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Abstract

Perception is a critical task for autonomous driving and is challeng-
ing because of the scale and complexity of urban environments, which
leads to limitations in sensor accuracy. Point-wise segmentation plays
a crucial role in addressing these challenges. However, point cloud

datasets have limitations related to data storage capacity, dimensionality, and
the scale factor during manual annotation, making it difficult to achieve efficien-
cy in terms of time and cost. In this study, we propose an automatic annotation
pipeline sourced from another key contributor to automated driving systems:
high-definition (HD) maps. HD maps provide lane-level information regarding
traffic scenarios, 3-dimensional coordinates, and semantic classes of objects in a
lightweight format. Our approach relies on generating a synthetic point cloud
from these specific vector-type datasets and matching it with the original sensor-
collected training dataset. We then utilize the point clouds and this information
to train and generate reliable predictions. Ultimately, we propose that this pre-
processing stage can serve as a baseline for producing new HD maps, thereby
contributing to automated driving in real-world applications.
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Zusammenfassung

Die Wahrnehmung ist eine entscheidende Aufgabe für autonomes Fahren
und stellt aufgrund der Größe und Komplexität urbaner Umgebun-
gen eine Herausforderung dar, die zu Einschränkungen der Sensorge-
nauigkeit führt. Die punktweise Segmentierung spielt bei der Bewälti-

gung dieser Herausforderungen eine entscheidende Rolle. Punktwolken-Datensätze
unterliegen jedoch Einschränkungen hinsichtlich der Datenspeicherkapazität, der
Dimensionalität und des Skalierungsfaktors bei der manuellen Annotation, was
eine effiziente Zeit- und Kostenersparnis erschwert. In dieser Studie schlagen
wir eine automatische Annotationspipeline vor, die auf einem weiteren wichtigen
Bestandteil automatisierter Fahrsysteme basiert: hochauflösenden (HD-)Karten.
HD-Karten liefern fahrspurgenaue Informationen zu Verkehrsszenarien, dreidi-
mensionalen Koordinaten und semantischen Objektklassen in einem kompakten
Format. Unser Ansatz basiert auf der Generierung einer synthetischen Punk-
twolke aus diesen spezifischen Vektordatensätzen und deren Abgleich mit dem
ursprünglichen, sensorerfassten Trainingsdatensatz. Anschließend nutzen wir die
Punktwolken und diese Informationen, um zu trainieren und zuverlässige Vorher-
sagen zu generieren. Letztlich schlagen wir vor, dass diese Vorverarbeitungsphase
als Grundlage für die Erstellung neuer HD-Karten dienen und so zum automa-
tisierten Fahren in realen Anwendungen beitragen kann.
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as the ground truth, alongside standard segmentation evaluation metrics. The quality of 
the HD Map will be assessed through topological relations and geometrical evaluation, 
including gaps, overlaps, and continuity. 

Point Of Departure: 

• Generation of synthetic point cloud from geometries of high-definition map ele­
ments (e.g. traffic signs). 

• Preparation both point clouds for matching algorithm. 
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Chapter 1

Introduction

Scene understanding is essential for developing autonomous systems, where
safety is a critical concern. Perception is a challenging task due to the s-
cale of environments at the city and road level, as well as the complexity
of these environments, sensor limitations, data scale, storage, and pro-

cessing. Spatial and scene understanding of surroundings are crucial due to the
necessity of safe and autonomous navigation in cars and robots, particularly in
autonomous driving approaches [9]. Besides these, annotation that is required for
learning-based systems is crucial to realizing perception tasks accurately. How-
ever, due to challenging conditions, it is still an open research topic that is trying
to make it automatic instead of using laborious and expensive solutions. With
our research, we will investigate a lightweight automatic annotation framework
that can reduce labor and data storage costs by using existing high-definition
maps effectively.

1.1 Motivation
Effective scene understanding enables autonomous vehicles and robots to navigate
complex environments, avoiding obstacles and ensuring the predictability and
reliability of participants. However, this is a challenging task due to the scale
of environments at the city and road level, as well as the complexity of these
environments, sensor limitations, data scale, storage, and processing. For this
purpose, utilizing advanced sensors, especially cameras and LiDAR, autonomous
vehicles can continuously and in real time sense their surroundings in diverse
situations, including other vehicles, pedestrians, obstacles, and road signs [26].
However, even if this technology enables the understanding of surroundings, there
are still some issues in terms of real-time capability, processing capacity, and
sensor adaptability in extreme conditions. So, lightweight solutions for annotation
in terms of LiDAR and camera-based perception, high storage capacity, and labor
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1.2. GOAL AND MAIN CONTRIBUTIONS

are still a subject of research. Although LiDAR and cameras undertake this task
and GNSS/IMU-integrated Mobile Mapping Systems (MMS) are widely used in
this sense, recently high-definition (HD) maps have come to the fore in terms
of playing a critical role in autonomous driving tasks and creating a reliable
environment for localization, planning control, and perception tasks.

1.2 Goal and Main Contributions
As the interest and need for autonomous driving increase day by day, it al-
so becomes inevitable to automate the elements required to achieve this. Au-
tonomous systems must understand their environment with high accuracy to
minimize human-caused traffic accidents and build safe roads and cities. How-
ever, achieving those goals has high costs on the road and city scale in terms of
labor, storage space, and time management. Therefore, automating the anno-
tation of data sets for use in learning-based systems is necessary. On the other
hand, discussions have focused on high-definition maps and their production,
which are crucial for completing tasks related to perception, planning, localiza-
tion, and control. Therefore, the two issues that are relatively connected to each
other are the main motivations for this study. We will investigate how each issue
can mutually contribute to the collaboration between high-definition maps and
annotation bottlenecks in point-wise segmentation.

1.3 Overview of the Thesis
This thesis explores how to improve scene understanding for autonomous sys-
tems by reducing the need for manual data annotation. It focuses on using
high-definition (HD) maps to support automatic point-wise segmentation, which
can lower costs related to labor, storage, and processing. The goal is to devel-
op a lightweight, efficient framework that helps autonomous vehicles and robots
better understand their surroundings while addressing the challenges of real-time
perception and data management.
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Chapter 2

Related Work

2.1 High-Definition Maps

2.1.1 HD Map Construction
The high-definition map construction process primarily consists of two stages:
raw data collection and data processing. The data processing stage can be fur-
ther divided into two categories - offline and online -, based on the approach
used, a distinction that originates from Simultaneous Localization and Mapping
(SLAM) methodologies. The choice between these approaches is dependent upon
the processing of sensor data: either in real-time (online) or via post-processing
(offline) [22]. Contemporary studies in HD map construction mostly depend
on online methodologies [15, 12, 24, 7, 20]. These approaches generally utilize
learning-based methodologies to generate vectorized HD maps by framing the
issue as semantic segmentation from a bird’s-eye view (BEV). Most online HD
map generation techniques begin with BEV feature extraction from onboard sen-
sor data, followed by the generation of vectorized map elements such as road
boundaries, pedestrian crossings, and lane dividers. These extracted features are
then used to construct vectorized maps, eliminating the need for localization and
post-processing in many cases. Although this approach reduces the workload as-
sociated with post-processing and allows for local high-precision map creation, it
tends to be limited in scope. Despite being referred to as ”high-definition maps”,
such outputs offer only partial information. A truly high-definition map should
include a broader set of elements. In addition to basic road features such as
road markings and lanes, traffic elements like lights and signs, as well as sup-
portive infrastructure like street lamps, trees, and static objects, are also crucial
for autonomous driving systems [16]. Depending on the designated application
use case, semantic information is also highly relevant to be included in HD map
data. This can be realized through topological links between elements, such as
linking of neighboring lanes or linking of predecessors and successors of a lane.
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2.1. HIGH-DEFINITION MAPS

Additional valuable information can be the knowledge about the validity of a
traffic signal for a specific set of lanes or about the association of a signal to
a stop line road marking, for example. Unlike online methods for local map
construction, global HD map construction is still commonly conducted through
offline methodologies. These offline approaches typically offer higher accuracy
and completeness by incorporating a greater variety of sensors and more complex
algorithms, albeit with increased processing times [22]. Nevertheless, manual
annotation remains the most reliable method due to the precision required, es-
pecially regarding semantic information, making the overall process of HD map
production both labor-intensive and costly. To alleviate this, many efforts rely on
image-based techniques for tasks such as road marking extraction and lane detec-
tion. Although several public datasets already exist with annotated images, the
required precision for HD maps is often unattainable due to intrinsic limitations
of image data. Environmental factors such as lighting conditions and shadows
can degrade both the annotation quality and the accuracy of map element ex-
traction. Moreover, projecting from 2D images to 3D space presents significant
challenges, frequently leading to diminished accuracy relative to the stringent
requirements for HD mapping. Conversely, LiDAR point clouds intrinsically en-
compass 3D spatial data at each feature point, facilitating more precise detection
outcomes that may be directly applied in HD map development [5]. Annotat-
ing point-cloud data is, however, more intricate than image annotation. This
complexity stems from hardware limitations such as data transport and mem-
ory usage, together with data-specific issues like sensitivity and recognizability.
To address challenges on annotation and creation of high-precision maps, several
approaches have been proposed. VMA [4] introduces automatic annotation for
online HD map construction through a scene-splitting strategy. CAMA [25] pro-
vides automatic annotations using image-based methods enriched with elevation
information. It seeks to produce dense 3D road surfaces augmented with semantic
and photometric features, utilizing the nuScene dataset for evaluation. THMA
[21] introduces an annotation technique grounded in self-supervised segmenta-
tion learning, with the objective of enhancing the automation of the HD map
annotation process. Despite the existence of multiple methods for representing
road networks as high-definition maps, data standardization remains a work in
progress. This study will utilize data supplied for a specific region in the Open-
DRIVE data format along with a reference point cloud to evaluate algorithm
performance.

