THE EDEN INITIATIVE AT THE GERMAN AEROSPACE CENTER (DLR) Achievements, Vision, & Progress through Innovation and Collaboration Kyunghwan KIM 10.03.2025 **Planetary Infrastructures, Institute of Space Systems** ## CONTENTS - Section 1 Introduction & Context - Section 2 Achievements - Section 3 Current & Future Projects - Section 4 Conclusion ## 1. INTRODUCTION & CONTEXT ## WHY 'Space Agriculture'? Space Agriculture / Bioregenerative life support system (BLSS) is essential for... - the stable and sustainable execution of long-duration human spaceflight missions - reducing dependence on Earth's resources during interplanetary missions - Food Support: rely on prepackaged foods for ISS → logistical & financial constraints for Lunar/Martian mission - Life System Support: O2 generation, CO2 removal, Water recycling - Crew Well-Being (Psychological Benefits) - Innovative Agriculture Technologies: Adapting to climate change effects on food production ## **ALL-IN-ONE APPROACH FOR BLSS** - Controlled Environment Agriculture (CEA) Technologies - Fresh food, CO2 fixation, O2 generation, water recycling, waste mgmt., well-being - Necessity to fully integrate CEA technologies into one lightweight space system! ## **System Development** - MASCOT Asteroid Lander, Landing in October 2018 on Ryugu - CompactSat Eu:CROPIS, launched December 2018 - HP³ instrument of InSight, landing 2019 on Mars, cooperation with NASA/JPL - CALLISTO, reusability flight demonstrator, CNES/JAXA/DLR cooperation, test flights in 2025 - EDEN-ISS, Green house demonstrator, analogue testing in Antarctica 2020 – 2022 - MMX rover for landing on Phobos, cooperation with JAXA, CNES - Etc... ## **Enabling Technologies** - Core Avionics & GNC - Cryogenic Propellant Management - Landing Technololgies - Deployable Membranes #### **Advanced Methods** - Concurrent Engineering for Concept Phase (CEF) - Digital Spacecraft, Model Based System Engineering - Digital Space Lab (Integration) - Automated design and verification of avionics and GNC # PLANETARY INFRASTRUCTURES (Former EDEN Initiative) #### Research group since 2011 @ Institute of Space Systems **Bioregenerative Life Support System (Plant Cultivation Sys.)** #### **In-situ Resource Utilization** (Since 2021, Synergetic Resource Utilization (S.M.U) Team) #### **Habitat Infrastructure Design** #### Research & Development Objectives - Technology Hardware Developments - System Analysis on Habitat Integrations - Analogue Field Testing - Technology Transfer ## **DLR ROADMAP (2020-2030)** DLR Roadmap (Released in 2020) - R&D of a Ground Test Demonstrator (GTD) by ~2026 - 2030: Space-ready design of an integrated greenhouse system for Lunar surface - Transition to industry for hardware build-up # DEVELOPMENT PATHWAY OF BLSS FOR LUNAR MISSION #### **Laboratory Testing** - CEA breadboards - Functional principles Analogue Testing I - Integrated system, but COTS parts - Still breadboard level - Extreme environment Testing II - COTS base - Advanced CEA (Robotic, waste management, nutrient generation) - Space-ready system **Ground Testbed** Full redundancy & S/S accommodation #### **Space Deployment** - Full space flight system - Bio-regenerative Life Support System - Increasing the TRL of Lunar Agriculture Module - Final goal is a full-size life support module for human exploration purposes ## **EDEN ISS** - H2020 Project (~5M€) - 14 partners from industry, universities, research institutes - 8 countries - Start: 2015 End: 2019 (Now: DLR) - First complex greenhouse analogue mission to Antarctica – German Neumayer Station III (AWI) ## **EDEN ISS** NASA/DLR Joint Analogue Mission 2021 #### <H2020> - Initial Deployment Mission 2017/2018 - Main Analogue Mission 2018 - Delta Mission 2019 (DLR/AWI) - Delta Mission 2020 (DLR/AWI) - Test of critical cultivation technologies in extreme environment - Humans-in-the-loop investigations, microbial investigations, crop selection, etc. - Controlled by Mission Control Center (MCC) in DLR Bremen - Significant public outreach and spinoff project ## PRODUCTION RESULTS - 5 years of analogue testing at the German Research Station Neumayer III in Antarctica - Stepping Stone towards longduration & permanent Human Outposts on Moon/Mars - Over 1000 kg of fresh crop production during missions Overview of the harvested crop varieties within the EDEN ISS system between 2018-2022 (sorted by year ## **LESSONS LEARNED** | Category | Key Points | |---|--| | Thermal &
Energy
