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Abstract

Accurate prediction of the energy production of photovoltaic systems requires pre-
cise weather forecasts of solar irradiance. Numerical weather prediction models and
satellite-based forecast methods provide solar irradiance forecasts only with limited
temporal and spatial resolution. All-sky imager systems can provide solar irradiance
forecasts with high resolutions in the order of metres and minutes. The focus of this
work is on the all-sky imager network Eye2Sky, a camera network located in the

north-west of Germany, whose topology is unique due to its size and camera density.

This work addresses the question of how errors of all-sky imagers, e.g. soiling
or interfering objects, do affect the interim and final results of the solar irradiance
forecast. The physics-based forecast algorithm WobaS was the focus of this analysis.
More precisely, the effect of errors on the cloud masking process, on the cloud
base height estimation, as well as on the resulting irradiance maps of WobaS were
analysed. Based on the findings of this analysis, methods for the detection and
prevention of errors have been developed and validated. Finally, recommendations
are given for the operation of all-sky imager networks with regard to quality control.

Key words: all-sky imager, quality control, solar irradiance, photovoltaic

Zusammenfassung

Fiir die korrekte Vorhersage der Energieproduktion von Photovoltaikanla-
gen sind prazise Wettervorhersagen der solaren Einstrahlung essenziell. Num-
merische Wettervorhersagen oder satelliten-gestiitzte Solarleistungsprognosen
liefern Ergebnisse nur in begrenzter raumlicher und zeitlicher Aufiésung. Wol-
kenkamerasysteme konnen Vorhersagen der solaren FEinstrahlung mit einer
Auflosung in der Griffenordnung von Metern und Minuten bereitstellen. Im
Fokus dieser Arbeit steht das Wolkenkameranetzwerk Eye2Sky im Nordwesten
von Deutschland, das aufgrund seiner Grofie und Dichte an Kameras eine in

dieser Form einzigartige Topologie besitzt.

In dieser Arbeit wurde die Frage adressiert, wie sich Fehler von Wolkenka-
meras, wie beispielsweise Verschmutzung der Linsen oder Storobjekte, auf die
Zwischen- und Endergebnisse der Solarstrahlungsvorhersage auswirken kon-
nen. Analysiert wurden die Ergebnisse des physikbasierten Vorhersagealgorith-
mus WobaS. Genauer wird der Finfluss der Fehler auf die Ergebnisse der Wol-
kenmaskierung, auf die Wolkenhéhenbestimmung sowie auf die resultierenden
Strahlungskarten untersucht. Basierend auf den Ergebnissen dieser Analyse
werden Methoden entwickelt und validiert, die der automatisierten Erkennung
und Verhinderung dieser Fehler dienen. Abschlieffend werden Empfehlungen
zur Qualitdtskontrolle von Wolkenkameranetzwerken gegeben.
Schliisselworter: Wolkenkameras, Qualitdtskontrolle, Solare FEin-

strahlung, Photovoltaik
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1 Introduction

Combating human-made climate change and its consequences is one of the greatest
challenges of our time. By signing the Paris Climate Agreement [18] and with the
passing of the European Green Deal [8] and the Federal Climate Protection Act [5],
Germany aims to become climate-neutral by 2045. This goal has also been con-

firmed in the coalition agreement of the new federal government [6].

According to the latest federal climate report [4], the energy industry is the
dominant sector in terms of greenhouse gas emissions in Germany. Therefore, the
decarbonisation of the energy grid is an inevitable step towards reaching climate
neutrality. However, the introduction of additional renewable energy plants poses
challenges to the stability and resilience of the energy grid [31] and to the dynamics
of the energy markets [34]. The production and distribution of electricity are in-
creasingly dependent on the current weather situation, which is why reliable weather
forecasts are becoming more important. These forecasts can help not only to pre-
dict energy production or heating and cooling demands but also to prevent energy
shortages or bottleneck situations, as well as to optimise energy storages. Better pre-

dictions can help minimise potential balancing costs, thereby lowering energy prices.

For the prediction of the expected solar energy, a spatial forecast of solar irradi-
ance is required for the locations of the photovoltaic (PV)-systems. Today, mainly
numerical weather prediction (NWP) models and, to a lesser extent, satellite-based
weather forecast methods are used to provide solar irradiance predictions, especially
for long forecast horizons. However, both methods are limited in their temporal and
spatial resolution. ASI-based forecast methods can refine this forecast space down
to the magnitude of metres and minutes while still reaching lead-times of more than

30 min in the majority of situations [30].

Eye2Sky is an ASI-network in the north-west of Germany, operated by the Ger-
man Aerospace Center (DLR) - Institute of Networked Energy Systems (VE) with
about 30 cameras in operation. It is described in more detail in subsection 1.1.
An ASI-network like Eye2Sky has special maintenance requirements. Maintenance
can include cleaning, recalibration, testing, or replacing sensors, as well as fixing
software-related problems. For any given station, an extended maintenance session
can last about 1.5h. Due to the size of Eye2Sky, the travel time to each station
can vary. The mean distance from the operational office of Eye2Sky in the city
centre of Oldenburg to an Eye2Sky station is about 32km. Assuming an average
travel speed of 60 kmh™!, this leads to a total maintenance time of around 2.5h
per station. For 29 stations, this adds up to a maintenance time of about 72.5h

for the whole network. This high time requirement means high operational costs.
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Consequently, it is in the operator’s interest to minimise maintenance visits. For
the installed meteorological sensors, intervals for recalibration and replacement fol-
low fixed schedules. However, until now there have existed no fixed rules for the
cleaning intervals of ASIs in Eye2Sky. The importance of regular cleaning of the
camera lenses for Oldenburg is unclear. In Sengupta et al. [32] best practices for
the collection and use of solar resource data have been summarised by leading solar
research institutions, which also include the acquisition and use of ASI image data.
However, no standardised methods for the quality control (QC) of ASI images have
yet been included. Clean cameras are expected to provide the best image data, but
the severity of the impact of soiled lenses on the forecast results of ASI-networks
such as Eye2Sky has not been analysed before. Also, the influence of other disturb-
ing factors on the image data quality, like e.g. interfering objects or exposure time
variations, has not been investigated before for the Eye2Sky network. For the com-
mercial operation of an ASI network in general, these questions need to be answered
to make reliable predictions of the operational costs of a network and to improve

the decision-making process of choosing a suitable network topology.

The purpose of this thesis is to first analyse the influence of poor-quality input
data on the data processing chain of the nowcasting of Eye2Sky and its interim
products by choosing and developing fitting analysis methods for each type of result.
The findings of this analysis are then used to develop and validate different methods
for the detection of errors in historical data, such as the published dataset of Schmidt
et al. [29], as well as for the prevention of errors during real-time operation. Finally,
recommendations for the operation of ASI-networks are given based on the findings
of this work.
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1.1 ASI-network (Eye2Sky)

Eye2Sky is an ASI network of 29 cameras and additional meteorological stations in
the north-west of Lower Saxony which provide an extension of about 110 km x 100 km
[27]. It has been in operation since 2018 and is designed to provide very short-term
solar irradiance forecasts with high spatial- and temporal resolution. Unlike other
ASI networks, Eye2Sky covers a large area with a high density of stations. It consists
of widely distributed ASIs in the rural area and a subset of close cameras in the
urban area of Oldenburg with intersecting fields of view (FOVs). The stations are
categorised according to their equipment. Some stations only consist of a single ASI
while others have additional meteorological sensors. An overview of the stations of
Eye2Sky and their equipped measurement systems is given in Figure 1. An image
of a typical Eye2Sky station with additional meteorological sensors (MET-station)

can be found in Figure 2.

A Oldenburg A
OLETZ
ESENS PUAMM el ~
PVNOR WITTM
-
AURIC
VAREL OLWIN,oLuoL’,
CDLRA /
Eme % QLFLE °® oLnon g LBFE
PVRAS OLGBA -
WESTE,CDLRB = OLTIR ~ ") ag _ OLHOL
LEEER i -
- OLEMS
BARSE
PAPEN ALIEY
OLTWE
soanieg 2 OLCLO
ESREF -
DOERP
SOEGE
% '.'EMSTE
Ha
Meppen
0 10 20 30 40 50 60km 0 1 2 3 4 5km

@ rsi+ReF+ MET @ Ast+REF @) AsT+ MET + CE1 @ Asi+ MET (@) ASI

o ESRI

Figure 1: Active operational Eye2Sky all-sky imagers (ASIs) in summer 2025. Reference
stations (REF) are equipped with high quality solar trackers and additional
instruments. Meteorological stations (MET) are equipped with rotating shad-
owband irradiometers and further meteorological sensors. Ceilometer stations
(CEI) provide cloud height measurements, maps based on [28, edited].
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Figure 2: Typical setup of Eye2Sky station (station OLUOL) with all-sky imager (ASI),
rotating shadowband irradiometer (RSI) and additional meteorological sensors.
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1.2 Definition of ASI error-classes

Different errors can occur during the operation of an ASIs network. In Eye2Sky,
cameras with fisheye lenses are used. The advantage of these cameras is, that they
are more cost-efficient than cameras with different configurations, like ASIs with
hemispheric mirrors. However, the small fisheye lenses make the cameras more sus-
ceptible to interfering objects or soiling events. Small objects, e.g. insects, can block
a large part of the FOV of the cameras and therefore could potentially have huge
influence on the model behaviour. The same is true for soiled parts of the lenses. In
Table 1 the main sources of errors have been summarised based on the experiences

gained from the operation of Eye2Sky.

Table 1: Overview of main errors in the image data of Eye2Sky

Error type

Description

Typical effects

Continuous soiling

Continuous soiling over
time (e.g. from dust,
grease or deposits)

Blurring and scattering,
long term

Localised soiling

Sudden, spatially limited
soiling of the lens

Dark persistent spots,
long term

Interfering objects

Sudden events of block-
ing the cameras field of
view (e.g. by birds, in-
sects etc.)

Covering of parts of the
lens, very short term

Deviation of exposure
times

Different cameras sensors
can have slight devi-
ations of the exposure
times

Brighter or darker im-
ages, long term

Missing images

Missing images due to
e.g. failure, maintenance
or corrupted files

No valid image, any time
span

Wrong internal /ex-
ternal calibration

Missing or wrong trans-
formation matrices

Wrong rotated and un-
distorted images, long
term

The absence of images can be equated with a reduction of cameras available for
the forecasting. The work of Scheper [25] has shown that less dense camera networks
can still provide accurate irradiance forecast. For this reason, the error of missing
images has not been considered more in-depth in this thesis. The impact of cam-
era calibration errors has been neglected. The internal calibration of all stations,
the correction of lens distortions, has been done in advance and is considered to be
stable over time. The external calibration corrects any deviation in the orientation
of the cameras. If cameras are moved or turned, the external calibrations need to be
updated. All stations do automatic regular updates of their external calibration by

tracking the course of the moon during nights with a clear-sky moon illuminance of
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at least 90% of the full moon value [2]. Although this method only works in case of
sufficient visibility during these full moon nights, it is considered accurate for this
work because movements of the cameras are assumed to occur rarely. Furthermore,
the errors can be calculated in the deviation of pixels of the moon in an image and

are shown to be of a lesser extent (see Blum et al. [1]).

In the work of Fabel et al. [13, submitted], a convolutional neural network (CNN)
based model for the detection of anomalies is described. This model is designed to
detect six common anomalies in ASI images: arthropods, birds, covered lenses,
people, soiling and water droplets. To get an overview of the anomalies that oc-
cur the most in Eye2Sky, an early version of this model was applied to the image
data between 1 April 2022 and 18 April 2022 of the entire operational network. The
model was trained on images from Almeria, Spain, and has not been adapted for the
location of Oldenburg. For this reason, the results should be treated with caution.
Samples have also shown that misclassification can occur by directly transferring
the model to the location of the Eye2Sky network. However, it is assumed that the
result can give a qualitative overview of which anomalies are the most abundant in
the Eye2Sky network.

