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We propose operational definitions and a classification framework for air quality sensor-derived data,
thereby aiding users in interpreting and selecting suitable data products for their applications. We
focus on differentiating independent sensor measurements (ISM) from other data products,
emphasizing transparency and traceability. Recommendations are provided for manufacturers,
academia, andstandardizationbodies toadopt thesedefinitions, fosteringdataproductdifferentiation
and incentivizing the development of more robust, reliable sensor hardware.

Lower-cost sensing technologies are reshaping and expanding the landscape
of Earth Observations1, opening unprecedented opportunities for atmo-
spheric compositionmeasurements2. These innovations are relatively more
affordable than reference-grade instrumentation, and therefore hold sig-
nificant importance not only for Low- andMiddle-IncomeCountrieswhere
they can enhance often limited air quality (AQ) data capabilities3, but also in
underserved regions within wealthier countries that are similarly deprived
of adequate AQ infrastructure4,5. We use the more general term “regions”
(or areas) to acknowledge that disparities in wealth concentration occur not
only between countries, but also within national borders across the globe6.
Globally, the pervasive shortage of traditional AQmonitoring amplifies the
urgency for reliable data to support public health initiatives and policy
making7–10.

While sensor systems hold the promise of bridging data gaps
related to air pollution sources, pollution distribution and population
exposure11—potentially democratizing information and empowering
public action12—gaps remain between their potential and the real-
world performance: sensor-derived data vary significantly in quality,

robustness, and traceability. Unless specified otherwise, we use the
term “sensor” to refer to sensor systems (also commonly referred to as
“sensor pods”, “sensor devices”, “sensor platforms”)13,14. Part of these
challenges can be attributed to the limitations of detection hardware15

(e.g., drift, selectivity, cross-interferences, etc.). However, the process
by which data outputs are constructed plays a critical but less tangible
role. Concerns arise from the increasingly unclear and often
untraceable methods employed to manipulate raw sensor signals to
derive atmospheric concentrations16,17, leading end-users to be una-
ware of the assumptions, hypotheses, and limitations of the data
products they rely on.

This issue is exacerbated by the growing reliance on advanced data-
intensive methods, including Machine Learning (ML), Big Data (BD), and
Artificial Intelligence (AI), which, while enhancing processing efficiency,
can also obscure the processing steps18. Additionally, commercial con-
straints often prevent the sharing of proprietary techniques, further
clouding the transparency of how data outputs are derived.While the use of
data-centric techniques may enhance performance metrics for a specific
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application (e.g., brand “A” could fairly reproduce a higher-end instru-
ment’s output—in seasonX, location Y, and time of day Z—for a fraction of
itspurchasing cost), this improvementmaybe superficial, as uncertainty can
still persist regarding what is actually being reported. As the “opacity” (i.e.,
complexity and/or lack of transparency) and the processing “weight” (i.e.,
levels of datamanipulation) increase, output datamay be transitioning from
independent measurements to what is largely a predictive model, and
ultimately, data integrity may also be compromised. Therefore, it is crucial
to exercise caution to prevent compromising the data information content
and its transferability to different use cases (e.g., brand A, but in different
seasons, and/or locations).

Hagler et al.16 and Schneider17 et al. (2019) initiated discussions on
sensor measurements and their transition to “ultra-processed” data pro-
ducts, highlighting the need for transparency in how sensor data is gener-
ated, alongwith its unique challenges and limitations. This concern has also
been acknowledged by the CEN/TC264 WG42 Technical Specifications
17660-1:202119 and 17660-2:202420 (hereafter referred to as CEN TSs)
explicitly recognize the need for such a framework: “we have to make sure
that sensor data will be an independent measurement and not a modelled
value. In addition, there is a need for a common terminology and trans-
parency in data processing”.

These discussions set the stage for further exploration and refinement.
Building on these insights, this work introduces operational definitions to
clarify key aspects of sensor measurements, improve the classification of
sensor-derived data products, and develop a practical framework for users
to interpret sensor data and select suitable products for their specific
applications. If adopted by industry, research groups, and standardization
bodies, this classification could enhance trust in sensor technologies, facil-
itate market differentiation, and support the development of more targeted
sensor systems. Ultimately, these efforts aim to foster more robust and
reliable sensor systems.

To ensure conceptual clarity and alignmentwith existing standards, we
follow the terminology established in the International Vocabulary of
Metrology21, which remains the authoritative reference for any related
concepts.

