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Interferometrische und Polarimetrische SAR-Messungen zur Schneewasserequivalent 
Bestimmung 
Dissertation, ETH Zürich 
 
Schnee ist eine wesentliche Variable in hydrologischen und Klima-Modellen. Steigende 
Temperaturen haben einen Einfluss auf den Schnee und somit bedeutende Auswirkungen auf 
Ökologie, Wirtschaft und Gesellschaft. Ein Parameter, der zur Beschreibung von Schnee 
verwendet werden kann, ist das Schneewasseräquivalent (SWE). Differentielles 
interferometrisches SAR (DInSAR) ist eine vielversprechende Methode für die Ermittlung von 
Schneeparametern, da die DInSAR-Phase zwischen zwei zu unterschiedlichen Zeitpunkten 
aufgenommenen komplexen SAR-Bildern direkt mit der SWE-Änderung zwischen den beiden 
Messungen in Verbindung gebracht werden kann. Mit diesem Ansatz können präzise SWE-
Änderungen bestimmt werden. Es gibt jedoch einige Einschränkungen, die die Genauigkeit 
dieser Methode beeinträchtigen, wie Phase-Wraps der interferometrischen Phase und die 
Abhängigkeit der Schätzungen von der Polarisation. 
Um die Genauigkeit der Methode zu verbessern, wird ein Multifrequenz-Ansatz präsentiert, der 
SWE-Schätzungen verschiedener Frequenzen verwendet, um fehlende Phasenzyklen zu 
korrigieren. Außerdem werden polarimetrische SAR (PolSAR)-Informationen in die DInSAR 
SWE-Änderungsbestimmung einbezogen. Dazu wird ein etabliertes Modell angewendet, 
welches die copolare Phasendifferenz (CPD) zwischen dem horizontal und dem vertikal 
polarisiertem SAR-Signal mit der Schneehöhe in Verbindung bringt. Dieses wird angewendet um 
eine Phasenzykluskorrektur auf der Grundlage der CPD-Änderung zwischen zwei 
Beobachtungen durchzuführen. Schließlich wird vorgeschlagen, DInSAR- und PolSAR-
Beobachtungen zu einem differentiellen polarimetrischen interferometrischen SAR (DPolInSAR)-
Ansatz zu kombinieren. Zu diesem Zweck wird eine theoretische Methode formuliert, um die 
DPolInSAR-Kohärenzen verschiedener Polarisationszustände für unterschiedliche 
Schneehöhen- und Anisotropieänderungen zu modellieren. Darüber hinaus wird das DPolInSAR-
Modell verwendet, um Schneeänderungen von flugzeuggestützten SAR-Messungen zu 
berechnen. 
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Interferometric and Polarimetric SAR Measurements for Snow Water Equivalent 
Estimation 
Doctoral Thesis, ETH Zurich 
 
Snow is an essential variable in hydrological and climate models. Increasing temperatures 
affect the snow cover, which has an important impact on ecology, economy and society. A 
parameter which can be used to describe the snow pack is the Snow Water Equivalent (SWE). 
Differential Interferometric SAR (DInSAR) is a promising tool for the retrieval of snow 
properties, as the DInSAR phase between two repeat-pass SAR images can be directly related 
to the SWE change between both measurements. Even though this method can potentially 
achieve very accurate results, it still has some limitations affecting its performance such as 
phase wraps of the interferometric phase and a dependence of the estimations on polarization.  
To improve the retrieval accuracy, a multifrequency approach is presented, which utilizes SWE 
change estimates from different frequencies to correct for missing phase cycles. Furthermore, 
polarimetric information is included in the DInSAR SWE change retrieval. For that, an established 
model, which can relate the Copolar Phase Difference (CPD) between the horizontal and vertical 
channel to the snow depth, is applied with the goal to derive DInSAR SWE change estimates 
with a phase cycle correction based on the CPD change between two observations. Finally, it is 
proposed to combine DInSAR and PolSAR observables into a unified Differential Polarimetric 
InSAR (DPolInSAR) approach. For that, a theoretical framework is established to model 
differential polarimetric coherences for different snow depth and anisotropy changes. 
Furthermore, the DPolInSAR model is used to estimate snow changes from airborne SAR 
measurements.  
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Abstract 
 

Snow is an essential variable in climate models as snow cover on the land surface affects the 

climate of the Earth. Moreover, it is an important input for hydrological models since estimates 

on the amount of water stored within the snow pack are required to accurately predict runoff and 

thus enable water resource planning and flood forecasting. Increasing temperatures are affecting 

the snow cover, which has an important impact on ecology, economy and society. Thus, accurately 

estimating snow properties is a current scientific question of high relevance. 

A parameter which can be used to describe the snow pack is the Snow Water Equivalent 

(SWE). SWE describes the amount of liquid water stored in a snow pack and is the depth of water 

that is obtained when the snow pack melts completely.  

Remote sensing of the Earth’s surface offers the possibility to continuously monitor large 

snow-covered areas at high temporal resolution. In particular, Synthetic Aperture Radar (SAR) is 

able to acquire data at a spatial resolution on the meter-scale and is almost independent from 

weather and illumination conditions. Moreover, the SAR signal is sensitive to snow properties, as 

it is capable of penetrating the snowpack. Differential Interferometric SAR (DInSAR) is a 

promising tool for the retrieval of snow properties, as the DInSAR phase between two repeat-pass 

complex SAR images can be directly related to the SWE change between both measurements. 

Even though this method can potentially achieve accurate results, it still has some limitations 

affecting its performance. One important issue are phase wraps of the interferometric phase. As a 

consequence, only a limited range of SWE change values can be retrieved unambiguously.  

 

The goal of this thesis is the improvement of the DInSAR SWE change retrieval by exploiting 

the additional information content provided by multifrequency and polarimetric SAR data.  