In Figure 3, a bar plot of the results of the anomaly detection model is given for
the time period mentioned above. One can observe that covered lenses and soiling
are the most common anomalies within the image data of Eye2Sky according to
the detection model. The high amount of ‘covered lens’ detections may correspond
to a misclassification of dark images captured at morning or evening. In compar-
ison to soiling, interfering objects, e.g. birds or insects, are not as common in the
data. However, this does not necessarily mean that anomalies like soiling also have
a higher impact on the forecast results, but it shows that it is worth taking a closer

look at these phenomena.
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Anomaly detection 2022-04-01 - 2022-04-18
total number of images: 1106564
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Figure 3: Number of anomalies detected by early version of anomaly detection model of
Fabel et al. [13, submitted], directly applied on historical Eye2Sky data for a
test period of 18 days.

For the reasons mentioned above, the main focus in this work is on the analysis
of continuous soiling, localised soiling, and interfering objects. To illustrate the main
error types in more detail, examples are given in Figure 4. Continuous soiling refers
to a homogeneous soiling of the entire lens caused by residues that accumulate over
time. In Figure 4a one can observe that this type of soiling can lead to blurring of
the picture, especially for parts of the image close to the visible sun. In contrast
to continuous soiling, localised soiling refers to soiling of only parts of the lens by
a sudden trigger event. This can lead to a covering of parts of the cameras FOV
(see Figure 4b). The category of interfering objects includes all kinds of interference
during the image-capturing process caused by, e.g., insects, birds, or people. These
interference events are usually only temporary, but they can also lead to a covering
of parts of the image and therefore to missing cloud information. In Figure 4c an
example of an interference caused by an insect is given. In addition to these three
main error types, analyses of exposure-time deviations are also performed. Different
cameras can have small deviations from the target exposure times. This can lead to
a slight darkening or brightening of the image. Figure 4d shows two images captured
by two different ASIs at the same location with slight differences in their exposure

and the resulting differences in the brightness of the image.
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(a) Continuous soiling (b) Localised soiling

(c) Interfering object (d) Exposure time deviations

Figure 4: Examples of frequent image errors in Eye2Sky, (a) continuous soiling (blurring
of parts of the image close to the sun), (b) localised soiling (big dirt stain at
the top, small dirt stain on the left side), (c) interfering objects (insect covering
parts of the lens) and (d) exposure time deviations (differences in brightness
of images of two all-sky imagers at the same location)



2 Physics-based ASI Nowcasting

In meteorology, the term ‘nowcasting’ usually refers to short-term weather forecasts
with a forecast horizon up to 6 h [26]. There are various weather forecasting methods
that differ in their characteristics, such as temporal and spatial resolution, spatial
coverage, forecast step size, maximum forecast horizon, and update cycles. For
Germany, the NWP model ICON-D2 can provide weather forecasts with a spatial
resolution of 2.2 km and a temporal resolution of 15 min with lead times up to 48 h,
but its update interval is only 3h [10]. For satellite-based forecasting methods, the
Meteosat Third Generation (MTG) satellite mission, launched in December 2022,
will provide images for selected regions every 2.5 min but with a spatial resolution
of only 500m [11]. ASI-based forecasting systems are able to deliver forecasts with
very high resolution in space and time and a rapid update cycle. However, they
only have a limited forecast horizon and spatial coverage due to their ground-based
position and their optical abilities. The approximate temporal and spatial domains

of these forecasting methods are visualised in Figure 5.

1 week 1 BB all-sky imager nowcasting (Eye2Sky)
1 EEE satellite-based nowcasting (MTG)
{ HEE NWP (ICON-D2)
1 day A
[ =
‘©
£ ]
. ]
) 1h
g
[=]
o
é 15 min §
1 min - -

10 m 100 m 1 km 10 km 100 km 1000 km
Spatial domain

Figure 5: Comparison of the approximate temporal and spatial operating domains of
state of the art weather forecasting methods of numerical weather prediction
(NWP), satellite-based nowcasting and all-sky imager nowcasting, created on
the base of [25]

Due to the high temporal and spatial resolution of ASI-based forecasting meth-
ods, small-scale phenomena, and weather situations with high spatial and temporal
variability can be predicted with higher precision. Thus, they are particularly well
suited to forecasting rapid changing weather conditions (ramps), for example in the

event of a thunderstorm. According to Sengupta et al. [32], there are two main
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approaches for ASI-based irradiance forecasts. First, physics-based (indirect) ap-
proaches, and second, machine learning (ML)-based (direct) approaches. Physics-
based approaches in general contain several modules which calculate physical interim
results, e.g. cloud mask, cloud base height (CBH), cloud motion vector (CMV) etc.,
before deriving irradiance forecasts from those results. In general, these interim res-
ults correspond to real physical properties and can be validated with measurements.
Some of the modules may also consist of ML approaches, meaning that hybrid forms
also exist. In contrast to these indirect approaches, fully ML (direct) approaches

are designed to provide irradiance forecasts directly from the raw image input.

The data processing chain of Eye2Sky is built on the physics-based (indirect)
algorithm WobaS developed by Nouri et al. [21] at DLR - Institute of Solar Research
(SF). Eye2Sky uses a further development of Woba$S for ASI-networks by Blum [2].
WobaS was built to create solar irradiance forecast maps based on ASI images
and other meteorological input data. It consists of several submodules to calculate
meteorological interim results such as cloud masks, CBH, CMVs, as well as BNI
and diffuse horizontal irradiance (DHI). A simplified overview of the data chain of
WobasS is given in Figure 6. These processing steps are considered best practice for
indirect approaches according to Sengupta et al. [32]. A complete description of all
modules of WobaS is beyond the scope of this thesis. In the following, the main
modules of Woba$S, which were considered in the quality control (QC)-analysis of

this thesis, are described and explained.
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2.1 Cloud masking

One of the first steps in the data processing chain of WobaS is the detection of
clouds and the creation of cloud masks. This means that the clouds seen in the
image are classified into different types of clouds by a semantic segmentation al-
gorithm. In contrast to normal image classification, in which images are classified
as a whole, semantic segmentation is the pixel-wise classification of each individual
image. Simple models only distinguish between cloud and clear sky; more sophist-
icated ones can also distinguish different cloud types. WobaS uses a CNN image
segmentation algorithm, developed by Fabel et al. [14] at DLR-SF. The CNN ap-
proach is based on the U-Net architecture (see [24]). This model is pre-trained on a
dataset of 300 000 ASI-images and fine-tuned on a labelled ASI-image dataset with
770 images recorded in Almerfa, Spain. For simplification, the ten cloud genera,
defined in the International Cloud Atlas [7], are summarised into three classes plus

one class for the clear sky condition, so the model can distinguish between four valid

classes (see Figure 7).

Segmentation

Figure 7: Simplified data flow chart of the CNN algorithm for semantic segmentation of
Fabel [12], figure based on [12], edited.

The different cloud classes are named after their typical cloud height ranges.
These ranges are summarised in Table 2. The assumption is that the atmospheric
conditions in the different cloud layers lead to different optical properties, which can
be detected by the model. These classes are based on optical properties, they do
not serve as height measurements in the later processing steps. The CBH-estimation
of WobaS is done separately from the segmentation by a stereoscopic approach de-
scribed in subsection 2.2. Further details about the whole semantic segmentation

process can be found in the Master’s thesis of Fabel [12].

Every cloud class has a corresponding attenuation index (AI), which is a para-
meter for the attenuation of the BNI of the different cloud types [2]. A high AI
corresponds to a low transmittance of the cloud. These Als are used during the
merging and mapping process to determine transmittance of the whole cloud field

and the resulting BNI on the ground.



2.2 Cloud Base Height (CBH) estimation 13

Table 2: Cloud classes for semantic segmentation in WobaS, their typical height ranges
and their attenuation index (AI) according to [12].

Cloud class | Height Al
Clear-sky - 0
High-layer >6 km 0.2

Mid-layer 1.8km to 8km | 0.7
Low-layer Okm to 2.4km | 1

2.2 Cloud base height (CBH) estimation

Fish-eye images of ASIs provide the pixel information in an azimuth-elevation ref-
erence frame. This means that the cloud position above ground cannot be derived
directly from single images. In Woba$S, this problem is solved by estimating the
CBH network-wide using a stereoscopic approach developed by Nouri et al. [19],
which is a multi-ASI network implementation of the work of Kuhn et al. [15]. This
approach uses the different points of view (POVs) for every predetermined ASI pair
with overlapping FOV in the network and merges this information to a global net-
work CBH. The global CBH of the ASI-network serves as an anchor point for a
projection plane to translate all the cloud information from an azimuth-elevation

reference frame (v, €) to a geo-reference frame (lat,lon).

This stereoscopic approach takes advantage of the different positions of the ASIs
inside the network. All distances between the cameras are pre-defined and do not
change over time. If the same clouds appear in the FOVs of two different ASIs,
their height above ground can be triangulated by using the azimuth-elevation ref-
erence frame of each camera. As described in Blum [2], the CBH estimations of all
pairs considered inside the network are then used to determine a global CBH by
applying a likelihood function on the results of single camera pairs. Short distance
pairs provide better CBH estimations for low-layer clouds, whereas ASI-pairs with
a large distance are better suited for the CBH estimation of high-layer clouds. For
this reason, only pairs with suitable distances are increasingly incorporated into the

final decision of the global network CBH algorithm.

When the final network CBH is determined, this information is used for the merge
process of WobaS. The stereoscopic network approach can deliver only one single
CBH for the whole network. This means that multilayer scenarios, where clouds
are observed on different heights above the ground, cannot be mapped. Moreover,
gradients of the CBH within the cloud field cannot be considered because only one
CBH is chosen for the entire network. As stated in Scheper [25], small errors in the
CBH can lead to high errors in the irradiance forecasts. Especially for large zenith
angles, a wrong cloud height leads to high projection errors during the shadow-

mapping process. Consequently, a high precision of the CBH estimation is required
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for valid irradiance forecast results.

2.3 Irradiance maps and Forecasts

The global horizontal irradiance (GHI) is the total amount of radiant power received
per area on a horizontal plane. It can be decomposed into two components, the
diffuse and the direct component. The direct component corresponds to the part of
the irradiance which comes directly from the irradiance of the Sun. The diffuse part
combines all the indirect irradiance caused by e.g. cloud reflection, scattering, and
albedo (i.e. ground reflection). The diffuse horizontal irradiance (DHI) corresponds
to the power of diffuse radiation received on a horizontal plane. The beam (direct)
normal irradiance (BNI) is the irradiance directly coming from the direction of the
Sun. It can be translated into the same horizontal reference frame by multiplying it
with the cosine of the zenith angle 6 of the Sun for the given position. The relation

of all the irradiance components is summarised in Equation 1.

GHI =DHI + BNI - cos(0) (1)

Following the calculation of the cloud masks and the CBH calculation, the informa-
tion is merged into a single two-dimensional attenuation map. During the merging
process, the results of every single ASI are ranked with an uncertainty function
depending on their position. Every camera has the highest certainty for the centre
point of the image and the lowest certainty for large zenith angles. Due to the distor-
tion of the fisheye lenses, the information density within the image is the highest in
the centre. Cameras, which are directly positioned under a point in the cloud field,
have a higher influence on the results of that location than cameras, in which the
cloud information of the target ground position is on the edge of images. After cre-
ating the attenuation maps, they are used as input for the shadow mapping process.
In this process, the BNI on the ground is calculated by mapping the shadow of the
cloud field due to the position of the Sun and the estimated CBH. This results in a
map of the BNI on ground with a spatial resolution of 50 m. Together with the pre-
dicted DHI of WobaS, the global horizontal irradiance (GHI) maps are calculated.
These BNI and GHI maps are then used as a basis for the creation of irradiance
forecasts by moving the calculated field according to the estimated CMVs. This
leads to forecast results with a lead time step size of 1 min and a forecast horizon of
up to 1 h. The end product of WobaS is a georeferenced four-dimensional irradiance
data frame with dimensions latitude, longitude, time, and lead time. Examples of

gridded irradiance results can be seen in Figure 8.
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Figure 8: Examples for beam (direct) normal irradiance (BNI) map (a), and global ho-
rizontal irradiance (GHI) map (b) for lead time (It) = Omin, 15 June 2024
12:00:00 UTC.
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3 Study setup

In order to form the basis for the development of new QC methods, the impact of
errors on the currently operational processing chain of Eye2Sky has been evaluated
in this thesis with the goal of better understanding the severity of different errors
before focussing on their detection or prevention. The objective of this work is to
systematically test how the main modules of the forecast algorithm WobaS react to
poor-quality input data. The primary focus is on the main error sources defined in
subsection 1.2. In this section, first general information on the experimental setup
of the study is given. Due to the fact that the interim results of the software differ
in many ways, different analysis methods are chosen for each module. These are

described later.