The data generating process
A Data Generating Process (DGP) represents a series of systematic proce-
dures (e.g., statistical, mathematical, computational techniques), employed
to transform specific inputs into value-added output data designed to
achieve a specific objective. These processes span a continuum of
mechanisms, including but not limited to modelling approaches (e.g.,
physical and statistical models22), data aggregation techniques (e.g., data
fusion and data assimilation23), and measurements (e.g., direct and indirect
methods24). Examples of outputs from these processes include satellite
products for gases or aerosols25, air quality indices26, early warning data
products27, data fusion techniques for forecasting and mapping
applications28–31, among others.

Among the broad spectrum of DGPs, measurements stand out for
providingdirect, empirical insights about the “realworld”32. In the contextof
regulatory AQmonitoring, ground-based measurements are the only DGP
recognized as able to reach the “reference” or “gold standard” status (i.e.,
used to calibrate, validate, or evaluate other DGP outputs) provided they
demonstrate rigour and validity. Cox et al.33 dissect the measurement pro-
cess into two distinctive phases: observation and restitution. During the
observation phase, a specific set of hardware components (e.g., sensor ele-
ments, optical components, sample and signal conditioning components,
etc.) generate ameasurand-dependent raw signal (e.g., voltage, raw counts).
Subsequently, in the restitution phase, this raw signal undergoes processing
through algorithmic operations via dedicated software, transforming it into
an estimated measurand.

For referenceAQmeasurementmethods, the quality of thehardware is
the primary determinant of performance (see Fig. 1). Software conversions,
on the other hand, though sometimes opaque to end-users, play an
important yet explicit role in the restitution phase: they transform raw
signals into interpretable magnitudes. Ranging from simple linear correc-
tions to more elaborated methods, these algorithms aim to compensate for
cross-interferences, provided they are thoroughly characterized. In the
realm of sensors, however, it is well known that sensing elements are
prone to such interferences34,35 and their response may change over short
periods36,37. Although less tangible, software issues paradoxically emerge

Fig. 1 | Qualitative representation of performance
drivers for reference instruments and sensor sys-
tems. Higher-end instruments primarily rely on
robust hardware (in blue) for their performance,
complemented by robust, well-documented and
well-justified Quality Assurance and Quality Con-
trol (QA/QC) procedures (e.g., zero and span cor-
rections, data validation, continuous system checks,
etc.). As a consequence of their lower cost, sensor
hardware struggles with pollutant discrimination
due to limited selectivity, sensitivity, and stability.
QA/QC procedures remain a work in progress, and
there is an increasing trend towards the reliance on
sophisticated approaches to the restitution phase as
a way to improve data quality. As reliance on post-
processing algorithms increases (in different grades
of yellow), the output data may diverge from a
measurement, and in the worst-case scenario, data
integrity may be lost. Under these circumstances,
improvements in sensor performance may not
reflect actual measurement quality. The dashed
arrow underneath the figure is intended to illustrate
a conceptual transition from independent mea-
surements toward model-derived data products.
Side note: the near-identical lengths of blue bars for
sensor systems represent manufacturers’ tendency
to use similar/identical mass-produced sensing
elements.

https://doi.org/10.1038/s41612-025-01161-2 Perspective

npj Climate and Atmospheric Science |           (2025) 8:285 2

www.nature.com/npjclimatsci


from attempts to mitigate hardware limitations. Influenced by the over-
whelming trend towards adopting data-driven techniques—such as BD, AI,
and ML—and driven by commercial interests, the restitution phase
becomes increasingly opaque, with raw-signal-to-concentration conversion
approaches often resembling a “black box”. For most sensor system com-
panies, their unique intellectual property (IP) relies heavily on software
development. Enhancing software, the “peel” of sensor systems, enables
rapid deployment and adaptation to market needs and can be more cost-
effective than investing in the underlying sensor hardware—the “core” of
measurement DGPs. As a result, most commercial sensor systems use
similar, if not identical, sensing elements38, potentially suppressing the
development of better versions of these components. As previously
addressed byMari et al.24 andMaul et al.39, black-boxing data processing not
only limits our understanding of its information content but also fails to
capture the relevant characteristics of measurements. Building on their
insights, we argue that although no system can capture all relevant features
of measurement, increasing opacity can still cause the integrity of the
measurement to blur or even be lost (Fig. 1).