 

The first part of this work focuses on the analysis of the performance of spaceborne SAR 

datasets in terms of their suitability for the retrieval of SWE changes based on an existing DInSAR 

algorithm. The analysis includes the investigations of datasets in X-, C- and L-band from the 

spaceborne SAR missions TanDEM-X, Sentinel-1 and ALOS-2. It can be highlighted, that one 

limitation of the DInSAR SWE retrieval results from phase wraps of the interferometric phase 

when the SWE change between the SAR acquisitions exceeds a frequency dependent threshold. 

This threshold is lower for higher frequencies, which is why they are particularly affected by 

phase wraps. A possibility to solve the phase wraps is presented by using ground-based 

measurements of SWE. Furthermore, a multifrequency approach is investigated, which utilizes 

SWE change estimates from different frequencies to correct for missing phase cycles. Both 

approaches increase the accuracy of the SWE change retrieval. While the former achieves the 

highest accuracy, the latter has the advantage that it does not depend on ground measurements 

and is thus more suitable for large-scale analyses. 
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In the second part of this thesis, the aim is to include polarimetric information in the DInSAR 

SWE change retrieval. For this investigation, polarimetric airborne SAR data is used. An 

established model, which can relate the Copolar Phase Difference (CPD) between the horizontal 

and vertical channel to the snow depth, is applied with the goal to derive DInSAR SWE change 

estimates with a phase cycle correction based on the CPD change between two observations. It 

can be observed that even though some limitations affect the phase wraps correction, such as 

required assumptions on snow density and anisotropy, the overall accuracy can be increased 

compared to no phase wrap correction.  

The last contribution of this thesis proposes to combine DInSAR and PolSAR observables into 

a unified Differential Polarimetric InSAR (DPolInSAR) approach to jointly exploit the 

information delivered by both. For that, a theoretical framework is established to model temporal 

polarimetric coherences for different snow depth and anisotropy changes. The effect on the phase 

and coherence region extent is analyzed for different snow changes. This study revealed that a 

snow depth change has a high impact on the absolute phase, while an anisotropy change mainly 

increases the phase diversity of different polarization states. Furthermore, the DPolInSAR model 

is used to estimate snow changes from the airborne SAR measurements by retrieving the 

parameters for snow depth, density, and anisotropy, which minimize the difference between 

measured and modeled coherences for different polarization states. The results improve compared 

to the single polarization DInSAR SWE change retrieval, demonstrating the potential of 

exploiting the information of different polarization states.  
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Zusammenfassung 
 

Schnee ist eine essentielle Variable in Klimamodellen, da die Schneebedeckung auf der 

Landoberfläche das Klima auf der Erde beeinflusst. Außerdem ist Schnee ein wichtiger 

Inputparameter für hydrologische Modelle, da Schätzungen über die Wassermenge, die im Schnee 

gespeichert ist, erforderlich sind, um den Abfluss genau vorherzusagen und so die Planung von 

Wasserressourcen und die Vorhersage von Überschwemmungen zu ermöglichen. Steigende 

Temperaturen im Zuge der globalen Erwärmung haben einen Einfluss auf den Schnee und in 

Folge dessen erhebliche Auswirkungen auf die Ökologie, Wirtschaft und Gesellschaft. Daher ist 

die genaue Bestimmung von Schneeparametern eine aktuelle und relevante Forschungsfrage. 

Ein Parameter, der zur Beschreibung von Schnee verwendet werden kann, ist das 

Schneewasseräquivalent (Snow Water Equivalent, SWE). SWE beschreibt die Menge an 

flüssigem Wasser, die in einer Schneedecke gespeichert ist, und ist somit die Höhe der 

Wassersäule, die sich ergibt, wenn die Schneedecke vollständig schmilzt. 

Fernerkundung der Erdoberfläche ermöglicht es, kontinuierlich und großflächig 

schneebedeckte Gebiete mit einer hohen zeitlichen Auflösung aufzunehmen. Insbesondere Radar 

mit synthetischer Apertur (Synthetic Aperture Radar, SAR) ist in der Lage, Daten mit einer 

räumlichen Auflösung im Meterbereich zu erfassen und ist nahezu unabhängig von Wetter- und 

Beleuchtungsbedingungen. Außerdem besitzen SAR-Signale eine Sensitivität gegenüber 

Schneeeigenschaften, da diese in die Schneedecke eindringen können. Differentielles 

interferometrisches SAR (DInSAR) ist eine vielversprechende Methode für die Ermittlung von 

Schneeparametern, da die DInSAR-Phase zwischen zwei zu unterschiedlichen Zeitpunkten 

aufgenommen komplexen SAR-Bildern direkt mit der SWE-Änderung zwischen den beiden 

Messungen in Verbindung gebracht werden kann. Mit dieser Methode können präzise SWE-

Änderungen bestimmt werden. Es gibt jedoch einige Einschränkungen, die die Genauigkeit dieser 

Methode beeinträchtigen. Eine davon sind Phase-Wraps der interferometrischen Phase. Diese 

treten auf, wenn die SWE-Änderung einen frequenzabhängigen Schwellenwert überschreitet. 

Infolgedessen kann nur ein begrenzter Bereich von SWE-Änderungen eindeutig bestimmt 

werden. 

 

Das Ziel dieser Arbeit ist die Verbesserung der DInSAR SWE-Änderungsbestimmung durch 

die Nutzung von multifrequenten und polarimetrischen SAR-Daten. 