3.1 Eye2Sky subnetwork configuration

A Oldenburg A
GLETZ
T PYAMM.
lem.nmm aTm
AURIC
@
VAREL OLWIN DLUOL
-
g ST
PYRAS OLGEA -
WESTE.COLRE P OLTIR “"rf AR OLHOL
- PVAMM OLEMS
ETZ
BARSE mw. Y %BFE
® & DLTWE OLET
PAPEN = - OLTWE
(AR Queto = OCTLO
ESREF i ®
DOERP
SOEGE ——
EMSTE
®
0 10 20 30 40 50 60km 0 1 2 3 4 5km
@ rs1+reFMET @ asi+Rer @) AsT+ MET+CEI @ asi+ MET (@) A

Figure 9: Eye2Sky subnetwork of Eye2Sky used in the study (red box), map based on
[28, edited).

The Eye2Sky network is a scientific research network for the forecasting of solar
irradiance. Its topology is based on a variety of reasons, such as work safety and
accessibility of roof tops among many. However, it is not optimised for commercial
or public use cases. The work of Scheper [25] has shown that smaller network
configurations of Eye2Sky still lead to good forecast results. These smaller and
therefore more cost-efficient configurations are also considered to be more realistic
for future applications than the scientific full-density network approach. Due to the
high redundancy of cameras in the whole Eye2Sky network, it is expected that the
influence of errors may be too small to be visible in the analysis. For these reasons, in

this thesis only a subset of the entire Eye2Sky network has been taken into account.
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This reduction in complexity not only makes the resulting network topology more
realistic, but a smaller network configuration also helps to reduce computation times.
This subnetwork has been built virtually around the reference station OLWIN and
the experimental setup described in subsection 3.2. The stations were selected or
omitted on the software side. No ASIs needed to be dismantled or replaced for this
work. The topology of the chosen subnetwork can be seen in Figure 9. An overview

of the available measurement equipment can be found in Table 3.
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Table 3: Overview of available sensors in subnet of Eye2Sky, stations in alphabetical
order including model names of all-sky imagers (ASIs), rotating shadowband
irradiometers (RSIs) and further meteorological sensors. * marks all sensors
that are not used by the forecasting algorithm. Sensors in brackets have not
been used in this evaluation but are part of the measurement system.

Station Sensors Models

CDLRA | ceilometer* LUFFT 15k CHM180102

OLCLE | ASI Mobotix Q26B-6D

OLMED | ASI Mobotix Q26B-6D

OLDIR | ASI Mobotix Q25

OLDON | ASI Mobotix Q25
RSI CSP-Services (2x LI-COR LI-200)
(pyranometer)* LI-COR LI-200R
(pyranometer)* LI-COR LI-190R
(thermo-hygrometer)* Campbell Scientific 215

OLEMS | ASI Mobotix Q25

OLFLE ASI Mobotix Q25

OLGBA | ASI Mobotix Q25
(pyrgeometer)* Kipp&Zonen CGR4
(RSI)* CSP-Services (2x LI-COR LI-200)
(pyranometer)* Kipp&Zonen CMP10
(anemometer)* Thies Clima Sensor US

OLJET ASI Mobotix Q25
(RSI)* CSP-Services (2x LI-COR LI-200)
(pyranometer)* LI-COR LI-200R
(pyranometer)* LI-COR LI-190R
(thermo-hygrometer)* Campbell Scientific 215

OLMAR | ASI Mobotix Q25

OLQ71 (ASI)* Mobotix Q71

OLTIR ASI Mobotix Q25

OLWIN | sun tracker* 2x EKO MS-80
pyrheliometer*® EKO ML-01
(pyranometer)* sunto captpro
(visibility /weather sensor)* | Campbell Scientific CS125
(thermo-hygrometer)* Campbell Scientific CS215
(rain gauge)* Thies Clima 5.4032.35.008

PVAMM | ASI Mobotix Q25
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3.2 Experimental setup for soiling analysis

For the QC-analysis of the Eye2Sky network, an experimental setup has been in-
stalled on the rooftop of the WindLab building W33 on the campus of Carl-von-
Ossietzky University of Oldenburg in Wechloy next to the reference station OLWIN
(see Figure 10). Station OLWIN is equipped with a solar tracker following the exact
position of the Sun in the sky and additional meteorological sensors. Due to its
higher accuracy versus the rotating shadowband irradiometers (RSIs), it acts as a
reference for the irradiance measurements in this thesis. The experimental setup
used in this thesis includes the operational meteorological station OLUOL and ad-
ditional installed ASIs. These ASIs differ in terms of their cleaning methods and
equipment. AST OLCLE (clean), OLUOL, and OLQ71 have been cleaned manually
almost every week. In contrast, ASI OLDIR (dirty) was not cleaned at all during
this analysis. In addition, ASI OLMED is equipped with an automatic cleaning
system. Some ASIs are also equipped with a ventilation-heating-system (VHS) to
protect the lenses from freezing and dust. The differences between model Mobitix
Q25 and Mobotix Q26B-6D have initially been considered negligible for this experi-
ment. AST OLQT71 is equipped with a Mobotix Q71. This model has some different
functionalities, which were not relevant for this work. For this reason, it has been
excluded from the analysis, but it is mentioned for the sake of completeness. In
Table 4, all ASIs of the experimental setup are listed. This setup has been chosen to
assess the importance of cleaning methods, cleaning intervals, and cleaning equip-

ment.

Table 4: Experimental setup on building W33 of all-sky imagers (ASIs), cleaning method,
cleaning interval and status of ventilation-heating-system (VHS).

ASI Model Cleaning method Cleaning intervals | VHS
OLUOL | Mobotix Q25 manually cleaned weekly True
OLCLE | Mobotix Q26B-6D | manually cleaned weekly False
OLMED | Mobotix Q26B-6D | automatically cleaned | daily True
OLDIR | Mobotix Q25 not cleaned - True
(OLQT71) | Mobotix Q71 manually cleaned weekly False

Within the Eye2Sky network, ceilometer cloud height measurements are only
available for some locations because ceilometers are costly. None of the stations in
the experimental setup on top of building W33 is equipped with a ceilometer. There-
fore, the stations OLGBA and CDLRA on the roof of the DLR-building (about 400 m
away from the experimental setup) were used to validate the CBH estimation of the
network (see Figure 11). Station OLGBA is maintained regularly and therefore is
considered clean for this work. The exact cleaning intervals of all the stations in
the study setup during the main analysis periods can be found in the excerpt of the

network logbook in Appendix A Figure 49.
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Figure 10: Experimental setup of this study on rooftop of building W33, stations
equipped with all-sky imagers (ASIs) (OLCLE, OLDIR, OLMED, OLQT71,
OLUOL), and meteorological reference station (OLWIN).

3.3 Cloud masking impact assessment

One of the first steps in the processing chain of WobaS is the creation of cloud masks.
This is done using the semantic segmentation algorithm of Fabel [12] as described
in subsection 2.1. The segmentation results for each station are given in the form
of two-dimensional arrays of the same size as the input images. The value inside of
an array corresponds to the class of the same pixel in the original image. To make
the results of all stations comparable, it is necessary to first equalise any differences
in the external orientation of the cameras. Every camera was calibrated before to
determine its external orientation. This calibration data can be used to rotate all the
arrays so that the results of two stations are aligned. Then, all resulting arrays are
cropped to remove unnecessary parts of the boundary mask. These preprocessing

steps are done to make direct comparisons of results from different stations possible.

3.3.1 Continuous soiling

For the analysis of the cloud masking process, there is no direct reference data within
Eye2Sky. The cloud mask results can therefore not be compared with any direct
ground truth. For the analysis of the impact of continuous soiling on the semantic
segmentation, the segmentation results of the manually cleaned station OLCLE have
been compared with the uncleaned station OLDIR and the automatically cleaned
station OLMED. It is assumed that the segmentation results of the cleaned ASIs

are closer to reality than the results of soiled cameras, because the data for the
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Figure 11: Building A of German Aerospace Center (DLR) - Institute of Networked
Energy Systems (VE).

fine-tuning process of the semantic segmentation model was manually checked and
selected. For this reason, the segmentation results of the manually cleaned station
OLCLE have been used as a reference for this work. Image examples of all three

stations are given in Figure 12.

(a) Example image of regu- (b) Example image of un- (c) Example image of automat-
larly cleaned Eye2Sky sta- cleaned Eye2Sky station ically cleaned Eye2Sky sta-
tion OLCLE. OLDIR. tion OLMED.

Figure 12: All-sky imager image examples of cleaning analysis, June 26 2024 11:00 UTC.

All stations are located on the same rooftop of building W33 at Campus Wechloy
and therefore have been exposed to exactly the same weather conditions. Therefore,
a comparison of the results of the different stations should reveal the influence of
continuous soiling on semantic segmentation. This analysis should also reveal any
differences between both cleaning methods. The month of June 2024 was chosen as
the analysis period for this work. The cloud masking is calculated on every image

of all cameras and timestamps separately, so the amount of data and the cloud-type
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representation inside that period are considered sufficient for this analysis. After the
preprocessing steps mentioned above, the segmentation results can be compared by
building a confusion matrix between the different results. These confusion matrices
are used to visualise the accuracy of a classification task. Every pixel of the seg-
mentation result of one station is compared with the same pixel of the segmentation
result of the other station. The diagonal of this matrix represents all pixels that are
classified as the same cloud type by both stations. All other values correspond to a
different classification of the two stations. The semantic segmentation algorithm of
Fabel [12] only distinguishes five different classes: clear-sky, high-layer clouds, mid-
layer clouds, low-layer clouds and invalid. In addition to these five classes, a new
class has been introduced for this work. This class is called ‘masked’ and visualises
the invalid pixels which are, in fact, inside the image border mask of the image and
correctly classified as invalid by the model. This differentiation can reveal any po-
tential deviation between the invalid pixels classified by the module and the pixels
which are actually part of the mask and are set invalid by a boundary condition. The
total attenuation index error F4; can be calculated by weighting the segmentation
results for both stations with the corresponding AI. This error serves as a simple
metric for the actual impact of misclassifications on the irradiance forecast.

n n
CLO upz':v,c : AIC - ci() upiacmf,c : A]c
Ear=

(2)

The index ¢ corresponds to the valid segmentation class, n. is the number of valid

Npiz,valid * N

classes, Npiz vatia the number of valid pixels per image and N the number of images.
Upiz,c corresponds to the number of pixels classified as class ¢ by the analysed sta-
tion, and AI. represents the attenuation index of class c. The suffix ,.; marks the

same for the chosen reference station.
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3.3.2 Localised soiling and interfering objects

For the analysis of the impact of localised soiling and interfering objects, cameras
from the entire subnetwork, described in subsection 3.1, were considered. Due to the
fact that the segmentation is done on single images without temporal dependencies
in-between the timestamps, both error types have been considered comparable and
have been summarised in this analysis. Apart from the experimental setup on build-
ing W33, there are no redundant ASIs at the same locations, so the evaluation of the
segmentation between both phenomena has been done only qualitatively or by com-
paring timestamps before or after an event. For the analysis of interfering objects,
examples from the entire pool of stations within the subnetwork were considered.
For the analysis of localised soiling, station OLFLE was selected. This station was
soiled unforeseen in April 2024 and cleaned in June 2024, so it was soiled locally
longer than a month and therefore is well suited for this analysis. Then, all results
are qualitatively discussed in section 4. Examples of localised soiling and interfering

objects from Eye2Sky are given in Figure 13.