There is a wide range of possible DGPs behind AQ sensor data, each
carrying its own set of assumptions and hypotheses. Unlike most users of
chemical transport models or research-grade instruments, who are usually
extensively trained in and thus aware of the measurement method and
limitations of the tools they employ, sensor users may not necessarily know
the DGP behind their data. We must then recognize the main factors
contributing to DGP opacity: (i) lack of transparency, where the process
may be entirely or partially obscured, and (ii) algorithmic complexity, where
—even when the process is open— the intricate details of the algorithms
make it difficult to trace. Additionally, a factor that may further influence
both dimensions is the nature of the data sources used (such as type, origin,
and relevance), and how these are layered to produce output data. The way
these elements are combined and integrated affects the visibility of the
underlying mechanisms and the traceability of the computational steps,
potentially increasing the DGP overall opacity.

In commercial AQ sensor implementations, the transparency dimen-
sion—arising fromtheproprietarynatureof thedatahandling—serves as the
main barrier preventing full disclosure of the “box”, leaving users in the dark
about how data are produced, including the calibration methods employed,
the variables used, and the extent of data manipulation14. Conversely,
applications originating from academia tend to be less opaque, often
employing “open-source” approaches that enhance transparency. In these
cases, algorithmic complexity remains the main factor obscuring the box.
Here, sophisticated data-driven processing is commonly used to offset
hardware constraints (examples can be found in refs. 40–42), sometimes
even including information external to the system to enhance data quality
(such as in refs. 43–45). Regardless of whether the limiting factor is trans-
parency or complexity, without a clear understanding of the assumptions
and hypotheses at each step of the DGP, the credibility of the results cannot
be ascertained46. These issues compel sensor users to ask critical questions: Is
the DGP behind my sensor’s data a measurement? Does my sensor provide
independent information? Can I be sure that the integrity of my sensor data
has been maintained across the process? Are these questions relevant to my
application?

However, efforts to standardizeAQsensor systemshave thus far focused
onperformance evaluation through laboratory type-testing routines andfield
co-location with reference-grade instruments, as reflected in current stan-
dardization efforts—such as the CENTSs, ASTM standards (i.e., D8406-2247

and D8559‑2448), UK PAS 4023:202349 specification and USEPA guidelines
(i.e., EPA/600/R-20/27950, EPA/600/R-20/28051 and EPA/600/R-23/14652).
Notably, none of these documents to date address the transparency and
traceability of the data generation process within AQ sensor systems.

Predictions, measurements, and independent
measurements
In the context of air pollution, data-driven methods (e.g., neural networks,
deep learning, etc.) have served as inferential tools53, providing predictive

insights54 and revealing hidden patterns55. Specifically, for sensor calibration
schemes, thesemethods utilize targeted datasets to developmodels aimed at
producing accurate measurement outputs34. Although complex statistical
models can sometimes outperform linear models56, their tendency to learn
not only the underlying patterns but also the noise from the training data
can severely impair their ability to generalize to new data, leading to over-
fitting—when a model becomes overly adapted to its training dataset and
fails to generalize to new, unseendata57. This issue, compounded by the data
context in which they are trained, can alsomake thesemodels susceptible to
concept drift—when the underlying relationships between inputs and
outputs change over space and/or time, impairing the model’s ability to
maintain performance in new conditions58. Such issues are to be expected
since these models are built to capture the relational information contained
within the inputs, which they do very well. However, unless a human expert
intervenes to define the relevant features to be included, these models may
not necessarily have the ability to distinguish the sensor dynamics—a
fundamental part of the measurement process—from the environment
dynamics, essential to any predictive model.

Hagler et al.16 took a first step in the field by providing general rules for
the exclusion of input parameters that can lead to a measurement-
prediction transition. Input parameters should be excluded when they are
demonstrably notmeasurement artefacts, based on unverified assumptions,
or intended to achieve adesired outcome. Schneider et al.17 further advanced
the discussion by proposing a unified terminology for sensor processing
levels, categorizing data from raw sensor outputs (Level 0) to highly pro-
cessed data products (Level 4). The table provided by the authors serves as a
practical and straightforward tool to clarify processing levels, while offering
general definitions and examples of the progression from measurement to
predictions. However, this framework does not explicitly distinguish
between data products that rely solely on internally generated signals and
those that incorporate site-specific adjustments or dependencies. These
initial contributions have sparked important debates, yet there is still room
for deeper examination.