 

Der erste Teil der Arbeit beschäftigt sich mit der Analyse von weltraumgestützten SAR-

Datensätzen im Hinblick auf ihre Eignung zur Bestimmung von SWE-Änderungen mit einer 

bestehenden DInSAR-Methode. Die Analyse umfasst die Untersuchung von Datensätzen im X-, 

C- und L-Band aus den weltraumgestützten SAR-Missionen TanDEM-X, Sentinel-1 und ALOS-

2. Die Untersuchungen bestätigen, dass Phase-Wraps eine wesentliche Einschränkung bei der 

DInSAR-SWE-Bestimmung sind und dass der Schwellenwert für deren Auftreten 
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frequenzabhängig ist. Er liegt bei höheren Frequenzen niedriger, weshalb diese besonders stark 

von Phase-Wraps betroffen sind. Es wird eine Möglichkeit vorgestellt, Phase-Wraps mit Hilfe 

von bodengestützten SWE-Messungen zu korrigieren. Darüber hinaus wird ein Multifrequenz-

Ansatz präsentiert, der die berechneten SWE-Änderungen von verschiedenen Frequenzen 

verwendet, um fehlende Phasenzyklen zu korrigieren. Beide Ansätze erhöhen die Genauigkeit der 

ermittelten SWE-Änderungen. Während der erste Ansatz eine höhere Genauigkeit erzielt, hat der 

zweite den Vorteil, dass er nicht von Bodenmessungen abhängt und daher für großflächige 

Analysen besser geeignet ist. 

Der zweite Teil dieser Arbeit widmet sich der Einbeziehung polarimetrischer SAR (PolSAR) 

Informationen in die DInSAR SWE-Änderungsbestimmung. Für diese Analyse werden 

polarimetrische flugzeuggestützte SAR-Daten verwendet. Es wird ein Modell verwendet, welches 

die copolare Phasendifferenz (Copolar Phase Difference, CPD) zwischen dem horizontal und 

vertikal polarisiertem SAR-Signal mit der Schneehöhe in Verbindung bringen kann. Dieses wird 

angewendet um eine Phasenzykluskorrektur auf der Grundlage der CPD-Änderung zwischen zwei 

Beobachtungen durchzuführen. Trotz einiger Einschränkungen, wie etwa erforderlicher 

Annahmen zur Schneedichte und Anisotropie, lässt sich feststellen, dass sich die 

Gesamtgenauigkeit im Vergleich zu einer unkorrigierten Phase erhöht. 

Im letzten Teil dieser Arbeit wird vorgeschlagen, DInSAR- und PolSAR-Daten zu einem 

differentiellen polarimetrischen interferometrischen SAR (DPolInSAR) Ansatz zu kombinieren, 

um den von beiden Messungen gelieferten Informationsgehalt zu nutzen. Zu diesem Zweck wird 

eine theoretische Formulierung vorgestellt, um die DPolInSAR-Kohärenzen verschiedener 

Polarisationszustände für unterschiedliche Schneehöhen- und Anisotropieänderungen zu 

modellieren. Die Auswirkungen verschiedener Schneeänderungen auf die Phase und die 

Ausdehnung der Kohärenzregion werden analysiert. So hat eine Änderung der Schneehöhe einen 

großen Einfluss auf die absolute Phase, während eine Anisotropieänderung vor allem die 

Phasendiversität der verschiedenen Polarisationszustände erhöht. Darüber hinaus wird das 

DPolInSAR-Modell verwendet, um Schneeänderungen von flugzeuggestützten SAR-Messungen 

zu berechnen, indem die Parameter für Schneetiefe, Schneedichte und Anisotropie ermittelt 

werden, die den Unterschied zwischen gemessenen und modellierten Kohärenzen minimieren. 

Die Ergebnisse der SWE-Änderungen verbessern sich im Vergleich zum DInSAR-Ansatz mit nur 

einer Polarisation und zeigen somit das Potenzial der Nutzung des Informationsgehalts 

verschiedener Polarisationszustände. 
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the snow 

𝑎𝑖   Dimension 𝑖 ϵ [𝑥, 𝑦, 𝑧]  of the ice grains 

𝐴   Anisotropy 

[𝐶]   Polarimetric covariance matrix 

[𝐶0]  Polarimetric covariance matrix of scattering mechanism below the snow 

𝑓   Ice volume fraction 

𝑘   Wavenumber 

𝑘𝐿
⃗⃗⃗⃗    Scattering vector in lexicographic basis 
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𝑘0𝐿
⃗⃗ ⃗⃗ ⃗⃗  Scattering vector in lexicographic basis of scattering mechanism below the 

snow 

𝑘𝑃
⃗⃗ ⃗⃗    Scattering vector in Pauli basis 

𝑛𝑎𝑖𝑟  Refractive index of air  

𝑛𝐻 or 𝑉  Refractive index of the horizontal or vertical polarization 

𝑛𝑖   Refractive index of dimension 𝑖 ϵ [𝑥, 𝑦, 𝑧]   

𝑁   Number of looks 

𝑁𝑖   Depolarization factor of dimension 𝑖 ϵ [𝑥, 𝑦, 𝑧]   

[𝑃2]  Propagation matrix  

𝑝𝑑𝑓  Probability density function 

𝑟   Path length in range direction 

Δ𝑟   Path length difference in range direction 

𝑅𝑀𝑆𝐸𝑎  Root Mean Square Error after phase wrap correction 

𝑅𝑀𝑆𝐸𝑏  Root Mean Square Error before phase wrap correction 

𝑅𝑀𝑆𝐸𝑟𝑒𝑙  Relative Root Mean Square Error 

𝑠𝑖𝑗   Scattering matrix element at polarization 𝑖𝑗 with 𝑖, 𝑗 ϵ [𝐻, 𝑉] 

𝑆   SAR acquisition 

[𝑆]   Scattering matrix 

[𝑆0]  Scattering matrix of scattering mechanism below the snow  

Δ𝑆𝑊𝐸  Snow Water Equivalent change 

Δ𝑆𝑊𝐸𝐶𝑃𝐷  Polarimetric Snow Water Equivalent change estimate 

Δ𝑆𝑊𝐸𝐻𝐻 or 𝑉𝑉 Snow Water Equivalent change using horizontal or vertical polarized radar 

waves 

[𝑇]   Polarimetric coherency matrix 

𝑤⃗⃗    Polarization state 

𝑤⃗⃗ 𝐻𝐻 or 𝑉𝑉  Polarization state at horizontal or vertical polarization 

𝑍   Snow depth 

Δ𝑍   Snow depth change 

(∙)𝑇  Transpose 

(∙)∗   Complex conjugate 

(∙)+  Complex conjugate transpose 

〈∙〉    Expectation value 

|∙|   Magnitude  
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1 Introduction 

1.1 Motivation and State of the Art 

Around 50 percent of the land surface in the Northern hemisphere is covered with snow in 

midwinter [1]. The seasonal snow cover thus represents an important parameter in climate models 

[2] due to a variety of snow-related processes: The high reflectivity of snow leads to a high surface 

albedo. In combination with the fact that snow has a higher thermal emissivity than other natural 

surfaces, snow cover affects the energy budget of the Earth and thus the global climate [3]. 

