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Abstract
This paper is a collaborative effort that originated at the International Space Science Insti-
tute Workshop on “Physical links between Weather and Climate in Space and the Lower 
Atmosphere” held 22–26 January 2024. Many scientists attended that workshop and con-
tributed their expertise related to polar vortex impacts on upper atmosphere variability. 
This paper summarizes well-known and newly reported signatures of polar vortex weaken-
ing on mesosphere–lower-thermosphere (MLT) temperature, winds, composition, planetary 
waves, gravity waves, tides, and ionospheric foF2. A variety of observational and modeling 
results are shown and are consistent with previously published variations in the dynami-
cal and chemical state of the MLT and ionosphere during weak vortex events. We present 
Superposed Epoch Analysis (SEA) of upper atmosphere diagnostics and phenomena where 
day 0 is the onset of major SSWs. We also present SEAs where day 0 is the onset of strato-
pause warmings followed by elevated stratopause events. Our goal in performing two SEAs 
is to test the sensitivity of 10 hPa versus 1 hPa winds to predict upper atmosphere variabil-
ity. Results suggest that zonal winds and the semidiurnal migrating solar tide (SW2) in the 
MLT are more sensitive to zonal wind reversals at 1 hPa rather than 10 hPa. Alternatively, 
the non-migrating DW2 tide in the equatorial upper mesosphere is best predicted by plan-
etary wave-1 amplitudes in the winter high-latitude upper stratosphere rather than zonal 
wind reversals. A notable aspect of both SEAs is extremely large event-to-event variability 
in all diagnostics. Thus, conclusions drawn based on any one event are less robust than 
those based on many events.

Keywords  Polar vortex · Sudden stratospheric warming · Planetary wave · Gravity wave · 
Atmospheric tide · Atmospheric coupling

Article Highlights

•	 This paper summarizes upper atmosphere responses to polar vortex weakening
•	 Superposed Epoch Analyses are performed for 10 hPa and 1 hPa zonal wind reversals, 

testing their predictive skill for upper atmosphere variations
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•	 Zonal winds and semidiurnal migrating tides in the lower thermosphere appear to be 
more strongly linked to zonal wind reversals at 1 hPa than at 10 hPa

•	 There is significant event-to-event variability in upper atmosphere responses to vortex 
weakening, underscoring the need for multi-event analyses to draw robust conclusions

1  Introduction

The polar vortex forms in the winter stratosphere and mesosphere as a result of reduced 
solar insolation and less diabatic heating due to the absorption of UV radiation by ozone 
(Schoeberl et al. 1992). These conditions create a cold polar stratosphere and, through the 
thermal wind relationship, generate a west-to-east jet stream in mid-latitudes, which sur-
rounds the cold air at high latitudes. During winter, the polar vortex serves as a vertical 
coupling agent in the atmosphere, connecting the upper atmosphere to the middle atmos-
phere from the top down via descending nitrogen oxides from the mesosphere and lower 
thermosphere (MLT) to the stratosphere (e.g., Randall et al. 2009). Moreover, the vortex 
connects the state of the stratosphere to lower altitudes through the downward transmission 
of stratospheric circulation anomalies into the troposphere (Baldwin and Dunkerton 2001). 
The polar vortex also connects the atmosphere–ionosphere system from the bottom up, 
influenced by planetary wave (PW)–mean flow interactions (Andrews 1985), PW effects 
on atmospheric tides (e.g., Forbes 1995; Goncharenko et al. 2010), and the generation and 
modulation of gravity waves (GWs) (e.g., Sato and Yoshiki 2008; Becker and Vadas 2018; 
Becker et al. 2022a; Vadas et al. 2024a, b). The polar vortex extends into the mesosphere 
(Harvey et  al. 2018), but, unfortunately, most coarse (~ 2°) global models exhibit large 
zonal mean zonal wind biases in the polar winter upper mesosphere (Harvey et al. 2022a) 
that preclude its accurate representation in the upper mesosphere. Harvey et  al. (2022b) 
argue that this model deficiency must be remedied to enable accurate forecasts of the iono-
sphere and space weather.

When wintertime quasi-stationary planetary Rossby waves forced in the troposphere 
(hereafter: quasi-stationary PWs) are weak, the stratospheric part of the polar vortex is 
nearly radiatively driven and thus is nearly zonally symmetric and pole centered. Quasi-
stationary PWs and GWs are key drivers of the middle atmosphere’s residual circulation, 
which results in a temperature structure that deviates from radiative equilibrium (Holton 
1983). Since GWs deposit momentum where they dissipate, westward momentum forcing 
associated with GW dissipation, reaching tens of m/s/day, drives the mesospheric branch 
of the residual circulation in the winter hemisphere. The so-induced downwelling in the 
mesosphere over the polar region leads to adiabatic heating and thereby a "separated" polar 
winter stratopause (Hitchman et al. 1989) within the polar vortex core (Duck et al. 1998), a 
feature that would not occur in the polar night in the absence of westward wave driving in 
the mesosphere. Conversely, GW-driven ascent in the summer mesosphere results in tem-
peratures at the summer mesopause that are the coldest on the planet (Lindzen 1981).

Sudden Stratospheric Warmings (SSWs) are extreme disruptions to the polar vortex 
driven by upward propagating quasi-stationary PWs forced in the troposphere and are asso-
ciated with rapid warming of the polar stratosphere (Matsuno 1970; see also review by 
Baldwin et al. 2021 and references therein). During SSWs, the polar stratosphere can warm 
by tens of degrees Kelvin in a few days and the climatological westerly zonal winds in 
mid-latitudes weaken or reverse direction in response to the warming. These zonal wind 
changes result in a strong reduction or even a slight reversal of the westward GW drag in 
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the upper mesosphere (orographic and non-orographic), which acts to weaken the mes-
ospheric branch of the residual circulation and leads to cooling in the polar upper meso-
sphere (e.g., Siskind et al. 2010). Indeed, mesospheric cooling during SSWs has long been 
observed (e.g., Quiroz 1969; Labitzke 1972) and simulated in models (e.g., Cho et al. 2004; 
Liu and Roble 2002). Siskind et al. (2010) go on to describe the sequence of events during 
prolonged SSWs. In response to mesospheric cooling, a strong westerly mesospheric polar 
vortex forms, which allows westward-propagating non-orographic GWs to reach the upper 
mesosphere. During this SSW recovery phase, the westward GW drag from these GWs 
drives strong westward accelerations and polar descent that results in the transport of trace 
gases from the MLT to the stratosphere (e.g., Orsolini et al. 2017 and references therein) 
and adiabatic heating that can form an “elevated stratopause” (ES) (Manney et al. 2008; 
Manney et al. 2009).

During SSWs, changes in the zonal winds in the stratosphere give rise to changes in the 
propagation of PWs, GWs, and tides that are communicated upward into the mesosphere, 
thermosphere, and ionosphere. Fast traveling PWs are enhanced during SSWs and propa-
gate up into the thermosphere where they modulate the winds, solar and lunar tides, and 
neutral densities (e.g., McLandress et al. 2006; Yue et al. 2021). The westward Eliassen-
Palm flux divergence from strongly enhanced quasi-stationary PWs during SSWs drives 
anomalous upwelling and cooling at low latitudes (Yulaeva et al. 1994) that enhances trop-
ical stratospheric ozone (Randel 1993) which, in turn, contributes to the amplification of 
the migrating semidiurnal tide (SW2) in the winter MLT (e.g., Limpasuvan et  al. 2016; 
Siddiqui et al. 2019). Enhancements to SW2 and the migrating semidiurnal lunar tide (M2) 
are known to influence the dynamo generation of electric fields in the E-region (e.g., Peda-
tella et al. 2014). While quasi-stationary PWs are enhanced during SSWs, it is well known 
that stratospheric and mesospheric GW activity is drastically reduced (e.g., Harvey et al. 
2023 and references therein). Thus, it is not surprising that Frissell et al. (2016) determined 
medium-scale traveling ionospheric disturbances (believed to be driven, in part, by GWs) 
to also be reduced during SSWs.

Pedatella et al. (2018b) discuss how the state of the polar vortex has far-reaching effects, 
from impacts on surface weather (Kidston et al. 2015), to variations in polar mesospheric 
clouds at the summer polar mesopause (Karlsson et al. 2009; Smith et al. 2020; Lieberman 
et al. 2021), perturbations in temperature that extend pole to pole and from the stratosphere 
to the thermosphere (Miyoshi et al. 2015; Randel 1993; Limpasuvan et al. 2016; Karlsson 
& Becker 2016), anomalous global circulation patterns in the mesosphere and lower ther-
mosphere (Laskar et al. 2019; Miyoshi et al. 2015), altered stratosphere/mesosphere com-
position (e.g., Randall et  al. 2009; Tweedy et  al. 2013), and thermospheric composition 
(Oberheide et al. 2020), changes in thermospheric density (Stober et al. 2012; Yamazaki 
et al. 2015), and variations in ionospheric parameters (e.g., Chau et al. 2012; Goncharenko 
et al. 2010, 2021a). And while this list is long, it is not exhaustive. Anomalies of oppo-
site sign appear when the polar vortex is anomalously strong (Pedatella and Harvey 2022), 
though this is beyond the scope of this work.

This paper employs superposed epoch analysis (SEA) of multiple weak vortex events 
to summarize known variability in MLT temperatures, neutral winds, composition, PWs, 
GWs, tides, and newly reported variations in ionospheric foF2. We organize a variety of 
observations into the SEAs, namely, ground-based IR spectrometers and microwave radi-
ometers, SuperDARN and meteor radars (MRs), MLS, SABER, MIPAS, and COSMIC-2 
satellite data, and ionosondes. We also include whole atmosphere model results from the 
Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension 
(WACCMX), the Navy Operational Global Atmospheric Prediction System (NOGAPS) 
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Advanced Level Physics High Altitude (ALPHA), and the Upper Atmosphere ICosahe-
dral Nonhydrostatic (UA-ICON) model. The outline of the paper is as follows. Section 2 
describes how we categorized the data with respect to either major SSW onset date or the 
onset of stratopause warmings followed by ES events. Sections 3–8 present analysis of the 
following diagnostics with respect to disturbance onset date: (3) MLT temperature, (4) 
stratosphere/mesosphere composition, (5) GWs, (6) neutral horizontal wind and PWs, (7) 
tides, and (8) F-region SW2 and foF2 variability. Section 9 discusses how the polar vor-
tex, SSWs, and vertical coupling may change in future climate scenarios. Conclusions are 
given in Sect. 10.