2.1.2 Characteristics of OpenDRIVE
The ASAM OpenDRIVE format is an open industry standard maintained by
the Association for Standardization of Automation and Measuring Systems. It
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CHAPTER 2. RELATED WORK

Figure 2.1: Modeling of road elements in OpenDRIVE; © ASAM

represents road networks in a file format with the extension .xodr, organized in
a hierarchical structure commonly encoded using XML. This format captures the
geometric relationships of road features and can be generated using real data or
synthetically in various software environments (mostly proprietary ones). Besides
the main road components (lanes, road marks, road signs, etc.) that are modeled
as shown in Figure 2.2, an OpenDRIVE dataset can contain traffic-regulating
infrastructure elements (traffic lights, traffic signs, etc.) and supporter elements
(street lamps, trees, objects, etc.). The complexity of OpenDRIVE makes data
acquisition a sophisticated task, often financed by the automotive industry and
conducted by third-party mobile mapping providers. As a main characteristic,
all road elements are commonly constructed in relation to and linearly referenced
along a road reference line as shown in Figure 2.2. Because of advanced geometry
representation through parametric cubic polynomials (Figure 2.4), the modeling
of complex road features can still remain lightweight as shown in the Figure 2.3:

2.2 Semantic Segmentation of Point Cloud

Semantic segmentation has a critical role in scene understanding to realize auto-
mated driving. The main approach to doing semantic representation is assigning
semantic classes to each basic component in the dataset that is collected during
the driving: pixel-on-pixel-wise semantic segmentation and points in point-wise
semantic segmentation [10]. Even though early and common approaches rely on
image-based semantic segmentation because of the availability of image-based
datasets, pixel-wise segmentation has some constraints in terms of scalability on
different dimensions and conditions. Pixel-based segmentation has to be project-
ed onto the 3-dimensional physical world from a 2-dimensional plane representa-
tion; however, this task is open to losing some valuable information, like depth,
so post-processing is required. Additionally, cameras have limitations when cap-
turing images in various weather conditions, such as rain, fog, or at night. 3D
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2.2. SEMANTIC SEGMENTATION OF POINT CLOUD

Figure 2.2: Creating a reference line from geometry elements; © ASAM

LiDAR point clouds can provide reliable information about extreme weather con-
ditions and surface reflectivity; however, point-wise segmentation faces challenges
because the complex structure of 3D data complicates storage and annotation
[10]. Effective segmentation requires accurate annotation in huge amounts of se-
quences; however, because of inconsistency and perspective issues, labeling point
clouds is challenging to maintain accurately [23]. Sourced with those issues, re-
cent research is focusing on two aspects of alternative ways of annotation: the first
one is transfer learning that uses domain adaptation from different source data,
and the second one is automatic annotation with various methodologies. Transfer
learning could be categorized into two subtitles: synthetic-to-original dataset that
is sourced from point clouds specifically for this purpose and original-to-original
transfer that is sourced from another sourced dataset. There are some publicly
available datasets that consider the driving scenario, e.g., SemanticKITTI and
nuScenes [2, 3].

However, this public dataset suffers from a class imbalance, known as the
long-tail class problem. Besides that, those datasets rely on human annotation,
so human-oriented problems and errors can occur [11]. To address this problem,
some studies focus on synthetically generated point clouds. However, few studies
are still considering synthetic-to-real approaches because there is a lack of exten-
sive synthetic data with accurate semantic labels [23]. Several studies utilize the
Grand Theft Auto V (GTA V) environment, a commercial video game known for
its realistic driving simulation, to produce synthetic point clouds for use in 3D
point cloud segmentation. Using game-engine-dependent synthetic point clouds

6



CHAPTER 2. RELATED WORK

<geometry
s="0.000000000000e+00"
x="6.804539427645e+05"
y="5.422483642942e+06"
hdg="5.287405485081e+00"
length="6.565893957370e+01">
<paramPoly3

aU="0.000000000000e+00"
bU="1.000000000000e+00"
cU="-4.666602734948e-09"
dU="-2.629787927644e-08"
aV="0.000000000000e+00"
bV="1.665334536938e-16"
cV="-1.987729787588e-04"
dV="-1.317158625579e-09"
pRange="arcLength">

</paramPoly3>
</geometry>

Figure 2.3: Geometry XML with paramPoly3

has advantages thanks to the instance-level annotation for every object class [11].
This approach proposes to eliminate errors related to human labeling during

the annotation task by using a synthetically generated 3D world, depending on the
purpose. This method streamlines the annotation process and allows researchers
to generate diverse datasets under controlled conditions, facilitating more robust
machine learning models. Consequently, leveraging such synthetic environments
can enhance the accuracy and efficiency of various computer vision applications.
However, this approeaches are still facing some problems, like the requirement of
preprocessing and covering all possible events and objects in real-world scenarios.
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2.2. SEMANTIC SEGMENTATION OF POINT CLOUD

Figure 2.4: A parametric cubic polynomial in OpenDRIVE; © ASAM

8



Chapter 3

Basic Techniques

In this study, we proposed a lightweight automatic annotation methodolo-
gy that will enable a cost-efficient approach by reducing labor and time
costs associated with the manual annotation process. To complete this
task, we proposed using a synthetically generated point cloud derived from

the vector data, which includes all necessary information: 3D coordinates and
semantic labels related to the traffic scenario participants. Because of the syn-
thetic point cloud and the reference/original point cloud’s existence, the Iterative
Closest Point algorithm is the key basic technique that is used for registration
and label transfer from the synthetic point cloud to the original point cloud. The
second basic technique is neural networks, which are commonly used for semantic
segmentation on point clouds.

3.1 Iterative Closest Point Algorithm

The Iterative Closest Point Algorithm (ICP) [1] algorithm is particularly effective
for aligning two sets of data by minimizing the distance between corresponding
points. This allows for improved accuracy in identifying and classifying the vari-
ous elements within the traffic scenario, ultimately enhancing the system’s abil-
ity to interpret real-world environments. In our case, we utilized this algorithm
to get corresponding point pairs that will provide label transfer. Synthetically
generated point clouds and sensor-collected original point clouds differ in densi-
ty; therefore hyperparameter selection for the ICP algorithm is critical for our
approach in this aspect. Besides hyperparameters, we utilized some external pre-
processing like downsampling and normalization on the original point cloud to
enhance algorithm performance.

9



3.2. NEURAL NETWORK FOR POINT-WISE SEGMENTATION

3.2 Neural Network for Point-wise Segmenta-
tion

To ensure that the labels obtained through the Iterative Closest Point (ICP)
algorithm could yield meaningful predictions, we employed a neural network for
supervised semantic segmentation. The base model chosen was PointNet++ [17],
but for the sake of simplicity, we disabled the max pooling functionality while
retaining the convolutional structure. This approach enabled the model to be
trained with the parameters defined by the provided data, making it ready for
prediction. Network details and hyperparameter functionalities are explained in
the Section 4: Approach.

3.3 High-Definition Maps
According to the definition of maps in China’s cartography textbooks, ”maps are
graphs that follow a specific mathematical law, run a symbolic system, and often
reduce various natural and socio-economic phenomena on the earth.” To enable
the transfer of information, these maps are designed with various intuitive, con-
cise, easy-to-understand, and easy-to-remember map symbols to identify various
spatial things and events, and service objects are mostly human [14]. However,
it is not our only focus anymore. As mentioned before, it needs mapping in ve-
hicles because, in the future, not people, but systems are expected to use maps
and make the right decisions. Therefore, it is necessary to use different maps
than traditional digital navigation maps for vehicles with different decision and
perception mechanisms. This feature adds different analysis and display meth-
ods of various sensor integrations to mobile mapping systems that are generally
dominated by Inertial Navigation Systems (INS) and supported by Global Navi-
gation Satellite Systems (GNSS), and these are called HD maps. High-definition
maps are new-generation navigation maps with high accuracy and many more
components, produced to make sense of machines, unlike digital maps produced
as navigation maps for human perception under normal conditions. Unques-
tionably, the machines’ detection capacity should also incorporate a prediction
function. While the term ”learning” has become widespread in many fields, it
is equally difficult for a system without experience to transform the information
it receives into knowledge. In this context, High Definition Maps serve as the
foundational unit that establishes knowledge infrastructure without relying on
complex algorithms.
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Chapter 4

Approach

The flowchart in Figure 4.2 shows the proposed approach from a general per-
spective. As shown in this flowchart, the thesis essentially covers the preliminary
processes required to realize the task of OpenDRIVE Construction. The first task
is to create a 3D shape from the OpenDRIVE format dataset, then compare the
new synthetic point cloud with the original/reference point cloud, transfer labels
this way, and finally evaluate how well supervised semantic segmentation and
automatic annotation work. In this context, the approach section is organized
into four main sections:

1. Geometry extraction involves acquiring OGC Simple Geometry Features
from the high-definition map in OpenDRIVE format, which consists of da-
ta represented in vector form. Due to its global representation in simple
geometry features, this is feasible from a computational perspective. As
noted in the related works section, OpenDRIVE exhibits a complex geo-
metric representation due to the intricacies of the real world.

2. Building a synthetic point cloud subsection that will cover how synthetic
point cloud generation can be done to provide a proper baseline for the
ICP that will handle the label transferring into the original/reference point
cloud.

3. In the third step of our approach, we will discuss the Iterative Closest Point
algorithm, which has several hyperparameters that depend on its specific
purpose, and how to achieve optimal results for matching sensor-collected
point clouds and synthetic point cloud methods.

4. In the last subsection in this part, the automatically labeled point cloud will
be utilized in the process of selecting a model, training it, and evaluating
the results of the supervised semantic segmentation procedure.

11



4.1. GEOMETRY EXTRACTION FROM HD MAP

Figure 4.1: Approach design in Geographic Information Systems (GIS) and Machine Learning
(ML) aspects.

4.1 Geometry Extraction from HD Map

As explained in Section 2.1.2, we used the OpenDRIVE data format because
it is one of the standard types of datasets available for our region, in addition
to point clouds. To process OpenDRIVE datasets, we utilized the Geospatial
Data Abstraction Library (GDAL) [8], which provides a dedicated driver capable
of reading and processing OpenDRIVE (.xodr) files. This driver converts the
data into simple geometry types, as defined by the Simple Feature Standard of
the Open Geospatial Consortium (OGC). This conversion allows us to extract
georeferenced and simplified geometries of the road network and surrounding
infrastructure. Using these geometries, a synthetic point cloud can be generated,
which serves as a baseline for creating annotated datasets. Figure 4.3 illustrates
this process. The left part of the figure shows the existing OpenDRIVE data. The
training and validation datasets of the collected point clouds should correspond to
the same geographical region. OpenDRIVE data not only includes primary road
elements but also incorporates traffic infrastructure such as traffic signs, parking
areas, and other support elements. These can be reflected in the annotated
datasets, capturing the full context of the environment. GDAL facilitates this
process by leveraging its OpenDRIVE driver, which can convert raw XODR files
into a Triangular Irregular Network (TIN). This conversion enables the extraction
of 3D spatial information from XML-based datasets that describe static roadway
features. From this 3D data, we can synthesize a point cloud, which forms the
foundation for the subsequent annotation phase.

As also discussed in Section 2.1.2, OpenDRIVE data can include complex
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CHAPTER 4. APPROACH

geometry representations, typically modeled using third-order parametric cubic
polynomials. Each road element is defined relative to a reference line using these
polynomials. Figure 4.4 demonstrates how OpenDRIVE employs cubic polyno-
mial functions to accurately interpolate the shape of road elements. The GDAL
XODR driver relies on libOpenDRIVE[13], an open-source C++ library designed
for parsing and processing OpenDRIVE files. This library utilizes Bézier curves
to interpolate the parametric cubic polynomials, enabling precise reconstruction
of road geometry.