Furthermore, seasonal snow cover also affects polar and alpine ecosystems by influencing 

environmental variables such as soil temperature and, in turn, the growth of vegetation [4]. Snow 

melt is a source of fresh water for over one billion people [5], [6] and is therefore an essential 

hydrological parameter. Hydrological models rely on information on the amount of water stored 

within the snow pack [7]. This is required to make runoff predictions [8] and forecast floods [9].  

However, the current rise in temperatures [10] affects seasonal snowfall and snow melt and 

thus results in an alteration of runoff regimes, leading to an earlier runoff in spring or winter. This 

has consequences for areas in particular where the population relies on snowmelt for their water 

supply and water storage capabilities are limited [8]. Therefore, accurate measurements of snow 

parameters are vital for resource planning in, e.g. agriculture, transportation, and power 

generation. 

A parameter that provides information on the snow pack is the Snow Water Equivalent (SWE). 

The SWE describes the amount of liquid water contained within the snow pack. Precise 

information on SWE can be obtained with ground measurements. This can be done either by 

manual measurements [11] or by automated measurement stations [12], [13]. However, manual 

measurements and ground stations are typically limited to small study areas and few locations. 

This is also exacerbated by the fact that snow covered areas are often characterized by harsh 

weather conditions and are located in remote regions with challenging access. The spatial 

interpolation of sparsely sampled in situ data allows for a wider coverage, but introduces 

significant uncertainties and a coarse spatial resolution. 

Remote sensing offers the possibility to continuously monitor larger areas at high temporal 

and spatial resolutions. Particularly sensors operating at microwave frequencies can acquire 

measurements that are almost independent of weather and illumination conditions, making them 

suitable for cryosphere applications, as regions covered with snow are often affected by polar 

darkness and a high cloud coverage [14].  

In this context, a widely used sensor type are passive microwave sensors. For the estimation 

of snow products like SWE, a link between the brightness temperature and the snow layer is 

established [15], [16], [17], [18], [19], [20]. There are global products available that can provide 

snow parameters on a daily basis [17], [18]. However, for snow with a depth of above 1 meter, a 

saturation effect of the signal can be observed [19]. Furthermore, the spatial resolution lies on the 
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kilometer-scale [20] so that these products are not accurate in complex terrain such as mountain 

ranges. 

In comparison, active radar sensors like Synthetic Aperture Radars (SARs) have the advantage 

to be able to monitor the Earth at a high spatial resolution on a meter-scale [21], making it an 

important sensor for cryosphere applications. Active microwave signals are able to penetrate into 

dry snow [22], [23]. Therefore, they are sensitive to snow parameters and different techniques and 

algorithms have been developed to retrieve these from SAR data. There are methods which are 

based on radiative transfer models [24], [25]. However, these models require a priori information 

as input parameters. Other approaches also include information of polarimetric SAR (PolSAR) 

for the retrieval of snow properties [26], where the backscatter of two frequencies at two different 

polarizations are combined in a radiative transfer model. 

It was shown that it is possible to relate the backscatter of the co and cross polarized channels 

in VV and VH to the snow depth and to establish an empirical relation [27], [28]. However, 

research on the underlying scattering mechanism and its impact is still ongoing with the goal to 

explain this empirical relation [29]. Another proposed technique to retrieve snow depth 

differences two digital elevation models (DEMs) at different times, but this method requires the 

presence of wet snow and suffers from the weak backscatter signal [30]. 

 

A promising approach has been proposed in [31] based on repeat-pass SAR measurements, 

which are measurements of the same location separated by a temporal baseline. The key 

observable of repeat-pass SAR is the interferometric phase, which is essentially the difference in 

travel time or path length of the microwave signals between the two acquisitions. The authors 

demonstrated that there is a relation between the interferometric phase between two SAR 

acquisitions and the SWE change between the measurements. Using C-band (wavelength 𝜆 ≈ 4 −

8 𝑐𝑚) European Remote-Sensing Satellite (ERS) data over a test site in Norway, the authors 

showed that the interferometric phase is affected by a snow change, yielding a height difference 

in DEMs. This was explained by the refraction of the radar waves inside the snow pack. The 

observation made and the relationship discovered between a SWE change and the interferometric 

phase is fundamental for this thesis. Hence, the state-of-the-art of research in this context shall be 

elaborated in more detail. 

