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Abstract

Despite considerable progress in understanding zero pressure gradient bound-
ary layers, turbulence in adverse pressure gradient (APG) boundary layers
remains less well understood, particularly in high Reynolds number flows.
Unfavorable pressure gradient regions are commonly encountered in indus-
trial applications, but turbulence models often lack the physical basis neces-
sary for reliable predictions in these flows. This study focuses on analyzing
the effects of adverse pressure gradient on boundary layer scaling, essential
for predicting flow characteristics and validating turbulence models. Build-
ing on recent advances in experimental methods and using large-scale particle
image velocimetry (PIV), the research aims to provide an analysis of turbu-
lent boundary layer flows in APG. Experiments have been carried out in a
wind tunnel using inclined plates to induce pressure gradients at an angle of
—8°, complementing an existing database obtained at —5° (see Cuvier et al.,
2017) and offering new insights into flow behavior. An analysis of the liter-
ature has enabled the authors to compare various scaling approaches and to
propose a scaling that is suitable for both mean velocity and Reynolds stress.
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1. Introduction

The study of the turbulent boundary layer (TBL) under adverse pressure
gradient (APG) conditions remains a key challenge in aerodynamics due
to the complex nature of flow behavior in such regions. APG flows are
characterized by a decelerating flow field where the pressure increases in
the direction of the flow, leading to an adverse pressure gradient. These
conditions not only induce higher turbulence levels but also have significant
implications for flow separation, drag and energy dissipation, making them
a critical area of study for both fundamental fluid mechanics and applied
engineering problems.

Since the work of Prandtl and von Karmén, research into the scaling of
turbulent boundary layers influenced by pressure gradients has been exten-
sively studied, notably in the 1950s by Rotta (1950), Clauser (1954, 1956),
Coles (1956) and Townsend (1956), among others. In these studies, repre-
sentations were often experimentally tested on the databases of Ludwig and
Tillman (1950) and Clauser (1954). Not only the amount of data, but also
the flow range was limited, and the lack of knowledge of certain parame-
ters such as wall friction velocity was problematic both in boundary layers
without pressure gradient (ZPG) and even more so under the effect of an
adverse pressure gradient (APG). Later, Townsend (1961) and Perry (1966)
proposed new developments for the near-wall region around the equilibrium
boundary layer concept, revisited by Mellor and Gibson (1966). In 1968, at
the Stanford Conference, Coles (1968) pointed out that the available data
were inadequate in scope and quality. It was reiterated that there is an im-
portant and continuing need for more complete and accurate experimental
data. Indeed, experiments on TBL subjected to pressure gradients were rare
at the time. Nevertheless, a few experiments were carried out which are
briefly presented in Maciel et al. (2006).

However, the definition of interesting cases for TBL subjected to pressure
gradients has been much discussed over the last 20 years, and has sometimes
been the subject of controversy. Although the theories proposed by Rotta
(1950) and Clauser (1954) are still the most common definitions of self-similar
equilibrium boundary layers for TBL, many advances have been made in
their definitions. The various possibilities are based on different assumptions
about the type of self-similarity to be achieved. Certain similarity conditions
are sometimes more difficult to satisfy (see Castillo and George, 2001 and
Maciel et al., 2006). Questions remain open, such as the choice of length and



velocity scales that characterize the outer layer of TBL and more particularly
when they are subjected to a pressure gradient (see Maciel et al., 2018).

For turbulent flows limited to walls with zero pressure gradient, wall tur-
bulence is characterized by a single velocity scale, the friction velocity, u.,
and two length scales, one associated with the external flow, , the thickness
of the boundary layer at 99% of the external velocity, and the other asso-
ciated with the near-wall region where viscous actions are important, often
0, = v/u,, where v is the kinematic viscosity of the fluid, respectively. The
ratio between these two length scales is called the friction Reynolds num-
ber, Re, = T = du, /v, which also represents the range of scales in a TBL.
The asymptotic connection between the inner zone and the outer flow gives
the classical logarithmic wall law, which remains one of the theoretical foun-
dations for turbulent flows close to a wall. Chen et al. (2023) question the
presence of a logarithmic law and propose a universal velocity transformation
that restores a behavior close to the wall law, even in the presence of strong
gradients.

The universality of the mean velocity profile of the inner layer has been
the subject of numerous studies (see e.g. Pirozzoli and Smits, 2023). For ex-
ternal flows, part of the uncertainty in scaling is often related to the length
scale, as the boundary layer thickness is not well defined. This led Rotta
(1950) and Clauser (1954) to propose the displacement thickness as a rele-
vant length scale. Although the universality of the outer zone is often limited
due to a lack of total similarity, the friction velocity is often considered the
appropriate velocity scale (see Nagib and Chauhan, 2008 and Panton, 2005).
Nevertheless, arguments based on conditions required for self-similarity so-
lutions of the boundary layer equations suggest that external velocity might
be a possible alternative (Castillo and George, 2001; Kitsios et al., 2017).
Physical arguments led Zagarola and Smits (1998) to identify an alternative
velocity scale as the difference between the external velocity and the bulk
velocity.

To validate the boundary layer similarity study, high-quality boundary
layer data at high Reynolds numbers and for different pressure gradient con-
ditions are required. Such data are beginning to become available both ex-
perimentally and numerically. On the experimental side, large-scale APG
TBL have only been recently measured with high-resolution particle image
velocimetry and particle tracking velocimetry by Cuvier et al. (2017) and
Knopp et al. (2015) and with hot wire anemometry by Romero et al. (2022)
with Rey reaching 23,000, 26,000 and 41,000, respectively. Clauser’s § pa-



rameters for pressure gradients are of the order of 2-3 and 1-2 for Cuvier
et al. (2017) and Romero et al. (2022), respectively. Two recent DNS have
also achieved relatively high Reynolds numbers, although not as high as
those of the aforementioned experiments. These are the DNS of a strongly
decelerating TBL by Gungor et al. (2017) with Rey reaching 8000, and the
self-similar APG TBL at the verge of separation by Kitsios et al. (2017) with
a self-similar region of Rey from 10,000 to 12,300, and a very high Clauser g
parameter of 39.

Despite the vast amount of existing work, validation of the various theo-
retical proposals is still required in the case of a TBL subjected to an adverse
pressure gradient and, consequently, analysis of new databases is necessary
to validate the theoretical foundations. Furthermore, there seems to be no
agreement on the scales to be used, which is the main subject of this paper.
However, known scales such as those of Clauser (1954), George and Castillo
(1997), Zagarola and Smits (1998), Pirozzoli and Smits (2023) yield recog-
nized results for the mean velocity profile at least in ZPG. Romero et al.
(2022) has shown that when scaling Reynolds stresses in the inner zone of
the TBL in APG, the pressure gradient in the velocity scale must be taken
into account. They also showed that the history of the flow prior to its de-
celeration is important in the search for universality, which was observed in
previous studies (see Castillo and George, 2001; Bobke et al., 2017). The
question of choosing the right scales is crucial. Klewicki et al. (2024) point
out that the right formalism must take into account the inertia-gradient in-
teraction in the momentum balance. Han et al. (2024) have proposed a
generalization of the Zagarola-Smits scaling, extended to all Reynolds stress
components, ensuring better homogenization of profiles in the outer region.
Vinuesa et al. (2016) insist on the robustness of a criterion based on the
disappearance of the mean velocity gradient to define the boundary layer.