The role of the primary sensor signal in the DGP—particularly during
the development and testing of calibration models—is sometimes under-
estimated. By “primary sensor”, we refer to the main hardware component
(i.e., the sensing element) within the sensor system that directly detects the
parameter of interest (e.g., in a system designed to measure NO2; the pri-
mary sensor is the one that detects NO2 concentrations, whereas other
components—such as humidity or temperature sensors—may assist in
adjusting the signal but play only a secondary role). It is imperative that in a
calibration model for a pollutant “X”, data from its primary sensor “x” not
only be included but also be the most influential signal (e.g., explaining a
significant percentage of the output variance). A model where the most
influential signal comes from a secondary sensor “y” (e.g. temperature,
humidity, etc.), or that does not even include the sensor signal “x”, trans-
gresses the boundaries towards a prediction.

A challenging yet essential aspect that requires further exploration is
the distinction between independent and non-independent measurements.
We refer to independent sensor measurements (ISM) as those where the
output is primarily determined by the sensor system’s own signals—spe-
cifically, the primary sensor’s signal, with correction variables limited to
demonstrated artefacts—independent of the data infrastructure at the
application site. Whether a data product incorporates external inputs or
utilizes a calibration model tailored for local conditions, it will inevitably
introduce a dependency on the local data infrastructure—understood here
as the combination of technical resources (e.g., instrumentation, computing
capabilities) and qualified personnel dedicated to producing, processing,
and analysing high-quality air quality data at a given site. These factors vary
significantly from one region to another.

Where external inputs—i.e., data not provided by the sensor system
itself but sourced from external entities such as nearby monitors, meteor-
ological stations, ormodel outputs—are employed to enhance the quality of
data products (assuming their inclusion is justified), challenges may arise,
especially if the end-user lacks detailed information on how the output data
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were produced. For instance, comparing data from two distinct sites, which
may differ in the quality or type of external data used, without a clear
understanding of the processing involved, can lead to misleading compar-
isons. Suchscenarios can sometimesbe akin to comparing apples to oranges,
where superficial similarities mask underlying differences.

Complex calibration algorithms used to adjust sensor data towards a
“gold standard” reference values under specific conditions are influenced
not only by the site-specific meteo-chemical conditions of the training
period, but also by the local data infrastructure. As with the inclusion of
external variables, making sense of comparisons between two sites can be
challenging if the user is not aware of the data product’s limitations. In
contrast, models developed independently of the site, though not perfect,
strive to be universally applicable59. These aim to minimize individual
adjustments and enhance adaptability, offering a more traceable approach
by ensuring that the same model is applied to the same hardware (e.g.,
identical units from the same company). This broader application helps
mitigate some of the limitations found in site-dependent models.

The ISMconcept emphasizes the sensor system’s hardware capabilities
over the software used to optimize the output, thereby illuminating theDGP
and enhancing its traceability. As processing levels vary significantly
between ISM and non-ISM, users should be well-informed about these
differences. Ultimately, the choice of which data product to utilize should be
carefully informed by the user’s specific requirements.

Towards an operative definition of independent sensor
measurements
In regionswhere air qualitymeasurements are scarce and sensor technology
could provide afirst glimpse into local pollutiondynamics, there remains an
urgent need to further refine the concept behindAQ ISMand establish clear
criteria that distinguish these from other sensor-derived data products.
Current regulatory frameworks, guidelines, and technical standards (such as
CEN TSs, ASTM standards and USEPA guidelines) do not address this
distinction, highlighting a gap that must be filled to enhance the transpar-
ency and reliability of sensor data for specific applications. Building upon
the initial definition, we propose the following minimum criteria for a
measurement to qualify as an ISM:
1. The concentration output for the target species is mainly determined

by the primarily sensor’s raw signal;
2. Only corrections that are relevant to the measurement principle (as

outlined by ref. 16) are allowed;
3. Corrections must also be contemporaneous (i.e., on-line) with the

measurement (extending Hagler’s point);
4. Data must originate exclusively from the sensor system itself;
5. The calibration model has been developed independently of locally

collected environmental data.

It should be noted that ISM criteria does not preclude the possibility of
users at the application site making subsequent adjustments to the sensor
output data products—such as corrections, calibrations, or aggregations.
These are typically transparent post hoc operations (e.g., part of evaluation
or reporting workflows) and are generally aligned with standard QA/QC
practices conductedon-site,with the responsibility for their implementation
resting on the end-users. These adjustments are distinct from the internal
data generation pipeline that the ISM framework seeks to characterize.