(a) Localised soiling on Eye2Sky station (b) Interfering object (bird) on Eye2Sky station
OLFLE, June 9 2024 11:11 UTC. OLDON, December 1 2024 08:08:30 UTC.

Figure 13: All-sky imager image examples of localised soiling and interfering objects.
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3.4 Cloud base height impact assessment

Although the semantic segmentation classes are named after the various cloud-layers,
they are imprecise and do not necessarily correspond to the real heights of the
clouds. This becomes clear when comparing the segmentation results with cloud
height measurements. In Figure 14, the results of station OLGBA, and the ceilo-

meter measurements of station CDLRA have been compared for 6 June 2024.

(a) Keogram of Eye2Sky station OLGBA.
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(b) Comparison of segmentation results of centre point of Eye2Sky station OLGBA with ceilometer
measurements of station CDLRA.

Figure 14: Validation of segmentation results as indicator for cloud heights for 6th of
June 2024.

Figure 14a shows the keogram of station OLGBA on this date. To create a keo-
gram, the centre line from bottom to top of every raw image is taken and merged
along the recording time on the x-axis. These keograms help to get a quick over-
view of the weather conditions during the corresponding day. The segmentation
results have been converted into a time series of CBH ranges according to Table 2
by taking the central point of the two-dimensional segmentation array. This point
corresponds directly to the clouds above station OLGBA. These ranges were then
compared with the true ceilometer measurements of station CDLRA. The ceilometer
of station CDLRA can measure the cloud heights of up to 4 cloud layers, but only

the measurements of the first cloud layer have been considered ground truth for this
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work, because it is expected that in multi-cloud-layer situation, the first cloud layer
is the most significant when using ground-based ASIs. Ceilometer measurements are
available in the form of NetCDF-files with a temporal resolution of 15s. They have
been smoothed by building the rolling mean with a window size of 3 timestamps
and interpolated with nearest-neighbour interpolation to fit the timestamps of the

image capturing.

Figure 14b reveals that the segmentation results differ from the measured cloud
heights. Especially for high-layer clouds, the deviations are greater than for low-
layer clouds. According to the work of Nouri et al. [20], the transmittance of mid-
and high-layer clouds can vary greatly. This variation can also lead to different
optical properties and therefore to a higher variation in the segmentation results.
For these reasons, the segmentation results cannot serve as cloud height estimates

for the network.

For the CBH estimation, Woba$S uses the stereoscopic approach described in sec-
tion 2. According to Scheper [25], small errors of the CBH can have a strong impact
on the final irradiance forecast results. This thesis investigates whether these errors
can be caused by soiling of the lenses. To achieve this goal, the CBH QC-analysis is
divided into two parts. First, only the results of single ASI pairs within the network
have been analysed. Afterwards, the ceilometer measurements were compared with
the global results of the entire subnetwork by replacing the cameras of the experi-
mental setup on the software side and starting forecast runs for every configuration.
To analyse the impact of soiling, pairs were built between station OLGBA and the
ASI stations of the experimental setup (see Table 4). OLGBA was chosen because
it has an overlapping FOV with the ASI of the experimental setup and is regularly
maintained. Its distance from the experimental setup is about 400 m. All results
were evaluated for the location of station OLGBA because it is the closest to the
ceilometer CDLRA. Due to a failure of the ceilometer, only days in between 1 June
and 24 June 2024 were analysed. Following the investigation of the ASI pairs, the
output of the global subnetwork was analysed. Both results were compared with the
cloud height measurements of the ceilometer. Excluded were all situations where
values were missing in the prediction or in the measurements. Clear sky situations
have not been included in the analysis because no valid CBH value can be assigned
during these periods. To quantify the error, different error metrics were introduced

and compared. These are described below.

n is the number of data points for the given time period, C BH corresponds
to the predicted cloud base height, and C'BH is the height of the first cloud-layer

measured by the ceilometer. i corresponds to the index of the given data point
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for each time stamp. The mean absolute error (MAE) is a simple metric for the

performance of the model, which is not sensitive to outliers (see Equation 3).

1 & N
MAEcpy ==Y |CBH; — CBH,| (3)
[t
To investigate whether lens soiling leads to model bias, the mean bias error

(MBE) was introduced as an error metric for the analysis (see Equation 4).

1 ,
MBEgpy =~ > . CBH, — CBH, (4)
n

i=1
The root mean square error (RMSE) has also been introduced as an error metric

(see Equation 5). It is more sensitive to high scattering and outliers than the MAE.

1 N
RMSFEcpy = J —> (CBH; — CBH,)? (5)
N =1
According to Blum [2], for the measurement of cloud heights, higher deviations
can be expected for higher clouds. The same applies for the predicted cloud heights.
For this reason, the relative root mean square error (rRMSE) has been chosen as an
error metric to relativise large deviations for large altitudes (see Equation 6). CBH

corresponds to the mean value of the observation.

(CBH; — CBH;)?
CBH

1 n

% e

TRMSECBH = \/n (6>
As described in section 2, different camera distances are suited for different
CBHs. Consequently, the error analysis has been done separately for each cloud

layer by filtering the data according to the cloud height definitions in Table 2.

During this work it was noticed that the camera models Mobotix Q25 and Mo-
botix Q26B-6D do have slight differences in their exposure times. The target expos-
ure time for all stations is 160 ps. However, for the Mobotix Q25 this results in an
exposure time of 149 ps, for the Mobotix Q26B-6D in an exposure time of 163 ps. To
investigate exposure time variations, the Mobotix Q26B-6D stations OLCLE and
OLMED have been set to an exposure time of 147 ps during May 2025 to mimic
the behaviour of the rest of the network. The CBH results were compared with the
results of June 2024 to better understand whether deviations in exposure times can

influence the CBH estimation.
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3.5 Irradiance forecast impact assessment

The results of the irradiance forecast of WobaS are given in the form of multidi-
mensional arrays with the dimensions t (time), lat (latitude), lon (longitude) and 1t
(lead time). The forecast is only calculated for the GHI and the BNI. The impact of
errors on the final results of WobaS was analysed by building different subnetwork
configurations. In the computation runs, the stations of the experimental setup
were replaced on the software side. The rest of the network remained the same. By
replacing only the cameras on top of building W33, it is expected that the error
of continuous soiling may be made visible. This analysis is divided into two parts.
Firstly, the results are compared in the spatial domain using the network config-
uration with station OLCLE as a reference. Secondly, the results are analysed in
the temporal domain by selecting the location of station OLWIN from the forecast

maps and using the irradiance observations of OLWIN as reference.

For the analysis of the spatial domain, the resulting irradiance maps were com-
pared using difference maps. These maps are created by subtracting the gridded
irradiance data from the analysed network configuration with the reference network
for a given lead time. This reveals any spatial deviations of the different results per
moment in time. In addition, the error can be quantified by introducing error met-
rics. The spatial MAE (Equation 7), the spatial MBE (Equation 8) and the spatial
RMSE (Equation 9) were calculated for the gridded data. The index p = (lat, lon)
represents one position on the map. The constant n, represents the number of valid
gridded data points. The term TRRAD is a placeholder for one of the irradiance
components (BNI, DHI or GHI). The suffix ,.; indicates the same component for
the reference network configuration with station OLCLE.

Tp

1
MAErrap(t,1t) = — > |IRRAD,(t,lt) — IRRAD,f,(t,1t)| (7)

np p=1

1 &
MBEgrap(t,lt) = — Z IRRAD,(t,lt) — IRRAD, .y ,(t.lt) (8)

np p=1

p

1
RMSErrap(t,lt) = \J — > (IRRAD,(t,lt) — IRRAD,;,(t,lt)) 9)

Np p—1
For the analysis of the temporal domain, the location of the experimental setup
is chosen because the meteorological reference station OLWIN is located on the
same roof and can be used as reference. For this location the above-mentioned
error metrics were calculated for the time series depending on the lead time but
with the measurements from station OLWIN as reference (I RRAD,s). The index
ts represents the given time stamp, the constant n; represents the number of data

points in the time series. This leads to the following equations for the temporal
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MAE (Equation 10), the temporal MBE (Equation 11) and the temporal RMSE
(Equation 12).

1 X
MAEgrap(lt) = — Z |[IRRAD;(1t) — IRRAD s 5 (t+1t)| (10)
N =1
1 X
MBEgrap(lt) = — Z ITRRAD:(1t) — IRRAD s 15 (t+1t) (11)
T gs=1

1
RMSEgrap(lt) = J — S (IRRAD,,(It) — IRRAD 3 1o (t11))?  (12)

s ts=1
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4 Results

In the following section, the results of the QC analysis of WobaS are presented and

discussed.

4.1 Cloud masking analysis

The impact analysis of the three main error types continuous soiling, localised soil-
ing, and interfering objects has been split into two parts. In the first part, the
impact of continuous soiling is analysed and discussed. In the second one, the same

is done for impact of localised soiling and interfering object.

4.1.1 Continuous soiling

Figure 15 below shows the confusion matrix between the segmentation of the cleaned
station OLCLE and the uncleaned station OLDIR of June 2024, where OLCLE is

the reference station in this diagram.

normalised confusion matrix
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Figure 15: Confusion matrix between segmentation results of cleaned station OLCLE
and uncleaned station OLDIR for June 2024, normalised by the total amount
of images N and pixels per image.

When the pixels in both images are classified as the same, they appear on the
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diagonal of the confusion matrix. Every off-diagonal value corresponds to a differ-
ent classification between the stations. In addition to the valid classes (clear-sky,
high-layer, mid-layer, and low-layer), a distinction is also made between the classes
‘masked’ (any pixel of the image part of the border mask) and ‘invalid’ (any pixel
which is additionally classified as invalid by the model without boundary condi-
tion). One can see that confusion between both stations mainly occurs between
neighbouring cloud layers, especially for mid-layer clouds. This matches the general
model behaviour of the segmentation algorithm described in Fabel et al. [14]. Des-
pite these differences, the calculated total attenuation index error E 4; for the entire
period is only —0.02188. (see Equation 2). This means that the total impact of
continuous soiling on cloud transmittance is relatively small. In addition, one can
also see symmetrical deviations between the segmentation of low-layer clouds and
clear-sky, which may be caused by interferences on both stations caused by e.g. rain
droplets. However, it can be observed that not all differences are spread symmetric-
ally between the left and right side of the confusion matrix. For some classes, there
is a slight trend towards a specific misclassification for uncleaned ASI OLDIR, e.g.
between the classes clear-sky and high-layer clouds or between neighbouring cloud
layers. It becomes clearer when looking at the confusion matrices of the corres-
ponding weather conditions. For this reason, two days have been chosen for a closer
analysis. The first was 26 June 2024, a day with mostly clear sky conditions and
some high-level clouds (Figure 16), and the second one was 6 June 2024, a day with
variable weather conditions and different cloud levels (Figure 19). The keograms for

both days can be found in Figure 44 in Appendix A.
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normalised confusion matrix
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Figure 16: Confusion matrix for segmentation results of cleaned station OLCLE and
uncleaned station OLDIR for single clear-sky day with high-layer clouds for
26 June 2024, normalised by the total amount of images N and pixels per
image.