2 � SSW Classification and SEA Analysis

To quantify SSW-induced variability in the atmosphere–ionosphere system, one must first 
objectively define SSW onset date. For decades, “major” and “minor” SSW definitions 
involve the reversal of zonal mean zonal winds at 60°N and 10 hPa and reversed tempera-
ture gradients from 60° to 90°N at 10 hPa, respectively (e.g., McInturff 1978; Butler et al. 
2017; Harvey et  al. 2022a). However, SSW definitions have changed over the years and 
remain somewhat ambiguous in their implementation (Butler et  al. 2015). For example, 
Baldwin and Dunkerton (2001) presented compelling results of composite strong and weak 
“extreme stratospheric events” and their impact on tropospheric weather based on North-
ern Annular Mode index values. Charlton and Polvani (2007) classified SSWs based on the 
shape and structure of the polar vortex rather than binary zonal wind and temperature gra-
dient diagnostics. Yet others have found it useful to define disturbances to the polar vortex 
near the stratopause (~ 50 km) rather than at 10 hPa (~ 30 km) (e.g., Tweedy et al. 2013; 
Stray et al. 2015; Limpasuvan et al. 2016).

In this work, we define major SSWs to occur when the zonal mean zonal winds at 60°N 
and 10 hPa reverse in the Modern Era Retrospective analysis for Research and Applica-
tions version 2 (MERRA-2, Bosilovich et al. 2015; Molod et al. 2015; Gelaro et al. 2017). 
Sixteen major SSWs were identified from 1998 to 2024. Dates from 1998 to 2019 match 
those presented in Butler et al. (2017) and Harvey et al. (2022a). We define “stratopause 
warmings” followed by ES events to occur using the three selection criteria presented in 
Stray et  al. (2015). Namely, when there is (1) mesospheric cooling (MLS T < 185  K at 
80  km), (2) a reversal of MERRA-2 zonal mean zonal winds at 1  hPa that persists for 
5 days or more, and (3) the polar cap average stratopause altitude jumps over 10 km in the 
vertical (see also Tweedy et al. 2013). While Stray et al. required zonal winds to reverse for 
only 4 days, we require 5 days to match major SSW criteria. This selection criteria identi-
fied 15 such events from 1995 to 2024. Dates from 1995 to 2013 match those presented 
in Limpasuvan et al. (2016). Table 1 gives onset dates of major SSWs (left column) and 
“stratopause warmings” followed by ES events (middle column) since 1995 that are used 
in this work. There are 9 events where major SSWs and stratopause warmings followed 
by ES’s occur in conjunction. In these cases, stratopause warming onset occurs from 0 to 
18 days before SSW onset. This lag is expected given the known downward propagation of 
circulation anomalies (e.g., Baldwin and Dunkerton 2001). There are 6 stratopause warm-
ing/ES events that do not have a corresponding major SSW. These cases highlight that the 
SSW definition does not capture disturbances to the vortex that are confined to the upper 
stratosphere and lower mesosphere. Likewise, there are 7 SSWs without an associated 
stratopause warming/ES. In these cases, the vortex disturbance was confined to the lower 
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stratosphere and either the zonal winds did not reverse at the stratopause or an ES did not 
form. The right column indicates that, during the 20-year period considered in this paper, 
SABER, MLS, and MIPAS observed 13, 11, and 7 major SSWs and 8, 7, and 5 stratopause 
warmings with ESs, respectively.

We then performed two Superposed Epoch Analysis (SEA), centered on either major 
SSW onset or the onset of stratopause warmings followed by ESs. Our motivation for per-
forming two SEAs is to determine the sensitivity of disturbance altitude on SSW-induced 
variability in the MLTI. We performed the SEAs on a variety of observed and modeled 
diagnostics in the MLTI and present those results next.

3 � Temperature Variations in the Stratosphere–Mesosphere–Lower 
Thermosphere (SMLT)

First, we show SEAs in upper mesospheric temperature as observed by ground-based air-
glow spectrometers that are part of the Network for the Detection of Mesospheric Change 
(NDMC, https://​ndmc.​dlr.​de). The instruments receive radiation that is emitted by rota-
tionally and vibrationally excited hydroxyl (OH*) molecules that form a layer typically 
at 85–87  km with a full width at half maximum of 5–7  km (annual averages, for more 

Table 1   Onset dates of major 
SSWs (left column), stratopause 
warmings followed by ES events 
(middle column), and events 
observed by SABER, MLS, and 
MIPAS (right column)

S = Sounding of the Atmosphere using Broadband Emission Radiome-
try (SABER); MLS = Microwave Limb Sounder; Ml PAS = Michel son 
Interferometer for Passive Atmospheric Sounding

Major SSW onset U < 0 @ 1 hPa and ES Satellite observations

24 Jan 1995
19 Dec 1997

15 Dec 1998 13 Dec 1998
26 Feb 1999 22 Feb 1999

10 Dec 2000
11 Feb 2001 29 Jan 2001

22 Dec 2001
18 Jan 2003 S, MIPAS

19 Dec 2003 S, MIPAS
7 Jan 2004 S, MIPAS
21 Jan 2006 8 Jan 2006 S, MLS, MIPAS
24 Feb 2007 S, MLS, MIPAS
22 Feb 2008 S, MLS, MIPAS
24 Jan 2009 21 Jan 2009 S, MLS, MIPAS
9 Feb 2010 22 Jan 2010 S, MLS, MIPAS

13 Jan 2012 S, MLS, MIPAS
7 Jan 2013 5 Jan 2013 S, MLS
12 Feb 2018 12 Feb 2018 S, MLS
2 Jan 2019 1 Jan 2019 S, MLS
5 Jan 2021 S, MLS
16 Feb 2023 S, MLS
16 Jan 2024 S, MLS

https://ndmc.dlr.de
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details concerning latitudinal and longitudinal dependence seeWüst et  al. (2017, 2020). 
The received signal is therefore an average over the OH layer. An overview of OH airglow 
observations for investigating atmospheric dynamics including basics on the formation of 
the OH layer and the temperature retrieval from OH airglow measurements can be found in 
Wüst et al. (2023).

We start by looking at upper mesospheric OH temperatures at a high northern latitude 
site. Kjell Henriksen Observatory in Svalbard (78.2°N, 16°E), Norway hosts an Ebert-
Fastie spectrometer, which has been operational since the early 1980s (Herlingshaw et al. 
2025; Sigernes et  al. 2003). These spectral measurements are performed throughout the 
dark winter season, which extends from the beginning of November until the end of Febru-
ary and covers most events listed in Table 1. The spectrometer scans the full spectrum of 
the OH (6–2) vibrational band from 830 to 879 nm in 25 s. These spectra are then averaged 
into 1 h and 1-day resolutions to enhance the signal-to-noise ratio. The averaged spectra 
are then used to estimate the neutral or kinetic temperature at the height of the OH air-
glow layer. The temperature estimation assumes that the rotational states of OH are in local 
thermodynamic equilibrium, giving rise to fine structure in the infrared emissions from 
the relaxation of the vibrational states of OH*. This fine structure can be used to infer the 
temperature. Ratios of individual emission line intensities of the OH (6–2) band are fit to 
a temperature-dependent synthetic spectrum, which outputs the temperature for the best fit 
(Sigernes et al. 2003). For selecting good fits for further analysis, we follow the procedures 
described by Holmen et al. (2014) and Enengl et al. (2021).

Since the polar winter upper mesosphere experiences large dynamical variations, much 
of the measured temperature variability is due to horizontal advection and adiabatic heat-
ing and cooling induced by waves as the airglow layer is advected upward and downward 
(e.g., Dyrland et al. 2010). Here, we use the daily averaged airglow temperatures to study 
mesopause dynamics associated with the major SSWs (10 hPa zonal wind reversals) and 
1 hPa wind reversal events followed by an ES. We present SEAs to analyze the upper mes-
ospheric temperature behavior with the zero epoch placed at SSW onset (Fig. 1, left panel) 
or at the onset of the easterly winds at 1 hPa (Fig. 1, right panel), both with the epoch time 
of ± 20 days. Individual events included in both cases are dictated by data availability. We 
first examined each event individually to only include the cases where the data coverage is 
sufficient to describe the mesopause temperature evolution around day 0. In addition to the 

Fig. 1   Timeseries of daily mean OH temperature at Svalbard (78.2°N, 16°E) at 87 km centered on onset 
dates of (left) major SSWs from 2004–2023 and (right) 1 hPa zonal wind reversals followed by ES events 
from 1997–2019. Thick black lines are multi-event averages. Vertical lines indicate 1 standard deviation in 
the raw data (which are not available for the first 4 events in the right plot)
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daily average temperature values, we include the standard deviation (STD) of the tempera-
ture over the averaged time period (one day). These STD values are displayed as vertical 
bars in Fig. 1.

The temperature time evolution over the investigated epoch periods shows large vari-
ability (up to about 20 K), which stems from the dynamically active conditions in the win-
ter polar mesosphere. This is true within the individual events as well as for event-to-event 
variability. In both SEAs, coherent behavior is observed during the 20-day period after 
onset when all events except 2021 show a gradual warming of 20–30  K. This warming 
trend is not a seasonal variation since cooling is expected at this altitude moving from win-
ter into spring. This warming trend after the SSW is likely due to enhanced GW-driven 
descent in the polar winter upper mesosphere as a result of primary westward GWs propa-
gating to the upper mesosphere when a strong polar vortex is re-established after the SSW 
(e.g., Orsolini et al. 2017).

Next, we show SSW-induced upper mesospheric temperature variability at five NDMC 
sites that span 38–69°N latitude (Fig. 2). Identical infrared spectrometers, in this case fol-
lowing a Czerny-Turner setup and called GRIPS (GRound based Infrared P-branch Spec-
trometer, Schmidt et  al. (2013)), are used for this purpose. These airglow observations 
have been available since mid-2009, thus cover up to 7 SSWs, but most sites were put into 
operation in later years. At the Arctic Lidar Observatory for Middle Atmosphere Research 
(ALOMAR/ALR: 69.3°N, 16°E), the only high-latitude site, only the 2013 SSW was 
observed. The measurements at the Environmental Research Station Schneefernerhaus, 
Germany (UFS: 47.4°N, 11°E), are available for the years 2009–2023, at Wuppertal, Ger-
many (WUP: 51.3°E, 7.2°E), 2015–2023, at the Observatoire de Haute-Provence, France 
(OHP: 43.9°N, 5.7°E), 2012–2023, at Catania, Italy (CAT: 37.5°N, 15.0°E), 2011–2023. 
GRIPS measures radiation in the range of 1.5–1.6 μm, and neutral or kinetic temperature 
is retrieved following the same physical principals as described above but using different 
mathematics and the OH(3–1) vibrational band. Temperature values are available every 
10–15 s under cloudless and dark conditions. Compared to high latitudes, measurements at 
mid-latitudes are, in principle, available year-round. The representativeness of the nightly 
mean values used for this study is investigated in Schmidt et al. (2023).