In the present study, we supplement the database of Cuvier et al. (2017)
with a new set of experiments carried out under the same in-flow conditions
but with different pressure gradients, so as to be able to emphasize the in-
fluence of this parameter without altering the flow history. We also propose
to compare the most classical as well as the most recent scaling by Pirozzoli
and Smits (2023) and Romero et al. (2022) in the case of the outer zone first
on mean velocity profiles and then on the Reynolds stresses. Furthermore,
we propose a new set of parameters that builds on these two studies to arrive
at a Reynolds number-independent similarity.

Through this comparison, a new contribution to the ongoing effort to
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develop a more universal scaling framework for APG TBL is provided. This
scaling not only improves the understanding of the underlying physics of
APG flows but also provides a more accurate predictive tool for real-world
applications, such as in aerodynamic design and energy-efficient transport
systems.

2. Databases

All experiments were conducted in the boundary layer wind tunnel of
the Laboratoire de Mécanique des Fluides de Lille (LMFL). Fig. 1 provide
a front and top view of the LMFL TBL wind tunnel, which features a test
section length of 20.6m. The test section is transparent on all sides with
high-quality 10 mm glass, allowing for complete optical access. The cross-
section measures 2 m in width and 1 m in height, with a free-stream velocity
range from 1 to 9.4 m/s, measured 100 mm downstream of the test section
entrance. The wind tunnel can operate in a closed-loop configuration with
temperature control or be opened to the outside.

In the closed-loop setup, the free-stream velocity is maintained within
+0.5%, and the temperature within +0.15° C. The boundary layer is tripped
at the tunnel entrance using a 4 mm spanwise cylinder secured with silicon on
the bottom wall, followed by 93 mm of Grit 40 sandpaper (mean roughness
425 pm). The boundary layer developing on the top wall is also initiated
with a 93 mm wide spanwise strip of Grit 40 sandpaper. All glass surfaces
and the bottom wall are aligned to ensure no step exceeds 0.1 mm (equivalent
to 2% at maximum velocity). Additionally, the top, bottom and lateral walls
are adjusted to be perfectly parallel, with deviations of less than 40.1°.

2.1. The EuHIT —5° experiment

The EuHIT —5° experiment was carried out in the frame of the European
Project EuHIT with full details provided in Cuvier et al. (2017). For this
experiment, the wind tunnel was used in the closed loop configuration and
a specifically designed ramp model, approximately 7 m long, was installed
on the bottom wall (see Fig. 2). The model used is the LML-AVERT ramp
(Cuvier et al., 2014) on which the final section was replaced by a 3.5 m long
plate inclined at a —5° angle with respect to the wind tunnel floor (in red
in Fig. 2), with the aim of creating a constant adverse pressure gradient.
The ramp’s leading edge was located 9.4 m downstream from the entry of
the test section. As shown in Fig. 2, following the contraction, which has
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Figure 1: Front (a) and top view (b) of the LMFL wind tunnel.
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a contraction ratio of 0.75, a flat plate measuring 2.14 m is positioned at
an angle of +1.5° relative to the wind tunnel floor. The experiments were
carried out for two inlet velocities of the wind tunnel, 5 m/s and 9 m/s, in
order to have two Reynolds number ranges along the APG plate.
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Figure 2: Sketch of the ramp model in the wind tunnel slope at —5° in red and —8° in
purple.

To capture the flow in the APG region a large field 2D 2C PIV setup,
based on stitched multi-camera configuration enabled the acquisition of ve-
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locity field data over a 3.5 m long and 25 c¢m high domain as described in
Cuvier et al. (2017). This was achieved by mounting 16 sCMOS cameras on
the side of the wind tunnel, each with a field of view of 230 mm along the
wall and 273 mm in the wall normal direction. To assure a continuous mea-
surement domain, an overlap region around 10 to 20 mm was used between
adjoining cameras. The domain was illuminated by a light sheet introduced
through a narrow slit and 45° mirror at the downstream end of the APG
ramp. The exceptional beam characteristics of the LMFL BMI YAG laser
system ensured a light sheet thickness of 1 mm across the 3.5 m wide field of
view.

To achieve a more precise characterization of the very near-wall region in
the APG TBL, high magnification and high repetition 2D 2C PIV experi-
ments were performed at three locations within the APG region identified as
station (1), (3), and (4) as can be seen in Fig. (10) of Cuvier et al. (2017).
These measurement points are situated 0.483 m, 1.733 m, and 2.358 m down-
stream of the beginning of the APG region, corresponding to s = 3.983 m,
5.233 m, and 5.858 m, respectively, where s is the curvilinear abscissa along
the ramp, with the leading edge of the ramp set as origin (see Fig. 2). The
friction velocity at the respective stations was determined using a single-
line cross-correlation approach introduced by Willert (2015). Correlating
wall-parallel rows of pixels from temporally adjacent PIV recordings pro-
vides instantaneous displacement estimates along the direction of the row.
This is repeated for different wall distances (e.g. pixel rows) yielding an in-
stantaneous displacement profile. A linear fit for displacement data within
the viscous sublayer (y™ < 5) results in an estimate of the instantaneous
wall-shear rate at the given time-step.

2.2. The joint LMFL-ONERA —8° experiment

The joint LMFL-ONERA —8° experiment was carried out as part of an
internal research project of ONERA. This experiment is a modification of the
previously described setup with the primary objective of increasing the pres-
sure gradient by replacing the original —5° plate at the end of the ramp with
a —8° plate (in purple in Fig. 2). The wind tunnel setup and the ramp design
remained unchanged, except for the final section, where a 2.2 m long plate
was inclined at —8° relative to the wind tunnel floor. Moreover, the inlet
velocities were identical to those of the EuHIT experiment, ensuring consis-
tent flow history upstream and allowing the study of the pressure gradient’s
effect on the flow.



The PIV setup closely mirrors that of the EuHIT campaign, following the
methods outlined in Cuvier et al. (2017). For this experiment, 10 cameras
were mounted to capture a large field of view in the APG region, as illustrated
in Fig. 3. Cameras 1 through 5 were equipped with 105 mm macro lenses.
Camera 6 was fitted with a 60 mm lens positioned closer to the tunnel side
wall to avoid the shadow of the wind tunnel side pillars (see Fig. 3), and
cameras 7 through 10 used 105 mm non-macro lenses. The distance from
the bench to the glass was maintained at 770 mm. The glass-to-front-lens
distances were as follows: cameras 1 to 5 at 690 mm, camera 6 at 10 mm, and
cameras 7 to 10 at 730 mm. All cameras were set with an f-number (f#) of
4, except for camera 10 (camera 1 located the furthest upstream), which had
an f-number of 3.5. The light sheet was generated using the same specific
set-up as for the EuHIT experiment. The analysis was done by means of a
grid-refining, multiple-pass cross-correlation algorithm (Willert and Gharib,
1991; Soria, 1996) employing image deformation (Scarano, 2002) at the final
pass with a 24 x 24 pixel interrogation window. Fig. 5 shows examples of
mean streamwise velocity field normalized by Uy, at: (a) Uy, = 5 m/s and
(b) Us, = 9 m/s. Visually the two recovered velocity fields are very similar
and are free from discontinuities or spurious regions.