Figure 16 shows the confusion matrix on 26 June 2024, a day with mainly clear-
sky conditions with some high-layer clouds. According to the work of Fabel et al.
[14], the distinction between non-neighbouring cloud layers of the model is reliable.
Also, clear-sky is classified with high accuracy. However, the article shows that
large numbers of high-level clouds can be misclassified as clear-sky. This behaviour
can also be observed in the Eye2Sky network. In Figure 16 it can be seen that the
model has problems distinguishing between clear sky and high-layer clouds for the
uncleaned camera OLDIR. Pixels classified by station OLCLE as high-layer clouds

(and to some extent invalid pixels) are classified as clear-sky by station OLDIR.

In Figure 17 one can find raw image examples of station OLCLE and station
OLDIR for the day mentioned above. The comparison between Figure 17a and Fig-
ure 17b reveals that continuous soiling leads to a blurring-effect of the image. The
high-level clouds around the sun appear with less contrast. These blurred images
have some optical similarity to images of clear sky conditions with high atmospheric
turbidity (see Figure 17c).
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(a) Raw image of cleaned (b) Raw image of uncleaned (c) Example image  from
Eye2Sky station OLCLE Eye2Sky station OLDIR Almerfa, Spain, of clear
with  high-layer clouds, with  high-layer clouds, sky with high turbidity,
26th of June 2024. 26th of June 2024. taken from [12].

Figure 17: Comparison of raw images of cleaned station OLCLE, uncleaned station
OLDIR and ASI image from Almerfa, Spain.

According to Lépez and Batlles [16] and Power and Goyal [23], the turbidity in
southern Spain is on average higher than the turbidity in northern Germany, so it
is expected that images of high-turbidity clear sky conditions are over-represented
in the training data when transferring the model directly to northern Germany.
As stated by Fabel [12], the model has difficulty distinguishing between high-level
clouds and clear-sky on days with high turbidity. Figure 18 shows the segmentation
results for station OLCLE, OLDIR and OLMED at 11:00 UTC of the same day.
It can be seen that the same kind of confusion also appears for high-layer clouds
on a continuously soiled lens. High-layer clouds around the Sun are misclassified
as clear-sky by station OLDIR whereas the cleaned stations OLCLE and OLMED
classify them correctly. However, for the cleaned cameras OLCLE and OLMED
these thin high-layer clouds can only be detected by the ASI when they appear close
to the Sun in the image. It is expected that they are also present in the rest of the
image. That means that the improvement of the classification of high-level clouds
by cleaning the cameras is small. Also, these thin high-layer clouds do not have a
great impact on the cloud’s transmittance, their Al is 0.2 and therefore only slightly
higher than the attenuation index of clear sky conditions, which is 0. The total
attenuation index error E4; for the whole day is only —0.01339. This means that
these misclassifications have only a minor impact on the irradiance results of the
Eye2Sky network for this day.
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Figure 19 shows the confusion matrix of 6 June 2024, a day with variable weather
conditions. This day was chosen because all three cloud types are present in the
segmentation results of this day. In this figure one can see that the model has dif-
ficulties in correctly classifying mid-layer conditions for images of OLDIR. A large
proportion of pixels classified as mid-layer clouds by station OLCLE are classified
as high-layer or low-layer clouds by station OLDIR.

normalised confusion matrix
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Figure 19: Confusion matrix for segmentation results of cleaned station OLCLE and
uncleaned station OLDIR for single day with variable weather conditions, 6
June 2024, normalised by the total amount of images N and pixels per image.

The segmentation results of the stations OLCLE, OLDIR, OLMED and OLUOL
for the same day at 12:00 UTC are shown in Figure 20. It can be observed that the
same kind of misclassification of station OLDIR appears in the results of manually
cleaned station OLUOL as well. That means that these differences in the results
do not necessarily correspond to continuous soiling. Contrary to the initial expect-
ation that the models of the used Mobotix cameras capture similar images, it was
noticed that the Mobotix Q25 and Mobotix Q26B-6D camera models have differ-
ences when setting the exposure times. The set target exposure time is 160 ps for all

stations during daylight. However, the resulting value set by the camera hardware
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for the Mobotix Q25 is 149ps, and for the Mobotix Q26B-6D it is 163 ps. Both
stations OLDIR and OLUOL are equipped with a Mobotix Q25 and therefore shoot
slightly darker images. This can lead to differences during segmentation. Due to
the fact that no ground truth data is available, it cannot be said with certainty
which segmentation results are better. Nevertheless, a sensitivity of the semantic

segmentation model to the exposure time can be observed.

2024-06-06 12:00:00
Raw Image Segmentation Contour Plot

OLCLE

| clear
sky

OLDIR
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invalid

mask
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Figure 20: Segmentation results of manually cleaned stations OLCLE and OLUOL, auto-
matic cleaned station OLMED and uncleaned station OLDIR, 6 June 2024
12:00 UTC.

In contrast to high-layer clouds, which typically consist of ice crystals, low-layer
and mid-layer clouds normally consist of water droplets. These physical similarities
can also lead to optical similarities. The similarities between the optical proper-
ties make the distinguishing also a complex task for humans. The data set used
to train the segmentation algorithm was created manually. As a result, misclas-
sification is expected to already be included in the training data to some extent.
Figure 21a shows the results of the accuracy analysis from Fabel et al. [14] for the
model compared to the validation data. Figure 21b shows the confusion matrix of
June 2024 but calculated per class. The classes ‘invalid’” and ‘masked’ have been

summarised. In contrast to the confusion matrices shown before, both matrices here
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show the accuracy per class separately. In this case, all columns add up to 100%
(may include rounding errors). The prediction is on the left, the reference on the
bottom. Also, the order of the classes has been changed to make the matrices com-
parable. Because the different cloud classes were not equally present in June 2024,
deviations to the model accuracy are expected to some extent. However, by com-
paring the general accuracy of the model with the confusion matrix in Figure 21b,
it becomes clear that the impact of continuous soiling on the model is about the
same magnitude as the general model error. Due to the fact that no real ground
truth data is available for the Eye2Sky network, no significant impact of continuous

soiling on the general accuracy of the segmentation algorithm could be made visible.

Confusion matrix per class
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Figure 21: Model accuracy of segmentation algorithm in percentages per class separately
taken from Fabel et al. [14] (a), confusion matrix for June 2024 per class
separately (b), (prediction on the left, reference on the bottom).
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4.1.2 Localised soiling and interfering objects

In this section, the influence of localised soiling and interfering objects on the cloud
masking process of WobaS$S is analysed. The semantic segmentation algorithm is
performed on each ASI image individually without taking into account previous

timestamps. For this reason, both phenomena were summarised in this analysis.

Figure 22 shows a sequence of images and their segmentation results of the
Eye2Sky station OLDON during an event with an interfering object. A bird was
blocking parts of the lens.
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Figure 22: Segmentation results during interfering event (bird) of Eye2Sky station
OLDON, 3 May 2024.

When looking at the resulting segmentation, it can be observed that most of the
dark parts of the interfering object are correctly classified as invalid by the segment-
ation model. However, brighter parts can be classified as different cloud-layers. The

timestamps before and after the event reveal that there are no clouds present.
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Figure 23: Results of semantic segmentation algorithm for localised soiled station OLFLE, examples from June 2024.
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The above-mentioned model behaviour can also be observed for localised soiling.
The station OLFLE was locally soiled at the beginning of June 2024. Looking at
different segmentations during this period, the impact of localised soiling can be
made visible. Figure 23 shows the segmentation results of station OLFLE for four
days with different weather conditions. In Figure 23a and Figure 23b situations with
low BNI were chosen. One can observe that the segmentation algorithm correctly
classifies dark pixels of the soiled location as invalid to some extent. However, Fig-
ure 23c and Figure 23d reveal that for brighter images, these pixels are also classified

as valid cloud layers.

The behaviour of the model of classifying objects as invalid is unintentional.
Objects of the surrounding, e.g. buildings, antennas, etc., are masked out with
true black boundary masks before the training process. This means that the model
has learned to interpret dark objects as part of the boundary mask and therefore
classifies them as invalid. This behaviour can be beneficial for the merging of the
segmentation results for interfering objects. However, in the Eye2Sky network, there
are situations where this behaviour can lead to misclassification of valid clouds. For
very dark clouds, such as those that occur during thunderstorms, cloud fronts may
also be classified as invalid. An example is given in Figure 24. The correct detection
of these rapid weather changes and the corresponding drop in irradiance is crucial for
ASI forecasting because they also lead to a rapid decrease in PV power production

that cannot be reliably predicted with other forecasting methods.

OLMAR 2025-07-02 16:12:00
Raw Image Segmentation
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Figure 24: Segmentation results of Eye2Sky station OLMAR with upcoming thunder
storm front, 2 July 2025.
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4.2 CBH estimation analysis

In the following section, the impact of continuous soiling on the CBH estimation
algorithm of WobaS is analysed. This includes the analysis of the CBH estimation
results of the individual ASI pairs and the global results of the subnetwork configur-
ations. The subnetwork configurations were built by taking the operational Eye2Sky
subnetwork and adding one ASI each of the experimental setup (OLCLE, OLDIR,
OLMED & OLUOL). In addition, analyses of the influence of deviations in exposure

times on the CBH estimation are shown and discussed.

For the analysis of the CBH estimation of WobasS, the results were compared with
the ceilometer observations of station CDLRA. Based on these ceilometer measure-
ments, the MAE, the MBE, the RMSE, and the rRMSE were calculated. For the
stereoscopic CBH estimation algorithm, not all ASI pairs are equally suited. Due
to their different view angles, short-distant cameras are better for the estimation of
low clouds, whereas far-distant cameras are better for the estimation of high clouds.
In order not to distort the error metrics, the errors were therefore also calculated
for each cloud layer separately. For this, the cloud layer definition of the semantic
segmentation algorithm was used (see Table 2). In general, the error of short-distant
pairs is expected to be lower for low-layer clouds and vice versa. In addition, the
network is expected to deliver more robust results than the individual pairs, so the

total error of the subnetworks should be lower.

Figure 25 shows different error metrics of the CBH estimation of WobaS for the
time between 1 June and 24 June 2024 for every camera in the subnetwork paired
with ASI OLGBA and for the global subnetwork results of all subnetwork configur-
ations. Due to a failure of the ceilometer CDLRA, the last six days of that month
could not be taken into account for the analysis. Figure 25a shows the MAE, Fig-
ure 25b the MBE, Figure 25c the RMSE and Figure 25d the rRMSE of the CBH

estimation for this period.

Looking at the different error metrics for the ASI pairs (marked with x), one can
see that there are no significant differences between the stations in the experimental
setup. It was expected that the errors for the pairs with the cleaned stations OLCLE,
OLMED and OLUOL are smaller than for the uncleaned station OLDIR. However,
this cannot be confirmed by the error metrics. The pair with station OLCLE shows
slightly better results for high-clouds in the MAE, the RMSE and the MBE. How-
ever, the same could not be seen for the other cleaned stations. By comparing the
station pairs with the map in Figure 9 one can see that the main factor influencing
the error metrics are the distances between the ASIs. Like expected, the error of

far apart cameras is greater for low-layer clouds and the error of close cameras is
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44 4  Results

greater for high-layer clouds. Station OLJET is the furthest station from station
OLGBA and has the lowest error for high-layer clouds in all metrics. The stations
of the experimental setup OLCLE, OLMED, OLDIR and OLUOL are the closest to
station OLGBA and perform better for low-layer clouds.

Looking at the CBH errors of the entire subnetwork configurations (marked
with e), one can see that the algorithm performs better for low-layer clouds than for
high-layer clouds. The reason for this could be that when defining the subnetwork
topology, very distant cameras were omitted. However, comparing the network
error metrics, one can see that they are almost the same for all configurations. This
means that small deviations of single ASIs, e.g. caused by soiling, do not have a
large influence on the global CBH estimation of WobaS. Due to redundancy of ASIs

within the network, the CBH results are robust to influences of single cameras.