A tower-based radar in Finland with measurements in Ku (𝜆 ≈ 1.7 − 2.5 cm) and X-band 

(𝜆 ≈ 2.5 − 4 cm) was used in [32] to further exploit the relationship between SWE change and 

interferometric phase. The authors demonstrated an extension to the formulation found in [31] to 

make it valid for a wider span of densities. It was possible to reduce the effect of temporal 

decorrelation by acquiring a time series with a temporal baseline of 4 hours. The results had a 

high agreement with the validation data, showing the potential of the proposed method. However, 

phase wraps of the interferometric phase were observed, because it is only possible to measure 

the interferometric phase in a 2π interval. This phase wrap limitation was already mentioned in 

[31]. A recent tower-based experiment in Finland investigated the decorrelation of the 

interferometric measurements and the SWE retrieval for X-, C-, S- (𝜆 ≈ 8 − 15 cm) and L-band 
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(𝜆 ≈ 15 − 30 cm). It was shown that shorter wavelengths experience faster decorrelation than 

longer wavelengths. The main reason for decorrelation is temperatures above zero, causing 

melting of the snow. However, a high precipitation intensity and wind can also be a cause for 

decorrelation, adversely affecting the results of the SWE change retrieval. It was shown that the 

SWE profiles could be estimated with the highest accuracy for long wavelengths and small 

temporal baselines, while the error increased for shorter wavelengths and longer temporal 

baselines [33].  

To achieve a larger spatial coverage for the SWE change retrieval, repeat-pass airborne SAR 

measurements can be used. Recently, campaigns were conducted to test the SWE change retrieval, 

using for example the Uninhabited Aerial Vehicle SAR (UAVSAR) over a test site in North 

America [34], [35], [36], [37], [38]. The results in [34] showed the potential for the L-band SWE 

retrieval by qualitatively comparing the UAVSAR retrieval to Light Detection and Ranging 

(LiDAR) measurements. However, the authors also mentioned the unknown phase offset of the 

interferometric phase, which requires a reference phase. In [35] the retrieved SWE from the 

UAVSAR data shows accurate results, which depend on the timing of the measurements, the 

reference phase, and also the characteristics of the snowpack. The UAVSAR dataset was also 

applied to retrieve the SWE over a shallow prairie snow pack. It showed that the highest 

discrepancy between the InSAR and LiDAR SWE estimates are obtained for a high snow depth 

variability inside a resolution cell [36]. In [37] a reference phase was calculated based on the in 

situ data and the results were compared to a snow model, showing good results for areas with no 

snow melt and little vegetation. The UAVSAR data set was additionally validated using ground-

penetrating radar and LiDAR measurements further demonstrating the potential of interferometric 

repeat-pass SAR for SWE retrieval. However, land cover was affecting the SWE change retrieval 

with lower SWE estimations over forested areas [38]. A different airborne SAR campaign using 

the DLR’s F-SAR system was performed over a valley in the Austrian Alps in C- and L-band. 

The first analysis indicated good results for the SWE maps based on L-band measurements. For 

C-band, decorrelation during a bigger snow fall event was observed and the constraint of the 2π 

phase ambiguity, which has a higher impact on C-band compared to L-band, was mentioned [39]. 

Data acquired during this campaign will be also used in this thesis.  

Spaceborne SAR measurements have also been utilized successfully to retrieve the SWE 

change between two acquisitions. Different frequencies were utilized for that purpose. Many 

studies have been performed using C-band sensors, such as [40], [41], [42], [43], [44], [45]. In 

[40], the temporal decorrelation due to snow changes inside the resolution cell, which may be 

caused by snow accumulation or a redistribution due to wind, was found to be a limitation. The 

C-band data measured with ERS proved to be affected by temporal decorrelation more than L-

band data from an airborne sensor. The authors also mentioned the importance of having accurate 

DEM information, which is needed for phase calibration, as well as the more limited range of 

SWE change values that can be retrieved for C-band. In [41] Envisat ASAR data was used to 

retrieve the SWE over a mountainous area, which required the presence of dry snow. The authors 

in [42] utilized Sentinel-1 data and removed the atmospheric phase contribution with a numerical 
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weather model showing results with a high accuracy, but also described the limitation of this 

method which is due to the limited range of values which can be retrieved without phase 

unwrapping. Sentinel-1 data was used in [43] for SWE retrieval, where the authors modelled the 

snow density and SWE from interferometric data. This study relied on the assumptions that the 

snow is dry, and, accordingly the restrictions due to the presence of wet snow were mentioned. In 

[44], in addition to the interferometric SWE change retrieval, also the topographic variation of the 

scene was taken into account to estimate the absolute SWE change. Furthermore, in [45] it was 

demonstrated using Sentinel-1 C-band data that it is essential to correct for the atmospheric phase 

delay. A high correlation with in situ data was achieved but it was also shown that strong 

decorrelation contributed to a lower performance of the SWE change retrieval. In addition to the 

already mentioned decorrelation sources it was demonstrated that changes in the permittivity of 

dry snow can lead to decorrelation [46]. Spaceborne Advanced Land Observing Satellite (ALOS-

2) L-band data was utilized in [47], where also the backscattering contribution from the roughness 

of the snow surface was taken into account, which contributed to 4% of the SWE retrieval error. 

Here a known reference phase was used to calibrate the interferometric phase. The results for the 

ALOS-2 SWE change retrieval were also compared to modeled SWE changes to increase the 

amount of validation data. The SWE change estimates had a high accuracy, which, however, 

decreased for forested areas when the temperature was close to zero degrees. It was assumed that 

these temperatures resulted in a higher permittivity of the canopy. This, in turn, led to a higher 

contribution to the interferometric phase, which may have caused errors in the retrieval  [48]. 

In contrast to polarimetric backscatter measurements, it is also possible to correlate the 

Copolar Phase Difference (CPD) to the snow depth [49], [50]. It was shown in [49] using 

TerraSAR-X and TanDEM-X X-band data that the CPD increases by around 5-15 degrees per 10 

cm of fresh snow, due to its anisotropic structure. When no snow accumulation occurred, the CPD 

started to decrease by 3-7 degrees per 11 days, due to snow metamorphism. In [50], also ground-

based radar measurements were used and similar trends as for the TerraSAR-X measurements 

were observed. A model has been proposed to relate the CPD to the snow properties which is 

based on the different dielectric properties for vertically and horizontally polarized radar waves. 