As in the EuHIT campaign, three stations were established to achieve
a more detailed characterization of the near-wall region as in Cuvier et al.
(2017). These stations — (1), (2), and (3) — were respectively located at
0.485m, 1.204 m, and 1.774m from the start of the APG region, correspond-
ing to curvilinear positions of s = 3.985m, 4.704m, and 5.274 m. For this
experiment a high speed camera (Vision Resarch, Phantom V2640) operat-
ing at 40 kHz with the active sensor size limited to 208 x 2048 pixel. In
order to resolve the viscous sublayer the flow was imaged at a magnification
of 0.86 with a 300 mm lens coupled to a 2X teleconverter. Illumination was
provided by a high speed laser (Innolas Blizz 30 W). The lens aperture was
set at f/8 to obtain particle image size of about 2 pixels to optimize the
accuracy (Foucaut et al., 2003) and a displacement of about 20 pixels in the
upper part of the field of view was selected to obtain both a high dynamic
range of the turbulent fluctuations with high precision and low uncertainty
close to the wall. The analysis was also done with a grid-refining, multiple-
pass cross-correlation approach (Willert and Gharib, 1991; Soria, 1996). The
images were analysed twice with a modified version of MatPIV at LMFL.
The first by means of 24 x 24 pixels interrogation windows to resolve the tur-
bulent profiles near the wall and the second by means of rectangular 48 x 8
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pixels interrogation windows to resolve the near wall gradient of the viscous
sublayer from which the skin friction is determined. For the final pass, image
deformation was used to improve the measurement of the gradient and thus,
the quality of the data (Scarano, 2002; Lecordier and Westerweel, 2004).

Table 1 summarizes the main parameters used for PIV recording in the
different experiments.

Figure 3: Photograph of the camera setup for the ONERA APG TBL experiment.

Figure 4: Photograph of the laser setup for the ONERA APG TBL experiment.

3. Comparison between the experiments

3.1. Pressure coefficient and its gradient

For both datasets, pressure measurements were made along the ramp at
22 sections in the streamwise direction with a digital manometer 'FCO 560’.
For each pressure tap, the data is sampled for 80 seconds at a frequency of
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Figure 5: Examples for 2D field of the mean streamwise velocity for a ramp angle of —8°
at a) Uso =5m/s and b) Uy, = 9m/s.

2 Hz. The reference pressure used to measure the differential pressure is at
the transition between the contraction and the FPG sections. These values
are represented using pressure coefficient defined in Eq. (1). The free-stream
velocity is measured at the inlet of the test section.

AP

72} @)
Fig. 6 shows surface pressure coefficient over the ramp along the stream-wise
direction for both experiments and the two free-stream velocities Uy, = 5 m/s
and 9 m/s while Fig. 7 shows the corresponding surface pressure gradient
distributions. The horizontal axis represents the curvilinear coordinates s
along the ramp surface in mm with s = 0 being the leading edge of the ramp

(see Fig. 2).
As the flow moves from the leading edge downstream, it accelerates
through the contraction section, causing the pressure coefficient C), to de-
crease progressively. At the end of the contraction, a suction dip appears,
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Slope FOV Dt IwW IwW Vect field Number of Frequency
Experiment [ (mXm) (px) (px X px) (mm X mm) size samples (Hz)
Large field
streamwise
2D 2C PIV —5° 3.46 x 0.255 14 24 x 24 2.56 x 2.56 3250 x 238 30 000 4
Large field
streamwise
2D 2C PIV —8° 2.16 x 0.255 14 24 x 24 2.55 x 2.55 2048 x 242 30 000 4
Time-resolved
high magnifi- —5° 0.003 x 0.019 25 32x8 0.8 x 0.2 5 x 640 10 000 100
cation PIV 0.003 x 0.038 5 x 1280 50 000 500
Time-resolved
high magnifi- —8° 0.0032 x 0.032 25 24 x 24 0.37 x 0.37 17 x 193 2 345 000 40 000
cation PIV 0.0032 x 0.0064 48 x 8 0.74 x 0.12 9 x 199 2 345 000 40 000

Table 1: Main parameters of the PIV recordings from the different experiments.
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Figure 6: Evolution of the pressure coeflicient C, along the two ramp angles and for the
two inlet velocities, s is the curvilinear coordinates along the ramp surface.

creating a localized adverse pressure gradient (APG) immediately after this
section. This APG region leads to a sudden increase in both C), and %
values. The flow then accelerates further in the favorable pressure gradi-
ent (FPG) region, which causes C, to continue decreasing until it reaches
another suction dip near the transition point between the FPG and APG
regions. Around this transition, the pressure gradient rises sharply before
gradually decreasing, remaining positive across the entire APG region. In
the APG section, the flow decelerates, resulting in a gradual increase in the
pressure coefficient.

For both the @« = —5° and @ = —8° plates a similar pressure coefficient

is observed up to the transition from the FPG to the APG region. Then,
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Figure 7: Evolution of the streamwise derivative of the pressure coefficient ddc;” along the

two ramp angles and for the two inlet velocities, s is the curvilinear coordinate.

around the articulation region (beginning of the APG flat plate, = = 0),
the —8° APG configuration has a stronger suction peak and accordingly, a
higher jump in the pressure gradient. This supports the assumption that both
experiments have a similar flow history leading up to the APG ramps and
therefore the differences observed will only be due to the pressure gradient
or a Reynolds number effect. Moreover, in the APG region a nearly constant
pressure gradient is achieved as expected using the ramps.

3.2. Skin friction and friction velocity

To determine the friction velocity in the case of a wall-bounded flow, the
most wildly use technique is the Clauser chart method proposed by Clauser
(1954). This approach relies on the existence of a logarithmic layer near

the wall. Therefore, by plotting in inner variables Ut = % as a function
of ¥ = ¥ in a semi-logarithmic scale (with the x-axis being the one in a

logarithmic scale), the overlap region of the boundary layer is a straight line
(Fig. 9). The following equation gives this line that is known as the log-law:

1
ut=-lny"+C (2)
K

where & is the von Karman constant and C is an additive constant. For ZPG
boundary-layers, we usually have x = 0.41 and C' = 5. The value of & is still
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Figure 8: Profile comparison of the streamwise mean velocity at (a) s = 3.0m (at © =
—0.3m) and (b) s =3.1m (at x = —0.2m) with = 0 the beginning of the APG region.

a subject of debate. In the present paper, we used 0.41 to agree with Cuvier
et al. (2017). Fig. 9 (a) and (b) show the mean streamline velocity profile
for the @« = —5° and a = —8° plate, respectively, for a free-stream velocity
of Uy, = 5 m/s and compared to the log law given in Eq. (2). By assuming
that x, C' and v are constants, a least squared fit to the data obtained by the
large PIV field was used to obtain the value of u,. This Clauser chart method
allows an estimation of u, along the plate. Fig. 9 (a) and (b) show that the
friction velocity in the wake region of the TBL increases from maximum of
about 35 to about 50 at the extremity of the plate for increasing angle and
thus, for a stronger APG.
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b) @ = —8° in inner representation Ut = f(y™).