Through GDAL, mainly 6 different vector data layers in different geometry
types are exposed, depending on the characteristics of the original OpenDRIVE
geometries. Those six layers are:

• ReferenceLine: Road Reference line as OGRLineString

• LaneBorder: Outer road lane border as OGRLineString

• Lane: Polygonal surface (TIN) of the lane mesh as
OGRTriangulatedSurface

• RoadMark: Polygonal surface (TIN) of the road mark mesh as OGRTriangulatedSurface

• RoadObject: Polygonal surface (TIN) of the road object mesh as OGR-
TriangulatedSurface

• RoadSignal: Polygonal surface (TIN) of the road signal mesh as OGR-
TriangulatedSurface

We mainly use the three layers RoadObject, Lane and RoadMark, which are
modeled as a Triangulated Irregular Network (TIN), in order to create a 3D
model of the city and roads. In our case the layer RoadObject contains basic
information about building structures which in other OpenDRIVE datasets is
not always included. This representation will allow volumetric representation
for 3-dimensional use cases. Internally, libOpenDRIVE takes care of the linear
approximation (sampling) of OpenDRIVE’s continuous parametric geometries
(which are illustrated in Figure 2.4). To facilitate this, specific hyperparameters
are defined in libOpenDRIVE, which we also specify in our algorithm. We used
OpenDRIVE data format as high-definition map representation format to com-
plete 3D shape reconstruction task. For proof of concept we implemented our
pipeline to openly avaliable dataset that covers OpenDRIVE dataset ”Schwarzer
Berg” in Brunswick [18], which we convert to OGC Simple Feature geometries
via GDAL. Figure 4.5 is representing specific layer LaneBorder converted ver-
sion on standard map. Figure 4.5 is shown how details represented in dataset;
gray areas shown driveable area that bounded by LaneBorder layer, red objects
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are signal that is responsible for objects like traffic light and signs ares stored
as RoadSignals with their local types (e.g. Sign 101-11 Pedesterian Crossing in
Germany) , green objects are trees or vegetations; and blue objects are buildings.
Those geometries will be constituted as a baseline to generate a synthetic point
cloud that is explained in the following section in detail.

4.2 Building Synthetic Point Cloud
As explained in Section 4.1, the resulting geometries were generated in a TIN
structure to be used in constructing the synthetic point cloud. This way, the
objects or participants in the scene are expected to be synthetically generated
with the same high detail (e.g., convex geometries) as the original point cloud.
However, it should be noted that the performance of this approach is directly
related to the level of detail provided in the OpenDRIVE data generation. The
GDAL XODR driver generates the triangles and the corner points of the triangles
that form the object for triangulated irregular networks; therefore, a proper inter-
polation method is required. For this purpose, three different sampling methods
were used, and the number of points per m3 expresses the point density to be
generated per volume. The model’s geometry becomes more detailed in volumet-
ric instances as this value increases. The third parameter is the downsampling
ratio, as the reference point cloud [19] exhibits a higher point density than our
generated synthetic point cloud. We will measure our algorithm quality with
Iterative Closest Point (ICP) registration with a reference point cloud in Section
5.

4.3 ICP Integration
To get label transfer from a synthetic point cloud, the method for creating this
point cloud is explained in Section 4.2: Building a synthetic point cloud, and
the Iterative Closest Point (ICP) algorithm is used to align it with the original
point cloud gathered by sensors. Table 4.1 lists the hyperparameters used to re-
alize a proper matching algorithm in our approach.In the beginning, the sparsity
of the synthetic point cloud is dependent on set parameters that are explained
in Section 4.2. This situation leads us to conclude that a higher density is an
efficient approach initially. However, because of computational cost, densifying
synthetic point clouds is not the best approach. To deal with these situations,
we reduce the number of points in the original point cloud to lower costs and
avoid mismatches due to differences in density with the synthetic point cloud.
Therefore, the downsampling ratio is the most important setting for using the
Iterative Closest Point algorithm, which helps match points between two point
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clouds so that labels can be transferred.The next two hyperparameters are im-
portant for the KDTree search algorithm, which helps estimate normals and is
used in the registration process for both point clouds. The maximum number of
nearest neighbors determines the number of points available in the search space.
Additionally, we used this parameter to identify corresponding nearest neighbor
points for estimating the intensity values of synthetic point clouds; however, we
have not implemented this value in the network.

Figure 4.7: Process sub-diagram for automatic annotation

Parameter Functionality

Downsampling ratio Regulates sparsity mismatch between
the original point cloud and the syn-
thetic point cloud

Max NN for KDTree Maximum number of nearest neighbors
used in KDTree search

Radius for KDTree (m) Radius for local neighborhood search in
KDTree; controls the scale of local ge-
ometry

Initial guess for ICP transfor-
mation

Initial transformation matrix for ICP

Transformation type ICP method: either point-to-point
or point-to-plane depending on input
quality

Max correspondence distance Threshold for accepting point corre-
spondences during ICP alignment

Table 4.1: Hyperparameters for Iterative Closest Point Algortihm
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4.4 Model Structure for Semantic Segmentation

Figure 4.8: Process sub-diagram for training

As explained in previous sections, this study proposed an automatic annotation
pipeline for use in point-wise semantic segmentation. Our problem definition will
centers on how to use the supervised learning methodology to effectively predict
semantic classes, adhering to the previously described approaches. Debugging
and investigating ready-to-use model structures was difficult and time-consuming
due to the custom-generated dataset. So to realize semantic segmentation, we
explored two different custom architectures that mainly rely on the PointNet [17]
network structure. The first architecture we explored is PointNet, which processes
3D coordinates using convolutional layers. It could not provide sufficient accuracy
for predictions even if different loss functions and hyperparameters were used.
The second network is called GeoPointNet and uses point normals in addition
to 3D coordinates in a similar structure and pseudostructure, as can be seen in
Algorithm 2. Besides the model selection, data preprocessing is one of the most
important steps in refining our model performance. To handle computational
issues, we downsampled the input dataset that provides a certain point number.
On the other hand, we normalized point coordinates to ensure stability and reduce
scale variance during the training stage. Because the datasets are unbalanced,
meaning that some semantic categories occur more often others, we figured out
the weights for each class and chose a loss function that takes these weights into
account to handle the differences between classes and prevent problems caused by
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the imbalance. As shown in Algorithm 3, we employed a combination of cross-
entropy loss and focal loss to address class imbalance in the dataset, utilizing
class weights. As regular hyperparameters for model structure, different batch
sizes and optimal epoch numbers are also experienced to get better predictions.

Algorithm 1 Preprocessing Pipeline for Point Cloud Batching
Require: Point cloud dataset D = {(Xi, Yi)} where Xi ∈ RNi×d

Ensure: Batches of shape [B,Nmax, d] with normalized coordinates
1: for all (Xi, Yi) in dataset do
2: Downsample Xi to N ′ points
3: Normalize Xi: subtract mean, divide by std
4: Pad Xi and Yi to Nmax points
5: Custom collate_fn to batch padded samples

Algorithm 2 Model Structure for Semantic Segmentation with GeoPointNet
Require: Input tensor x ∈ RB×N×6, where B is batch size, N is number of points
Ensure: Output tensor y ∈ RB×N×C , where C is number of classes

1: x← permute(x) ▷ Change shape to [B, 6, N ] for Conv1D
2: x← ReLU(Conv1D(x, in = 6, out = 64, kernel = 1))

3: x← ReLU(Conv1D(x, 64→ 128))

4: x← ReLU(Conv1D(x, 128→ 256))

5: x← ReLU(Conv1D(x, 256→ 512))

6: x← ReLU(Conv1D(x, 512→ 256))

7: x← Dropout(x, p = 0.3)

8: x← Conv1D(x, 256→ C)

9: y ← permute(x) ▷ Return to [B,N,C]

10: return y

Algorithm 3 Focal Loss for Multi-class Segmentation
Require: Predictions P ∈ RB×C×N , Targets T ∈ NB×N , γ, α

1: Compute Cross-Entropy Loss: LCE = CrossEntropy(P, T )
2: Compute pt = exp(−LCE) ▷ probability of correct class
3: Compute Focal Loss: L = (1− pt)

γ · LCE

4: if reduction == ”mean” then
5: Return 1

B

∑
L

6: else
7: Return L
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Figure 4.2: Overview for approach
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Figure 4.3: Process sub-diagram and simple area representation for automatic annotation

(a) Parametric cubic polynomial for interpo-
lation of the u coordinate

(b) Parametric cubic polynomial for interpo-
lation of the u coordinate

Figure 4.4: Interpolation using parametric cubic polynomials
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Figure 4.5: GDAL geometries of lane borders converted from OpenDRIVE; basemap ©
GeoBasis-DE/BKG 2025, CC BY 4.0

.

Figure 4.6: GDAL geometry details of lanes (gray), signals/signs (red), buildings (blue) and
vegetation (green).
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Figure 4.9: Algorithm flowchart for Iterative Closest Point in between synthetic and original
point clouds.
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Chapter 5

Experiments

As described in previous sections, we proposed a system that automati-
cally labels sensor-collected original datasets using 3D synthetic point
clouds generated from vector datasets using high-resolution maps in
OpenDRIVE format. The motivation and overview are described in

the Introduction section; the main techniques are described in the Basic Tech-
niques section; and the methods and algorithms used are described in the Ap-
proach section. The results and evaluations obtained from this pipeline will be
described in this section.

5.1 Synthetic Point Cloud Construction, ICP
Integration and Automatic Annotation Re-
sults

As mentioned in Section 4, in this study we proposed a lightweight automatic an-
notation pipeline for point-wise semantic segmentation. To achieve this goal, we
assumed the use of high-definition maps that already include detailed information
about the surroundings, such as 3D coordinates and semantic classes. Therefore,
synthetically generated point clouds serve as reference frames for getting original
point cloud labels in this context. However, building a synthetic point cloud from
a vector-based dataset has many challenges in terms of sampling/interpolation
methodology. On this baseline, we explore the performance of three differen-
t sampling types in generating 3D synthetic point clouds. Figure 5.1 displays a
snippet that serves as the point cloud reference or ground truth, providing an ini-
tial overview of the results used to construct a 3D representation. The subsequent
figures Figure 5.2 for uniform sampling results, Figure 5.3 for random sampling
results, and Figure 5.4 for normal distribution results illustrate the outcomes of
each sampling method. At first glance, uniform and random sampling appear to
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yield similar results, while the results from the normal distribution seem more
distant from reality. Table 5.1 presents the calculated cloud-to-cloud distances
among the three synthetic point clouds, with the standard deviation indicating
that the Gaussian-distributed synthetic point cloud differs slightly from both the
uniform and randomly sampled point clouds. This calculation and visualizations
made on CloudCompare[6] which is an open-source 3D point cloud and mesh
processing software.

Sampling Gaussian Random Uniform

Gaussian 0.0 0.0518 / 0.066 0.0518 / 0.066

Random 0.0518 / 0.066 0.0 0.0524 / 0.042

Uniform 0.0518 / 0.066 0.0524 / 0.042 0.0

Table 5.1: Cloud-to-cloud mean distances and standard deviations between raw point clouds in
meters.

Figure 5.1: Reference point cloud of a building.
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Figure 5.2: Synthetic point cloud generated through uniform sampling.