The CPD depends on the density, depth and anisotropy of the snow pack and can therefore be 

used to invert the snow depth or SWE [49], [50]. The link between CPD and fresh snow depth 

was also observed in [51] and [52]. The model relating the CPD to the snow depth was recently 

applied using TanDEM-X data in the Himalayas, showing that in such mountainous terrain the 

multilook window size plays a role. As input parameters, the density from the average of ground 

stations and an assumed anisotropy were required [53]. Another study applying the CPD model 

to retrieve SWE using TerraSAR-X data was presented in [54], showing the best accuracy in dry 

snow. The CPD model cannot only be applied to fresh snow, but also for the retrieval of the firn 

thickness when negative anisotropies are used, for example using L-band data in [55]. The CPD 

is more robust to phase wraps than the interferometric phase. However, using radar measurements 

at short wavelengths, such as Ku-band, phase wraps of the CPD can be observed [56]. These 

studies show that information on the snow depth can be derived from the CPD. 
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In conclusion, using the interferometric phase, highly accurate SWE change values can 

potentially be achieved. However, temporal decorrelation, the need of a reference phase, and the 

fact that only a limited range of SWE change values can be retrieved unambiguously, are all 

factors which limit the potential of using the interferometric phase to retrieve SWE change values. 

Particularly the last restriction will be the focus of this thesis. Potential solutions for phase wraps 

lie, firstly, in the inclusion of multiple frequencies for SWE change retrieval, and secondly, in the 

use of polarimetric information and the CPD. Both approaches will be investigated in this thesis. 

For that purpose, the following chapter introduces the technical background of SAR remote 

sensing and the methods that will be used in this study, followed by the research objectives and 

questions. 

1.2 Background on SAR 

The acronym Radar stands for Radio detection and ranging. Radar sensors are used to detect 

and locate objects by emitting energy in the microwave frequency range of the electromagnetic 

spectrum. Imaging radars are able to generate two-dimensional images of a scene [57].  SARs are 

side looking imaging radars that are located on moving platforms. Being active radar systems, 

SARs emit an electromagnetic wave and then receive a backscattered signal. The time between 

the transmitted and received signal can be related to the locations of the scatterers [21]. The 

distance to the scatterer is measured in range direction and the direction of the movement of the 

platform is the azimuth direction [58].  

Special processing of the signals allows to form a synthetic aperture that is longer than the real 

antenna. This has the advantage of increasing the spatial resolution [59], making SARs important 

sensors for various applications in Earth observation [60].   

SARs measure the complex reflectivity of the surface, meaning a complex signal that contains 

amplitude and phase information [58]. How an emitted radar wave interacts with a scatterer 

depends, among other factors, on the frequency of the wave. Thus, SAR sensors emitting waves 

in different frequency spectra have different application foci. Typical frequency bands for the 

radar signals used in cryosphere contexts, which will be also used in this thesis, are displayed in 

Table I [57].  

The received signal also depends on the underlying scatterers. Using the amplitude, 

backscatter information of the scene can be obtained [58]. The backscatter intensity can be used 

to characterize surfaces, for example for wet snow mapping [61]. The phase information of a 

single SAR image is characterized by a noise-like signal due to speckle. The effect arises from 

the fact that a resolution cell contains a superposition of distributed scatterers, each contributing 
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to the phase term. The phase of the scatterers located in different parts of the resolution cell may 

be very different and is independent of the amplitude signal [58]. Nevertheless, there are 

techniques which can be used in order to still exploit the phase information of the SAR image, by 

using interferometric and polarimetric phase differences. These techniques will be described in 

the following sections, as the phase is an essential observable in this thesis. 

1.2.1 Interferometric SAR 

Differential SAR Interferometry (DInSAR) is a SAR technique that requires two complex 

SAR images that are separated by a temporal baseline, with the goal to measure temporal changes 

using the phase information of an electromagnetic wave [62]. An example is displayed in Fig. 1. 

At the time 𝑡1, the SAR sensor is measuring a pixel located in the scene after traveling the path 

𝑟1. After a temporal baseline Δ𝑡 = 𝑡2 − 𝑡1 the same location is measured again with the second 

acquisition. However, the distance has now changed to 𝑟2. The interferogram between the image 

𝑆1 and 𝑆2 can be calculated with: 

 

𝑆1𝑆2
∗ = |𝑆1||𝑆2|exp (𝑖(Φ1 − Φ2)).  (1) 

 

The phase of the acquired signal 𝑆1 is given by:  

 

Φ1 = arg(𝑆1) = −
4𝜋

𝜆
𝑟1 + Φ𝑠𝑐𝑎𝑡,1,  (2) 

 

Where Φ𝑠𝑐𝑎𝑡,1 describes a stochastic scattering phase term for the first acquisitions. For the 

second image the corresponding phase is accordingly:  

 

Φ2 = arg(𝑆2) = −
4𝜋

𝜆
𝑟2 + Φ𝑠𝑐𝑎𝑡,2.  (3) 

 

The phase of a single SAR image cannot be used for information retrieval as it contains the 

stochastic phase term due to speckle. However, it can be assumed that if the measurements are 

acquired from the same location and the scatterers have not changed between the acquisitions, the 

stochastic term in the first and second acquisition agree with Φ𝑠𝑐𝑎𝑡,1 ≈ Φ𝑠𝑐𝑎𝑡,2. The 

interferometric phase for the measured pixel can be written as:  

 

Table I 

Frequency Bands 

Band X C L 

Frequency [GHz] 12–8 8–4 2–1 

Wavelength [cm] 2.5–4 4–8 15–30 
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ΔΦ𝐼𝑛𝑓,𝑃 = Φ1 − Φ2 =
4𝜋

𝜆
Δ𝑟 .  (4) 

 

Δ𝑟 is the change between the measurements which can be obtained with a high accuracy. 

According to (4), one phase cycle of 2π corresponds to a change of half the wavelength [63]. A 

zero spatial baseline would be ideal for DInSAR measurements [21]. Otherwise, the sensor might 

see the scatterers from different angles and the condition that the stochastic scattering phase term 

is the same might not hold, having an effect on the measured Δ𝑟.    