Even though the existence of a logarithmic region in APG flows remains
a subject of ongoing debate, Monty et al. (2011) have shown that for a mild
pressure gradient, the Clauser chart method is still suitable, but needs to be
used with caution in strong pressure gradient conditions, as it can result in
highly inaccurate values for u,, especially when the flow nears separation.

As seen in Fig. 9, we assume that a logarithmic layer can be used to deter-
mine u, by the Clauser chart method in the present contribution especially
since we are far from the separation.

For both datasets, this method was used on the data from the large field
2D 2C PIV set. To assess the quality of this method, we use the near-wall
direct measurement of u, at the 3 stations previously detailed and compare
them to the value obtained using the data from the large field of view and
the Clauser chart method. For the EuHIT experiment, the friction veloc-
ity at the stations was determined using Time-Resolved High Magnification
PIV (TRHM-PIV), employing a wall-shear rate measurement technique in-
troduced by Willert (2015). This method extracts highly spatially resolved
time series velocity to estimate both the unsteady and mean wall-shear strain
rate. Specifically, it uses a one-dimensional cross-correlation approach, where
rows of pixels located at the same wall-normal distance but separated by a
few time steps are analysed. A one-dimensional Gaussian peak is then fitted
at the point of maximum correlation to obtain subpixel accurate displace-
ment information for the given row. By combining this displacement with
the magnification factor M and the time interval At, an estimate of the
streamwise velocity at a given wall distance is derived. For the ONERA ex-
periment, a variant of this method is used which consists at analyzing the
images by using rectangular windows with the small dimension in the wall
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normal direction to capture the mean gradient with high spatial resolution.
The unsteady velocity estimates are averaged over the full sequence length to
produce a mean streamwise velocity for each wall-normal position. Finally,
the average wall shear strain rate is calculated by fitting a least squares line
to the linear portion of the data, yielding an estimate of the wall shear stress,
which is proportional to the friction velocity.

To compare the results of theses two methods, we compare the values
of Cy = 25—32 as shown in Fig. 10. The figure indicates that while there
are some discrepancies between the Cy values obtained using the Clauser
chart method and those derived from with TRHM-PIV, these differences
are relatively small. The uncertainty of u, by the direct measurement is
estimated to be better than 1% with a confidence interval of 95%. This
uncertainty is estimated mainly by the convergence error of the mean profile
and the derivative (see Foucaut and Stanislas, 2002). The uncertainty by
Clauser chart is more difficult to evaluate and is assumed to be of the order
of 2%. This uncertainty contains a random part which is probably small
linked to the convergence error and a bias due to the method and the model
used. Thin lines plotted in Fig. 10 for the two cases at 9 m/s represent
a £5% bound on C} corresponding to about 2% on u, and 0.5% on U..
They show that the estimation of u, by the Clauser chart is in the good
range of uncertainties. Only for the angle of —8° the Clauser chart method
underestimates slightly the value of C'y and thus, of u, for the last station
corresponding z/L = 0.82. In Fig. 10 this underestimation seems to appear
for z/L > 0.6 and is probably linked to pressure gradient which may be begin
to be too strong (Monty et al., 2011).

This minor variance suggests that the Clauser chart method, despite its
theoretical limitations still provides results that are reasonably consistent
with those obtained from the direct TRHM-PIV approach. Specifically, for
mild to moderate adverse pressure gradients, the Clauser chart method re-
mains a viable and effective tool for estimating the friction velocity, even
though caution is advised for more severe pressure gradients where devia-
tions might become more pronounced.

The measured values of u, provide the evolution of the friction Reynolds
number Re, = ‘5% shown in Fig. 11. The Reynolds number seems relatively
constant along the ramps, particularly between z/L > 0.1 and z/L > 0.6.
A slight decrease can be observed for & = —8° when x/L > 0.6 which is
probably linked to the uncertainty of w, for this angle. The difference of
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direct measurement (dots) of the friction velocities at the stations near wall for « = —5°
and o = —8° and for the two inlet velocities.

Reynolds number between the two angles are relatively small for the same
inlet velocity and are of the order of 2100 and 3500 for Uy, = 5 m/s and
Usx, = 9 m/s, respectively. The uncertainty of this Reynolds number is
relatively high, estimated at about 5% (see error bars) because both ¢ and
u, are difficult to measure. Nevertheless, it is interesting to observe that
along the ramp ¢ increases while u, proportionally decreases, since their
product and thus, Re, is fairly constant within its range of uncertainty. This
suggests that this APG TBL is nearly in equilibrium, which is subsequently
explored.

3.3. Equilibrium of the adverse pressure gradient turbulent boundary layer

The study of turbulent flows is challenging due to the complex, non-linear,
and multi-scale nature of the flow phenomena. To simplify this complexity,
the concept of an “equilibrium turbulent layer” was introduced by Clauser
(1954). An equilibrium layer is characterized by the slow variation of non-
dimensional parameters, such as the shape factor H or skin friction coefficient
Cy, with distance from the origin. The self-preserving nature of the outer
regions allows for the adoption of reasonable assumptions that significantly
simplify the analysis. Clauser (1954) thus defined the non-dimensional pres-
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Figure 11: Evolution of the Reynolds number Re, versus the position along the ramp 7

sure gradient parameter:
0* OP
. (3)

pu? Oz

b=

For equilibrium boundary layers, 5 remains constant, and Clauser (1954)
expected that such layers exhibit dynamic similarity at all positions in both
mean and fluctuating velocity fields. A specific case of this is the zero pressure
gradient (ZPG) boundary layer, which aligns with Clauser’s definition of
equilibrium as % = 0 and therefore 5 = 0. Fig. 12 shows the evolution
of the Clauser pressure gradient parameter [ along the ramps in the APG
region. In the case of the —8° plate, we can observe that § is not constant
and only stabilizes at a value of about 3.5 for a small region of the ramp
between /L = 0.1 and 0.4. This could indicate that the flow is not fully
at equilibrium and therefore, the mean velocity cannot be scaled properly.
Nevertheless, the increases of § can be amplified by the underestimation of
u, discussed previously. In contrast, the value of 8 for the —5° plate seem to
be relatively constant with a value between 2 and 3 between x/L = 0.05 and
0.75m suggesting that the flow over the —5° ramp is in equilibrium. Clauser

(1954) gives another evaluation of the equilibrium based on the plot % =
G) where A = [ Y=Y dy = 6*U,./u, and G is an integral parameter:
0 u

T

G_/OOO (Ue—UTU(y))Qd(%) n

Figure 13 shows this evolution for the two angles and the two inlet veloci-
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ties. It is clear that GG shows the same linear evolution for both the velocities
but the slopes are different depending on the angle. The slope are 0.6 and
0.65 for —8° and —5°, respectively. The linear behavior is obtain for G larger
than 10 and 8 for —8° and —5°, respectively. These two values are obtained at
x/L = 0.15. The three points are the parameters studied by Clauser (1954).
The linear evolution of % = f(G) could demonstrate a sort of equilibrium.
In Fig. 13, the points correspond to the study of Clauser (1954) presented in
Fig. 12 of his paper.
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o0 o0 o0 o0
20" =
Q. 107 1

o
——
Pt
——

.....-...-...u-t““' -
s s a0

e o VT {4 s e s 8 8 B8 P S A T B 8 R e A

0 0.2 0.4 0.6 0.8 1
x/L

Figure 12: Evolution of the Clauser parameter 3 as a function of the ordinate normalized
by the length of the ramp /L.