Figure 5.3: Synthetic point cloud generated through random sampling.
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Figure 5.4: Synthetic point cloud generated through normal sampling.

The Iterative Closest Point Algorithm (ICP) algorithm was utilized to quanti-
tatively measure the performance of three different sampling methods. Synthet-
ic point clouds were produced utilizing uniform, random, and normal sampling
methods as source datasets, alongside the reference LiDAR-acquired and geo-
referenced point cloud as the target dataset. The ICP registration algorithm
subsequently processed these point clouds, utilizing the settings specified in Ta-
ble 4.1. Considering that synthetic point clouds generally exhibit a lower point
density than the reference point cloud, downsampling is applied to the reference
point cloud to handle this issue. The maximum number of nearest neighbor pa-
rameters indicates how many points will be examined for each point to search the
corresponding points located within the radius specified by the KDTree parame-
ter. In our case, the radius is 0.2 meters and the nearest neighbor number is 30,
as shown in Table 4.1. This configuration is selected to enable a feasible down-
sampling approach, ensuring a balance between preserving geometric detail and
reducing computational complexity. The initial guess transformation involves
initializing a 4x4 transformation matrix that aligns the source and target point
clouds. In our approach, we used an identity matrix for this purpose. The term
”iteration number” refers to the process of adjusting the transformation, which
will undergo a maximum number of iterations to identify the best correspon-
dences and achieve the optimal result. We set it as 10 to reduce computational
consumption; however, a larger number of iterations could yield a better result
when hardware provides the required performance in a discrete time window.
As can be observed in Table 5.2, those three different datasets have differen-
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t numbers of point densities in the explained parameter set; normal sampling
has slightly denser points than the others because this type of sampling has the
attitude to interpolate more precisely on edges, corners, and curvy areas. The
initial approach focuses on the prevalence of flat surfaces, leading us to compare
the root mean square error (RMSE) and fitness values of uniform versus random
sampling. Fitness is defined as the number of points that align with the reference
point cloud, while RMSE measures the extent of overlap between the predicted
results and the ground truth. As seen in the table, they have almost similar
values, but uniform sampling has slightly better results than random sampling.
So we will proceed with uniform sampling to make further analyses.

Sampling Type Number of Points RMSE Fitness

Normal 5,143,308 1.09767 0.99923

Random 5,123,088 1.05360 0.99921

Uniform 5,123,424 1.05346 0.99922

Table 5.2: Different sampling methods’ performance for ICP registration with responsible pa-
rameters in Table 4.1; the reference point cloud contains 54,350,752 points.

Figure 5.5 illustrates a scene with buildings, parking spaces, roads, vegetation,
and trees. In Figure 5.6, the reference point cloud sample that was collected using
mobile mapping shows the same region as the orthophoto area. The data map,
which is used for transferring labels to the actual point cloud, contains 13 known
classes: road mark, parking, obstacle, vegetation, tree, streetlamp, barrier, traffic
sign, traffic light, pole, building, driving area, and restricted-to-driving areas; and
1 unknown class that contains points that cannot be defined exactly or are not
relevant to our approach. Besides 3D coordinates, those data maps are derived
from OpenDRIVE files.
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Figure 5.5: Orthophoto of the scene of interest; © GeoBasis-DE/LGLN 2025, CC BY 4.0

Figure 5.6: Reference point cloud for the same region of the orthophoto in Figure 5.5.
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Figure 5.7: Transferred labels’ result for reference point cloud by using ICP on uniform sampled
synthetic point cloud. (Responsible region in Figure 5.5, Figure 5.6).

The subsequent phase involves completing the upsampling process through a
nearest neighbor search utilizing KDTree, followed by the identification of corre-
sponding points between the point clouds aligned with the transformation matrix
derived from ICP. This step is critical for guaranteeing accurate alignment and
maintaining the integrity of the data. Once the corresponding points are iden-
tified, further refinement can be applied to enhance the registration process and
minimize any residual errors in the point cloud alignment. As shown in Table 5.2,
alignment has reliable results with approximately 0.99 fitness value and 1.053 m
RMSE. As the downsampling and upsampling ratios are identical, we acquire
an accurately scaled, annotated point cloud. The annotated point cloud is de-
picted as a segmented representation of the scene illustrated in Figure 5.5, as
demonstrated in Figure 5.7. Structures, vegetation, driving and non-driving ar-
eas are categorized under distinct classifications. In details of specific objects, the
KDTree-based label transfer algorithm operates with high precision and provides
accurate annotations if a point on an object, such as a building, in sparse re-
gions lacks neighboring points at that elevation. Figure 5.9 shows an example of
how well objects are identified in areas with few points; this scene comes from the
area shown in Figure 5.8, where both trees and buildings were correctly identified
without any over- or under-segmentation.

29



5.1. SYNTHETIC POINT CLOUD CONSTRUCTION, ICP INTEGRATION
AND AUTOMATIC ANNOTATION RESULTS

Figure 5.8: Sample snipped for tree and building representation.

Figure 5.9: Labeled sample snipped for tree and building representation.

Upon analyzing ground points that encompass the road surfaces, the algo-
rithm’s performance deteriorates qualitatively due to the clustering of proximate
objects within the same area. Figures 5.10 and Figure 5.11 depict the same area,
which includes parking and driving spaces, with the former represented as an
orthophoto and the latter as a point cloud. Figure 5.12 shows the upsampled
point cloud is over-segmented for the same region. Because attributes are closely
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located, aggregated, and overlapping at the ground level, the algorithm should
be improved with different strategies. As shown in Figure 5.13, the investigated
parking area is framed by a road mark; for that reason, the borders have confusion
on the transferring label stage. Due to the modeling habit of our OpenDRIVE
test dataset, the feature ”parking space” has two separate indexes, one in the Lane
layer and one in the RoadObject layer. To solve this confusing data modeling,
mapping can be modified with the same label for both, and a corrected version
of labeling can be seen in Figure 5.14. The way ground points are grouped has
led to ongoing problems with too many or too few sections, which can’t be fixed
just by changing the data mapping during labeling. A targeted approach should
be employed to resolve these issues. In the following section, this issue will be
pointed out in terms of remapping of data mapping to enhance model solution.

Figure 5.10: Orthophoto of the road surface; © GeoBasis-DE/LGLN 2025, CC BY 4.0
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Figure 5.11: Reference point cloud for road surface.

Figure 5.12: Labeled point cloud 3D model generated from XODR. The light green area rep-
resents driving areas, blue points are parking spaces, and red points are road marks that cover
the parking space.
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Figure 5.13: XODR representation where road marks (red) are bordering the parking space
(blue), which is the reason for the noisy point labeling in Figure 5.12.

Figure 5.14: Labeled point cloud 3D model generated from XODR with corrected mapping.
The light green area represents driving areas, and the blue points are parking spaces.

As described in the previous section, synthetic point cloud construction was
done for the responsible area, and label transfer was completed by using the
iterative closest point algorithm. All possible labels that extracted from Open-
DRIVE file are represented in Table 5.5 Figure 5.15 and Figure 5.17 show how a
synthetically generated point cloud represents an object in overview and detail.
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Figure 5.16 and Figure 5.18 illustrate the success of the ICP transfer algorithm in
label transfer, providing both an overview and detailed views of a specific area.
In these scenes, it is evident that buildings, trees, street lamps, and other types
of objects can be labeled properly. Therefore, the next step would be to build a
network and train a model to predict a non-manually annotated dataset in this
way. The following part will investigate how a model can be structured and how
it affects qualitative and quantitative results.

Figure 5.15: Overview for labelled synthetically generated point cloud through the OpenDRIVE
file.

Figure 5.16: Overview for transfered labels on original point cloud responsible area with Fig-
ure 5.15
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Figure 5.17: Details for labelled synthetically generated point cloud through the OpenDRIVE
file.

Figure 5.18: Details for transfered labels on original point cloud responsible area with Fig-
ure 5.17
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Table 5.3: RMSE and Fitness values for synthetic-to-original point cloud alignment using ICP
algorithm across multiple scenes.

Scene ID RMSE Fitness
Scene 1 0.8463 0.9991
Scene 2 1.0869 0.9980
Scene 3 0.9976 0.9993
Scene 4 0.9538 0.9998
Scene 5 0.9447 0.9993

Table 5.4: Per-class RMSE across different scenes (lower is better).

Class ID Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
0 (roadmark) 0.3690 0.4377 0.3976 0.4034 0.4239
1 (parking) 0.4807 0.5554 0.6902 0.5066 0.4747
2 (obstacle) 2.2511 1.2092 1.7860 1.8797 0.8961

3 (vegetation) 2.2061 1.7354 0.6172 1.0551 1.4512
4 (tree) 2.5747 2.9946 2.6489 3.1606 2.9055

5 (streetLamp) 3.0969 3.2220 2.1034 3.2438 1.9056
6 (barrier) 0.7497 2.4770 0.6950 0.9181 1.1032

7 (trafficSign) 2.3129 3.3498 2.4035 3.5884 2.1113
8 (building) 1.6301 1.3385 1.1984 1.4366 1.0760

9 (pole) 1.2995 1.9176 3.9575 2.9959 3.2248
10 (trafficLight) 1.7831 — 1.9500 — 1.6970

11 (driving) 0.4015 0.4261 0.3437 0.3374 0.4390
19 (restricted) 1.2363 1.0447 1.1028 0.8139 1.3886

21 (border) 0.2655 0.3369 0.2386 0.2938 0.3773
22 (curb) 0.6421 0.4985 0.3574 0.4427 0.7582
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Figure 5.19: Heatmap showing per-class RMSE for synthetic-to-original alignment using ICP
across 5 scenes.

Table 5.5: Label mapping from the original 22 synthetic point cloud classes to the 10 simplified
model classes. Labels not used in the simplified set are marked as ‘Not used‘.

Original ID Class Name Usage on Model
-1 unknown Not used
0 roadmark Not used
1 parking Not used
2 obstacle 1
3 vegetation 2
4 tree 3
5 streetLamp 4
6 barrier 5
7 trafficSign 6
8 building 7
9 pole 8
10 trafficLight 9
11 driving Not used
19 restricted Not used
20 bidirectional Not used
21 border Not used
22 curb Not used
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5.2 Supervised Semantic Segmentation with Au-
tomatic Annotation

As shown in Table 5.5, a subset of 10 classes was selected from the full set of 22
for model training to facilitate the detection of certain easily recognizable object-
s, such as trees, buildings, traffic lights, and signs. This approach allows us to
evaluate our model from both quantitative and qualitative perspectives. Future
refinement will cover the multiple classes learning to construct proper and ac-
curate map construction. Details regarding to future refinements will discussed
in Section 6: Discussion and Future Work. After enhancing the label transfer-
ring system using synthetic point cloud creation and the iterative closest point
method, the pointwise semantic segmentation model was used on the labeled o-
riginal point cloud, as explained in the approach section. The GeoPointNet archi-
tecture Algorithm 2 was trained with 4 different batch sizes for 400 epochs using
the focal loss algorithm Algorithm 3, coordinate normalization, and a method to
reduce the amount of data. As shown in Table 5.6 and Figure 5.35, class imbal-
ance and geometric differences are the reasons for the diverse metric distribution.
Tables show a huge number of points affects model performance; however, it is
not the only reason for lower accuracy. Even if the Street Lamp class has a rel-
atively higher number of points than several classes, precision is comparatively
low. This behavior can be interpreted as surface distribution because normals
are also an input for the model, which is another key factor for precision when
we use only coordinate space-considered models. Flat and continuous objects like
barriers and buildings have relatively higher precision.