Figure 2 shows the development of upper mesospheric temperatures ± 40 days around 
the onset of recent major SSWs at the 5 sites given above that form a chain from Norway to 
Italy. The panels are organized from top to bottom in descending latitude order. The evolu-
tion of ~ 87 km temperature at ALR (69°N) displays a general warming trend following the 
2013 SSW that is likely a signature of enhanced polar mesospheric descent, as was seen at 
Svalbard. Temperature timeseries at mid-latitude sites generally show a cooling trend in 
the month following SSW onset and the magnitude of this cooling increases equatorward. 
Some of this cooling trend may be seasonal variability, especially for years with mid-Feb-
ruary SSWs (2010, 2018, 2023). However, this cooling is also consistent with the known 
out-of-phase temperature changes in low to mid-latitudes compared to high latitudes dur-
ing an SSW (Randel 1993, see their Fig. 8; Limpasuvan et al. 2016, see their Fig. 7). The 
anomalous temperature patterns are driven by anomalous meridional circulation cells illus-
trated by Miyoshi et al. (2015, see their Fig. 6).

Next, we show SEAs for major SSWs and stratopause warmings followed by ESs in 
polar cap average MLS temperatures. The MLS data record spans August 2004 to the pre-
sent and provides ~ 3500 vertical profiles each day that cover the globe (Waters et al. 2006). 
In this paper we use the most recent version 5 temperature, carbon monoxide (CO), and 
geopotential height (GPH) data throughout the stratosphere and mesosphere (Livesey et al. 
2020). The version 5 temperatures are similar to previous versions (Livesey et al. 2020); 
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the version 2.2 products are described by Schwartz et al. (2008). From 10 to 0.001 hPa, 
MLS temperature profiles have a vertical resolution of 4–12 km and an accuracy of 1–3 K 
(Livesey et  al. 2020). Estimates of precision (and accuracy) for individual GPH profiles 
range from 45 m (+ 100 m) at 1 hPa to 110 m (450 m) at 0.001 hPa (Livesey et al. 2020). 
CO is retrieved from radiances detected in the 240 GHz band and is described by Pum-
phrey et al. (2007) and Livesey et al. (2008). In the mesosphere, the vertical resolution of 
the CO data is 5–7 km and Livesey et al. (2020) indicate 20–50% positive biases, a slight 
improvement over previous versions (Froidevaux et al. 2006).

Fig. 2   Timeseries of ~ 87 km 
temperatures ± 40 days around 
the onset of recent SSWs at 5 
NDMC sites from 37–69°N. 
Colors denote individual SSWs 
given in the top legend. The 
thick black line is the mean of 
all SSWs. The dotted line is the 
general trend



Surveys in Geophysics	

Figure 3 shows polar cap averaged MLS temperature (colors) from the tropopause to the 
mesopause for a SEA centered on major SSW onset (left) and for a SEA centered on stra-
topause warming onset followed by an ES (right). Gray contours are MLS CO, a tracer of 
wintertime descent. SEAs are given for ± 30 days from onset. Vertical profiles to the right 
of the altitude–time plots are individual event correlations between temperatures at 30 km 
and temperatures at other altitudes. All events in Table 1 that occurred from 2006 to 2024 
are included. Note this analysis differs from the results shown in Figs. 1 and 2 at ground-
based instrument locations in that temperatures are averaged over a large spatial domain 
(70°–90°N). Moreover, showing only the composite average makes it possible to see the 
altitude structure but it obscures event-to-event variability, which was shown to be large 
in Figs. 1 and 2. These results reveal the following: Before day 0, the stratopause warming 
SEA (right) reveals a colder stratosphere and warmer stratopause compared to the SSW 
SEA (left). During individual events (not shown), 30 km temperature exhibits larger vari-
ability in the month before major SSW onset compared to stratopause warming/ES onset. 
The 30 km temperature maximizes on SSW day 0 (left) and ES day + 2 (right). In both 
SEAs, mesospheric (~ 80  km) cooling occurs nearly simultaneously as the stratospheric 
warming. In both SEAs, lower mesospheric (~ 60 km) temperature is highly anticorrelated 
with 30 km temperature. In general, mesospheric cooling during SSWs is consistent with 
the known out-of-phase temperature changes in the stratosphere during SSWs (e.g., Lab-
itzke 1972; Limpasuvan et al. 2016). Maximum stratospheric warming, descent of the stra-
topause, and mesospheric cooling generally occur in the week prior to SSW onset (left) 
and in the week following stratopause warming onset (right). Both SEAs show evidence of 
a warmer mesosphere (~ 80 km) 10–30 days after onset and CO contours that bend down-
ward, indicative of enhanced mesospheric descent. This warming is consistent with the 
high-latitude observations shown in Fig. 1 and the top panel of Fig. 2. Near the peak strato-
spheric warming the rapid upward-sloping CO contours are likely driven by PW-driven 
horizontal mixing of mid-latitude air into the polar region. From 60 to 80 km, the upward 
sloping CO contours coincident with mesospheric cooling are likely due to ascent in the 
polar region driven by eastward propagating GWs.

Fig. 3   Altitude–timeseries of daily mean MLS derived zonal wind (color fill) and PW 1 + 2 amplitudes 
(white to gray contours) at 60°N centered on onset dates of a major SSWs from 2004–2023 and b 1 hPa 
zonal wind reversals followed by ES events from 2006–2019. Vertical black profiles to the right of the plots 
give correlation coefficients between zonal winds at 30  km and zonal winds at all other altitudes for all 
events considered
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4 � Composition Variations

This section presents SSW-induced variability in SMLT composition. Shown in Fig. 4 are 
timeseries of SABER polar cap averaged ozone (O3), atomic oxygen (O), atomic hydro-
gen (H), and temperature (T) anomalies (deviations from climatology) near 92  km dur-
ing 7 stratopause warmings followed by ES events (2006–2019). At this altitude, O is an 
O3 source and H is an O3 sink. In general, O3 changes are anticorrelated with H changes, 
which implies when T and O changes are similar, H is driving the O3 changes. Both O 
and H have long lifetimes in MLT and can be used as indicators for vertical transport (see 
e.g., Brasseur and Solomon 2005; Smith et al 2010; Jones et al. 2020). Results show large 
event-to-event variability, especially near onset date with large anomalies of both signs.

Tweedy et  al. (2013) diagnosed SSW impacts on the secondary ozone maxima near 
97 km in the specified dynamics (SD) version of WACCM. They constructed a SEA from 
6 SSWs, 3 of which (2006, 2009, 2010) are common to our collection of 7. They found 
low H was transported upward (associated with the mesospheric cooling event) that led 
to increased O3 abundances in the days following onset. This behavior was pronounced 
during the 2010 SSW, during which our results show similar decreases in H and increases 
in O3. However, the mean SEA based on SABER observations shown here does not dem-
onstrate reduced H and enhanced O3 as 2010 is offset by opposing conditions during other 
events.

In the 2 weeks following onset, O, H, and T variations are correlated, and mean val-
ues increase due to descent. The mean temperature increases around day + 5 and does not 

Fig. 4   Relative daily variation (data minus daily climatology) of nighttime zonally averaged ozone (O3), 
atomic oxygen (O), atomic hydrogen (H), and temperature (T) at 0.0015 hPa, over the 70°–90°N latitude 
range, for seven ES-SSW events derived from SABER observations (colored lines). The black solid line 
represents the mean across the seven events, while the black dashed line denotes the median. The daily cli-
matology is based on data from 2002 to 2019
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return to pre-warming values even after 30 days. This is consistent with the warmer meso-
sphere observed by MLS and the airglow spectrometers after the warming. Mean increases 
in T and H are consistent with mean decreases in O3, and these results agree with the find-
ings of Tweedy et al. (2013). Interestingly, the ES-induced O3 decreases and H increases 
are very long lasting and do not return to pre-SSW values even after 60 days. While spring-
time cooling is not obvious in the evolution of temperature, this result warrants more work 
to quantify a possible seasonal contribution.

Next, we show MIPAS temperature, CH4, CO, and NOy observations as Funke et al. (2014). 
NOy is calculated as [NOy] = [NO] + [NO2] + [HNO3] + [HNO4] + [ClONO2] + 2[N2O5], 
where brackets indicate volume mixing ratios (VMR) and where N2O5 was counted twice 
to account for its two nitrogen atoms. Daily zonal means are calculated from the average 
of individual MIPAS profiles within 70–90°N, weighted with the cosine of the latitude. 
Here we use the Institute of Meteorology and Climate Research (IMK) in cooperation with 
the Instituto de Astrofísica de Andalucía (IAA)-processed MIPAS data version 8 which 
includes, compared to previous versions, a new radiometric calibration and updates in the 
retrieval scheme (Kiefer et al. 2021; Funke et al. 2023a, b; Glatthor et al. 2024).

Figure 5 shows timeseries of MIPAS v8 70–90°N zonal mean temperature, CH4, CO, 
and NOY at stratospheric (30 km) and mesospheric (68 km) altitudes for (left panels) major 
SSW events (2003–2010) aligned with day 0 equal to major SSW onset (− 10 to + 60 days) 
and for (right panels) 1 hPa wind reversals followed by ESs. Timeseries are shown for indi-
vidual SSWs (instead of height vs. time composites) to highlight the large event-to-event 
variability.

The overall conclusions from this analysis are (1) there is significant event-to-event 
variability in stratospheric and mesospheric temperature and trace gas responses to both 

Fig. 5   Timeseries of MIPAS v8 70–90°N zonal mean temperature, CH4, CO and NOY at stratospheric 
(30 km) and mesospheric (68 km) altitudes for (left panels) major SSW NH winters (2003–2010) aligned 
with the central day of the SSW (− 10 to + 60 days) and for (right panels) 1 hPa wind reversals followed by 
ESs for NH winters (2003–2010). Events during 2006 are excluded due to sparse MIPAS data
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major SSWs and stratopause warmings followed by ESs, and (2) there are similarities in 
the mesospheric responses during/following the events in 2004 and 2009, as has been 
previously reported. Temperature variability (top panels) shows stratospheric warming 
and mesospheric cooling near day 0, but there is significant spread in the timing of max-
imum and minimum temperatures. Moreover, some years show no distinct warming at 
30 km (2007 and 2010) or cooling at 68 km (2008) and we hypothesize that maximum 
and minimum temperature anomalies occur at different altitudes during these years. 
During the recovery phase (day + 10 to + 60), minimum stratospheric temperatures and 
maximum mesospheric temperatures occur, consistent with previous results.