Another pressure gradient parameter to determine if the flow is at equi-
librium was suggested by George and Castillo (1997):

0 e
pU2% d

~ constant, (5)

with George and Castillo (1997) defining the conditions for equilibrium as:

do 6 dU.
T d (6)

Because at equilibrium A is a constant the integration of Eq. (6) yields:

U, ~ 54 (7)
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Figure 13: Relationship A/6 = f(G) for equilibrium turbulent velocity profile following
Clauser (1954).

To obtain A we plot U, as a function of 4 in a log-log plot and then fit
the slope which yields an estimate for —A. A spline least square interpola-
tion improves the result of the fit. Fig. 14 shows that the pressure gradient
parameter A is not constant over the entirety of the plates. For both cases,
the pressure gradient parameter becomes constant starting from z/L = 0.1.
Based on this criterion the flow can be considered to be at equilibrium from
x/L =~ 0.1 to the end of the plate.

In conclusion, the criteria of Clauser (1954) and of George and Castillo
(1997) show that the flow reaches an equilibrium from z/L ~ 0.1. This
equilibrium is maintained up to x/L =~ 0.8 and 0.5 for « = —5° and —8°,
respectively following Clauser’s criterion but with an uncertainty due to the
measurement of u, in the case of —8°. The criterion of George and Castillo
(1997), which does not depend on w.,, shows that the equilibrium extends to
the end of the plate.

3.4. Shape factor H

The shape factor H is defined by the ratio of displacement and momentum
thickness: 5
H=— 8
- (5)
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Figure 14: Pressure gradient parameter A for a = —5° at Uy, = 5 m/s (a) and Uy, = 9
m/s (b) and for « = —8° at U, =5 m/s (c¢) and Uy, = 9 m/s (d). The red line hows the
region exhibiting the equilibrium range (A = constant).
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Figure 15: Evolution of the shape factor along the ramp for the two angles and the two
inlet velocities.
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Fig. 15 shows the evolution of the shape factor across the ramps. At the
beginning of the plate, close to the corner between the FPG region and the
APG region, we can observe significant changes in the value of the shape
factor meaning that the variations of the pressure gradient that could be ob-
served in Fig. 6 at the corner strongly impacts the near wall region. Moreover,
the shape factor along the ramp indicates that for both cases, the boundary
layer is far from separation as the expected value for flow separation would
be 2.7 according to the literature. In addition, we can observe that for the
same pressure gradient, the behaviour of the boundary layer thickness is very
similar for both Reynolds numbers in this region.

3.5. Influence of the pressure gradient on the momentum thickness

The previous study of the shape factor showed that the behaviour of
the boundary layer seemed to be heavily influenced by the pressure gradient
rather than the Reynolds number. In this part we will focus on the influence
of the pressure gradient on the momentum thickness to understand the in-
fluence the pressure gradient can have on the shape factor. We first start by
comparing the order of magnitude in the von Karman momentum integral
equation in Fig. 16 :

u? 00 6 oP
T =2 T (H+9)——
Uz oz pr( * )8513 )
5_%

the same order of magnitude than p%,g(H +2)28,

We can observe that is smaller than the two other terms and % is of

We can rewrite Eq. (9) as follows:

0 _Cp,,  H+2

£—2(+ HB) (10)

If we assume that %ﬂ >> 1 then we could write :

00 0
- 11
or L, (11)
where L, = T—P‘?JUq—im' If L, is independent of x the integration of Eq. (11)
ox
is trivial and gives an exponential evolution for 6.
LP

The evolution of = is shown on Fig. 17 as a function of 7 with L the

length of the ramp and Hr = 0.306 m the maximum high of the ramp at
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Figure 16: Comparison of the terms of the von Karman momentum integral equation for
the @ = —5° ramp at Uy, = 5 m/s.
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Figure 17: Evolution of % along the ramp for the two angles and the two inlet velocities.

x = 0. The values of % look similar for all experiments and seem relatively

constant approximately equal to 1 for 77 greater than about 2.
In our case we cannot simplify Eq. (10) and we have to integrate Eq. (9)

22



. 2 . .
by assuming % is independent of z.

u2 z
(9:—U—Z2Lp—|—KeLp (12)
The parameter L, is taken as its average along the plate between the min-
imum around 7 = 0.7 and the end of the plate x = L. We optimise the
value of the parameter K and the result of the model is shown on Fig. 18.

In this figure, #, normalized by the maximum height of the ramp Hr, is
plotted as a function of 7. We can then observe that this scaling seems to be
only slightly sensitive to the velocity and thus to the Reynolds number with
the pressure gradient appearing to have no influence. As the model given by
Eq. (12) does not depend on the pressure gradient, it is only shown for each
velocity at a single angle, to avoid overloading the figure.

We can then see that this model offers a good estimate of the momentum
thickness, even at the beginning of the plate where the flow is affected by
the corner between the FPG region and the APG region and where it should
not work. The value of the parameters can be found in Table 2. The opti-
mization seems to yield reasonable values and the ratio L—Lp is close to 1. This
comparison seems to validate the results of the optimization and therefore
the estimated value of K that appears to be relatively constant in our model
with a mean value around 0.013.

o o o o

Slope | a=—-5° | a=-5° | a=—-8 | a= -8
Uso 5m/s 9m/s 5m/s 9m/s
K 0.0153 0.0136 0.013 0.0117
L, 3.84 3.62 2.08 1.99

L,/L 1.1 1.04 0.95 0.91

Table 2: Results of optimisation

Fig. 19 shows the evolution of the Reynolds number Rey based on the
momentum thickness and the external velocity U,. Along x/L no observable
difference due to Reynolds number for the two ramp angles is found and
thus, for the two pressure gradient ranges. This result is interesting because
it suggests that the effects of Reynolds number and the pressure gradient are
decoupled and can be investigated separately.
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Figure 19: Evolution of the Reynolds number Rey versus the position along the ramp 7.