By forming the complex cross correlation between the signals at the first acquisition 𝑆1 and at 

the second acquisition 𝑆2, the complex interferometric coherence 𝛾𝐼𝑛𝑓 is obtained with: 

 

𝛾𝐼𝑛𝑓 =
〈𝑆1𝑆2

∗〉

√〈𝑆1𝑆1
∗〉〈𝑆2𝑆2

∗〉
.  (5) 

 

〈∙〉 stands for the expectation value which is achieved by multilooking over a certain spatial 

window. The absolute value of the interferometric coherence 𝛾𝐼𝑛𝑓 is ranging from 0 to 1, having 

a high correlation at 1 and being completely decorrelated at 0. The multilooked interferometric 

phase ΔΦ𝐼𝑛𝑓 can be obtained from the complex interferometric coherence 𝛾𝐼𝑛𝑓: 

 

 

 

Fig. 1.  Example of a repeat-pass interferometric measurement. (Left) The sensor is measuring the scatterer 

at the time 𝑡1 with a distance 𝑟1. (Right) At time 𝑡2 the sensor performs the measurement at the same 

location. Due to a change, the distance is now 𝑟2. The difference Δ𝑟 = 𝑟2 − 𝑟1 can be measured with the 

interferometric phase.  
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ΔΦ𝐼𝑛𝑓 = arg(𝛾𝐼𝑛𝑓).  (6) 

 

The complex interferometric coherence 𝛾𝐼𝑛𝑓 can be used as an approximation of the phase 

noise [64]. For that, the probability density function 𝑝𝑑𝑓 of the phase can be calculated with [63]: 

 

𝑝𝑑𝑓(ΔΦ𝐼𝑛𝑓 , 𝑁) =
Γ (𝑁 +

1
2) (1 − |𝛾𝐼𝑛𝑓|

2
)
𝑁

|𝛾𝐼𝑛𝑓| cos(ΔΦ𝐼𝑛𝑓 − ΔΦ0)

2√𝜋Γ(𝑁) (1 − |𝛾𝐼𝑛𝑓|
2
cos2(ΔΦ𝐼𝑛𝑓 − ΔΦ0))

𝑁+
1
2

 

+ 
(1−|𝛾𝐼𝑛𝑓|

2
)
𝑁

2π
2𝐹1 (𝑁, 1,

1

2
, |𝛾𝐼𝑛𝑓|

2
cos2(ΔΦ𝐼𝑛𝑓 − ΔΦ0)).  

(7) 

 

ΔΦ0 is the noise-free phase and 𝑁 are the number of looks of the estimation window. By 

applying the 𝑝𝑑𝑓 it can be calculated that the phase standard deviation increases for lower 

coherences. The standard deviation of the interferometric phase can be decreased by increasing 

the number of looks. However, that would result in a coarser spatial resolution.  

 The interferometric phase can be generally separated into the following contributions: 

  

ΔΦ𝐼𝑛𝑓 = ΔΦtopo + ΔΦ𝑑𝑖𝑠𝑝 + ΔΦ𝑎𝑡𝑚 + ΔΦ𝑛𝑜𝑖𝑠𝑒 + ΔΦ𝑠.  (8) 

 

The topographic component is denoted as ΔΦ𝑡𝑜𝑝𝑜 and can be removed using a DEM. In case 

of a line of sight displacement, for example because of subsidence, a phase contribution in ΔΦ𝑑𝑖𝑠𝑝 

is obtained. ΔΦ𝑎𝑡𝑚 is the atmospheric component, and ΔΦ𝑛𝑜𝑖𝑠𝑒 is the phase noise [21]. In case of 

snow, there will be also an additional phase component due to the snow ΔΦ𝑠 because of refraction 

inside the snow pack [31]. This phase term depends on the SWE change and is a key observable 

in this thesis. The relation will be used to retrieve the SWE change, see Section 1.5.1. Note that 

the interferometric phase can only be measured in an interval between [-π, π] [63]. 

1.2.2 Polarimetric SAR  

In addition to the phase, another property which can be used to characterize an electromagnetic 

wave is its polarization. The polarization describes the time varying orientation and magnitude of 

the electric field vector of electromagnetic waves relative to the direction of propagation [65].  

In order to be able to describe the polarization of the wave, a coordinate system is needed. 

Most SAR systems are acquiring data in the Horizontal-Vertical (H-V) basis. This means that the 

sensor is transmitting Vertically V and/or Horizontally H polarized waves and is receiving data 

in V and/or H polarization [21]. A way to describe this is using the Jones vector 𝐸⃗ , which can be 

represented as a linear combination of two polarization states and can be described in the H-V 

basis [65].  
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A way to characterize the polarization is the scattering matrix [𝑆], which is a measure of how 

the transmitted wave 𝐸⃗ 𝑡 is changed due to the scatterer into the received wave 𝐸⃗ 𝑟: 

 

𝐸⃗ 𝑟 =
exp(−𝑖𝑘𝑟)

𝑟
[𝑆]𝐸⃗ 𝑡

∗
. (9) 

 

𝑘 = 2𝜋/𝜆 is the wavenumber and 𝑟 is the distance between the antenna and the scatterer. The 

factor 
exp(−𝑖𝑘𝑟)

𝑟
  accounts for the phase shift and attenuation of the wave travelling from the 

antenna to the scatterer [21].  

The scattering matrix [𝑆] is given by: 

 

[𝑆] = [
𝑠𝐻𝐻 𝑠𝐻𝑉

𝑠𝑉𝐻 𝑠𝑉𝑉
].  (10) 

 

The four elements of the scattering matrix are the complex scattering amplitudes in the 

different polarization channels. The subscripts are denoting the polarization of the received and 

transmitted polarization [66]. 