As discussed in the previous section, the first criterion states that the
output concentrationmust bemainly determinedby the raw signal from the
primary sensor (e.g., 70% of NO2 output concentration explained by the
NO2 raw signal), shifting reliance from algorithmic adjustments to hard-
ware quality. By clarifying the basis of reported values, this restriction
enhances DGP transparency and incentivizes the use and/or development
of more robust hardware (e.g., higher-quality sensing elements), thereby
reducing the need for extensive post-processing. Establishing an explain-
ability threshold (e.g., percentage of explained variance), is complex and
beyond the scope of this work, yet it remains a critical issue that should be
addressed through relevant standards or guidelines.

The second criterion, incorporating unjustifiable parameters into a
calibration model, as noted by ref. 16, can result in transitioning from a
measurement to a prediction. Furthermore, including more variables not
only increases the complexity of the model but also elevates the risk of
shifting to an empirically modelled value. Therefore, limiting corrections—
both in number and type—to those directly relevant to the specific analyte
being measured is key to preserving the integrity of the measurements. The
third point builds on the previous one by restricting the use of input vari-
ables to those contemporaneous with the measurement. For example, any
correction applied to a PM2.5 measurement must use signals (such as RH)
generated simultaneously with the main sensor signal, to produce the final
output. From here on, we use the term “on-line” to refer specifically to this
type of contemporaneous data input. The exclusion of retrospective data
helps prevent reliance on past trends or patterns (e.g., autocorrelation),
which could otherwise shift the DGP focus toward a prediction model.

The fourth criterion requires that data input into the calibrationmodel
be generated exclusively by the system itself. Incorporating external data—
such as meteorological data, readings from nearby monitoring stations and
sensors, or outputs from air quality models—compromises the integrity of
measurements by creatingdependencies on thequality andquantity of these
sources. Ensuring that the sensor DGP relies solely on system-generated
data preserves the independence and enhances their comparability across
diverse contexts.

Building or re-training a calibration model based on local-to-the-
application data (e.g., using reference data from the surroundings where the
sensor will be deployed) can bias sensor outputs toward agreement with the
used data and create dependency on the quality and quantity of this data,
thereby compromising their traceability and transferability. Therefore, the
final condition requires that model architectures be constructed indepen-
dently of the data infrastructure of the application site to prioritize gen-
eralizability across different contexts. For instance, two identical systems
from the same brand (e.g., sensor systems A1 and A2), each using a site-
specific calibrationmodel (e.g.,modelM1built in site S1 andmodelM2built
in site S2), could produce inconsistent results when co-located at a third site
(e.g., S3), due to the dependence on training data. To prevent this, cali-
bration models for an ISM should be based on static, well-documented
architectures that ensure consistent responses to the same input variables
across diverse applications.

Linear adjustments (e.g., zero and span corrections), designed to only
correct systematic errors, remain compatible with this approach. These
adjustments are typically: (i) external to the data generation process (once
the sensor system has produced the output), (ii) transparent (end-users are
aware of their application), (iii) reversible (i.e., adjustments do not funda-
mentally alter the underlying data structure/distribution), and (iv) stan-
dardized (e.g., part of QA/QC protocols in regulatory and research
contexts). When applied externally and clearly documented as part of QA/
QC procedures, such adjustments do not invalidate ISM classification.
However, if these corrections are embeddedwithin the sensor system—thus
falling outside user control and compromising traceability—they would
violate ISM criteria. Conversely, complex (typically nonlinear) corrections
applied by users to the already processed out-of-the-box concentration
output are discouraged. The risk of overfitting is not the only concern; such
adjustments can also undermine the independence of the measurements.

Table 1 introduces a classification system adapted and expanded
from17. Building into this framework, we have incorporated the criteria
outlined for ISM, aiming to improve clarity in the distinctions between
different sensor data processing levels. The table includes seven columns.
The first, “Level”, labels the data processing stage, ranging from raw signals
to more processed outputs. The last, “Definition”, provides a brief
description of each processing level to clarify the nature of the output.
Columns two tofive cover the previously described criteria (i.e.,main signal,
corrections, signal provenance, and model architecture). The sixth column
marks whether the data qualifies as an ISM. Each tier in Table 1 represents a
range of data processing steps required to produce a sensor data product,
spanning from the “raw signal” (level 0) and independent measurements
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(levels 1 and 2) to increasingly complex data products. At higher levels, such
as those involving advanced architectures with additional internal or
external variables, the outputs transition to non-independent measure-
ments (levels 2B and 2 C) and predictions (level 3). Importantly, this clas-
sification is concerned solely with the extent of data processing and is not
indicative of the data quality itself. The assessment of data quality provided
by a sensor system should be conducted through a separate, independent
process (e.g., via evaluation tests as specified in the CEN TS’s). Ultimately,
the choice of processing level and data quality will depend on the user’s
specific measurement objectives. The proposed ISM framework is not
intended to challenge or replace existing regulatory procedures, but to
complement them by increasing transparency in how sensor-derived data
products are generated.