12000 ; +  stereoscopy pair OLGBA_OLCLE
—— stereoscopy pair 15 min rolling mean OLGBA_OLCLE
sterenscopy pair OLGBA_OLDIR
stereoscopy pair 15 min rolling mean OLGBA_OLDIR
10000 stereoscopy pair OLGBA_OLMED
stereoscopy pair 15 min rolling mean OLGBA_OLMED
stereoscopy pair OLGBA_OLUOL
—— stereoscopy pair 15 min rolling mean OLGBA_OLUOL
high layer
mid layer
low layer
cloud layer transition zones
- ceilometer CDLRA, layer 1

800071
6000

4000 4"

cloud base height (CBH) [m]

2000

&r;p

ngp &P ®F qf @ o o 4P P P WP P
time [UTC]

Figure 26: Results of the cloud base height for stations of experimental setup and sta-

tion OLGBA for all timestamps and with 15 min rolling mean compared to

ceilometer cloud height measurements of station CDLRA, evaluated for the

location of OLGBA, 6 June 2024.

Figure 26 shows the results of the CBH estimation of WobaS for the camera pairs
with OLGBA and the stations of the experimental setup described in subsection 3.2
next to the measurements of the ceilometer CDLRA for 6 June 2024, a day with
mostly mid- and low-layer clouds. When looking at the results, it can be observed
that there is a high scattering between single timestamps of all stations of the
experimental setup. This scattering is mainly observed for larger cloud heights and
leads to deviations inside the 15 min rolling means of all pairs. Nevertheless, the
results are accurate for low-layer clouds. In general, OLCLE tends to overestimate,
whereas station OLDIR tends to underestimate the CBH for this day. However, also
the cleaned stations OLMED and OLUOL show similar results as the uncleaned
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station OLDIR. Therefore, these deviations cannot be attributed to the cleaning
state of the lenses. All the ASIs of the experimental setup have short distances to
the station OLGBA, and as such are only well suited for the CBH estimation of low
clouds. Therefore, these higher deviations are expected for high-layer and mid-layer

clouds and do not necessarily correspond to the cleaning state of the camera.
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Figure 27: Comparison of global cloud base height results of WobaS for different network
configurations and ceilometer measurements of station CDLRA, 6 June 2024.

In WobaS the CBH results of all selected ASI pairs are merged into one global
CBH by applying a likelihood function according to the different distances between
the camera as described in Blum [2]. This results in one CBH value for the entire
network. Figure 27 shows the results of the global CBH for all network configur-
ations for the day mentioned above. In contrast to the results of the individual
ASI pairs, one can observe that for all configurations, the curve progression does
not show high scattering between the timestamps. This means that the network
makes the results less volatile. It can also be seen that the differences between the
subnetwork configurations are small. Due to the high redundancy of cameras within
the network, the influence of errors of individual ASI pairs on the network decision
is limited. The general error of the CBH estimation of the network is greater than
any influence of the different cleaning states of the cameras. For these reasons, no
significant impact of continuous soiling of ASI lenses on the global network CBH

results could be observed.
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To investigate the influence of exposure time deviations, the Mobotix Q26B-6D
cameras OLCLE and OLMED have been set to an exposure time of 147 ps during
May 2025 (before it was 163 ps ). This exposure time is closer to the real exposure
time of the Mobotix Q25 cameras with 149 ps and therefore more comparable. Due
to a failure of station OLUOL, only stations OLCLE, OLMED, and OLDIR have
been used for the pairing with station OLGBA. OLGBA was out of service on May
20, 23 and 28 2025 so these days have not been considered for the comparison of
the ASI pairs. ASI OLJET was dismantled in October 2024 and was therefore no
longer part of the network in May 2025. Figure 28 shows the CBH error metrics of
the individual ASI pairs and the global network on 1-24 June 2024 (exposure time
of OLCLE and OLMED = 163 1s) and on 1-31 May 2025 (exposure time of OLCLE
and OLMED = 147 pis).

It was expected that adapting the exposure times of the stations equipped with a
Mobotix Q26B-6D would improve the performance of these stations. However, this
cannot be observed in the error metrics. For the results of the individual ASI pairs
(marked with x), almost all errors have worsened. Only the magnitude of the MBE
of station OLCLE stayed almost the same, but the sign has changed, so OLCLE
tends to overestimate the CBH with lower exposure time. The reason for general de-
terioration in the error metrics may be the absence of the far-distant camera OLJET
or different weather conditions in June 2024 and May 2025. However, one can see
that the MAE (Figure 28a), the RMSE (Figure 28c) and the rRMSE (Figure 28d)
increase more for the stations OLCLE and OLMED than for station OLDIR. There-
fore, contrary to the expectations, a deterioration can even be recognised due to the
changed exposure times. For the results of the network configurations (marked with
e), a deterioration of the error metrics can be observed for all subnetwork configura-
tions. However, almost no differences can be observed between station OLDIR and
the stations OLCLE and OLMED. It can be concluded that deviations in exposure
times can have an impact on the CBH estimation of individual ASI pairs. Never-
theless, due to redundancy of ASIs within the network, the global CBH estimation

of WobaS is resilient to exposure time deviations of single ASIs in the network.
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Figure 28: Error analysis of cloud base height (CBH) estimations of WobaS on 1-24
June 2024 and on 1-31 May 2025 of stations OLCLE, OLMED and OLDIR,;
OLCLE and OLMED with changed exposure times (June 2024: 163 ps, May
2025: 147 ps), exposure time of OLDIR const.=149 ps.
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4.3 Irradiance forecast analysis

The final results of WobaS are the irradiance forecast maps of the different irradi-
ance components BNI and GHI. These forecast maps do have the spatial dimension
(lat, lon), the temporal dimension of the forecast starting point (t) and the lead time
dimension (It). For the investigation of the impact of continuous soiling on the final
forecast results, the maps have been analysed first in the spatial domain, and second
in the temporal domain. For the investigation in the spatial domain, the forecast
maps of uncleaned stations OLDIR have been compared with the forecasting maps
of the cleaned reference station OLCLE, by subtracting the results and building dif-
ference maps. When using the uncleaned station OLCLE as references, the spatial
MAE, MBE and the RMSE are calculated. For the investigation in the temporal
domain, the forecast results for the location of the reference station OLWIN were
extracted from the maps and compared with the time series observations of OL-
WIN. For the temporal analysis, it is expected that the error metrics of the cleaned
stations OLCLE, OLMED and OLUOL are smaller than for the uncleaned station
OLDIR. For the analysis of the impact of interfering objects, different examples of
interferences were collected from the entire subnetwork. The forecast maps during
these interferences were then compared with the results before and after the inter-
ference. In addition, the impact of these interferences is evaluated in the temporal
domain by comparing the forecast results for the location OLWIN with the obser-
vations of OLWIN. The impact of localised soiling is analysed by comparing the
irradiance forecast before and after the cleaning of the locally soiled station OLFLE
on 20 June 2024.

Figure 29 shows the GHI maps for 15 June 2024 for both the subnetwork con-
figuration with station OLCLE and with station OLDIR for the forecast point of
t = 12:00 UTC and the lead times It = Omin, 5min and 15min. This example
is chosen because during this time the cloud field showed a high spatial variabil-
ity, which cannot be reliably predicted with other forecasting methods. Looking
at the difference maps, one can observe that the network configuration with station
OLCLE and the configuration with station OLDIR differ from each other. The error
is highest at the points on the map with high gradients in the irradiance prediction.
These points correspond to the borders of the clouds. One can see that these differ-
ences are symmetrical. Some edges do correspond to an overestimation, others to an
underestimation of the results of station OLDIR. This behaviour can be described
as a double penalty and leads to a relatively high RMSE, because the errors on
the opposite edges are counted twice in the calculation of the overall error of the
forecast. With increasing lead times, the differences between the two forecasts are
becoming more and more pronounced. However, the low spatial MBE reveals that
there is almost no bias in the results. Also, the spatial MAE shows that the dif-
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ference between both forecasts is small when the outliers are not heavily weighted.
The same behaviour can be observed when looking at the same maps for the BNI

(see Appendix A Figure 46).
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Figure 29: Global horizontal irradiance (GHI) results of full subnet configurations with
reference camera OLCLE, camera OLDIR and difference maps of both results
for lead times It = O min (a), 5min (b) and 15 min (c), calculated spatial mean
absolute error (MAE), mean bias error (MBE) and root mean square error
(RMSE), 15 June 2024.

These errors are projection errors, which occur during the merging process. They
can be caused by little variation of the estimated CBH or by small errors in the cam-
era calibration. Due to the absence of a ground truth for the maps, it is difficult to

tell whether these variations are caused by soiling of the camera lenses.

Figure 30 shows the GHI results of WobaS for the location of station OLWIN
and the reference observations for 26 June 2024, a day with mostly clear sky con-

ditions and high-layer clouds. One can observe that the network results show no
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Comparison of network configurations
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Figure 30: Global horizontal irradiance (GHI) irradiance forecast for location of station
OLWIN compared to irradiance observations of station OLWIN, clear sky
curve according to model of Dumortier [9], 26 June 2024

major deviations for this day. Only slight differences of the predicted irradiance
between the different configurations can be observed. In Figure 31 the temporal er-
ror metrics for this day are calculated and plotted over the lead time together with
the temporal coverage. Depending on the cloud speed and the CBH, the maximum
forecast horizon may be shorter than the specified forecast horizon of 30 min. The
temporal coverage is the highest for slow moving clouds, for high-layer clouds, and
for clear sky conditions. However, the last two situations have little impact on the
irradiance. This means that for low temporal coverage, the error metrics are less
meaningful because these events are over-represented. For this reason, the error
metrics are only expected to be meaningful for a temporal coverage of more than
25%. It can be seen that the differences between the network configurations are
small. The temporal MAE shows almost no deviations between the different net-
work configurations. Looking at the RMSE one can observe that in some cases, the
error of the network with the cleaned station OLCLE is even higher than the error
of the uncleaned station OLDIR. One can also see that long lead times correspond
to high errors. This matches the expectation for forecast tasks. Greater deviations
from the observations are to be expected the further one looks in the future. Similar

observations can be made for the results of the BNI (see Appendix A Figure 47).
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Figure 31: Mean absolute error (MAE), mean bias error (MBE) and root mean square
error (RMSE) for global horizontal irradiance (GHI) for different network
configurations with temporal coverage, 26 June 2024.

The same trend can be seen by looking at the GHI results of 6 June 2024, a
day with variable weather situations, in Figure 32 (results for BNI can be found
in Figure 48 in Appendix A). This day was chosen because there were variable
cloud conditions. Also for this day, only slight differences of the predicted irradi-
ance between the different configurations can be observed. There is also no clear

tendency of the soiled ASI recognisable.
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Comparison of network configurations
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Figure 32: Global horizontal irradiance (GHI) irradiance forecast for location of station
OLWIN compared to irradiance observations of station OLWIN, clear sky
curve according to model of Dumortier [9], 6 June 2024

Looking at the error metrics in Figure 33, one can see that all error metrics are
more pronounced than for the clear sky day. However, no big deviations between the
different network configurations can be observed. The MAE and the RMSE follow a
similar pattern as the previous analysed day. Contrary to the expectations, one can
see that the MBE of station OLCLE is even higher than the MBE of station OLDIR
for most of the lead times. For the MBE one can also observe a relative improve-
ment for lead times in between 15 to 20 min. This could be caused by a drop in the

temporal coverage and does not necessarily correspond to a better model behaviour.
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Figure 33: Mean absolute error (MAE), mean bias error (MBE) and root mean square
error (RMSE) for global horizontal irradiance (GHI) for different network
configurations with temporal coverage, 6 June 2024.

Despite the differences between the results of the different network configura-
tions, no clear influence of continuous soiling could be observed. Due to the high
redundancy of ASIs within the network. The errors of single cameras do not have a

large impact on the final predictions and the forecasts.
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For the analysis of the impact of interfering objects on the irradiance forecast
maps, the forecast maps were analysed in the spatial domain by comparing the
results of the lead times (It) = Omin and 15min for the forecast times before and
after the main interference. The effect of interferences is expected to be made visible
in this way. In Figure 34 one can see the BNI forecast results on 14 June 2025 during

an interference of a bird at station OLGBA. The bird was blocking parts of the lens.
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Figure 34: Beam (direct) normal irradiance (BNI) forecast results during bird interfer-
ence for lead times 0 min and 15 min, 14 June 2025.