Tracer variability shows both stratospheric mixing by quasi-stationary PWs and mes-
ospheric descent. For CH4, there is a sustained increase after day 0 in the stratosphere 
(in-mixing of lower latitude air) and peak values centered on day 0 in the mesosphere 
(descent). Note the signature of the final warming in the mesosphere in the major SSW 
SEA from day + 20 to + 40 to + 60 in 2007. For CO, there is a short-lived decrease 
around day 0 in the stratosphere during some years and a strong mesospheric enhance-
ment in the recovery phase. In both SEAs, the magnitude and timing of the enhanced 
mesospheric CO after the warming are highly variable. NOy in the stratosphere behaves 
similar to CH4 due to rapid in-mixing of higher mid-latitude concentrations, especially 
in 2009. In the mesosphere NOy is similar to CO and is also modulated by solar activity. 
Note the larger NOy values in 2004 due to the preceding Halloween solar proton event 
(SPE); in that year the effect of in-mixing is less pronounced since the SPE generated 
NOy over a large (50–90°N) latitude range.

Next, we examine SSW-induced variations in stratospheric and mesospheric ozone 
and water vapor observed by a ground-based microwave radiometer in the Arctic polar 
region. Ozone and water vapor are essential climate variables that play a crucial role in 
the absorption of solar radiation and the excitation of tides. The University Bern oper-
ates the GROMOS-C (Ground-based Ozone Monitoring System for Campaigns) and 
MIAWARA-C (the MIddle Atmospheric WAter vapour RAdiometer for Campaigns) 
radiometers at the polar station of Ny-Alesund (78.9°N, 11.9°E) to provide continu-
ous measurements of ozone and water vapor in the Arctic polar region. Both instru-
ments have the capability to run autonomously under extreme environmental conditions 
(Straub et  al. 2012; Schranz et  al. 2018; 2019). Since 2015, GROMOS-C and MIA-
WARA have been deployed at Ny-Alesund and have operated there for the past 10 years.

Figure 6 (top panels) shows a SEA of 4 major SSW events from 2018 to 2023 (12 
February 2018, 2 January 2019, 5 January 2021, and 16 February 2023) for ozone 
and water vapor VMR and the corresponding anomalies (bottom panels) compared to 
the climatology (Shi et al. 2023). The VMR of both trace gases is dominated by wave 
driven atmospheric transport. The ozone VMR is low prior to about day -3. During SSW 
events, large amplitude quasi-stationary PWs lead to strongly enhanced horizontal mix-
ing, that is, an exchange of polar ozone depleted air masses with ozone-rich air from the 
mid-latitudes (Schranz et al. 2020; Shi et al. 2024). The corresponding sudden increase 
in ozone VMR at day 0 is clearly visible in the SEA. The water vapor in the upper 
stratosphere exhibits an increase within 10 days of SSW onset, likely due to increased 
mixing of moist air from mid- and low latitudes. These increases are prolonged and last 
for weeks to a month or more (for ozone). Water vapor in the mesosphere then decreases 
from 10 to 50 days after the SSW event due to descent of dry air from the upper to the 
lower mesosphere. These composite results nicely summarize mean behavior, however, 
recall the large event-to-event variability shown in the previous SABER and MIPAS 
results is obscured.



Surveys in Geophysics	

5 � GW Variations

Turning our attention to variations in GWs during SSWs, we next examine GW forcing 
during the 2024 SSW in the SD-WACCMX. The upper tropospheric and stratospheric 
polar night jets associated with polar vortex are important source regions of inertial and 
mesoscale GWs, shown both in observational and modeling studies (e.g., Fritts and Nas-
trom 1992; O’Sullivan and Dunkerton 1995; Zhang 2004; Plougonven and Zhang 2014; 
Sato and Yoshiki 2008; Vadas et  al. 2023, 2024a). Various mechanisms and theoretical 
models have been proposed to explain GW generation, including the spontaneous adjust-
ment emission mechanism (Plougonven and Zhang 2014; see Appendix B in Becker et al. 
2022b). In recent years, the increasing resolution of global models, especially whole 
atmosphere models, has lent further insights into the generation, propagation and dissi-
pation of GWs. One robust feature seen in observations and numerical simulations is the 
strong GW activity level in the stratosphere and mesosphere, extending from the east coast 
of North America, across the North Atlantic Ocean, and to western Europe when the Arctic 
vortex is strong (e.g., Ern et al. 2011; Trinh et al. 2018; Becker et al. 2022b; Harvey et al. 
2023; Liu et al. 2024). This feature is also evident in the numerical study by O’Sullivan 
and Dunkerton (1995) and has been tied to the upper tropospheric jet exit region. Vadas 
et al. (2024a) showed that this GW hot spot in the wintertime middle atmosphere includes 
significant contributions from primary GWs generated by spontaneous emission in region 
of the stratospheric polar vortex jet.

The stratosphere polar vortex is disrupted during SSWs. GW activities display large 
variation during SSWs, with strong GW decreases in the stratosphere and mesosphere 
after the onset of SSWs (e.g., Harvey et al. 2023), and increases during the vortex recovery 
phase, as seen in COSMIC observations (Yamashita et al. 2010). Such variations have been 
reproduced in high-resolution global models (Yamashita et  al. 2010; Liu 2017; Becker 
et al. 2022a). The variations could result from a combination of changes in GW generation 
by the polar vortex and/or secondary GW sources, GW generation from the tropospheric 
sources during SSW, and GW filtering by the large-scale winds (e.g., Liu 2017; Becker 
et al. 2022b, a; Zhang et al. 2025).

Fig. 6   Altitude–time SEAs of GROMOS-C ozone (upper left) and MIAWARA-C water vapor (upper right) 
volume mixing ratio for all major SSW events between 2015 to 2023. The lower panels show the ozone and 
water vapor volume mixing ratio anomalies (deviations from the climatology)
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Global models with coarse resolution and parameterized GW forcing can capture GW 
filtering and wave impacts on the circulation in the MLT during and following SSWs. 
However, it has been noted that the MLT response during the SSW recovery phase differs 
from observations. For example, during the recovery phase, the ES descends much faster in 
simulations than in observations (Pedatella et al. 2018a).

Figure  7a–b compares the simulated temperature averaged over the polar region 
(70°–90°N) in coarse resolution SD-WACCMX (0.9° × 1.25° horizontal resolution) with 
parameterized GW forcing to high-resolution SD-WACCMX (~ 0.25° horizontal resolu-
tion) without parameterized GW forcing during January 2024. Both simulations show a 
minor SSW in the first half of the month, followed by a major SSW (17 January onset, with 
peak warming on 20 January). The time variation in the mesospheric temperature struc-
ture, however, is quite different between the two. The mesospheric responses in the high-
resolution simulation during the minor warming and following the major warming appear 
to be more gradual, and the decay of the mesospheric cooling region is much slower, which 
is in better qualitative agreement with MLS observations of this SSW (not shown). Follow-
ing the major SSW, the upper mesosphere in the high-resolution simulation is warmer than 
in the coarse simulation, implying stronger descent in the high-resolution run.

Figure  7c–d compares the zonal forcing by parameterized GWs (lower left) and the 
zonal forcing by resolved GWs (zonal scale < 2000 km, lower right) at 60°N. The two are 

Fig. 7   Altitude–timeseries for January 2024 of polar mean temperature in a) coarse resolution SD-WAC-
CMX b) high-resolution SD-WACCMX. Altitude-timeseries for January 2024 of zonal mean zonal forcing 
by c) parameterized GWs in coarse resolution SD-WACCMX and d) resolved GWs (zonal scale < 2000 km) 
in high-resolution SD-WACCMX
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vastly different. The parameterized GW forcing responds immediately to the zonal wind 
change in the stratosphere, and it is more uniform in the mesosphere and lower thermo-
sphere. On the other hand, the zonal forcing by resolved GWs is significantly more variable 
in altitude and time. The more gradual response of the temperature in the high-resolution 
simulation may be a consequence of the integrated effect of the variable GW forcing. The 
high-resolution results suggest the actual GWs and GW forcing changes during the SSW 
are markedly more complex than the changes in wave filtering by large-scale winds. Fur-
ther work is needed to assess the fidelity of resolved GWs on SSW-induced variations in 
upper mesospheric temperature.

6 � Neutral Wind and PW Variations in the SMLT

This section presents SSW-induced variability in SMLT neutral winds and PWs from the 
point of view of the MLS satellite, the SuperDARN radars, and meteor radar observations. 
For MLS, first the GPH data are gridded separately for both ascending and descending 
nodes, and the two nodes are daily averaged to reduce tidal effects. We then calculate geos-
trophic winds from the daily averaged GPH fields (e.g., Holton 2004, Eq. (3.11)). Precision 
estimates for zonal mean zonal winds are 2 m/s at 0.01 hPa (~ 80 km). PW amplitudes are 
computed at each pressure level and latitude by iteratively computing a least-squares fit of 
a sine wave to the MLS GPH data around each latitude circle.

Figure 8 gives altitude–time SEAs of MLS zonal wind and PW 1 + 2 at 60°N centered 
on major SSW onset (left) and stratopause warmings followed by ES onset (right) for all 
events in Table 1 from 2004 to 2024. Recall that there is large event-to-event variability 
embedded in these SEAs; nevertheless, the following key points can be made about the 
mean behavior. In the major SSW SEA (Fig. 8a), the evolution of the zonal mean zonal 
wind at 30 km shows a wind reversal on SSW day 0, as expected. Mean SEA zonal winds 
reverse in the upper mesosphere prior to major SSW day 0, though these wind values are 
small and likely insignificant given the large event-to-event variability. In the stratosphere 

Fig. 8   Altitude–timeseries of daily mean MLS temperature (color fill) and CO (white to gray contours) 
averaged poleward of 70°N centered on onset dates of a major SSWs from 2004–2023 and b 1 hPa zonal 
wind reversals followed by ES events from 2006–2019. Vertical black profiles to the right of the plots give 
correlation coefficients between temperatures at 30 km and temperatures at all other altitudes for all events 
considered
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easterlies persist, on average, 2 weeks after onset. Two weeks after onset, the polar night jet 
is stronger than before onset and 15–20 km higher altitude.