Table 5.6: Classification report for the 10-class model on the synthetic point cloud dataset
(excluding ignored index).

ID Class Name Precision Recall F1-score Support
1 obstacle 0.2041 0.7574 0.3216 2477
2 vegetation 0.4782 0.7436 0.5821 10927
3 tree 0.8525 0.3346 0.4806 45581
4 streetLamp 0.2785 0.4436 0.3422 10831
5 barrier 0.7689 0.6890 0.7267 25809
6 trafficSign 0.1983 0.5003 0.2841 4301
7 building 0.7992 0.6390 0.7102 29679
8 pole 0.2191 0.6526 0.3280 2504
9 trafficLight 0.2448 0.7218 0.3656 2883

Accuracy 0.5383
Macro Avg 0.4493 0.6091 0.4601 -
Weighted Avg 0.6910 0.5383 0.5608 134992

38



CHAPTER 5. EXPERIMENTS

Figure 5.20: Heatmap showing per-class RMSE for synthetic-to-original alignment using ICP
across 5 scenes.

Figure5.21, Figure5.22, and Figure 5.23 show snapshots of model performance
in predicting the classes of points belonging to the building. Due to downsampling
for the training and validation steps, the point cloud appears in a simplified ver-
sion. Figure5.21 displays sensor-collected point clouds without intensity values.
Figure 5.22 illustrates the performance of label transfers on this building follow-
ing downsampling. Figure 5.23 presents the predicted classes for this building.
As previously mentioned, the building contains a vast number of points, which
indicates that This type of object is at the beginning of the long-tail problem and
has certain advantages; in addition, it features flat and continuous geometries.
GeoPointNet is an effective network for predicting point-wise semantic classes for
this type of object.
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Figure 5.21: Original, unlabeled point cloud sample for building.

Figure 5.22: Ground truth - transfered labels from ICP-stage for responsible building in Fig-
ure 5.21
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Figure 5.23: Predicted labels for responsible building in Figure 5.21 and 5.22

The following figures illustrate the validation area used for evaluation. Fig-
ure 5.24 presents the original point cloud dataset, offering a baseline visualization
of the raw data. In contrast, Figure 5.25 depicts the output of the label trans-
ferring stage, which includes downsampling to align the labels with the dataset
resolution. Figure 5.26 illustrates how the model performs on semantic prediction-
s. Figure 5.27 represents how the model predicts correctly for semantic classes;
green points are correctly predicted points, and red points are misalignments.
As shown in Figure 5.27 and Table 5.6, the model performs with 53% accuracy,
and a significant amount of correct precision is found in flat objects like build-
ings, barriers, or dominated classes like trees. The following figures illustrate this
situation.

Figure 5.24: Original point cloud representation of the validation area. This visualization shows
the raw 3D structure without any semantic annotations.

41



5.2. SUPERVISED SEMANTIC SEGMENTATION WITH AUTOMATIC
ANNOTATION

Figure 5.25: Ground truth semantic labels projected onto the point cloud after the label transfer
and downsampling process.

Figure 5.26: Semantic predictions produced by the model for the corresponding validation area.
Each point is colored according to its predicted class.
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Figure 5.27: Comparison between predicted and ground truth semantic labels. Green points
represent correctly predicted classes, while red points indicate misclassified ones.

Figure 5.28: Original point cloud of the building area without semantic annotations.
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Figure 5.29: Ground truth semantic labels for the same building area after label transfer and
downsampling.

Figure 5.30: Model predictions for the same building area. Points are colored by the predicted
semantic classes.
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Figure 5.31: Comparison of predictions with ground truth for the building area. Green points
are correctly predicted; red points indicate misclassifications.

Figure 5.32: Original point cloud of the barrier area without semantic annotations.
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Figure 5.33: Ground truth semantic labels for the same barrier area after label transfer and
downsampling.

Figure 5.34: Model predictions for the same barrier area. Points are colored by the predicted
semantic classes.
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Figure 5.35: Comparison of predictions with ground truth for the barrier area. Green points
indicate correct predictions; red points indicate misclassifications.
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Chapter 6

Discussion and Future Work

6.1 Limitations
As shown in the Section 5: Experiments, even if predictions look reasonable, ac-
curacy is quite low. Therefore, the network structure can be improved or modified
from scratch. During the training stage, we avoid the maximum pooling layer in
the PointNet++ network to simplify our approach, so the first option could be
adding up this refinement. Another refinement option could be to change and
test hyperparameters on the training structure. Because of point cloud density
and hardware capabilities, we just trained under certain hyperparameter settings,
so playing around extreme cases could give better accuracy.

6.2 OpenDRIVE Construction
As described in Section 1: Introduction, the main motivation behind this study
is producing a lightweight automatic annotation pipeline for point-wise segmen-
tation. OpenDRIVE data format that covers 3D coordinate information and se-
mantic labels regarding traffic surroundings are used to realize this purpose. And
we suggested this way could be a better baseline to produce further OpenDRIVE
files without manually annotated datasets as described in Section 2.

Figure 6.1, most online HD map production methods depend on bird’s-eye
view extraction from on-board sensor data. After that, extracted features are
used for the production of vectorized maps. Those vectorized maps include road
boundaries, pedestrian crossings, and lane dividers that are provided as features
from a bird’s-eye view. In this way, they offer the necessity of localization, and
post-processing can be eliminated. Even if it can reduce the workload on post-
processing and provide local high-precision map elements, this method only focus-
es on the extraction of road boundaries, lane dividers, and pedestrian crossings.
In Figure 6.2, the left images show ground truth and the right images show the
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6.2. OPENDRIVE CONSTRUCTION

results of VectorMapNet [15]. Even if they called those results ”high-definition
maps” those vectorized maps only include limited information about roads. But
a high-definition map should cover more than these elements. Besides road ele-
ments (road marks, lanes, road signs, etc.), traffic elements (traffic lights, traffic
signs, etc.), and supporter elements (street lamps, trees, objects, etc.) still have
great importance for autonomous driving.[16] Therefore, this task would be con-
sidered the further step of this study.

Figure 6.1: Overview for VectorMapNet [15]

Figure 6.2: Example of output for VectorMapNet (left: ground truth, right: VectorMapNet)
[15]
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Chapter 7

Conclusion

In conclusion, perception plays a crucial role in autonomous driving, and
point-wise segmentation significantly contributes to the scientific commu-
nity in this regard. Even though early and common approaches rely on
image-based semantic segmentation because of the availability of image-

based datasets, pixel-wise segmentation has some constraints in terms of scala-
bility on different dimensions and conditions. LiDAR-collected 3D point clouds
can provide reliable information about extreme weather conditions and surface re-
flectivity; however, point-wise segmentation faces challenges because the complex
structure of 3D data complicates storage and annotation. Annotating point cloud
datasets is still challenging in terms of time, cost, attention, and data aspects. Ef-
fective segmentation requires accurate annotation in huge amounts of sequences;
however, because of inconsistency and perspective issues, labeling point clouds is
challenging to maintain accurately. Therefore, automatic annotation is an emerg-
ing method for obtaining semantic classes from sensor-collected point clouds. To
address these challenges, several approaches have been proposed, including the
use of synthetically generated point clouds and game-engine-dependent synthetic
environments with instance-level annotation for every object class. These ap-
proaches aim to eliminate errors related to human labeling and streamline the
annotation process. However, these methods still face some problems, such as the
requirement of preprocessing and covering all possible events and objects in real-
world scenarios. In this study, we discussed whether an existing high-definition
map could be used as a base map to automatically annotate a point cloud. The
OpenDRIVE dataset is used to create a synthetic point cloud in this direction.
Then we proceed to the Iterative Closest Point algorithm to find correspond-
ing points for both the synthetically generated point cloud and the originally
collected point cloud. This step enables the transfer of labels to original point
clouds. After this implementation, the problem definition turns into supervised
semantic segmentation on a point cloud. We implemented a neural network,
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which generated predictions. Our findings show our approach should improve in
terms of metric predictions, even if synthetic point cloud construction and label
transfer work well. Despite the existence of multiple methods for representing
road networks as high-definition maps, data standardization remains a work in
progress.

52



Bibliography

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d
point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(5):698–700, 1987.

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke,
Cyrill Stachniss, and Juergen Gall. Semantickitti: A dataset for semantic
scene understanding of lidar sequences, 2019.

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. nuscenes: A multimodal dataset for autonomous driving, 2020.

[4] Shaoyu Chen, Yunchi Zhang, Bencheng Liao, Jiafeng Xie, Tianheng Cheng,
Wei Sui, Qian Zhang, Chang Huang, Wenyu Liu, and Xinggang Wang. Vma:
Divide-and-conquer vectorized map annotation system for large-scale driving
scene, 2023.

[5] Xiaolei Chen, Wenlong Liao, Bin Liu, Junchi Yan, and Tao He. Open-
denselane: A Dense Lidar-Based Dataset for HD Map Construction. In 2022
IEEE International Conference on Multimedia and Expo (ICME), pages 1–6.
IEEE, 2022.

[6] CloudCompare Development Team. CloudCompare (version 2.13.2). cloud-
compare.org, 2024.

[7] Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. PivotNet: Vectorized
Pivot Learning for End-to-end HD Map Construction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3672–3682,
2023.

[8] GDAL Development Team. GDAL Geospatial Data Abstraction software
Library, version 3.10.2. Open Source Geospatial Foundation. 10.5281/zeno-
do.14871456, 2025.

[9] Elias Greve, Martin Büchner, Niclas Vödisch, Wolfram Burgard, and Abhi-
nav Valada. Collaborative dynamic 3d scene graphs for automated driving. In

53



BIBLIOGRAPHY

2024 IEEE International Conference on Robotics and Automation (ICRA),
pages 11118-11124. IEEE, May 2024.

[10] Dan Halperin and Niklas Eisl. Point cloud based scene segmentation: A
survey, 2025.

[11] Braden Hurl, Krzysztof Czarnecki, and Steven Waslander. Precise synthetic
image and lidar (presil) dataset for autonomous vehicle perception. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 2522–2529. IEEE, 2019.

[12] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. HDMapNet: An Online
HD Map Construction and Evaluation Framework. In 2022 International
Conference on Robotics and Automation (ICRA), pages 4628–4634. IEEE,
2022.

[13] libOpenDRIVE Development Team. libOpenDRIVE – smal-
l, lightweight C++ library for handling OpenDRIVE files.
doi.org/10.5281/zenodo.7771707, 2023.