Efficiency | LED lighting waste heat maintained greenhouse temperatures even in -40°C external conditions (<u>supplemental</u> <u>heating needed in service areas</u>) Approximately 10 kW <u>power consumption optimized</u> by <u>adjusting lighting schedules and environmental controls</u> | | Crop
Cultivation
Challenges | <u>Nutrient solution formulations</u> required <u>periodic adjustments</u> due to water quality changes and species-specific responses Developed <u>crop-specific cultivation protocols</u> to optimize yield and quality | | System
Reliability &
Maintenance | Redesigns were necessary for the water recovery/purification system Improved filtration and maintenance protocols addressed clogging issues in the aeroponic misting system | | Human Factors
&
Psychological
Benefits | Initial operator workload of 3–4 hours daily was reduced through automation and refined procedures Practical, hands-on training enabled non-botanists to effectively operate the system Access to fresh vegetables and the greenhouse environment boosted crew well-being during isolation | | Future
Directions | Planned enhancements include increased automation, improved energy efficiency, compact designs, and advanced remote monitoring Research into integrating regenerative life support (e.g., converting crew waste to plant nutrients) and optimizing systems for partial gravity (Moon/Mars) | # 3. CURRENT & FUTURE PROJECTS ## **EDEN LUNA** # esa de de la constant #### **Unique TEST BED** - Co-financed by NRW - Upgrade of existing systems - Astronauts-in-the-Loop testing - Mission Control by DLR-RY - Preparatory step for EDEN Next Gen. #### **Key Features (DLR Institutes)** - DLR-RY: Full Controlled Environment Agriculture (CEA) integration - DLR-RM: AI robotic assistance - DLR-ME: Urine processing => water recovery - DLR-DW: Risk Mitigation applications - Other DLR Institutes might join as well **CEA Technologies** C.R.O.P. Urine Filters **AI-Robot System** **Risk Mitigation** Advance EDEN Analogue for CEA technologies by extending the prototype with new robotic, waste management and nutrient generation (C.R.O.P.) elements to support a highly autonomous bio-regenerative Life support system on Breadboard Level. ## **EDEN LUNA** - Part of the LUNA Analogue Facility DLR Collaboration with ESA - Refurbishment and improvement of the EDEN ISS Antarctic Greenhouse ## 3.2 LAM-GROUND TEST DEMONSTRATOR (Formal Project Name: EDEN NEXT GEN) ## LUNAR AGRICULTURE MODULE (LAM) ## LOGISTIC-TO-LIFE SUPPORT APPROACH Initial Mission: Cargo delivery to Moon Second Mission: Life Support Module - Space-ready design - Real testbed towards first Lunar Agriculture Module - Transition to industry for later space hardware Food Provision Air Revitalization Water Recycling Well-being ## LAM GROUND TEST DEMONSTRATOR (GTD) ## LAM GROUND TEST **DEMONSTRATOR (GTD)** - Integrated laboratory (Sample & consumables storage) - Food Processing Facility => ("Space Kitchen") - Food storage technologies - Waste management interfaces ## Seed-to-Meal Approach Extended food storability Space Kitchen Other food technologies Main greenhouse system # INTERNATIONAL PARTNERSHIPS #### **Canadian Space Agency** - Official Lol signature of CSA at IAC in Paris 2022 - Long-term partnership within DLR's roadmap - Subsystem contribution by CSA for Ground Test Demonstrator (GTD) - First CAN industry call is coming out in May 2023 - S/S: NDS, ILS, PHM - Joint DLR/CSA call for industry proposal for GDT - No exchange of funds (Barter only) - Dedicated exchange (Conrad Zeidler Abordnung) Official signature of between CSA and DLR during IAC 2022 (left to right: Lisa Campbell (CSA), Anke Kaysser-Pyzalla (DLR), and Anke Pagels-Kerp (DLR). # FURTHER INTERNATIONAL COLLABORATIONS #### **NASA** - Joint mission to Antarctica (EDEN ISS) - Exploration Systems Development Mission Directorate #### **ASI** - Strong involvement within the CEA domain - Interested, but need more information #### **Industry** - Multiple interests and ambitions by various industry partners - Integration of already developed physical/ chemical life support systems or other related systems ## **UNIQUE R&D PLATFORM** Input & Output Investigations (e.g. H₂O, Gases) CEA Technology Testing & Validation DLR Mission Control Center (MCC) Al-based Plant Health Monitoring Optimization of Biomass Output (qualitative & quantitative) > Matured Processes for Operations & Maintenance > > Robotic Enhanced Support Systems & Automation Holistic Grow Recipes Microbiological Investigations