In the SEA of stratopause warmings followed by ESs (Fig.  8b), the polar night jet 
is ~ 30% stronger before onset compared to the major SSW SEA. Zonal mean zonal winds 
reverse simultaneously from 30 to 75  km and from 85 to 95  km on day 0. In the strat-
osphere easterlies persist, on average, 3 weeks after onset. In both SEAs, event-to-event 
variability in 30 km winds in the weeks following onset ranges from − 20 m/s to + 20 m/s 
(not shown). In the stratosphere, PW amplitudes maximize 2–3 weeks prior to major SSW 
onset (left) and one week prior to stratopause warming/ES onset. In the mesosphere near 
80 km, traveling PW amplitudes maximize ~ 5 days after onset for both major SSWs and 
stratopause warmings with ESs, in agreement with Stray et al. (2015).

Next, we examine the evolution of zonal and meridional winds, the quasi-6-day west-
ward zonal wavenumber-1 PW (Q6DW), and the migrating semidiurnal tide (SW2) in 
the upper mesosphere observed by SuperDARN. While designed to measure ionospheric 
E-region and F-region plasma phenomena, the network of High-Frequency (HF) SuperD-
ARN radars also detects radio wave backscatter (“meteor echoes”) from meteoric ioniza-
tion trails (Chisham and Freeman 2018). These meteor echoes can be used to derive the 
neutral wind velocity carrying the ionization trails, which, when aggregated into hourly 
bins, can be used to calculate hourly mean zonal and meridional winds. The SuperDARN 
HF-radars are unique in that they have been operational since 1993, while also spanning 
a geographic area extensive enough to resolve the longitudinal structure of tides and PWs 
(van Caspel et al. 2020, 2022). The 10 stations used in the current work are the same as 
those described in van Caspel et al. (2022), spanning 180° of longitude in a 14° latitude 
band centered on 60°N.

The winds, SW2, and Q6DW shown in Fig. 9 are representative of a broad vertical aver-
age (80–120  km) at a single central altitude. The wave amplitudes and mean winds are 
determined by fitting a 6-day sliding window in both space and time across all available 
hourly SuperDARN measurements, with the fitting function representing the diurnal, semi-
diurnal, and terdiurnal migrating tides (DW1, SW2, TW3, respectively), and the Q6DW 
forms together with a mean wind. Including the Q6DW is motivated by recent literature 
describing its enhancement in the neutral wind and ionospheric system during SSWs (e.g., 
Liu et  al. 2021; Aa et  al. 2024; Ma et  al. 2024). A 6-day fitting window was chosen to 
cover at least one full Q6DW period. Fits are performed only when at least 432 hourly 
wind measurements are present, corresponding to an average up-time of 75% for at least 4 
stations. For brevity, in the following, wave amplitudes are only shown for the meridional 
wind component. We further note that our analysis did not find any noteworthy response in 
the DW1 or TW3 tidal waves in the SuperDARN winds, so these are not discussed.

Figure 9 shows SuperDARN SEAs of horizontal winds, SW2, and the Q6DW. In all pan-
els, event-to-event variability is visible and SEA means are shown in black lines with solid 
black being the mean of the 15 stratopause warmings followed by ES events and dashed black 
being the mean of the 16 major SSWs at 10 hPa. Figure 9a illustrates that the zonal winds are 
predominantly eastward in the weeks prior to and after the disturbance, which is likely due 
to eastward secondary GWs (Becker et al. 2022a; Harvey et al. 2022a). In the days surround-
ing onset, the zonal winds shift westward in a majority of the 15 stratopause warming events 
followed by ESs (event dates are listed at the top), though the timing of the shift varies from 
event to event. Not all events see a reversal of the winds in the MLT, while for other events the 
zonal winds shift easterly before onset. One reason for these variations might be that the verti-
cal averaging extent (80–120 km) spans a vertical layer in which the zonal winds change sign 
(e.g., Becker et al. 2022a), leading to vertical cancelation effects over the SuperDARN meteor 
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echo range. The SEA mean shows the zonal wind in the MLT weakens 5 days prior to the 
onset of the wind reversal at 1 hPa and reaches a minimum on day + 5. The dashed black line 
indicates zonal winds in the major SSW SEA minimize earlier, in agreement with the MLS 
SEA between 80 and 95 km. Figure 9b shows a poleward enhancement coincident with the 
westward turning of the zonal wind (day 0 to day + 10). The SW2 tide results in Fig. 9c will be 
discussed in the next section.

The Q6DW (Fig.  9d) displays an enhancement about a week after the onset date, even 
though there is considerable event-to-event variability in terms of the amplitude and timing of 
the enhancement. We note that, while identifying the time evolution of low-frequency waves 
over the relatively short SSW time periods can be challenging (e.g., Stober et al. 2020; van 
Caspel et al. 2023), diagnostic analysis using longer time windows in combination with wave 
frequencies in the range of 3–8 days, does indicate that amplitudes maximize for waves with a 
period of ~ 6 days.

Fig. 9   SuperDARN zonal wind (a), meridional wind (b), SW2 amplitude (c), and Q6DW amplitude (d) 
centered on the onset dates of the 15 ES SSW events. The solid black curve shows the composite mean 
response. The dashed black curve shows the composite mean response when the results are centered on the 
16 SSW onset dates at 10 hPa
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7 � Tidal Variability

This section summarizes SSW signatures in migrating and nonmigrating solar tides based 
on SuperDARN and meteor radar, SABER, and COSMIC-2 observations and in the 
WACCMX, UA-ICON, and NOGAPS-ALPHA models. In SuperDARN, the mean SEA 
response (solid black line) in SW2 (Fig. 9c) shows diminished amplitudes on about day + 8 
followed by an enhancement on about day + 15, consistent with the SuperDARN meteor 
wind analysis of Hibbins et al. (2019). These results are also generally consistent with the 
SuperDARN SEA analysis of SW2 during major SSWs by Zhang et al. (2021). While SW2 
enhancements “cluster” around day + 15 for individual events, there is significant event-to-
event variability in the SW2 response. The timing of the response can vary by a few days 
from event to event, and there is also considerable variation in SW2 amplitudes before, 
during, and after onset. The black dashed curves in Fig. 9 show the mean SEA response 
when centered on the 16 SSW onset dates at 10 hPa. While this composite response shows 
generally similar results, the response “signal” on day + 15 is effectively lost. This suggests 
that the SW2 tide might be more sensitive to wind reversals at 1 hPa rather than at 10 hPa.

Next, we look at stratopause warming SEAs in U, V, and SW2 along a chain of three 
altitude-resolving meteor radars (MRs) that extends from Collm (51.3°N) to Svalbard 
(78.2°N). MRs have become a ubiquitous tool to monitor mesospheric winds. During the 
past decade, the number of MRs has increased substantially and many regions in the world 
have been observed for almost two decades. The Svalbard MR (SVA) was commissioned 
in 2003 and has operated nearly continuously since 2004 providing reliable wind meas-
urement at (78.2°N, 16°E) (Hall and Tsutsumi 2020). On the Scandinavian mainland, the 
Tromso MR (TRO) located at (69.59°N, 19.2°E) is one of the oldest and has collected data 
from 2003 until today (Hall and Tsutsumi 2013). The Collm MR (COL) was installed dur-
ing summer of 2004 and has also operated continuously since then at the Collm geophysi-
cal observatory (51.3°N, 13°E) (Jacobi et al. 2007). All three MRs were upgraded over the 
years enhancing the altitude coverage and robustness of the derived winds. The winds are 
analyzed with the latest version of wind retrieval described in Stober et al. (2021a, 2022) 
including nonlinear error propagation, a Tikhonov regularization for the vertical winds 
embedded as spatio-temporal Laplace filter and WGS84 geodetic coordinates to minimize 
projection errors for all three wind components.

Figure 10 gives a map projection (left) of the three MR stations and altitude–time panels 
of the zonal winds (left), meridional winds (middle), and SW2 (in U, right) at each of the 
three MRs, ordered top-to-bottom from high to lower latitudes. Mean SEA wind and tidal 
amplitudes were derived by calculating the mean response about the central day of the fol-
lowing seven stratopause warming events at 1 hPa with an ES: 8 January 2006, 21 January 
2009, 22 January 2010, 13 January 2012, 5 January 2013, 12 February 2018, and 1 January 
2019. Non-migrating tides exhibit less phase coherence among SSW events (Stober et al. 
2021b), thus, these tides are not included in the SEA tidal analysis. Note there is large 
event-to-event variability so caution should be used when interpreting weak winds or small 
tidal amplitudes. The mean SEA zonal winds reflect the typical weak eastward (positive) 
winds before the onset (day 0) and strong eastward winds below 95 km for 2 months after 
onset. The wind magnitude and altitude of the jet core increase toward the mid-latitudes, 
indicative of an equatorward tilting polar vortex jet. The meridional winds (middle panels) 
indicate the presence of PW oscillations and a tendency for the flow to be equatorward 
before onset. After onset, the meridional winds are consistently poleward in this Euro-
pean longitude sector. These mean zonal and meridional wind variations are consistent 
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with mesospheric cooling during and warming after onset, as shown in previous figures. 
The wind patterns at the mid-latitude station at Collm depend on the overall position of 
the polar vortex and the nature of the disturbance (vortex split vs. vortex displacement). 
Thus, individual events display large wind variations (e.g., Stober et al. 2020). At Tromso, 
there is an enhancement in SW2 amplitudes on day + 12 from 90 to 100 km; at Collm SW2 
is enhanced 2 weeks before to 2 weeks after onset. The SW2 enhancement at Tromso is 
consistent with SuperDARN observations (60°N, Fig. 9c). Given the large event-to-event 
variability seen in the SuperDARN results, it is not clear whether this enhancement is 
significant.

Next, we perform a SEA centered on stratopause warming dates followed by ESs for 
the migrating diurnal (DW1), semidiurnal (SW2), and terdiurnal (TW3) tides in SABER. 
SABER temperature measurements (Esplin et al. 2023; Russell III et al. 1999) at 110 km 
were analyzed to determine the average response of migrating solar tides in the ionospheric 
dynamo region to the eight 1 hPa wind reversals followed by ESs listed in Table 1 from 
2003 to 2019. Our method of data analysis involves two steps. In the first step, seasonal 
variations in the zonal mean temperature, tides, and stationary PWs were determined using 
a technique similar to that described by Forbes et al. (2008) and Pancheva and Mukhtarov 
(2011). In this step, the measurements around the onset date of polar vortex weakening 
(− 10 to + 20 days) were excluded to minimize their influence. The obtained seasonal vari-
ations were then subtracted from the respective measurements to derive residual tempera-
tures. In the second step, a SEA was performed by fitting tides to 60 days of residual tem-
peratures collected over the 8 events to evaluate variations in the migrating solar tides from 
their seasonal cycles.