[14] Jun Liu, Jihua Xiao, HongJie Cao, and Jiakai Deng. The status and chal-
lenges of high precision map for automated driving. In China Satellite Nav-
igation Conference, pages 266–276. Springer, 2019.

[15] Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao.
Vectormapnet: End-to-end vectorized hd map learning. In International
Conference on Machine Learning, pages 22352–22369. PMLR, 2023.

[16] Zhipeng Luo, Lipeng Gao, Haodong Xiang, and Jonathan Li. Road object
detection for hd map: Full-element survey, analysis and perspectives. ISPRS
Journal of Photogrammetry and Remote Sensing, 197:122–144, 2023.

[17] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation, 2017.

[18] Michael Scholz, Oliver Böttcher, Jörg Peter Schäfer, Franz Andert,
and iMAR Navigation GmbH. OpenDRIVE road network dataset
of Schwarzer Berg in Brunswick. German Aerospace Center (DLR).
doi.org/10.5281/zenodo.15395840, May 2025.

[19] Michael Scholz, Oliver Böttcher, Jörg Peter Schäfer, Franz Andert,
and iMAR Navigation GmbH. Point cloud road space dataset of
Schwarzer Berg in Brunswick. German Aerospace Center (DLR).
doi.org/10.5281/zenodo.15527622, May 2025.

54



BIBLIOGRAPHY

[20] Juyeb Shin, Hyeonjun Jeong, Francois Rameau, and Dongsuk Kum. Insta-
gram: Instance-level graph modeling for vectorized hd map learning. IEEE
Transactions on Intelligent Transportation Systems, 26(2):1889–1899, 2025.

[21] Kun Tang, Xu Cao, Zhipeng Cao, Tong Zhou, Erlong Li, Ao Liu, Shengtao
Zou, Chang Liu, Shuqi Mei, Elena Sizikova, et al. THMA: Tencent HD Map
AI System for Creating HD Map Annotations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 15585–15593, 2023.

[22] Xuewei Tang, Kun Jiang, Mengmeng Yang, Zhaoyang Liu, Peijin Jia, Ben-
ny Wijaya, Tuopu Wen, Le Cui, and Diange Yang. High-definition maps
construction based on visual sensor: A comprehensive survey. IEEE Trans-
actions on Intelligent Vehicles, pages 1–23, 2023.

[23] Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, and Shijian Lu.
Transfer learning from synthetic to real lidar point cloud for semantic seg-
mentation, 2021.

[24] Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploiting hd maps
for 3d object detection. In Conference on Robot Learning, pages 146–155.
PMLR, 2018.

[25] Jiaxin Zhang, Shiyuan Chen, Haoran Yin, Ruohong Mei, Xuan Liu, Cong
Yang, Qian Zhang, and Wei Sui. A vision-centric approach for static map
element annotation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 15861–15867, 2024.

[26] Chaoran Zhao, Bo Peng, and Takuya Azumi. Point cloud automatic anno-
tation framework for autonomous driving. In 2024 IEEE Intelligent Vehicles
Symposium (IV), pages 3063–3070. IEEE, 2024.

55



List of Figures

2.1 Modeling of road elements in OpenDRIVE . . . . . . . . . . . . . 5
2.2 Creating a reference line from geometry elements . . . . . . . . . 6
2.3 Geometry XML with paramPoly3 . . . . . . . . . . . . . . . . . . 7
2.4 A parametric cubic polynomial in OpenDRIVE . . . . . . . . . . 8

4.1 Overview for approach . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 Process sub-diagram for automatic annotation . . . . . . . . . . . 15
4.8 Process sub-diagram for training . . . . . . . . . . . . . . . . . . 16
4.2 Overview for approach . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Process sub-diagram and simple area representation for automatic

annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Interpolation using parametric cubic polynomials . . . . . . . . . 19
4.5 GDAL geometries of lane borders converted from OpenDRIVE . . 20
4.6 GDAL geometry details of lanes, signals, buildings and vegetation 20
4.9 Algorithm flowchart for Iterative Closest Point in between syn-

thetic and original point clouds. . . . . . . . . . . . . . . . . . . . 21

5.1 Reference point cloud of a building. . . . . . . . . . . . . . . . . . 24
5.2 Synthetic point cloud generated through uniform sampling. . . . . 25
5.3 Synthetic point cloud generated through random sampling. . . . . 25
5.4 Synthetic point cloud generated through normal sampling. . . . . 26
5.5 Orthophoto of the scene of interest; © GeoBasis-DE/LGLN 2025,

CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Reference point cloud for the same region of the orthophoto in

Figure 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Transferred labels’ result for reference point cloud by using ICP

on uniform sampled synthetic point cloud. (Responsible region in
Figure 5.5, Figure 5.6). . . . . . . . . . . . . . . . . . . . . . . . . 29

5.8 Sample snipped for tree and building representation. . . . . . . . 30
5.9 Labeled sample snipped for tree and building representation. . . . 30
5.10 Orthophoto of the road surface; © GeoBasis-DE/LGLN 2025, CC

BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

56



LIST OF FIGURES

5.11 Reference point cloud for road surface. . . . . . . . . . . . . . . . 32
5.12 Labeled point cloud 3D model generated from XODR. The light

green area represents driving areas, blue points are parking spaces,
and red points are road marks that cover the parking space. . . . 32

5.13 XODR representation where road marks (red) are bordering the
parking space (blue), which is the reason for the noisy point label-
ing in Figure 5.12. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.14 Labeled point cloud 3D model generated from XODR with cor-
rected mapping. The light green area represents driving areas,
and the blue points are parking spaces. . . . . . . . . . . . . . . . 33

5.15 Overview for labelled synthetically generated point cloud through
the OpenDRIVE file. . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.16 Overview for transfered labels on original point cloud responsible
area with Figure 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.17 Details for labelled synthetically generated point cloud through
the OpenDRIVE file. . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.18 Details for transfered labels on original point cloud responsible
area with Figure 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.19 Heatmap showing per-class RMSE for synthetic-to-original align-
ment using ICP across 5 scenes. . . . . . . . . . . . . . . . . . . . 37

5.20 Heatmap showing per-class RMSE for synthetic-to-original align-
ment using ICP across 5 scenes. . . . . . . . . . . . . . . . . . . . 39

5.21 Original, unlabeled point cloud sample for building. . . . . . . . . 40
5.22 Ground truth - transfered labels from ICP-stage for responsible

building in Figure 5.21 . . . . . . . . . . . . . . . . . . . . . . . . 40
5.23 Predicted labels for responsible building in Figure 5.21 and 5.22 . 41
5.24 Original point cloud representation of the validation area. This

visualization shows the raw 3D structure without any semantic
annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.25 Ground truth semantic labels projected onto the point cloud after
the label transfer and downsampling process. . . . . . . . . . . . . 42

5.26 Semantic predictions produced by the model for the corresponding
validation area. Each point is colored according to its predicted
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.27 Comparison between predicted and ground truth semantic labels.
Green points represent correctly predicted classes, while red points
indicate misclassified ones. . . . . . . . . . . . . . . . . . . . . . . 43

5.28 Original point cloud of the building area without semantic anno-
tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

57



LIST OF FIGURES

5.29 Ground truth semantic labels for the same building area after label
transfer and downsampling. . . . . . . . . . . . . . . . . . . . . . 44

5.30 Model predictions for the same building area. Points are colored
by the predicted semantic classes. . . . . . . . . . . . . . . . . . . 44

5.31 Comparison of predictions with ground truth for the building area.
Green points are correctly predicted; red points indicate misclas-
sifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.32 Original point cloud of the barrier area without semantic annota-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.33 Ground truth semantic labels for the same barrier area after label
transfer and downsampling. . . . . . . . . . . . . . . . . . . . . . 46

5.34 Model predictions for the same barrier area. Points are colored by
the predicted semantic classes. . . . . . . . . . . . . . . . . . . . . 46

5.35 Comparison of predictions with ground truth for the barrier area.
Green points indicate correct predictions; red points indicate mis-
classifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Overview for VectorMapNet [15] . . . . . . . . . . . . . . . . . . . 50
6.2 Example of output for VectorMapNet (left: ground truth, right:

VectorMapNet) [15] . . . . . . . . . . . . . . . . . . . . . . . . . . 50

58



List of Tables

4.1 Hyperparameters for Iterative Closest Point Algortihm . . . . . . 15

5.1 Cloud-to-cloud mean distances and standard deviations between
raw point clouds in meters. . . . . . . . . . . . . . . . . . . . . . 24

5.2 Different sampling methods’ performance for ICP registration with
responsible parameters in Table 4.1; the reference point cloud con-
tains 54,350,752 points. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 RMSE and Fitness values for synthetic-to-original point cloud
alignment using ICP algorithm across multiple scenes. . . . . . . 36

5.4 Per-class RMSE across different scenes (lower is better). . . . . . 36
5.5 Label mapping from the original 22 synthetic point cloud classes to

the 10 simplified model classes. Labels not used in the simplified
set are marked as ‘Not used‘. . . . . . . . . . . . . . . . . . . . . . 37

5.6 Classification report for the 10-class model on the synthetic point
cloud dataset (excluding ignored index). . . . . . . . . . . . . . . 38

List of Algorithms

1 Preprocessing Pipeline for Point Cloud Batching . . . . . . . . . . 17
2 Model Structure for Semantic Segmentation with GeoPointNet . . 17
3 Focal Loss for Multi-class Segmentation . . . . . . . . . . . . . . 17

59





Appendix A

Paper

61



Automatic Point Cloud Annotation using existing HD Map Data for
Map Construction

Gülşen Bardak

Abstract— Perception is a critical task for autonomous driv-
ing and is challenging because of the scale and complexity
of urban environments, which leads to limitations in sensor
accuracy. Point-wise segmentation plays a crucial role in ad-
dressing these challenges. However, point cloud datasets have
limitations related to data storage capacity, dimensionality, and
the scale factor during manual annotation, making it difficult
to achieve efficiency in terms of time and cost. In this study,
we propose an automatic annotation pipeline sourced from
another key contributor to automated driving systems: high-
definition (HD) maps. HD maps provide lane-level information
regarding traffic scenarios, 3-dimensional coordinates, and se-
mantic classes of objects in a lightweight format. Our approach
relies on generating a synthetic point cloud from these specific
vector-type datasets and matching it with the original sensor-
collected training dataset. We then utilize the point clouds
and this information to train and generate reliable predictions.
Ultimately, we propose that this preprocessing stage can serve
as a baseline for producing new HD maps, thereby contributing
to automated driving in real-world applications.