Recommendations and path forward
In the context of regulatory AQ monitoring, ground-based measurements
are the sole DGP currently recognized as capable of reaching the “gold
standard” status, as they yield direct, empirical insights into the real world.
Although sensor data may never attain such high status, they still hold the
potential. And “potential”might represent “hope” for underserved regions.
Although this perspective may seem overly optimistic, such aspirations
could serve as a driving force toward improved sensor technologies. It then
becomes paramount for the global AQ community to strongly advocate for,
and actively support the development and refinement of affordable mea-
surement solutions, while contributing to building technical capabilities
where they are most needed.

Although current sensor technologies—both hardware and software—
have room for improvement, they can still provide valuable insights when
used correctly and when questions posed to their data are formulated
appropriately60. However, the opacity of the DGP in these devices, whether
commercial or not, presents significant challenges, often compromising the
integrity and reliability of the data they produce. Constrained by either the
IPand/or the complexity of the algorithmicmethods employed, sensorusers
should be informed of at least the basic building elements behind their data
and must be aware of the data product’s scope and associated limitations,
such as potential hidden uncertainties and the possible degradation of
measurement independence. Current practices tend to fall short in
addressing these issues.

In the short-term,manufacturers are encouraged to identify theirDGP
as accurately as possible and provide alternatives to black box models.
Similarly, scientists who develop their own sensor systems should clearly
specify the DGP behind these systems and continue to advocate for greater
openness by offering more explainable methods and promoting their wide
dissemination. Bothmanufacturers and the scientific community are urged
to describe their data products in greater detail, for instance, according to
Table 1. Implementing a labelling system such as the one outlined inTable 1
would represent a significant step toward enhancing data transparency.
Categorizing sensor data products by their processing level and explicitly
indicating whether they are independent or not enables users to interpret
data more effectively while preserving manufacturers’ IP. Recognizing the
elements that constitute an ISM allows users to better understand the
applications forwhicha sensor system is suited, therebyboosting confidence
in the provided information. Explicitly stating these characteristics can also
allow sensor vendors to differentiate their products in today’s crowded
marketplace. Moreover, this approach may motivate manufacturers to
upgrade their products to meet ISM criteria, potentially leading to tech-
nological innovation and spurring competition among them. Additionally,
this framework could act as a market driver, incentivizing the development
of products that rely less on extensive data processing.

In the next few years, the focus should intensify on enhancing sensor
hardware technology, aiming to reduce reliance on software-driven
adjustments and promote independent measurements at a mid-range
price point. Investment from a broad range of actors—including philan-
thropic initiatives, government agencies, the private sector, and interna-
tional development funds—could significantly catalyze innovations in this

area. Coordination of efforts across sectors should be facilitated through
regional and international initiatives—such as FAIRMODEWG6 (https://
fairmode.jrc.ec.europa.eu/activity/ct6), Allin-Wayra (https://igacproject.
org/activities/allin-wayra-small-sensors-atmospheric-science), among oth-
ers—via workshops, conferences, and technical working groups. Further-
more, implementing such investment-driven initiatives could have a
profound impact in underservedmarkets, particularly in Low- andMiddle-
Income Countries, where unique challenges such as limited infrastructure
and poorly characterized pollutant profiles require tailored sensor solutions
for a rapidly growing market. In these settings, measurement instruments
are often required to operate autonomously,making the provision offit-for-
purpose, independent measurements a significant advantage. By offering
mid-tier hardware solutions,manufacturers canmeet theseneedswithmore
affordable alternatives to traditional analytical instruments, while also
reducing reliance on complex, data-intensive processing methods.

Compliance with the framework presented here can be demon-
strated either voluntarily or through third-party evaluations, with the
possibility of certification by agencies if it is incorporated into regulatory
requirements. This proposal is another step forward in the ongoing
effort to enhance the value of sensor data. Successfully implementing
such a system will require a consensus among key stakeholders,
including manufacturers, regulatory agencies, standardization bodies
(e.g., CEN/TC264 WG42), scientists, and users. Ideally, discussions
about this framework will lead to the adoption of an industry standard
that balances adaptability with the evolving demands of end-users.
Cross-sector collaboration will be key to transforming this proposal into
a practical and widely accepted framework.

Data availability
No datasets were generated or analysed during the current study.
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