By comparing the results during the main interference at 08:37 UTC with the
forecast results before and after the main interferences, one can see that a signific-
ant drop in BNI is predicted for almost the entire spatial domain. However, both
the forecasts before and after the interference do not predict this drop of BNI. By
looking at the results for lead time 1t = 15min, it can be seen that this drop not
only affects the prediction of It = 0 min but is moved in the direction of the general
cloud motion and, therefore, also affects the forecast for longer lead times. This can

also be seen by evaluating the forecast results at the location of the reference station
OLWIN.

Figure 35 shows the prediction of the BNI at the location of station OLWIN in
comparison to the predictions of lead time It = 0 min and the observations of station
OLWIN for the three forecast points shown above.
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Comparison of network configurations
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Figure 35: BNI forecast results for station OWLIN over lead time, for forecasts points
before, during and after main interference by bird compared with BNI obser-
vations of reference station OLWIN and the predictions for It = 0 min, clear
sky curve according to model of Dumortier [9], 14 June 2024 08:37 - 9:07
UTC.
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In Figure 35a and Figure 35c¢, one can see that the increase of the BNI dur-
ing the first minutes of the forecast, like shown in the observations of OLWIN, is
also predicted at the timestamps before and after the main interference with only
a delay of about 5min. However, in Figure 35 one can see that the increase of
the BNI is only predicted after 8 min with a sudden surge in the BNI. This leads
to the conclusion that interferences on single ASIs can also have an impact on the
forecast results for other locations inside the spatial forecast domain, also for short
lead times. Although the total difference in the BNI for this example is relatively
small, such behaviour during large-scale ramp events could be critical, because in

these situations a precise forecast of the exact time of occurrence is important.

Another example of interference caused by a bird can be seen in Figure 36. In
this case the interference lasted longer than only one time stamp, so the bird was
captured multiple times. When looking at the raw image of the time stamp 04:47
UTC, before the interference, no clouds can be observed. However, the predictions
made for this time stamp show areas with small BNI on the map. The reason
for this could be the small elevation angle of the Sun. These forecast errors may
be caused by wrong boundary masks of single ASIs in the network. Objects of the
surroundings, like the antennas seen in the image of station OLDON, may incorrectly
be classified as clouds. This could lead to the appearance of such artefacts. Looking
at the timestamps 04:47:30 UTC and 04:48:00 UTC, during the interference, one can
observe a decrease in irradiance for a large area inside the spatial forecast domain
caused by the interference. This effect cannot be observed during the timestamps
04:48:30 UTC and 04:49:00 UTC. By looking at the different forecasts results for
lead time It = 15min (on the right of the image), not only can be seen that the bird
interference causes an attenuation of the predicted BNI for longer lead times, also
the cloud motion is affected by the interference event. The movements of the bird
may lead to incorrect predictions of the CMVs and therefore to a wrong estimation

of the motion of the cloud field for longer lead times.
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Figure 36: Impact of bird interference at station OLDON on cloud motion results, 3

May 2025.
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For the investigation of the impact of localised soiling on the irradiance forecasts
of WobasS, the results of the locally soiled station OLFLE were compared before and
after the cleaning of the station. Figure 37 shows the BNI results of station OLFLE
on 20 June 2024 before and after the cleaning event. When looking at the raw
images of station OLFLE at the timestamps 06:33:00 UTC and 06:40:00 UTC, one
can see that small dirt stains covered the top and the left side of the lens. Looking
at the predictions for lead time 1t = 0 min one can see that these dirt stains do lead
to very small artefacts in the centre of the irradiance forecast maps (dark spots on
the map). These artefacts cannot be observed in the forecast of time stamp 06:47
UTC, after the cleaning event. However, the spatial extent of these artefacts is very
small and they only have a minor influence on the forecasts maps for lead time 1t =
15 min for the time stamps before the cleaning events. From this it can be concluded

that small localised soiling has little impact on the irradiance forecast of WobaS.
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5 Further developments of Eye2Sky

Based on the findings of this thesis, different quality control methods have been
developed. These methods address two main aspects of quality control. The first
objective is to detect and label bad input data and results. The second objective is
to derive automatic recommendations for maintenance actions based on the current
state of the systems within the network. For real-time operation of an ASI-network,
maintenance costs could be a limiting factor, so the goal should always be to min-

imise these efforts. In the following, these methods are described in more detail.

5.1 Soiling monitoring

As shown in subsection 1.2, lens soiling can have several forms. This makes it
difficult to classify any type of soiling in terms of its severity. For this reason, a
monitoring method has been developed to better quantify and compare the status
of lenses of the ASIs in the Eye2Sky network. This monitoring can help improve the
planning of maintenance visits. The method is based on the idea that the state of
the lenses is highly dependent on the last maintenance/cleaning time of the camera.
The greater the differences in the image data of a camera compared to the image
data of the reference camera, the greater the soiling of that camera. In this thesis,
the regularly cleaned station ASI OLCLE is used as a reference for a clean camera

(see logbook in Appendix A Figure 49).

Images from the same timestamp cannot be directly compared because the cur-
rent cloud field is observed from different view angles and the weather situation
may vary between camera locations, especially for far distant cameras. To filter out
all non-persistent phenomena and short-term fluctuations inside the images caused
by the current weather, all images of one station are averaged by calculating the
mean value of each pixel for a given time period. Red-green-blue additive colour
model (RGB) daily mean-images are a side product of the image masking proced-
ure of surrounding obstacles. To save processing time, these daily mean-images are
used to average also larger time scales. The mean-images can be built for any time
period, but for this work one-week rolling intervals are chosen. By calculating the
mean-images, non-static events like cloud motion are averaged out, but persistent
phenomena like lens degradation or persistent soiling are strongly reflected in the
mean-images. To reduce complexity, the channel information of the RGB mean-
images is translated into one-channel greyscale images. These greyscale-images are
created using the OpenCV-convention (see [22]). By creating histograms of the
pixel values of images, it can be observed that different cameras appear to have
offsets in their pixel value distributions (see Figure 38a). This could be e.g. due

to small environmental differences in the brightness of the surrounding or to slight
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deviations in the sensitivity of the camera chips or in exposure times as described
in subsection 3.4. In order to keep the images comparable, images are preprocessed

by z-standardising the whole image array. (see Figure 38b).
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Figure 38: Distribution of one-byte pixel values of greyscale daily mean images of all-sky
imager (ASI) OLUOL compared to ASI OLCLE for distorted and undistorted
images, 28 April 2024.

After standardisation, the image arrays are subtracted to create a difference-
image. Figure 39 shows an evaluation plot with the differences image of the localised

station OLFLE for the rolling mean of the previous seven days before 9 June 2024.
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Figure 39: Evaluation plot of soiling monitoring method for locally soiled station
OLFLE, averaging of previous 7 days, FLTR: raw mean-image of station
OLFLE, greyscale-image (rotated), difference-image of standardised greyscale
images (OLCLE as reference), and comparisons to difference image from pre-
vious day, 9 June 2024.

Differences in the amount of valid pixel per image due to different masks of
surrounding obstacles are assumed to be negligible, because the amount of pixels
within the border mask is comparable for all stations. To finally obtain a single
soiling value SV for each ASI, the RMSE is calculated for the resulting difference-
image. This value can be visualised over time to receive monitoring of the current
state of the lenses for all long-term soiling and degradation (see Figure 40). This

whole process can be summarised by Equation 13:

1 Npiz

U — Uref,i — Hre
SVemse = J ( B Tebi B f)2 (13)

Npiz ;1 o Oref

Npiz = const. equals the number of pixels in one image, v; equals the one-byte value
of pixel 7 in the averaged greyscale image € [0 — 255] (integer) or [0 — 1] (float), u
equals the mean value of all v; in one image and o equals the standard deviation of
all v; in one image. The suffix . indicates the aforementioned parameters for the

reference image.

This method can be used to map all long term changes, independently of the
type of contamination (locally or continuous), because it only takes into account
the overall differences between the clean and the dirty image. However, short-term
events like birds or insects cannot be detected because they get averaged out. Both
the distorted and undistorted images can be used as input, which leads to an indir-
ect weighting of the pixels depending on their position due to the transformation.
This method is expected to work only if the locations of the ASIs are close to each
other, so that both systems are exposed to comparable weather conditions during
the averaging intervals. For far distant ASIs the environmental conditions can differ
greatly, so the comparison is expected to work the best for short distances. Looking

at the soiling monitoring plot of the first half of 2024 in Figure 40 one can observe



62 5 Further developments of Eye2Sky

that station PAPEN (= 55 km away) shows more differences to station OLCLE than
other uncleaned stations in Oldenburg. Nevertheless, when looking at the nearby
cameras inside the domain of Oldenburg city, the results are plausible. One can
also see that, for regularly cleaned stations OLGBA and OLUOL as well as for the
daily automatically cleaned station OLMED the values stay low. Also, the localised
soiling event of station OLFLE in May 2024 and the following cleaning session in
June 2024 have been detected correctly. However, by comparing the cleaned station
OLUOL with station OLCLE it can be seen that both stations seem to have a small
offset. This could be caused by the small deviations in the exposure times of both
stations described in subsection 3.4. Despite the standardisation of the images, these
differences may still have a small influence on the results. It can also be observed
that the differences between the cleaned and uncleaned cameras are bigger in the
summer months than in the winter months. From these results it can be concluded
that this method requires a minimum brightness of the images in order to function

reliably.

In Eye2Sky this method will be used to monitor the overall soiling state of the
entire network. By introducing a threshold, an automatic warning system can be
implemented. If the differences between cameras are getting big, a recommendation
to clean the station will automatically be given. Moreover, it can be used to evaluate
the amount of maintenance and schedule upcoming maintenance visits. The main
advantage of this simple statistic approach is that it does not require any model
training and can be directly implemented into any given network. Another advant-
age is that it can detect a variety of impacting factors, as it only focusses on the
overall differences to the reference. One huge disadvantage is that such a reference
is always required. However, this reference does not necessarily need to be one fixed
station. It could also be determined dynamically by choosing a station based on the
last cleaning times. Another disadvantage is that this method cannot classify the
causes of the image differences and it only works for persistent phenomena. Short-
term events, like interfering objects, cannot be detected. In addition, due to the
long averaging periods, the method is insensitive to sudden soiling events, as these

can only be detected after a few days.
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5.1 Soiling monitoring
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5.2 Automatic detection of interfering objects (BirdDB)

Even though the effect of interfering objects in an ASI network remains small due
to the redundancy of camera, for smaller ASI networks or single ASI systems, in-
terfering objects pose a big challenge in ASI forecasting as they do not correspond
to any malfunction of the system itself but just a problem of the image content.
They are external factors which can hardly be predicted or prevented. However,
recognition of these events can help to improve forecast quality by filtering effected
images or flagging forecast results with warnings. This could be achieved with image
recognition algorithms or threshold based filters. For training of e.g. supervised ML
models or for validation of other QC algorithms, a database of real live examples
is useful. The cameras used in Eye2Sky are commercial surveillance cameras of the
company MOBOTIX AG and have an in-built image analysis sensor, the so-called
‘MxActivitySensor’, which can be used to detect motion inside the live image of the
cameras [17]. In the context of surveillance, this sensor is used for the reduction
of false alarms by detecting only the motion of relevant subjects in the live image

without taking into account irrelevant continuous movements like shadows or trees.