Figure 11a–c shows latitude–time SEAs of the amplitudes of migrating solar tides in the 
residual temperatures observed by SABER. The lagged response of the SW2 is most prom-
inent, which is consistent with previous studies (e.g., Jin et al. 2012; Wang et al. 2014). 
Also, variations are seen in DW1 preceding the SW2 response, which is in qualitative 
agreement with previous studies (e.g., Siddiqui et al. 2022; Hocke 2023). The response of 
TW3 is not as evident. Figure 11d shows that the phase of the SW2 is approximately 180° 
apart between the northern and southern hemispheres, indicating that this tidal component 
is antisymmetric about the equator. For further characterization, it is convenient to expand 
the SW2 component into a series of Hough modes (e.g., Forbes 1995). Figure 11e demon-
strates that SW2 is well captured by the first two symmetric and antisymmetric semidiurnal 

Fig. 10   Map of the European sector indicating the locations of the three meteor radars located at Svalbard 
(SVA), Tromso (TRO), and Collm (COL). The panels to the right show the zonal winds, meridional winds, 
and SW2 (U) derived from SEA of stratopause warmings with ESs that occurred between 2006 and 2019
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Hough modes. According to Fig. 11(f), the SW2 response to polar vortex weakening can 
be largely explained by an enhancement of the first antisymmetric semidiurnal (2,3) mode, 
which agrees with previous studies (Yamazaki et al. 2012; Yamazaki and Siddiqui 2024).

Next, we present tidal responses to vortex weakening events in three different global 
models. While there are known differences between models with parameterized GWs 
and observations and between coarse and high-resolution model versions, these coarse 
resolution model results are useful to document as it is these model versions that are 
most widely used by the scientific community. Moreover, the computing expense of 
high-resolution simulations prevents studying multiple events with high-resolution 
models so low-resolution models are still needed. Figure 12 shows timeseries of coarse 
resolution SD-WACCMX zonal mean zonal winds at 60°N in the winter middle meso-
sphere, DW1 in the tropical upper mesosphere, and SW2 at 50°N in the winter lower 
thermosphere centered on the dates of wind reversals at 10  hPa (left column) and at 
1 hPa (right column). The black lines are the SEA means. The tides are shown for loca-
tions (altitudes, latitudes) where they peak and results are similar to what has been 
shown in previous studies. There is clearly large event-to-event variability in the zonal 

Fig. 11   Latitude–time SEAs for stratopause warming events in Table 1 from 2003–2019. a–c Amplitudes 
of migrating solar diurnal (DW1), semidiurnal (SW2) and terdiurnal (TW3) tides in the residual TIMED/
SABER temperatures at 110 km after removal of seasonal variations in the zonal mean temperature, tides 
and stationary PWs. d Phase of SW2. e Reconstruction of SW2 amplitude by the semidiurnal (2,2), (2,3), 
(2,4) and (2,5) Hough modes. f Amplitude of the semidiurnal (2,2), (2,3), (2,4) and (2,5) Hough modes



Surveys in Geophysics	

winds and both tidal components. Like the SuperDARN results, there appears to be a 
clearer response when SEAs are based on wind reversals at 1 hPa.

For the SEA mean in zonal mean zonal winds at 0.01  hPa (black lines), WAC-
CMX shows a slight decrease in the zonal mean zonal winds prior to day 0 and an 
enhancement ~ 10  days after the central date. A stronger response is apparent when 
SEAs are based on central dates at 1 hPa (right column) compared to 10 hPa. The vor-
tex weakening impact on the low-latitude DW1 is relatively weak and is primarily evi-
dent when looking at the anomalies from the climatology (not shown). Overall, DW1 
decreases around the central date by ~ 1–1.5 K (~ 15–20%). The gradual DW1 increase 
in the month following day 0 can be partly attributed to seasonal variations, whereby 
DW1 maximizes at equinox (Siddiqui et al. 2022). Results at mid-latitudes show SW2 
enhancements of ~ 20–30 m/s that maximize from day + 7 to day + 12. There is a second 
SW2 enhancement from day + 20 to day + 25 that was also observed by SuperDARN in 
Fig. 9c that warrants further study. This double peaked enhancement in SW2 agrees with 
the SD-WACCMX SEA analysis of SW2 during major SSWs by Zhang et  al. (2021). 
The SW2 enhancements shown here are larger and show the double-peak enhancement 
when compositing with respect to central dates at 1 hPa compared to 10 hPa.

Next, we look at the time–altitude evolution of U and the time-latitude evolution 
of SW2 in the UA-ICON general circulation model (Zängl et al. 2015; Borchert et al. 
2019; Kunze et  al. 2024) during the 2023 major SSW. The model horizontal resolu-
tion is ~ 20  km (icosahedral grid R2B7) with 250 vertical levels that extend from the 
surface to the model top at 150 km. This corresponds to a vertical resolution of 600 m 

Fig. 12   Timeseries of SD-WACCMX zonal mean zonal winds at 60°N and 0.01 hPa (top row) centered on 
the dates of wind reversal at 10 hPa (left) and at 1 hPa (right). Corresponding plots are shown for the DW1 
(in T) at the Equator and 0.001 hPa (middle row) and SW2 at 50°N and 0.0001 hPa (in U) (bottom row)
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from 40 to 110 km. The simulation employs the non-orographic GW parameterization 
of Warner and McIntyre (1996) with the normalization constant of the saturation wave 
spectrum (C *) set to 20. The model was nudged to the 6-hourly operational analysis 
of the European Centre for Medium-range Weather Forecasting-Integrated Forecasting 
System (ECMWF-IFS) up to a height of 50 km.

The upper panel of Fig. 13 shows that the model captures the occurrence of the major 
SSW, as expected (due to being nudged to ECMWF). The maximum weakening of the 
polar vortex occurred in the model on 17 February 2023 (one day after onset in MERRA-
2), with the westward zonal mean zonal wind extending from 30 to 75 km. The evolution 
of the zonal winds is in excellent agreement with MLS in the stratosphere and lower meso-
sphere, with subtle differences from 60 to 90  km (not shown). The lower panel depicts 
the amplitude of SW2 at 105 km. Following the polar vortex weakening, an enhancement 
occurred in the SW2 amplitude over mid-latitudes in both hemispheres with the maximum 
responses from 22 to 24 February 2023, 5–7 days after the maximum polar vortex weaken-
ing. The delayed response agrees with previous observations and models and may be partly 
explained by the time needed for the tidal wave to propagate from the lower atmosphere 
and establish a steady oscillation (e.g., Vial et al. 1991).

We next explore vortex weakening impacts on the DW2 nonmigrating tide in the 
NOGAPS-ALPHA model during the 2009–2010 Arctic winter. During this dynamically 
active winter, there was a stratopause warming event on 22 January 2010 and a major SSW 
event on 9 February 2010. However, results will demonstrate that PW-1 amplitude, rather 
than onset of zonal wind reversals, most accurately predicts DW2 behavior in the tropical 
MLT.

Advective processes that couple PWs with migrating tides have long been proposed 
as sources of nonmigrating tides in the middle atmosphere (Teitelbaum and Vial 1991; 

Fig. 13   (Top) Altitude–timeseries of daily mean zonal mean UA-ICON zonal wind at 60˚N during the 2023 
major SSW. (Bottom) Latitude–timeseries of the amplitude of SW2 in zonal wind at 105  km estimated 
using the technique of Yamazaki (2023)
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Hagan and Roble 2001). This interaction yields secondary waves with zonal wave num-
bers and frequencies given by the sums and the differences of the corresponding “parent” 
wave numbers and frequencies. For example, at wintertime middle and high latitudes, a 
westward-propagating diurnal tide with zonal wavenumber 2 (DW2) is anticipated from the 
interaction of a stationary PW-1 with a migrating diurnal tide with zonal wavenumber one 
(DW1). Figure 14 adapted from Lieberman et al (2015) illustrates this process using hourly 

Fig. 14   Latitude–time plots of NOGAPS-ALPHA NH stratospheric PW-1 geopotential height amplitude 
(panel a), zonal mean temperature (panel b), zonal mean wind (panel c), and global mesospheric DW2 tem-
perature amplitude (panel d) during December 2009–February 2010. The top three panels are near the stra-
topause (7 scale heights ≅ 49 km); the bottom panel is in the upper mesosphere (13 scale heights ≅ 91 km)
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analyses from NOGAPS-ALPHA, a prototype vertical extension of the Navy’s operational 
forecast model (Eckermann et al. 2009).

Figure  14 depicts the evolution, from December 2009 to February 2010, of northern 
hemisphere quasi-stationary PW-1 GPH amplitude (panel a), zonal mean temperature 
(panel b), and zonal mean wind (panel c) near the stratopause (7 scale heights ≅ 49 km), 
and global DW2 temperature amplitude (panel d) in the upper mesosphere (13 scale 
heights ≅ 91  km). PW-1 amplitudes are very strong at high northern latitudes in early 
December and late January, with a weaker maximum in late December. Following the 
PW-1 events in early December and late January, there is warming in the polar cap and 
weakening or reversal of the zonal jet. Despite DW2 temperature maximizing near the 
equator, its amplitude often appears to track the PW-1 amplitudes at high northern lati-
tudes. Experiments with a mechanistic model confirmed that meridional advection of 
PW-1 zonal momentum by DW1 is the leading source of DW2. The study of Lieberman 
et al. (2015) indicates that PW–tide interaction imprints short-term variability associated 
with the wintertime polar stratosphere upon the global MLT.