I. INTRODUCTION

Scene understanding is essential for developing
autonomous systems, where safety is a critical concern.
Perception is a challenging task due to the scale of
environments at the city and road level, as well as the
complexity of these environments, sensor limitations,
data scale, storage, and processing. Spatial and scene
understanding of surroundings are crucial due to the
necessity of safe and autonomous navigation in cars and
robots, particularly in autonomous driving approaches [8].
Annotation that is required for learning-based systems is
crucial to realizing perception tasks accurately. However,
due to challenging conditions, it is still an open research
topic that is trying to make it automatic instead of using
laborious and expensive solutions. With our research,
we will investigate a lightweight automatic annotation
framework that can reduce labor and data storage costs by
using existing high-definition maps effectively. Effective
scene understanding enables autonomous vehicles and
robots to navigate complex environments, avoiding
obstacles and ensuring the predictability and reliability of
participants. Autonomous vehicles employ sophisticated
sensors, particularly cameras and LiDAR, to continually
and in real time perceive their environment in various
scenarios, including other vehicles, pedestrians, barriers,
and road signs [21]. However, even if this technology
enables the understanding of surroundings, there are still
some issues in terms of real-time capability, processing
capacity, and sensor adaptability in extreme conditions.
Lightweight solutions for annotation in terms of LiDAR

Fig. 1: Overview for approach

and camera-based perception, high storage capacity, and
labor are still a subject of research. Although LiDAR and
cameras undertake this task and GNSS/IMU-integrated
Mobile Mapping Systems (MMS) are widely used in this
sense, recently high-definition (HD) maps have come to
the fore in terms of playing a critical role in autonomous
driving tasks and creating a reliable environment for
localization, planning control, and perception tasks. As
the interest and need for autonomous driving increase
day by day, it also becomes inevitable to automate the
elements required to achieve this. Autonomous systems
must understand their environment with high accuracy to
minimize human-caused traffic accidents and build safe
roads and cities. However, achieving those goals has high
costs on the road and city scale in terms of labor, storage
space, and time management. Therefore, automating the
annotation of data sets for use in learning-based systems is
necessary. Discussions have focused on high-definition maps
and their production, which are crucial for completing tasks
related to perception, planning, localization, and control.
The two issues that are relatively connected to each other
are the main motivations for this study. We will investigate
how each issue can mutually contribute to the collaboration
between high-definition maps and annotation bottlenecks
in point-wise segmentation. This study explores how to
improve scene understanding for autonomous systems by
reducing the need for manual data annotation. It focuses on
using high-definition (HD) maps to support automatic point-
wise segmentation, which can lower costs related to labor,
storage, and processing. The goal is to develop a lightweight,
efficient framework that helps autonomous vehicles and
robots better understand their surroundings while addressing
the challenges of real-time perception and data management.



II. RELATED WORK

A. High-Definition Maps

HD Map Construction The high-definition map construc-
tion process primarily consists of two stages: raw data
collection and data processing. The data processing stage
can be further divided into two categories —offline and
online–, based on the approach used, a distinction that
originates from Simultaneous Localization and Mapping
(SLAM) methodologies. Contemporary studies in HD map
construction mostly depend on online methodologies [6],
[11], [12], [16], [19]. Most online HD map generation
techniques begin with BEV feature extraction from onboard
sensor data, followed by the generation of vectorized map
elements such as road boundaries, pedestrian crossings, and
lane dividers. Although this approach reduces the workload
associated with post-processing and allows for local high-
precision map creation, it tends to be limited in scope. A truly
high-definition map should include a broader set of elements.
Unlike online methods for local map construction, global HD
map construction is still commonly conducted through offline
methodologies. Manual annotation remains the most reliable
method due to the precision required—especially regarding
semantic information—making the overall process of HD
map production both labor-intensive and costly. LiDAR
point clouds intrinsically encompass 3D spatial data at each
feature point, facilitating more precise detection outcomes
that may be directly applied in HD map development [4].
To address challenges on annotation and creation of high-
definiton maps, several approaches have been proposed.
VMA [3] introduces automatic annotation for online HD map
construction through a scene-splitting strategy. CAMA [20],
provides automatic annotations using image-based methods
enriched with elevation information. It seeks to produce
dense 3D road surfaces augmented with semantic and photo-
metric features, utilizing the nuScene dataset for evaluation.
THMA [17] introduces an annotation technique grounded in
self-supervised segmentation learning, with the objective of
enhancing the automation of the HD map annotation process.
Despite the existence of multiple methods for representing
road networks as high-definition maps, data standardization
remains a work in progress.

Characteristics of OpenDRIVE The ASAM OpenDRIVE
format is an open industry standard maintained by the As-
sociation for Standardization of Automation and Measuring
Systems. It represents road networks in a file format with
the extension .xodr, organized in a hierarchical structure
commonly encoded using XML. This format captures the
geometric relationships of road features and can be gen-
erated using real data or synthetically in various software
environments (mostly proprietary ones). Besides the main
road components (lanes, road marks, road signs, etc.), an
OpenDRIVE dataset can contain traffic-regulating infrastruc-
ture elements (traffic lights, traffic signs, etc.) and supporter
elements (street lamps, trees, objects, etc.). The complexity
of OpenDRIVE makes data acquisition a sophisticated task,
often financed by the automotive industry and conducted by

Fig. 2: Modeling of road elements in OpenDRIVE; © ASAM

third-party mobile mapping providers. As a main character-
istic, all road elements are commonly constructed in relation
to and linearly referenced along a road reference line, that
is the main reason why this type of file is still lightweight,
this approach is represented in Figure 2

Semantic Segmentation of Point Cloud Semantic segmen-
tation has a critical role in scene understanding to realize
automated driving. The main approach to doing semantic
representation is assigning semantic classes to each basic
component in the dataset that is collected during the driv-
ing: pixel-on-pixel-wise semantic segmentation and points in
point-wise semantic segmentation [9].

Even though early and common approaches rely on image-
based semantic segmentation because of the availability
of image-based datasets, pixel-wise segmentation has some
constraints in terms of scalability on different dimensions
and conditions. Pixel-based segmentation has to be projected
onto the 3-dimensional physical world from a 2-dimensional
plane representation; however, this task is open to losing
some valuable information, like depth, so post-processing
is required. Additionally, cameras have limitations when
capturing images in various weather conditions, such as rain,
fog, or at night. LiDAR-collected 3D point clouds can pro-
vide reliable information about extreme weather conditions
and surface reflectivity; however, point-wise segmentation
faces challenges because the complex structure of 3D data
complicates storage and annotation [9].

Effective segmentation requires accurate annotation in
huge amounts of sequences; however, because of inconsis-
tency and perspective issues, labeling point clouds is chal-
lenging to maintain accurately [18]. Sourced with those is-
sues, recent research is focusing on two aspects of alternative
ways of annotation: the first one is transfer learning that uses
domain adaptation from different source data, and the second
one is automatic annotation with various methodologies.
Transfer learning could be categorized into two subtitles:
synthetic-to-original dataset that is sourced from point clouds
specifically for this purpose and original-to-original transfer
that is sourced from another sourced dataset.

There are some publicly available datasets that consider
the driving scenario, e.g., SemanticKITTI and nuScenes
[1], [2]. However, this public dataset suffers from a class
imbalance, known as the long-tail class problem. Besides
that, those datasets rely on human annotation, so human-
oriented problems and errors can occur [10].

To address this problem, some studies focus on syntheti-
cally generated point clouds. However, few studies are still



considering synthetic-to-real approaches because there is a
lack of extensive synthetic data with accurate semantic labels
[18]. Several studies utilize the Grand Theft Auto V (GTA
V) environment, a commercial video game known for its
realistic driving simulation, to produce synthetic point clouds
for use in 3D point cloud segmentation. Using game-engine-
dependent synthetic point clouds has advantages thanks to
the instance-level annotation for every object class [10].
This approach proposes to eliminate errors related to human
labeling during the annotation task by using a synthetically
generated 3D world, depending on the purpose. This method
streamlines the annotation process and allows researchers
to generate diverse datasets under controlled conditions,
facilitating more robust machine learning models. Conse-
quently, leveraging such synthetic environments can enhance
the accuracy and efficiency of various computer vision ap-
plications. However, these approaches are still facing some
problems, like the requirement of preprocessing and covering
all possible events and objects in real-world scenarios.

III. APPROACH

A. Geometry Extraction from HD Map

As explained in Section II, we used the OpenDRIVE data
format because it is one of the standard types of datasets
available for our region, in addition to point clouds. To
process OpenDRIVE datasets, we utilized the Geospatial
Data Abstraction Library (GDAL) [7], which provides a
dedicated driver capable of reading and processing Open-
DRIVE (.xodr) files. Using these geometries, a synthetic
point cloud can be generated, which serves as a baseline
for creating annotated datasets. OpenDRIVE data includes
primary road elements as well as traffic infrastructure such as
traffic signs, parking areas, and other support elements. This
enables the extraction of 3D spatial information from XML-
based datasets that describe static roadway features. From
this 3D data, we can synthesize a point cloud that forms the
foundation for the subsequent annotation phase. OpenDRIVE
data can include complex geometry representations, typically
modeled using third-order parametric cubic polynomials.
Each road element is defined relative to a reference line using
these polynomials. We mainly use the layers RoadObject,
Lane, and RoadMark, which are modeled as a TIN, to
create a 3D model of the city and roads. This representation
enables volumetric modeling for 3D use cases. We used the
OpenDRIVE format as a high-definition map representation
for the 3D shape reconstruction task. For proof of concept,
we implemented our pipeline using the openly available
OpenDRIVE dataset “Schwarzer Berg” in Brunswick [14],
which we converted to OGC Simple Feature geometries via
GDAL. These geometries serve as a baseline to generate a
synthetic point cloud, as explained in the following section.

B. Building Synthetic Point Cloud

As explained in Section III-A, the resulting geometries
were generated in a TIN structure to be used in constructing
the synthetic point cloud. This way, the objects or partici-
pants in the scene are expected to be synthetically generated

with the same high detail (e.g., convex geometries) as the
original point cloud. However, it should be noted that the
performance of this approach is directly related to the level
of detail provided in the OpenDRIVE data generation. The
GDAL XODR driver generates the triangles and the corner
points of the triangles that form the object for triangulated
irregular networks; therefore, a proper interpolation method
is required. For this purpose, three different sampling meth-
ods were used, and the number of points per m3 expresses
the point density to be generated per volume. The model’s
geometry becomes more detailed in volumetric instances as
this value increases. The third parameter is the downsampling
ratio, as the reference point cloud [15] exhibits a higher point
density than our generated synthetic point cloud. We will
measure our algorithm quality with Iterative Closest Point
(ICP) registration with a reference point cloud in Section
IV.

C. ICP Integration

To get label transfer from a synthetic point cloud, the
method for creating this point cloud is explained in Section
III-B: Building a synthetic point cloud, and the Iterative
Closest Point (ICP) algorithm is used to align it with the
original point cloud gathered by sensors. Table I lists the hy-
perparameters used to realize a proper matching algorithm in
our approach. In the beginning, the sparsity of the synthetic
point cloud is dependent on set parameters that are explained
in Section III-B. This situation leads us to conclude that a
higher density is an efficient approach initially. However,
because of computational cost, densifying synthetic point
clouds is not the best approach. To deal with these situations,
we reduce the number of points in the original point cloud
to lower costs and avoid mismatches due to differences in
density with the synthetic point cloud. Therefore, the down-
sampling ratio is the most important setting for using the
Iterative Closest Point algorithm, which helps match points
between two point clouds so that labels can be transferred.
The next two hyperparameters are important for the KDTree
search algorithm, which helps estimate normals and is used
in the registration process for both point clouds. The maxi-
mum number of nearest neighbors determines the number of
points available in the search space. Additionally, we used
this parameter to identify corresponding nearest neighbor
points for estimating the intensity values of synthetic point
clouds; however, we have not implemented this value in the
network.