4. Analysis

Developing a universal scaling approach for adverse pressure gradient
boundary layers would provide significant advantages, allowing for the gener-
alization of experimental findings across different setups and flow conditions.
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A universal scaling would also facilitate the integration of diverse datasets,
enabling a deeper understanding of the complex interactions within APG
boundary layers and advancing our capacity to model and predict flow sep-
aration, drag, and other critical aerodynamic phenomena.

Following Clauser (1956), George and Castillo (1997), Zagarola and Smits
(1998) and Pirozzoli and Smits (2023), we assume that there is a universal
function F such as: U U

oUW pty (13)
Uo 0
where U(y) is the mean velocity profile as a function of the wall distance v,
U. is the velocity outside the boundary layer and uy and dy are appropriate
velocity and length scaling parameters, respectively, which are yet to be
determined.

According to Pirozzoli and Smits (2023) we then have the following rela-
tionships:

Ue(g* = U050X (14)

where 0* is the displacement thickness of the boundary layer and

\ = / wF(%)d(%»

U.6 = usdo(x = 1) (15)

where 6 is the momentum thickness and ¢ = [~ F*(£) d($)
Finally, combining these relationships yields:

5*
g=2 - __ X

0 X 10
and we can obtain:
v_H-10 -
X H
Then, Eq. (17) allows the computation of u, = Ue%% and Eq. (14) gives the
relationship between the scaling parameters ug and dy such that ¢, = 6*%%

For a universal scaling, y and v are constants and therefore we can en-

force arbitrarily their values to be 1 (Pirozzoli and Smits, 2023). The re-
sulting scaling parameters are then u, = Ue%% and 4, = 5*%% This

scaling is valid for a zero pressure gradient TBL (Pirozzoli and Smits, 2023),
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following its derivation there is no reason that it is not in the case of an APG
TBL. Maciel et al. (2018) propose a theory based on the same development.
However they include the value of the velocity at §/2 in the scaling parame-
ter which do not bring improvement as compare with the scaling of Pirozzoli
and Smits (2023).

According to Coles (1956), as far as the turbulent characteristics are
concerned, for the inner region of the ZPG TBL the scaling parameters are
the friction velocity u, and the kinematic viscosity v and for the outer region
u, and the boundary layer thickness § seems to be a good scaling set of
parameters. In the presence of an APG, Romero et al. (2022) propose the
inclusion of the pressure gradient in the velocity scale based on the near wall
RANS equation:

o] U p— y OP
—_ Iy — 2 _—— 18
v 9y uv' = ui + o (18)
where u/v/ is the Reynolds shear stress, p is the fluid density. As suggested by
Romero et al. (2022), the velocity scale can be taken as upy, = /u2 + %?9_5'

They used upy, with v/u, as inner scaling parameter. To characterize the
outer region, ¢ could be used as length scale coupled with wy,,. This scaling
is in agreement with Coles (1956) but does not present a x constant. For
this reason the new length scale 6y, = \/% is proposed which satisfies

YT, oz
Eq. (14). In the case of a zero pressure gradiegt the proposed scaling reduces
to the one of Clauser (1956) with A = Z=6* and u,.

Table 3 shows the different scaling parTameters from the literature (George
and Castillo, 1997; Clauser, 1956; Zagarola and Smits, 1998; Pirozzoli and
Smits, 2023 and Romero et al., 2022), to which the proposed scaling will be
compared. Table 3 gives also the expression of % which should be constant
following Pirozzoli and Smits (2023). Except the scaling of Romero et al.
(2022), all scaling gives x = 1.

Fig. 20 shows the evolution of % with /L only for Uy, = 9 m/s and
a = —8° for each set of scaling parameters following Eq. (17). For the scaling
of Romero et al. (2022) which varies with y the plot is done at y = /2. Only
the scaling of Pirozzoli and Smits (2023) is % constant and equal to 1. For
the other scaling this ratio increases with z. In the case of Clauser (1956),
the ratio % is equivalent to its parameter G with a value between 10 and 20
linearly increasing with x which is in agreement with the results presented
in Fig. 13.
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Figure 20: % versus the position along the ramp 7 for U, =9 m/s and o = —8°.

To be able to use the scaling of Romero et al. (2022), we need to be mind-
ful of the variations of %. The scaling velocity and length are quite sensitive
to small variations of the pressure gradient due to random measurement er-
ror. To minimize the error, the value of the measured pressure coefficient is
smoothed in the calculation of the pressure gradient.

For the last row of Table 3, the scaling length is a function of y. As a
result, the calculation leading to Eq. (14) needs to be confirmed. Eq. (19)
demonstrates that these conditions remain valid, particularly for higher val-
ues of £ 3:

U, —-U 1+ % Y 2
U.0* = U.5* = T (=) ~ Zugd, 19
/0 Ug 1+%5%ﬁ (50) 3u0 ox (19)

4.1. Mean velocity

Before comparing the datasets, we first analyze the different scaling pa-
rameters across the ramps to determine the most suitable scaling method.
Fig. 21, 22, 23 and 24 compare the different scaling parameters of Table 3
respectively for the —5° plate at U,, = 5m/s and 9 m/s and the —8° plate at
Usx = 5m/s and 9m/s. In this comparison, we focus on the flow relatively
far from the beginning of the ramp to evaluation and eventual stabilization,
based on the equilibrium analysis of the boundary layer. The comparison
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Scaling velocity Scaling length %
George and Castillo (1997) Ue 0" 2ol
Clauser (1956) Ur A= 1%5* %gj
Zagarola and Smits (1998) u, = U5 J %
Pirozzoli and Smits (2023) up = U A7 6n = 76" 1
R t al. (2022 = (Ju2 +L9P 5 Hol Ue
omero et al. ( ) Uhyb ui + 5o I \/@
P iti = 2 4 y0P | 5 _ _ Ued H-1 U,
roposition Uhyb uz + 59z | Ohyb \/u% tiap T \/u2 aap

Table 3: Different scaling parameters for TBL

starts at /L = 0.2 m up to /L = 0.9 m for the two plates, ensuring that
the flow has reached a region of equilibrium.

From these results we observe that all the scaling parameters behave
similarly. With increasing distance from the origin of the ramp up to about
x/L = 0.8 the individual curves approach each other and then begin to
diverge, probably because of increased variations of the pressure gradient
near the changes in slope. The George and Castillo (1997) and Clauser (1956)
scaling show one intersection of all the profiles. The Zagarola and Smits
(1998) and Pirozzoli and Smits (2023) scaling show two intersections of all
the profiles. The Romero et al. (2022) scaling does not show any intersection.
This is probably due to the fact that x is not constant. Nevertheless, it shows
the same phenomenon of stabilization on the profiles. The proposed new
scaling also shows an intersection which is more difficult to discern due to an
improved collapse of the profiles in comparison to the previously introduced
scalings.