8 � F‑region Variability

This section examines major SSW-driven variability in the upper thermosphere and iono-
sphere in COSMIC-2 and ionosonde observations. First, the SW2 near 300 km is derived 
from COSMIC-2 global ionospheric specification (GIS) during two recent major SSWs 
and the ionosondes provide observations of foF2 that support SEAs at high latitudes and 
at mid-latitudes. The GIS is a data assimilation system that provides electron densities on 
a three-dimensional global grid with a resolution of 5° longitude × 2.5° latitude × 20  km 
altitude, spanning from 120 to 700 km (Lin et al. 2017). It provides hourly global maps, 
which is critical for obtaining the daily amplitudes and phases of the tides using the Fourier 
transform. It is important to note that the daily Fourier fitting of hourly data does not allow 
for the separation of lunar (12.42 h) and solar (12.0 h) semidiurnal tides, so some contribu-
tions from the lunar tide cannot be excluded. The tides’ relative amplitudes (with respect to 
the daily zonal mean) are used to minimize the effect of solar/geomagnetic activity. Since 
the data have been available since late 2019, we chose the major SSW events on 5 January 
2021 and 16 February 2023. We focus on the SW2 as it is known to be strongly affected by 
SSWs (Pedatella et al. 2012).

Figure 15 (left) (a) shows the SW2 relative amplitude at 300 km as a function of latitude 
versus day from the 2021 SSW onset. Overplotted is the zonal wind at 10 hPa and 60°N 
(white contour). The red contour gives zonal winds at 1 hPa and 60°N. We observe clear 
enhancements in SW2 amplitudes during the 2021 SSW at EIA latitudes. Further, during 
the time period shown, SW2 enhancements occur whenever the zonal winds weaken. Panel 
(b) shows the SW2 relative amplitudes (blue) averaged around 15°N (5°N–20°N) from 
(a), along with the zonal winds from panel a (black and red). The correlation coefficient 
between zonal winds at 10 (1) hPa and SW2 amplitudes at 15°N and 300 km is − 0.59 
(−  0.56). SW2 amplitudes in the EIA crest regions vary by a factor of 2, with smaller 
amplitudes when stratospheric winds are strong and enhancements when stratospheric 
winds are weak. The geomagnetic activity proxy Kp-index (blue) and the solar flux proxy 
F10.7 index (black) are shown in panel (c), indicating that these factors do not significantly 
affect the daily variability of the SW2.



Surveys in Geophysics	

The situation is different for 2023 (right panels), when the solar flux is higher than in 
2021, and solar flares are present during the major SSW period. During the 2023 SSW, we 
do not see an apparent enhancement in the SW2 as in 2021, as the solar and geomagnetic 
activity is the primary reason for tidal variability. The correlation coefficient between zonal 
winds at 10 (1) hPa and SW2 amplitudes at 15°N and 300 km is -0.35 (-0.43) during this 
winter. Aggarwal et al. (2024) studied the response of the ionosphere to the strength of the 
polar vortex and the effect of solar/geomagnetic activity and showed similar masking of 
lower atmosphere forcing due to high solar flux.

Next, we look for signatures of vortex weakening in the ionosphere using ionosonde 
data. An ionosonde sends HF waves into the ionosphere and performs a frequency sweep-
ing in the 1–30  MHz range. Each wave sent by the ionosonde is reflected when its fre-
quency becomes equal to the local plasma frequency of the ionized medium, allowing an 
electron density profile reconstruction of the low-altitude ionosphere. The foF2 frequency 
corresponds to the maximum frequency reached by the ionosonde and is proportional to 
the maximum electron density observed at the peak of the F2 layer, the highest and densest 
layer of the ionosphere (see Reinish and Galkin 2011 and references therein). Its altitude is 
between 250 and 400 km and depends on local conditions (solar illumination and particle 
precipitation). The altitude of foF2, called (hmF2), obtained from an ionosonde is a virtual 
height as it corresponds to the time it takes for the wave to travel to the ionosphere and 
return to the ground. However, the speed of light is assumed in this calculation, whereas 
the wave undergoes breaking in the ionospheric medium, so that the real height of the ech-
oes is lower than the virtual height. Finally, it is possible to obtain an estimation of the 
Total Electron Content (TEC) from the electron density values derived from an ionosonde, 
but it corresponds only to the density integration up to the F2-peak.

Ionosonde observations of foF2 (250–400 km) were used to construct 40-day SEA at 8 
ionosonde stations, spread over four longitude sectors at both high and mid-latitudes (see 
Table 2). Ionosondes used in this study are from the GIRO network (Reinisch and Galkin 
2011). We removed all points with moderate to active magnetic and solar activity (Ap ≥ 10 
nT and F10.7 ≥ 80 sfu). Given the periods of operation of these ionosondes and with such 
activity criteria, only a reduced number of events are retained in the SEA (maximum of 5 
events: 2006, 2009, 2010, 2018, 2019) centered around the onset of wind reversals at 1 hPa 
followed by ESs. Some ionosondes did not operate for some of these events and have only 
3 or 4 events included in the SEA. Finally, even for the considered events, some data points 
may have been removed if magnetic or solar activity became too high.

Fig. 15   (left, top panel) SW2 relative amplitude as a function of magnetic latitude and days from SSW 
onset at 300 km (averaged from 280–320 km), where day 0 is the SSW onset on 5 January 2021. Overplot-
ted is the zonal wind at 60°N and 10 hPa (white) and 1 hPa (red). (left, middle panel) SW2 (blue) averaged 
around 15°N from (left, top panel) and the zonal wind at 10 hPa (black) and 1 hPa (red).   (left, bottom 
panel) kp-index (blue) and F10.7 index (black). (right) as left panels but day 0 is 16 February 2023
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Figure 16 shows the SEA median of foF2. Results show slight increases after day 0, 
during the hours around local noon for all high-latitude stations and for Point Arguello and 
Rome at mid-latitudes. Note, local noon varies in UT given on the y-axis. The increases 

Table 2   Location of 8 ionosondes used in the SEA

GAK = Gakona Alaska USA, SON = Sondrestorm Greenland, TRO = Tromso Norway, NOR = Norilsk 
Russia, PTA = Point Arguello California USA, MIL = Millstone Hill Massachusetts USA, RM = Rome, 
Italy, and JEJ = Jeju South Korea

Western North America Eastern North America Europe Aisa

High latitude GAK
62.3°N, 145.3°W

SON
67°N, 51°W

TRO
69.7°N, 19°E

NOR
69.2°N, 88°E

Mid latitude PTA
34.6°N, 120.7°W

MIL
42.6°N, 71.5°W

ROM
41.9°N, 12.5°E

JEJ
33.4°N, 126.3°E

Fig. 16   SEAs as a function of day and universal time of foF2 at (top) 4 high-latitude ionosonde stations and 
(bottom) 4 mid-latitude ionosonde stations with day 0 for events when 1 hPa winds reversed followed by an 
ES and there are quiet solar (f10.7 <  = 80) and geomagnetic conditions (Ap <  = 10)
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after day 0 are slightly more pronounced at high latitudes. The % change in foF2 at noon 
from before the SSW (over 12 days) to after the SSW (over 12 days) is 5–17% at high-lati-
tude stations and 2–6% at mid-latitude stations. The % change in TEC (not shown) at noon 
from before to after day 0 is: 10–35% at high-latitude stations and 3–15% at mid-latitude 
stations. A slight enhanced variability in foF2 and TEC as seen as an increase in inter-
quartile range of the SEA (not shown). On the contrary, no clear change in virtual height 
(hmF2) is observed (not shown).

These results show that the midday ionosphere, and in particular its F2-layer, exhibits 
slight increases in density and more variability after the 1 hPa wind reversal. More sur-
prising, these effects seem to last for many days. Overall, the spread in noontime changes 
in foF2 and TEC among individual events remains relatively limited because the seasonal 
and quiet magnetospheric conditions are relatively similar. However, the number of events 
is limited and there are data gaps when conditions Ap < 10 nT or F107 < 80 sfu are not 
met. Thus, caution must be used in the interpretation of these results due to the small sam-
ple size and because ionosonde data are often difficult to interpret, due, for example, to 
complex propagation effects. In addition, as most stratopause warming events followed by 
ESs occurred in January, separation of stratopause warming-induced subseasonal effects 
from the effects of seasonal increases in foF2 (and TEC) from January to February (Gon-
charenko et al. 2018) presents an additional challenge. Nevertheless, these results call for 
further investigation, since they suggest that an increase in electron density is observed 
after vortex weakening events, although with generally clearer signatures at mid-latitudes 
(Mošna et al. 2021; Goncharenko et al. 2021b).

9 � Future aspects: How will the polar vortex change?

Enhanced CO2 concentrations lead to cooling of the middle atmosphere. The reason is that 
the cooling to space from CO2 mainly balances solar, chemical and dynamical heating rates 
in the middle atmosphere (Manabe 1967; Randel et al. 2009; Santer et al. 2023). Moreover, 
ozone experienced a dramatic decrease in the latter half of the twentieth century due to the 
emissions of ozone-depleting substances (i.e., chlorofluorocarbons, CFCs). This long-term 
variability of the polar ozone content contributes to the strength of the polar vortex. It has 
been shown that the Antarctic ozone hole accelerated the southern polar vortex jet (Gillett 
& Thompson 2003). Stratospheric ozone levels are now slowly recovering after the Mon-
treal Protocol banned the use of CFCs. This will lead to overall warming in the polar strat-
osphere, but which will not overcome the cooling due to CO2 and other greenhouse gases 
(Kirner et al. 2015). Furthermore, a cooler stratosphere slows down the chemical reactions 
which destroy ozone, leading to further increases in stratospheric ozone.

These changes in stratospheric temperatures and ozone content in the future also lead to 
dynamical changes (Langematz et al. 2003). Climate models predict that the global mean 
residual circulation will accelerate in the future, leading to enhanced transport to polar lati-
tudes especially in the Northern Hemisphere and enhanced descent in the polar winter mid-
dle atmosphere (see review by Butchart 2014). Since this circulation is linked to polar vor-
tex dynamics, this suggests that the polar vortex may weaken in the future. Arctic sea-ice 
loss might also impact strength of the polar vortex via changes in the upward propagation 
of waves (Liang et al. 2024).

While a weaker future Arctic polar vortex implies more disturbances and increased 
frequency of SSWs, no robust evidence of future changes in major SSWs has been 
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obtained from chemistry climate models (Ayarzaguena et  al. 2018). Dimdore-Miles 
et al. (2021) modeled changes in SSW frequency over 1000-year pre-industrial simu-
lation and showed that SSWs experience multidecadal variability in periods of 60 to 
90 years, which is associated with long-term variability in the amplitude of the quasi-
biennial oscillation (QBO). In the southern hemisphere, SSWs are rare and only a few 
major or minor SSWs have been observed. This is due to the strong and stable south-
ern polar vortex and weak PW activity in the absence of land–sea contrasts. It has been 
shown that in the future the probability of major SSWs in the southern hemisphere is 
expected to diminish even further as the polar vortex is expected to strengthen as CO2 
concentrations increase (Jucker et al. 2021).