Parameter
Downsampling ratio
Max NN for KDTree
Radius for KDTree (m)
Initial guess for ICP transformation
Transformation type
Max correspondence distance

TABLE I: Hyperparameters for Iterative Closest Point Algorithm



D. Model Structure for Semantic Segmentation

As explained in previous sections, this study proposed an
automatic annotation pipeline for use in point-wise semantic
segmentation. Our problem definition will centers on how
to use the supervised learning methodology to effectively
predict semantic classes, adhering to the previously described
approaches.Debugging and investigating ready-to-use model
structures was difficult and time-consuming due to the
custom-generated dataset. So to realize semantic segmen-
tation, we explored two different custom architectures that
mainly rely on the PointNet [13] network structure. The first
architecture we explored is PointNet, which processes 3D
coordinates using convolutional layers. It could not provide
sufficient accuracy for predictions even if different loss func-
tions and hyperparameters were used. The second network is
called GeoPointNet Algortihm 1 and uses point normals in
addition to 3D coordinates Besides the model selection, data
preprocessing is one of the most important steps in refining
our model performance. To handle computational issues, we
downsampled the input dataset that provides a certain point
number. On the other hand, we normalized point coordinates
to ensure stability and reduce scale variance during the
training stage. Because the datasets are unbalanced, meaning
that some semantic categories occur more often others, we
figured out the weights for each class and chose a loss
function that takes these weights into account to handle the
differences between classes and prevent problems caused by
the imbalance. We employed a combination of cross-entropy
loss and focal loss to address class imbalance in the dataset,
utilizing class weights. As regular hyperparameters for model
structure, different batch sizes and optimal epoch numbers
are also experienced to get better predictions.

Algorithm 1 GeoPointNet Model for Semantic Segmentation

Require: Input x ∈ RB×N×6

Ensure: Output y ∈ RB×N×C

1: x← permute(x) ∈ RB×6×N

2: x← ReLU(Conv1D(x, 6→ 64))
3: x← ReLU(Conv1D(x, 64→ 128))
4: x← ReLU(Conv1D(x, 128→ 256))
5: x← ReLU(Conv1D(x, 256→ 512))
6: x← ReLU(Conv1D(x, 512→ 256))
7: x← Dropout(x, p = 0.3)
8: x← Conv1D(x, 256→ C)
9: y ← permute(x) ∈ RB×N×C

10: return y

IV. EXPERIMENTAL EVALUATION

In this study we proposed a lightweight automatic an-
notation pipeline for point-wise semantic segmentation; in
this section we will discuss how our synthetic point cloud
generation approach works for transferring labels and how
our network performs on predictions of point-wise semantic
classes.

A. Synthetic Point Cloud Construction, ICP Integration, and
Automatic Annotation Results

Building a synthetic point cloud from a vector-based
dataset has many challenges in terms of sampling/inter-
polation methodology. On this baseline, we explore the
performance of three different sampling types in gener-
ating 3D synthetic point clouds. At first glance, uniform
and random sampling appear to yield similar results, while
the results from the normal distribution seem more distant
from reality. Table II presents the calculated cloud-to-cloud
distances among the three synthetic point clouds, with the
standard deviation indicating that the Gaussian-distributed
synthetic point cloud differs slightly from both the uniform
and randomly sampled point clouds. This calculation and
visualization was made on CloudCompare [5] which is an
open-source 3D point cloud and mesh processing software.

Sampling Gaussian Random Uniform

Gaussian 0.0 0.0518 / 0.066 0.0518 / 0.066
Random 0.0518 / 0.066 0.0 0.0524 / 0.042
Uniform 0.0518 / 0.066 0.0524 / 0.042 0.0

TABLE II: Cloud-to-cloud mean distances and standard deviations
between raw point clouds in meters.

The Iterative Closest Point Algorithm (ICP) algorithm was
utilized to quantitatively measure the performance of three
different sampling methods. Synthetic point clouds were
produced utilizing uniform, random, and normal sampling
methods as source datasets, alongside the reference LiDAR-
acquired and georeferenced point cloud as the target dataset.
The ICP registration algorithm subsequently processed these
point clouds, utilizing the settings specified in Table I.
As shown in Table III, alignment has reliable results with
approximately 0.99 fitness value and 1.053 m RMSE. As
the downsampling and upsampling ratios are identical, we
acquire an accurately scaled, annotated point cloud.

Sampling Type Number of Points RMSE Fitness
Normal 5,143,308 1.09767 0.99923
Random 5,123,088 1.05360 0.99921
Uniform 5,123,424 1.05346 0.99922

TABLE III: Different sampling methods’ performance for ICP
registration with responsible parameters in Table I; the reference
point cloud contains 54,350,752 points.

In details of specific objects, the KDTree-based label
transfer algorithm operates with high precision and provides
accurate annotations if a point on an object, such as a
building, in sparse regions lacks neighboring points at that
elevation. Figure 4 shows an example of how well objects are
identified in areas with few points; this scene comes from the
area shown in Figure 3, where both trees and buildings were
correctly identified without any over- or under-segmentation.



Fig. 3: Sample snipped for tree and building representation.

Fig. 4: Labeled sample snipped for tree and building representation.

B. Supervised Semantic Segmentation with Automatic Anno-
tation

A subset of 10 classes was selected from the full set of
22 for model training to facilitate the detection of certain
easily recognizable objects, such as trees, buildings, traffic
lights, and signs. This approach allows us to evaluate our
model from both quantitative and qualitative perspectives.
After enhancing the label transferring system using synthetic
point cloud creation and the iterative closest point method,
the pointwise semantic segmentation model was used on the
labeled original point cloud, as explained in the approach
section. The GeoPointNet architecture Algorithm 1 was
trained with 4 different batch sizes for 400 epochs using the
focal loss and cross entropy loss combination, coordinate
normalization, and downsampling. As shown in Table IV,
class imbalance and geometric differences are the reasons
for the diverse metric distribution. The table shows a huge
number of points affecting model performance; however,
it is not the only reason for lower accuracy. Even if the
Street Lamp class has a relatively higher number of points
than several classes, precision is comparatively low. This
behavior can be interpreted as surface distribution because
normals are also an input for the model, which is another
key factor for precision when we use only coordinate space-
considered models. Flat and continuous objects like barriers
and buildings have relatively higher precision.

Figure 5, Figure 6, and Figure 7 show snapshots of model

TABLE IV: Segmentation report for the 10-class model on the
synthetic point cloud dataset (excluding ignored index).

ID Class Name Precision Recall F1-score Support
1 obstacle 0.2041 0.7574 0.3216 2477
2 vegetation 0.4782 0.7436 0.5821 10927
3 tree 0.8525 0.3346 0.4806 45581
4 streetLamp 0.2785 0.4436 0.3422 10831
5 barrier 0.7689 0.6890 0.7267 25809
6 trafficSign 0.1983 0.5003 0.2841 4301
7 building 0.7992 0.6390 0.7102 29679
8 pole 0.2191 0.6526 0.3280 2504
9 trafficLight 0.2448 0.7218 0.3656 2883

Accuracy 0.5383
Macro Avg 0.4493 0.6091 0.4601 -
Weighted Avg 0.6910 0.5383 0.5608 134992

s
Fig. 5: Original, unlabeled point cloud sample for building.

performance in predicting the classes of points belonging
to the building. Due to downsampling for the training and
validation steps, the point cloud appears in a simplified ver-
sion. Figure 5 displays sensor-collected point clouds without
intensity values. Figure 6 illustrates the performance of label
transfers on this building following downsampling. Figure 7
presents the predicted classes for this building. As previously
mentioned, the building contains a vast number of points,
which indicates that this type of object is at the beginning of
the long-tail problem and has certain advantages; in addition,
it features flat and continuous geometries. GeoPointNet is an
effective network for predicting point-wise semantic classes
for this type of object.

V. CONCLUSION

In conclusion, perception plays a crucial role in au-
tonomous driving, and point-wise segmentation significantly
contributes to the scientific community in this regard. Even
though early and common approaches rely on image-based
semantic segmentation because of the availability of image-
based datasets, pixel-wise segmentation has some constraints
in terms of scalability on different dimensions and condi-
tions. LiDAR-collected 3D point clouds can provide reliable
information about extreme weather conditions and surface re-
flectivity; however, point-wise segmentation faces challenges
because the complex structure of 3D data complicates stor-
age and annotation. Annotating point cloud datasets is still
challenging in terms of time, cost, attention, and data aspects.
Effective segmentation requires accurate annotation in huge
amounts of sequences; however, because of inconsistency
and perspective issues, labeling point clouds is challenging



Fig. 6: Ground truth - transfered labels from ICP-stage for respon-
sible building in Figure 5

Fig. 7: Predicted labels for responsible building in Figure 5 and 6

to maintain accurately. Therefore, automatic annotation is an
emerging method for obtaining semantic classes from sensor-
collected point clouds. To address these challenges, several
approaches have been proposed, including the use of syn-
thetically generated point clouds and game-engine-dependent
synthetic environments with instance-level annotation for
every object class. These approaches aim to eliminate errors
related to human labeling and streamline the annotation
process. However, these methods still face some problems,
such as the requirement of preprocessing and covering all
possible events and objects in real-world scenarios. In this
study, we discussed whether an existing high-definition map
could be used as a base map to automatically annotate a
point cloud. The OpenDRIVE dataset is used to create a
synthetic point cloud in this direction. Then we proceed to
the Iterative Closest Point algorithm to find corresponding
points for both the synthetically generated point cloud and
the originally collected point cloud. This step enables the
transfer of labels to original point clouds. After this im-
plementation, the problem definition turns into supervised
semantic segmentation on a point cloud. We implemented a
neural network, which generated predictions. Our findings
show our approach should improve in terms of metric
predictions, even if synthetic point cloud construction and
label transfer work well. Despite the existence of multiple
methods for representing road networks as high-definition
maps, data standardization remains a work in progress.
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Label transferring to original point cloud 

▪

▪
Network design 

Predicting semantic classes

Code

%53
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Abstract
▪ Annotation is a bottleneck for point-wise segmentation task
▪High-definition maps can provide 3D coordinate information
and semantic classes 
▪ Building synthetic point cloud and transferring labels from 
synthetic point cloud to original point cloud  
▪Learning with this labels; supervised semantic segmentation

 

Getting 3D coordinate and semantic
classes from high-definition map.
 Construct synthetic point clouds. 

▪
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▪

▪
Transfer labels to the original point cloud.
Train dataset with these labels.
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