In all cases, it is evident that no single scaling method is universally
applicable across the entire ramp. However, the evolution of scaling across
the ramps suggests that the further we move from the transition point at
the start of the plate, the more effective the scaling becomes. To verify this
hypothesis, we apply the scaling described by Pirozzoli and Smits (2023),

1

using a constant ratio of 4. We select a value of ¥ = 5 as this is where the

28



25 T ; T T
—x/L=0.2 —x/L=0.2

—x/L=0.3 20 —x/L = 0.3
Xx/L = 0.4 x/L = 0.4
xIL=05 S| 215 XL=05
x/L = 0.6 ST x/L = 0.6
x/L = 0.7 S 10 x/L =0.7

—x/L=0.8 50 —x/L=0.8

—x/L =0.9 —x/L =0.9

] 0 . = !
1 15 0 0.2 0.4 0.6 0.8 1 1.2
Yy
6/11/[)

Figure 21: Comparison of mean velocity scaling along the —5° ramp at 5 m/s. The scaling
parameters are from George and Castillo (1997) (a) , Clauser (1956) (b), Zagarola and
Smits (1998) (c), Pirozzoli and Smits (2023) (d), Romero et al. (2022) (e) and the present
proposition (f).

largest differences are observed in the previous profiles in panel (d) of Figs. 21,
22, 23 and 24. Fig. 25 illustrates the evolution of this ratio across the ramps
for all cases. For the —5° plate, the mean velocity scaling stabilizes between
x/L = 0.65 and 0.85, suggesting that the flow requires some distance along
the ramp to stabilize before a universal scaling can be applied. Additionally,
a perturbation near the end of the plate appears to disrupt the mean velocity
scaling around z/L = 0.85 from the start of the plate. In contrast, for the —8°
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Figure 22: Comparison of mean velocity scaling along the —5° ramp at 9 m/s. The
scaling parameters are from George and Castillo (1997) (a), Clauser (1956) (b), Zagarola
and Smits (1998) (c), Pirozzoli and Smits (2023) (d), Romero et al. (2022) (e) and the
present proposition (f).

plate, the mean velocity scaling does not reach a constant value, although
there is a slight plateau between z/L = 0.7 and 0.8, similar to the —5°
plate. This could indicate that the ramp used in the ONERA experiment
was too short for the flow to fully stabilize, as the end of the plate also
introduces disturbances. This suggests that while the flow may not fully
stabilize across shorter ramps, the outer region is less sensitive to these effects.
These observations support the hypothesis that, even in APG flows, universal
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Figure 23: Comparison of mean velocity scaling along the —8° ramp at 5 m/s. The scaling
parameters are from George and Castillo (1997) (a) , Clauser (1956) (b), Zagarola and
Smits (1998) (c), Pirozzoli and Smits (2023) (d), Romero et al. (2022) (e) and the present
proposition (f).

~—

scaling in the outer region can be achieved, similar to what is observed in
zero pressure gradient (ZPG) flows.

To compare the two experiments, we will focus on the latter part of
each plate, where the scaling appears to be most effective. We examine
the scaling approaches introduced by Zagarola and Smits (1998), Pirozzoli
and Smits (2023), Romero et al. (2022), and the present proposition, as
these methods appear to be the most effective across the ramp. Fig. 26
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Figure 24: Comparison of mean velocity scaling along the —8° ramp at 9 m/s. The scaling
parameters are from George and Castillo (1997) (a) , Clauser (1956) (b), Zagarola and
Smits (1998) (c), Pirozzoli and Smits (2023) (d), Romero et al. (2022) (e) and the present
proposition (f).
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compares these different mean velocity scaling methods for both pressure
gradients obtained for the two angles and two Reynolds numbers obtained
by the two inlet velocities as can be seen in Fig. 19. The various scaling
parameters prove to be highly effective in the outer region, independent of
both Reynolds number and pressure gradient. This suggests that, while
universal scaling across the entire ramp remains elusive, the outer region
of the boundary layer exhibits a degree of robustness to changes in flow
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Figure 25: Pirozzoli scaling across the ramps at ¥ = %

conditions. Nevertheless the present proposition seems to give a very good set
of scaling parameters for the cases proposed here. The similarity in behaviour
across different Reynolds numbers and pressure gradients aligns with the self-
preserving nature of the outer layers, as initially proposed by Clauser (1954)
for equilibrium turbulent layers. In both, the —5° and —8° ramp cases, the
scaling becomes more reliable as we move further downstream, indicating that
once the boundary layer has had time to stabilize, the influence of upstream
disturbances diminishes.

4.2. Reynolds stresses

The scaling of Reynolds stresses is crucial to understand the turbulent
structure of the boundary layer, particularly in APG flows. Unlike mean ve-
locity profiles, Reynolds stresses capture the fluctuating components of the
flow, providing insights into turbulence intensity and momentum transport
across the boundary layer. Effective scaling of these stresses allows for a
unified representation across different flow conditions, helping to reduce the
complexity introduced by variations in Reynolds number and pressure gradi-
ent. The intensification of large-scale structures due to the pressure gradient
is well demonstrated in the work of Harun et al. (2013) and Sanmiguel Vila
et al. (2017). Consequently, it plays an important role in Reynolds stress pro-
files. By applying consistent scaling methods, such as the scaling of Romero
et al. (2022) which was designed for the Reynolds shear stress or our modified
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Figure 26: Comparison of mean velocity scaling for the two different Reynolds numbers
and the two angles around x/L = 0.75. The scaling parameters are from Zagarola and
Smits (1998) (a), Pirozzoli and Smits (2023) (b), Romero et al. (2022) (c) and the present
proposition (d).
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approach, we can more accurately compare turbulent behavior in diverse flow
scenarios. Wei and Knopp (2023) propose a scaling based on the point of
maximum Reynolds stress, showing good consistency in the non-equilibrium
regime.

4.2.1. Inner scaling

First, Fig. 28 (a) and Fig. 28 (b) show the Reynolds shear stress along the
ramp in inner scaling using u, and v for the same inlet velocity U, = 5m/s
and thus, the same Reynolds number and for the two angles which create two
different pressure gradients. The minimum value of these profiles increases
with the position along the ramp due to the increase of the pressure gradient.
As seen in Eq. (18), far from the wall the shear stress is given by

(20)
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which is also plotted in dashed line in Fig. 28 (a) and (b) for the pressure
gradient of /L = 0.9. This profile is slightly under the corresponding PIV
profile showing that the convection terms neglected close to the wall is not
negligible. Following Romero et al. (2022), Fig. 28 (¢) and (d) show the same
Reynolds shear stress along the ramp but the velocity is normalized by
defined in Table 3 which take into account the pressure gradient effect in the
scaling. Designed to be efficient in the inner region, this scaling normalizes
the profiles very well for y* < 300 around 0.2 < z/L < 0.8. Nevertheless, in
Fig. 28 (¢) and (d) we can observe more dispersion than for the mean velocity
profiles in Fig. 9.

The dispersion can be due to a lack of convergence (the convergence error
is of the order of 2% for the Reynolds stress) or to a filtering effect which varies
along z given the fact that u, decreases while the structure scales increase
along the ramp. To illustrate this last effect Fig. 27 shows a comparison of the
Reynolds stress profiles obtained by low and high magnification experiments
at the two furthest downstream stations for the same inlet velocity 5 m/s and
the same angle o = —8°. A slight filtering can be observed below y* = 80
which amounts to less than 4% of the boundary layer thickness and should
not affect the results concerning the outer layer described in the following.