Space-ready Design Testing, Humans-in- the-loop Crop & Cultivar Selection **Scientist Community** - Multifaceted research scope - Open for international collaborations - Invitation to industry, universities, and research center # 2.3 EDEN 2.0 AT NEUMAYER STATION-III ## EDEN 2.0 in NM III ## **EDEN 2.0:** Different Production Mode #### **Summer season mode:** - Increased biomass output - Additional grow levels - Less crop variety # Neumayer-Station Neumayer-Station Summer crew #### Winter season mode: - Less biomass output - More variety of crops - More psychological aspects Winter crew ## EDEN 2.0 in NM III #### **TALL-GROWING CROPS CULTIVATION AREA** **SUMMER MODE** WINTER MODE(with comfort lighting) #### **ENTRANCE VIEW** DLR Plant cultivation lighting **Comfort lighting** ## **HUMANITARIAN SYSTEMS: MEPA** # DLR #### **Deployment scenarios** #### **Initial Situation** - Based on space greenhouse technology for Moon & Mars (EDEN-ISS) - Earth: Humanitarian crisis scenarios with breakdown of local agriculture - Earth quakes, droughts, floods, hurricanes, ... - Political unrests **Earthquakes** **Droughts** Refugee camps **Floods** #### **Key Features** **Compact transport** Independent from power grid - solar powered Plug & Grow: Fast and easy Assembly Dynamic control/ Implementation of weather data/ cross-linked systems Soilless cultivation (Closed-loop/ resource-efficient) In-situ food provision in extreme situations ## **MEPA SYSTEMS** #### **Seed Cultivation Mat (SCM):** #### 1) POST-CULTIVATION & SPACE FOOD ### 1) HUMAN FACTORS FOR LAM # **SPACE FOOD SYSTEM** "We need to start thinking of the food system as a whole" Crew-Health & Performance Innovation accelerator Utilization Nutrition Food Saftey **Food Quality** Technology transfer # 2) HUMAN FACTORS FOR LAM # SIMULATING REDUCED GRAVITY ENVIRONMENT Mobile Gravity-Offloading System (MOGOS) in Luna Facility in Cologne ## RESEARCH & INDUSTRY NETWORK #### Industry **Space Agencies** Research Institutes **Universities** Humanitarian Organizations In Total: 38 partners on national & International level ## **SUMMARY & CONCLUSION** - DLR roadmap for BLSS => Long-term R&D program (2020-2030) - EDEN ISS => Testing CEA technology in space analogue environment, Antarctica - EDEN LUNA => Astronauts-in-the-loop @ LUNA Facility - LAM-GTD: First and fully integrated test greenhouse module for the Lunar surface (logistic-to-life support approach) => CSA as full partner. - EDEN 2.0 @ Antarctica => Psychological tests - Tech. Transfer => MEPA: Humanitarian Hydroponics - Space Food System & Human Factor for space agriculture Institut für Raumfahrtsysteme Excellence in Space Systems Research We enable ambitious space missions of tomorrow. # Logistic to Life Support System ## THE EDEN ISS: KEY TECHNOLOGIES #### **Controlled Environment Agriculture (CEA) Technologies** **Nutrient Delivery System** **Illumination Control System** #### **Atmosphere Management System** - Independent biomass production & Closed-Loop Environment - Up to 50 % faster production - Up to 60 % higher yields - Exact control of taste, morphology, and useful phytochemicals ### **Planetary Infrastructures** #### **Bio-regenerative Life Support Systems** - Focus: Lunar Agricultural Module Ground Test Demonstrator (LAM-GTD) - Logistic-to Life Support Approach => Reoutfit of empty cargo modules into plant cultivation modules - Collaboration project with CSA; Planned collaboration with NASA and ASI - LAM-GTD: All subsystems fully integrated; Realistic mass flows; Low pressure environment analogue to Lunar habitat (down to 57 kPa) - AIT Phase starts in 2027; Testing campaign starts end of 2028 #### **In-situ Resource Utilization (ISRU)** - Development of ISRU technologies for propellant and consumables production - Combination of laboratory-scale experimental setups in relevant environment and simulations to raise the TRL to 5 - Water extraction and purification technologies, e.g. LUWEX project - Regolith beneficiation process developments, e.g. for ilmenite enrichment for subsequent oxygen extraction First iteration of LAM-GTD infrastructure, including a mock-up habitat (HABSIM) Focus on greenhouse developments for Moon/ Mars Regolith beneficiation laboratory setup Logistic-to-Life Support Approach for a greenhouse technology demonstrator # FACILITY OVERVIEW #### **Institue of Space Systems** **EDEN Lab.** **Mission Control Center** 3D Printing Lab. **EDEN ISS/LUNA** **ISRU Labor** DFKI HALL Planetary Exploration Campus