For this thesis, the ‘MxActivitySensor’ has been repurposed and tested for the
real-time detection of interfering objects in the context of ASI-image capturing. To
accomplish this objective, the cameras of the network have been reconfigured to
automatically build up an image database of interfering objects called BirdDB. If a
motion is detected, the sensor can trigger an automatic image upload via file transfer
protocol (FTP) in-between the regular image capturing interval of 30s. The exact
timestamps of the events are logged as well. The advantage of using this in-built
method of the cameras is that no further image processing is needed. This can
be helpful for speeding up QC in very short-term live nowcasting. However, the
sensor does not provide any information about the type of interference, but image
recognition algorithm could be trained on the output data to get a classification. In

Figure 41, some examples of the output of BirdDB are given.

BirdDB cannot only be used to detect interfering objects, it can also be used
to shoo away potential troublemakers. Every ASI in the network is equipped with
an integrated speaker. If a motion event is triggered by the camera, the affected
station automatically starts an audio alarm. In addition to this acoustic feedback,
the stations equipped with an automatic cleaning system have been coupled with
BirdDB. If an event is triggered, the stations can be set to start spraying water on

the lenses. This can also shoo away the disturber.
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(a) arthropod (b) arthropod

() bird (d) birds

Figure 41: Examples of Bird DB database
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To test the potential of BirdDB, a series of drone test flights was carried out
at building A of DLR - VE. The aim of these tests was to see whether this simple
native motion detection can be used to also detect acts of sabotage or surveillance
by drones and it only served as a proof of concept. These tests showed that the
motion detection sensor is also capable of detecting drone activities. Operators of
ASI networks at locations of critical energy infrastructure could therefore also use
the installed ASIs to monitor such activities. Figure 42 shows an example of a drone

detection.

\ | Camera Live Image

Figure 42: Drone detected by the motion detection sensor of the Mobotix all-sky imager
(ASI) above building A of German Aerospace Center - Institute of Networked
Energy Systems.

Another advantage of BirdDB is that the log of the detected events can be
used to visualise the amount of interferences and the exact times at which they
occur. This information can be used to create a real-time monitoring. Figure 43
shows an example monitoring of interferences for the current year 2025. In the
period shown, 10301 interference events have been detected by BirdDB. In the same
period, a total of 16 545 484 images were captured by all cameras within the network.
Interferences can also occur in between the regular image capturing intervals of the

network (every 30s), but even if one assumes that all interferences occurred during



5.2 Automatic detection of interfering objects (BirdDB) 67

image capturing, still only 0.06 % of all images would be affected. Monitoring these
interferences can help determine the exact times of the days when interferences occur
most frequently. The histogram in Figure 43 shows the number of events detected
per time of day. One can see that most events are detected around noon. This is
also the time where human interference, i.e. caused by maintenance, is expected to
be the highest. However, a smaller peak in the distribution can also be observed
during dawn, which may correlate with higher bird activity in the morning hours.
Longer periods of observation are required to make reliable statements, but on the
basis of such analyses, measures can be taken to minimise the amount of interference

events within the network.
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Events detected by BirdDB 2025-01-01 - 2025-07-31
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Figure 43: Amount of detected interferences of BirdDB form January till July 2025 (binned hourly), and histogram of detected events per time of day.
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6 Conclusion & Outlook

In this thesis, the impact of image errors on the interim and final results of the irradi-
ance forecast algorithm WobaS was analysed. The main focus was on the modules of
cloud mask creation, CBH estimation, and the resulting irradiance forecasts. Based

on these findings, different methods for the detection of image errors were developed.

For the cloud mask creation, the semantic segmentation algorithm of Fabel et
al. [14] was used. Continuous soiling only has a minor impact on the segmenta-
tion results of the algorithm. Only under special weather conditions an influence of
continuous soiling was observed. Soiling leads to a blurring effect which can lead
to a misclassification of high-layer clouds as clear sky. In the image, atmospheric
conditions with high turbidity can have optical properties similar to continuous soil-
ing of the lens with high-layer clouds. This misclassification can be explained by
differences between the location of the Eye2Sky network and Almeria, Spain, where
the training data for the model was recorded. Both locations differ considerably in
their average aerosol concentrations, which can lead to different turbidities in the
atmosphere. In the north-west of Germany, clear-sky conditions with high turbidity
are rare. By transferring the model directly to Eye2Sky, for clear-sky conditions, the
training data is not fully representative. However, this misclassification has no large
impact on the irradiance results. The error analysis of the semantic segmentation
module has also shown that the results of station OLMED, equipped with the auto-
matic cleaning system, were comparable to those of the manually cleaned station
OLCLE. This means that an automatic cleaning system can be used to reduce the

maintenance effort of ASI networks.

Differences in the segmentation results for mid-layer and low-layer clouds were
observed but could not be linked to the cleaning state of the lenses. However, it was
found that the segmentation algorithm is sensitive to interference events and local-
ised soiling. Both errors can lead to misclassification of the different cloud types.
Although, the model is able to detect dirty or blocked parts of the image as invalid
for some situations, in many cases this filter does not work. The model was never
trained to reliably detect these errors. This model behaviour is not intentional and
can also backfire in the form of misclassification of valid cloud situations like dark

thunderstorm clouds as shown in subsection 3.3.

To avoid the classification of dark clouds as invalid, a filter could be introduced
to the model that forces a valid cloud segmentation inside the border mask, but
this would also affect the beneficial classification of interfering objects as invalid,
therefore, it is not clear whether such a filter would improve the overall model

performance. In addition, a pre-trained ML image detection algorithm could be
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implemented in the processing chain of Woba$S to filter the image input data. An-
other approach to improve the model is to introduce more examples of the critical
situations mentioned above in the algorithm training data. This could be achieved
by collecting examples for clear-sky and dark thunderstorm clouds from Eye2Sky
and manually creating the cloud masks. These masks can serve as ground truths
for the machine learning process and can be used to train a new model or fine-tune

the existing model for the location of Oldenburg.

The analysis of the CBH estimations has shown that the cloud height results of
single ASI pairs can differ greatly between cameras at the same location, as well as
between timestamps of the same cameras. However, the error of the CBH estimation
is mainly influenced by the distances between the cameras due to the different view
angles on the clouds. These effects largely overshadow the effect of the analysed
image errors. The high scattering in the results could not be clearly attributed to
either soiling or deviations in exposure times. The assumption that the calibration
errors of all cameras are negligible could be wrong. Slight deviations in camera
orientations do have an impact on the CBH estimation and could lead to the ob-
served behaviour. Consequently, more research is needed on the impact of camera
calibration errors. However, when taking into account the full subnetwork config-
urations, only little deviations could be observed. This means that the impact of
single cameras on the full network CBH estimation is small. Due to the redundancy
of the ASIs, only slight deviations of the network CBH could be observed. Also, the
error of the global network CBH was small for all cloud layers. From this it can be

concluded that the CBH estimation profits from the multi-camera approach.

The final forecast results of the different network configurations revealed that
the impact of continuous soiling on the forecast results is small. Spatial errors in
the irradiance map forecasts did not affect the total amount of predicted irradi-
ance. Only at the borders of cloud shadows, differences between forecasts could be
observed. This effect could not be clearly attributed to soiling because it also ap-
peared in between cleaned cameras. The spatial bias error was small, so the model
mostly had problems in detecting the exact edges of the cloud shadows. This type of
error could be caused by the shadow projection and the merging process in WobaS.
Slight differences of the calibration of the camera and the estimated CBH could have
an impact on the shadow mapping process. Also, the cameras of the experimental
setup are not located at the exact same position (= 2m — 3m difference). The
distances between these cameras have been assumed to be negligible, but it could
be possible that even small deviations of the position of the camera have an impact
on the forecast results. Further investigation is needed to analyse the effect of these

small calibration errors on the final network results.
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In contrast to continuous soiling, an impact of interfering objects on the irradiance
forecasts could be observed. Especially for areas inside the map with a low redund-
ancy of ASls, interfering objects could lead to drops in the forecasted BNI and the
resulting GHI. However, for areas with high camera density, a significant influence of
interfering objects on the results could not be observed. This leads to the conclusion
that a dense ASI network is more resilient to short-term interferences than smaller

network configurations or single ASI systems.

In section 5, different methods for the detection and the prevention of errors have
been presented. The implemented soiling monitoring has shown, that it is possible
to reliably detect continuous and localised soiling in an ASI network without intro-
ducing sophisticated ML algorithms. The advantage of the shown method is that
it can give insights of the steady increasing of soiling inside the network. By intro-
ducing thresholds for the maximum soiling value, an automatic soiling alert can be
implemented, which can help to realise a demand-oriented planning of maintenance
tours for the network. The calculated value of the soiling state could also be used
for the QC of historical data. The published Eye2Sky dataset of Schmidt et al. [29]
can be improved by delivering cleaning state informations and the soiling metric.
However, the method always needs a clean reference ASI and is therefore primarily

useful in large ASI networks with irregular maintenance intervals.

In this thesis, a method for the automatic detection of interfering objects has
been presented, called BirdDB. This method uses integrated motion-detection sensors
of the installed ASIs. It does not require any model training and can be directly
implemented with existing cameras. For the real-time operation of an ASI network,
the information of the exact time of interference could be used to discard possibly
affected images before calculating the forecast results. This could improve the per-
formance of the model. This data also allows further investigation of how often,
when, and under which circumstances these interfering events occur. It can also
serve as a quality flag for future image data publications. In addition, the coupling
of the detection with the automatic cleaning system helps not only to detect, but
also to prevent interference events. The real-time detection of interferences can also
be used to shoo away disturbers by playing alarms on the integrated speakers of
the installed ASIs. BirdDB does not give any information about the exact type of
interference and does not work for historical data. The additional recorded images
in between the regular time stamps can serve as a database for real-live examples
of interfering objects. This database can be used in the future to train a new image
detection algorithm or to fine-tune existing ones, which can also distinguish between
the type of interference and could also be used for historical data. A publication of

such a database could also be useful for the ASI community to develop QC methods.
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This thesis has shown that image errors only have a limited impact on the forecast
results of ASI networks. Due to the high redundancy within ASI networks, the
results are resilient to image errors from single cameras. Consequently, for a newly
built ASI network, it is recommended to include redundant cameras because more
cameras can improve the stability of the forecasts. Further research is needed for
the evaluation of the impact of image errors on two-ASI systems and for single ASI
end-to-end ML models. The impact of image errors is high for all interims results
before the merging processes of the network, like shown for cloud mask creation and
CBH estimation of individual ASI pairs. Therefore, the influence of soiling or other
interferences on systems with fewer ASIs is expected to be greater due to the missing
redundancy. For a correct CBH estimation with a stereoscopic approach, operators
should also integrate far-distant ASI pairs within the network topology, in order to
have precise CBH results also for high cloud layers. Although moderate continuous
soiling does not have a large impact on the forecast, it is recommended to implement
automatic tools for soiling detection. These tools can be used for demand-oriented
maintenance planning without introducing fixed maintenance events for cleaning.
In this work, it has also been shown that interfering objects can have a large impact
on single-camera results. Operators should take action to minimise these impacts
by detecting interferences in real time and omitting the affected images for the
forecasts runs. This could be achieved by adding additional sensors of the ASIs,
or by implementing classification models into the image preprocessing. In addition,

automatic measures for interference prevention should be taken.
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(b) Keogram of station OLCLE for the 26th of June 2024

Figure 44: Keograms of station OLCLE for the 6th and the 26th of June 2024
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(c) Lead time 15 min

Figure 46: Beam (direct) normal irradiance (BNI) results of full subnet configurations
with reference camera OLCLE, camera OLDIR, and difference maps of both
results for lead times 1t = Omin (a), 5min (b) and 15min (c), calculated
spatial mean absolute error (MAE), mean bias error (MBE) and root mean
square error (RMSE), 15 June 2024.
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Figure 47: Beam (direct) normal irradiance (BNI) results and error metrics for location
of station OLWIN, 26 June 2024.
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Comparison of network configurations
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Figure 48: Beam (direct) normal irradiance (BNI) results and error metrics for location
of station OLWIN, 6 June 2024.
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