[-~x/L =055 A, = 30—x/L = 0.55 A, = 43—x/L = 0.82 A, = 24— -x/L = 0.55 A, = 3.6

_5 L R S R R | L PRSI S| L R S R R | L P T SR R
10° 10t 102 10° 10*

Figure 27: Profiles of Reynolds shear stress (u/v') at 5 m/s along the ramp at £ = 0.55
and ¥ = 0.82 obtained by low and high magnifications.
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Figure 28: Profiles of Reynolds shear stress (u/v’) along the ramp at 5 m/s. The scaling
parameters are the inner one for a = —5° (a) and for « = —8° (b), and the one of Romero
et al. (2022) for & = —5° (c) and for o = —8° (d).

4.2.2. Quter scaling

In addition to mean velocity profiles, the same outer scaling parameters
as in Figs. 21, 22, 23 and 24 can be applied to the Reynolds stresses to
examine their ability to capture turbulent fluctuations. This approach allows
for a unified comparison of turbulence intensity across different Reynolds
numbers and pressure gradients. Using consistent scaling across both the
mean velocity and Reynolds stresses provides a comprehensive framework to
study the turbulent structure in boundary layers, particularly in the context
of adverse pressure gradients. Fig. 29 shows the evolution of the Reynolds
shear stress scaled using the parameters of Table 3 on the —5° plate at
U, =5 m/s.

As expected, the scaling (i.e. Fig. 29 (e)) introduced by Romero et al.
(2022), along with our new proposition (i.e. Fig. 29 (f)) that is heavily in-
spired by this work, proves to be the most effective for scaling the Reynolds
shear stress. The scaling velocity us, is based on balancing stress terms by
combining the wall-shear-stress velocity with a pressure-stress-based veloc-
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Figure 29: Different scaling of Reynolds shear stress (u/v’) along the ramp for —5° at 5
m/s. The scaling parameters are from George and Castillo (1997) (a) , Clauser (1956) (b),
Zagarola and Smits (1998) (c), Pirozzoli and Smits (2023) (d), Romero et al. (2022) (e)
and the present proposition (f).

ity. In contrast, the other scaling parameters provide less accurate repre-
sentations of the Reynolds shear stress and therefore their results will not
be further presented. Nevertheless, we can observe that most of the scaling
parameters are more efficient around z/L = 0.75 as observed on the mean
velocity profiles.

Fig. 30 compares the scaling parameters of Romero et al. (2022) (left) and
our new scaling parameters (right) for the —5° plate at 5 m/s. It shows the

37



profiles of Reynolds stress v/u’ (i.e. Fig. 30 (a) & (b)), v/v’ (i.e. Fig. 30 (c) &
(d)) and w/'v" (i.e. Fig. 30 (e) & (f)). Like the scaling of the mean velocity,
these scaling methods appear to work effectively across the plate for 0.2 <
x/L < 0.9, with an observable stabilization phenomena as seen before for
x/L of the order of 0.75. Our scaling approach shows a slight improvement
over Romero’s, particularly in the scaling of w/? and v"2.

Fig. 31 illustrates the Reynolds stress scaling for both plates at both
speeds as for the mean velocity in Fig. 26. It shows the profiles of Reynolds
stress w/'v/ (i.e. Fig. 31(a) & (b)), v'v/ (i.e. Fig. 31(c) & (d)) and u'v’ (i.e.
Fig. 31 (e) & (f)) with the scaling parameters of Romero et al. (2022) (left)
and the proposed new scaling parameters (right). We can observe that the
two scaling methods groups the curves of each ramp angle and thus eliminates
the dependency on the Reynolds number with a little more efficiency for the
new scaling. Nevertheless, it does not fully eliminate the influence of the
pressure gradient, as the results still show two distinct groups corresponding
to the different angles. This could be due to a strong difference in the range
of B which cannot be compensated by the scaling or due to a small difference
of the history of the flow that could be observed in Fig. 8 when the angles
vary.

5. Conclusions

This study presents an in-depth comparison of two experimental data
sets to explore the scaling of turbulent boundary layers under the effect of
an adverse pressure gradient. By studying the flow over inclined plates at
—5% and —8°, we sought to characterize the impact of pressure gradients
on turbulence structure and mean flow behaviour. The database described
in Cuvier et al. (2017) for an APG TBL developing on a flat plate at an
angle of —5° is supplemented here by a series of new experiments for an
APG TBL developing on a flat plate at an increased angle of —8° using the
same upstream flow conditions with essentially the same flow history. Both
experiments used advanced PIV techniques to collect high-resolution two-
component velocity data, particularly in the outer region of the boundary
layer, where traditional turbulence models often struggle to prevail.

The results indicate that, although no scaling approach is universally
applicable to the enitre extent of the ramp, significant progress has been made
in identifying scaling parameters that are more effective in capturing the
flow behaviour, particularly further downstream where the flow is essentially
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Figure 30: Comparing different scaling of Reynolds stresses (u/u’) (a) and (b), (v/v) (c)
and (d), (w'v’) (e) and (f) along the ramp for —5° at 5 m/s. The scaling parameters are
from Romero et al. (2022) (a), (c) and (e) and the present proposition (b), (d) and (f).

fully developed for the specific APG environment. The theoretical approach
proposed by Pirozzoli and Smits (2023) and the scaling laws introduced by
Romero et al. (2022) appear to give satisfactory results with regard to the
mean velocity profile in the outer region. The modifications proposed in this
work, based on these two approaches, proved particularly effective in scaling
the mean velocity including the Reynolds shear stress. This reinforces the
need for a refined approach to modeling turbulence in APG regions, which
are critical in many industrial applications.

Moreover, the analysis of Reynolds stresses by comparison of the two
experiments revealed the persistence of pressure gradient effects, even after
reducing the Reynolds number dependency (see Fig. 31). The experimen-
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Figure 31: Comparison of different scaling of Reynolds stress (v/u’) (a) and (b), (v'v/)
(c) and (d), (u'v) (e) and (f) for the two different Reynolds numbers and the two angles
around x/L = 0.75. The scaling parameters are from Romero et al. (2022) (a), (¢) and
(e) and the present proposition (b), (d) and (f).

tal findings highlight the importance of a continued refinement of scaling
laws for APG flows thereby contributing to a better understanding of turbu-
lence in decelerating boundary layers. The data gathered in this study offers
a valuable resource for future numerical simulations and model validation,
addressing key gaps in the physical understanding of APG turbulence and
helping to improve predictive capabilities in complex industrial flows.

In conclusion, this work provides a comprehensive experimental dataset
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and insights into the challenges of scaling turbulent boundary layers under
APG environments, offering a robust test case for advancing turbulence mod-
els and their predictive accuracy.

Supplementary material

The database is available upon request by contacting C. Cuvier (christophe.cuvier@centralelille.f
or J.M. Foucaut (jean-marc.foucaut@centralelille.fr).
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