Related to the expected dynamical changes in the southern hemispheric polar 
atmosphere, Maliniemi et  al. (2020) investigated the polar NOx distribution during 
the twenty-first century using simulations of a free-running version of the chemistry 
climate model WACCM6 driven by four different future scenarios. The results reveal 
that energetic particle precipitation (EPP)-produced NOx in the Antarctic upper atmos-
phere descends faster to stratospheric altitudes during the winter in the stronger green-
house gas scenarios by the end of the twenty-first century. The enhanced transport is 
caused by an accelerated residual circulation in the Antarctic mesosphere due to cli-
mate change. Thus, the EPP-related atmospheric effects are expected to become larger 
in a warmer climate, regardless of the level of EPP activity. Moreover, several studies 
show that the reduction in anthropogenic ozone-depleting substances fortifies the role 
of the natural EPP-related chemical impact on stratospheric ozone. Maliniemi et  al. 
(2021) show how the enhanced stratospheric NOx leads to more seasonal ozone deple-
tion in the Coupled Model Intercomparison Project Phase 6 scenarios. Recovery to 
1960s CFC levels is estimated to occur sometime after 2050. As stated above, a cooler 
stratosphere slows down the chemical reactions which destroy ozone. This will cause 
a net positive ozone production in stronger greenhouse gas emission scenarios and 
will lead to a super recovery of ozone. The model simulations, however, show that the 
enhanced descent of EPP-NOx may counteract this effect and can potentially prevent 
a super recovery of ozone in the Antarctic upper stratosphere. Note the fidelity of cli-
mate models with parameterized GWs in the polar winter mesopause region, especially 
in the southern hemisphere, can be low (e.g., Harvey et al. 2022a).

Earlier works of Funke et al. (2014) have pointed out a potential complex interplay, 
where NOx interferes with ozone loss driven by the halogen species ClO and BrO. 
This was observationally confirmed by Gordon et al. (2021) who found a positive cor-
relation between EPP and ClONO2 in the upper stratosphere in the early spring and 
in the lower stratosphere in late spring. Similarly, Maliniemi et  al. (2022) apply the 
chemistry climate model SOlar Climate Ozone Links (SOCOL) linked to the Max-
Planck-Institute for Meteorology Ocean Model (MPIOM) to the CFC era and show that 
EPP has been a significant modulator of reactive chlorine in the Antarctic stratosphere, 
thus impacting ozone depletion by CFC emissions and modulating the magnitude of 
the Antarctic ozone hole. Both the results of Gordon et al. (2021) and Maliniemi et al. 
(2022) confirm that stratospheric chlorine has acted as a buffer for ozone depletion by 
EPP via limiting the NOx and HOx catalytic cycle efficiencies. With the Montreal Pro-
tocol and the declining levels of CFC chemicals, we can expect more efficient chemical 
ozone depletion by EPP in the future. The stratospheric ozone levels and the associ-
ated impact on polar vortex strength are therefore likely to be more dependent on solar 
cycle EPP impacts in the future.
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10 � Conclusions

As part of the ISSI special issue on “Physical links between Weather and Climate in Space 
and the Lower Atmosphere,” this paper summarizes known temperature, neutral wind, 
composition, PW, GW, and tidal signatures in the MLT during weak polar vortex events. 
In this work, we performed SEAs centered on major SSW onsets as well as the onset of 
“stratopause warmings” followed by ES events. The motive for both SEAs was to test the 
sensitivity of disturbance altitude in the prediction of upper atmosphere variability. Indeed, 
both observational and modeling results suggest zonal wind and SW2 responses in the 
MLT are larger when SEAs use central dates at 1 hPa vs. 10 hPa. Alternatively, the SSW-
related variability in the non-migrating DW2 tide is best predicted by PW-1 amplitudes in 
the upper stratosphere rather than zonal mean zonal wind reversals at 10 hPa or at 1 hPa. 
For every dynamical and chemical diagnostic examined here, event-to-event variability is 
large in both SEAs. Thus, conclusions drawn based on any one event are less robust than 
those based on many events.

Results shown here reveal signatures of vortex weakening in a variety of diagnostics 
and using different observational platforms and numerical simulations. A summary of key 
points is:

•	 SEAs of 87 km temperature at Svalbard display large variability (up to ~ 20 K) within 
individual warming events as well as event-to-event. This large variability is attributed 
to the dynamically active conditions in the Arctic polar winter upper mesosphere. In 
both SEAs, nearly all events show a gradual warming of 20–30 K in the 20-day period 
after the onset that is likely due to enhanced GW-driven descent.

•	 SEAs of 87 km temperature at five locations from Catania, Italy, to Alomar, Norway 
(38–69°N), show ~ 30 K warming at high latitudes in the 20 days after onset and ~ 10 K 
cooling at mid-latitude sites in the 40 days following onset. This mid-latitude cooling 
is consistent with the known out-of-phase SSW-induced temperature anomalies in low- 
to-mid-latitudes compared to high latitudes, driven by an anomalous meridional cir-
culation cell (e.g., Miyoshi et al. 2015). However, some of this cooling trend may be 
seasonal variability, especially for years with mid-February SSWs (2010, 2018, 2023).

•	 SEAs of MLS polar cap average temperature in the MLT are consistent with the air-
glow spectrometer results. A notable difference between the major SSW SEA and the 
stratopause warming SEA is the maximum stratospheric warming and mesospheric 
cooling occur in the week prior to SSW onset and in the week following stratopause 
warming onset.

•	 SEAs of SABER polar cap averaged O3, O, H, and T anomalies near 92 km reveal large 
event-to-event variability during stratopause warmings followed by ES events. Despite 
this, signatures of descent following the warming are common. In fact, ES-induced O3 
decreases and H increases are very long-lasting and do not return to pre-SSW values 
even after 60 days, suggesting a seasonal contribution.

•	 SEAs of MIPAS CH4, CO, NOy in the stratosphere and mesosphere reveal large event-
to-event variability in the magnitude and timing of anomalies. Temperature variabil-
ity shows stratospheric warming/mesospheric cooling, as expected. Tracer variability 
shows stratospheric mixing near onset and mesospheric descent in the two months fol-
lowing onset.

•	 SEA means of O3 and H2O anomalies in the SMLT at Ny-Alesund (79°N) show high 
ozone and water vapor are transported from mid-latitudes to polar latitudes by PWs 
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around day 0 and that these increases persist for weeks to a month or more (for ozone). 
Water vapor decreases from days + 10 to + 50 are due to descent of dry air from the 
upper mesosphere.

•	 Analysis of GW forcing in SD-WACCMX during the 2024 SSW shows a more gradual 
evolution of mesospheric temperature in the high-resolution simulation compared to 
coarse resolution. After the SSW, the upper mesosphere is warmer in the high-resolu-
tion run, consistent with enhanced descent.

•	 SEA means of MLS derived winds and PW variations indicate 1) MLT wind reversals 
occur 5-days prior to major SSW onset, whereas the stratopause warming SEA shows 
the onset of easterlies simultaneously from 30 to 95 km, 2) PWs maximize 3 (1) weeks 
prior to onset in the major SSWs (stratopause warmings). Note large event-to-event 
variations are embedded in SEA means.

•	 SEAs in SuperDARN reveal westward and poleward wind shifts in the MLT a few 
days after stratopause warming onset; however, the timing with respect to day 0 var-
ies event-to-event. There are enhanced Q6DW amplitudes in the 2-weeks after day 0 
though, again, there is considerable event-to-event variability in terms of the amplitude 
and timing of the enhancement. Finally, while SW2 enhancements “cluster” around 
day + 13 for individual events, there is significant event-to-event variability in the SW2 
response. Results suggest zonal winds and the SW2 in the MLT are more sensitive to 
changing propagation conditions in the upper stratosphere rather than at 10 hPa.

•	 Stratopause warming SEAs of SW2 in meteor radar and SABER observations reveal 
enhancements in the month after onset.

•	 SEAs in WACCMX upper mesospheric zonal wind show a slight decrease prior 
to day 0 and an enhancement after day + 10, consistent with observations. There are 
weak (1–1.5 K or 15–20%) decreases in DW1 around day 0 and SW2 enhancements 
of ~ 20–30  m/s peak from day + 7 to day + 10. There is a second SW2 enhancement 
from day + 20 to day + 25 that was also observed by SuperDARN that warrants further 
study. Both U and SW2 responses are larger when SEAs are organized with respect to 
onset dates of wind reversals at 1 hPa compared to 10 hPa.

•	 Analysis of SW2 zonal wind amplitude in UA-ICON during the 2023 SSW is consist-
ent with WACCMX and SuperDARN and shows enhanced amplitudes on day + 8.

•	 Analysis of DW2 temperature amplitude in NOGAPS-ALPHA during the 2010 SSW 
shows DW2 amplitude at the Equator tracks PW-1 amplitudes at high latitudes due to 
PW-tide interactions.

•	 In the F-region, analysis of COSMIC-2 GIS data reveals SW2 enhancements at 300 km 
at EIA latitudes during the 2021 SSW. Moreover, SW2 amplitudes at this latitude and 
altitude grow whenever stratospheric winds weaken (r = -0.56 with winds at 10  hPa, 
r = -0.59 with winds at 1 hPa). When solar flux is high, as it is in 2023, SSW-induced 
enhancements to SW2 are masked in the F-region.

•	 SEAs in ionosondes show increases in foF2 at high latitudes at local noon follow-
ing 1 hPa wind reversals and these increases persist for many days. However, caution 
should be used interpreting these results due to the small number of events analyzed, 
complex propagation effects, and the potential contribution of seasonal variations.

•	 The paper ends with a discussion on how the strength of the polar vortex and the fre-
quency of SSWs might change in the future. Predictions of vortex strength are impacted 
by multiple competing processes: Increases in greenhouse gases are expected to 
strengthen the vortex, ozone recovery in the Antarctic is expected to weaken the vortex, 
and changes in radiation, dynamics, and chemistry must also be considered. Climate 
models predict an acceleration of the residual circulation, potentially weakening the 
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polar vortex due to enhanced descent and adiabatic warming. Arctic sea ice loss may 
also influence residual circulation and thereby vortex strength by altering wave propa-
gation. While a weaker polar vortex could be associated with increased SSW frequency 
in the Northern Hemisphere, models do not provide robust scenarios of future changes. 
Higher-resolution models with improved treatment of GWs, tides, and other physical 
processes are required for more accurate cause-and-effect assessments.
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