequencies: 30 Hz, 63
Hz, and 96 Hz, corresponding to Strouhal numbers St ≈ 0.33, 0.7, and 1.06, respectively. These fre-
quencies were chosen based on the prominent peaks identified in the PSD shown in Figure 4 (right).
SPOD provides a frequency-resolved modal decomposition of the flow, and the first mode at each fre-
quency represents the most energetic and spatially coherent structure associated with that oscillation
(Lumley, 1981; Towne et al., 2018). This makes it particularly suited to highlight how actuation alters
the dominant flow organization across different spectral bands. Notably, SPOD has also been shown to
be equivalent to resolvent analysis under certain statistical assumptions — specifically, when the expan-
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Figure 4: Left: ensemble-averaged turbulent kinetic energy (TKE) maps for the uncontrolled (top) and
optimally controlled (bottom) jet configurations. The white circle indicates the location (x/D,y/D) =
(2.5,0) used for spectral analysis. Right: PSD of the streamwise velocity fluctuations at the marked
location for both cases. Vertical dashed lines indicate selected Strouhal numbers for which SPOD modes
are extracted and shown in the following analysis.

sion coefficients are uncorrelated, SPOD and resolvent modes become identical, as discussed by Towne
et al. (2018).

Figure 5 displays the leading SPOD mode at the selected frequencies for the uncontrolled (top row)
and controlled (bottom row) jets. Each mode is represented through vorticity fields with overlaid velocity
vectors. At St ≈ 0.33, both cases exhibit coherent structures associated with the natural vortex shedding.
In the uncontrolled case, the mode shows the classical shear-layer pattern, with extended regions of
opposite-signed vorticity stacked vertically across the jet, indicating shear roll-up along both sides of
the jet axis. In contrast, the controlled case presents a lower amplitude but more compact and localized
structures.

At St ≈ 0.7, the SPOD mode in the controlled case exhibits compact and well-organized vortical
structures primarily located in the shear layers. Additionally, some coherent activity begins to emerge
within the inner region of the jet, although it remains relatively weak. This suggests that the actuation at
this frequency is not only reinforcing the shear-layer dynamics but also starting to influence the jet core.
In contrast, the uncontrolled case shows a low-energy, disordered mode.

At the highest examined frequency, St ≈ 1.06, the SPOD mode for the uncontrolled jet shows some
residual spatial coherence, but the associated energy is low. Noise contamination becomes more evident,
particularly in the outer regions of the jet, consistent with the spectral plateau observed in the PSD. In
contrast, the controlled case exhibits strong and well-defined vortical structures, not only within the shear
layers but also extending into the jet core. The presence of such coherent activity at a frequency that
was not directly excited by the actuation suggests the emergence of nonlinear interactions or harmonic
responses that amplify energy at higher spectral components. However, further analysis is required to
confirm the nature and origin of these mechanisms.

These results confirm that the optimal actuation excites a broader range of organized flow structures,
whereas the uncontrolled flow exhibits coherent content only at its natural shedding frequency.

4 Conclusions
This study demonstrates the successful integration of EBIV within a jet flow control experiment, sup-

porting the optimization of open-loop actuation strategies. The EBIV approach enabled time-resolved,



U
nc

on
tr

ol
le

d
C

on
tr

ol
le

d

St ≈ 0.33 St ≈ 0.7 St ≈ 1.06

Figure 5: First SPOD mode for the uncontrolled (top) and optimally controlled (bottom) jet at three
selected frequencies: 30 Hz (St ≈ 0.33), 63 Hz (St ≈ 0.7), and 96 Hz (St ≈ 1.06). Vorticity fields are
shown with overlaid velocity vectors.

full-field velocity measurements at kilohertz rates using a low-power laser module, offering a cost-
effective and efficient alternative to traditional high-speed PIV systems.

The reduced data bandwidth and asynchronous acquisition of EBIV allowed for rapid estimation
of flow fields and supported the evaluation of control performance through a turbulence-based reward
function. Unlike classical approaches relying on point-wise or intrusive sensing, this method leveraged
topological information from the entire flow field, enabling a richer understanding of flow structures.

The control optimization revealed that tailored actuation can enhance mixing and promote the emer-
gence of coherent structures across a wider spectral range. The findings underline the potential of EBIV
as a compact, high-throughput measurement technique to support efficient flow control strategies.

This work opens the path toward future developments in sensing-assisted flow control using event-
based cameras, with promising applications in more complex configurations and closed-loop frame-
works.
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