The scattering matrix can be vectorized using the scattering vector 𝑘𝐿
⃗⃗⃗⃗  in the lexicographic 

bases with: 

 

𝑘𝐿
⃗⃗⃗⃗ =  [𝑠𝐻𝐻 , 𝑠𝐻𝑉, 𝑠𝑉𝐻 , 𝑠𝑉𝑉]

𝑇. (11) 

 

The advantage of the lexicographic basis is that the elements of the scattering matrix can be 

directly related to the measured observables.  

Another possibility to vectorize the scattering matrix in (10) is the use of the Pauli scattering 

vector 𝑘𝑃
⃗⃗ ⃗⃗  which is obtained with: 

 

𝑘𝑃
⃗⃗ ⃗⃗ =

1

√2
 [𝑠𝐻𝐻 + 𝑠𝑉𝑉, 𝑠𝐻𝐻 − 𝑠𝑉𝑉, 𝑠𝐻𝑉 + 𝑠𝑉𝐻, 𝑖(𝑠𝐻𝑉 − 𝑠𝑉𝐻)]𝑇 

(12) 

 

An advantage of the Pauli basis is that it offers the possibility to interpret the elements in terms 

of scattering mechanisms. The first element, HH+VV, can be interpreted as single scattering from 

surfaces. The second element, HH-VV, stands for dihedral scattering. The third element 

corresponds to dihedrals with a line of sight rotation of π/4 and the last element describes a helix-

type scattering, where the incident wave is transformed into its orthogonal circular polarization 

state [65].  

The scattering matrices can be used for point-like scatterers, but are not able to describe 

polarization effects of distributed scatters, which are a superposition of multiple scatterers inside 

a resolution cell. Therefore, second-order statistics are required.  
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By forming the outer product of the lexicographic scattering vector 𝑘𝐿
⃗⃗⃗⃗ , the polarimetric 

covariance matrix [𝐶] is obtained: 

 

[𝐶] = 〈𝑘𝐿
⃗⃗⃗⃗  ∙ 𝑘𝐿

⃗⃗⃗⃗ 
∗
〉, (13) 

 

By forming the outer product of the Pauli scattering vector 𝑘𝑃
⃗⃗ ⃗⃗ , the polarimetric coherency 

matrix [𝑇] is obtained: 

 

[𝑇] = 〈𝑘𝑃
⃗⃗ ⃗⃗  ∙ 𝑘𝑃

⃗⃗ ⃗⃗ 
∗
〉. (14) 

 

The elements of these matrices are spatially averaged [21].  

Another polarimetric variable is the complex polarimetric coherence 𝛾𝐶𝑃𝐷. It can be calculated 

from the cross correlation between the vertical polarized signal 𝑠𝑉𝑉 and the horizontal polarized 

signal 𝑠𝐻𝐻: 

 

𝛾𝐶𝑃𝐷 =
〈𝑆𝑉𝑉𝑆𝐻𝐻

∗ 〉

√〈𝑆𝑉𝑉𝑆𝐻𝐻
∗ 〉〈𝑆𝑉𝑉𝑆𝐻𝐻

∗ 〉
.  (15) 

 

 The angle of the complex polarimetric coherence 𝛾𝐶𝑃𝐷 is the CPD and can be calculated with: 

 

Φ𝐶𝑃𝐷 = arg(𝛾𝐶𝑃𝐷) = Φ𝑉𝑉 − Φ𝐻𝐻.  (16) 

 

The CPD Φ𝐶𝑃𝐷 can be also represented by the difference between the phase in VV Φ𝑉𝑉 and 

HH Φ𝐻𝐻 [49]. This is another key observable of this thesis and the relation between the Φ𝐶𝑃𝐷 and 

snow is described in Section 1.5.2.  

1.2.3 Polarimetric SAR Interferometry 

Polarimetric SAR Interferometry (PolInSAR) is a technique which combines interferometric 

and polarimetric data. As seen in Section 1.2.1, repeat-pass interferometry is sensitive to changes 

in the SAR image, for instance to a snow-induced phase change. Meanwhile, polarimetry allows 

to obtain information on the scattering mechanism and on differences between vertical and 

horizontal polarizations, see Section 1.2.2. Both techniques can be combined into Differential 

PolInSAR (DPolInSAR) by using multitemporal polarimetric data. The basics of DPolInSAR will 

be introduced in the following.  

The temporal DPolInSAR matrix ΩL is formed from the lexicographic scattering vectors of 

two SAR measurements acquired at two different times:  

 

[ΩL] = 〈𝑘𝐿,1
⃗⃗⃗⃗⃗⃗  ⃗  ∙ 𝑘𝐿,2

⃗⃗⃗⃗⃗⃗  ⃗
∗
〉 (17) 
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The DPolInSAR matrix contains polarimetric and interferometric information. It can be used 

to calculate the temporal DPolInSAR coherence at polarization 𝑤⃗⃗  with [67]:  

 

𝛾(w⃗⃗⃗  ) =
w⃗⃗⃗ +[Ω𝐿]w⃗⃗⃗ 

√(w⃗⃗⃗ +[𝐶1]w⃗⃗⃗ )(w⃗⃗⃗ +[𝐶2]w⃗⃗⃗ )
. 

(18) 

 

[𝐶1] and [𝐶2] are the polarimetric covariance matrices of two acquisitions at different times 

and can be calculated with (13). 𝑤⃗⃗  are the unitary vectors of the polarization states. The absolute 

coherence describes the correlation between the two acquisitions whereas its angle denotes the 

DPolInSAR phase for each polarization state.  

When the lexicographic basis is used, the polarization state 𝑤𝐻𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = [1,0,0,0]𝑇 corresponds to 

the HH polarization and the VV polarization can be obtained using 𝑤𝑉𝑉⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [0,0,0,1]𝑇. This can be 

shown by projecting the scattering vector from (11) on the polarization state as can be seen in the 

following:  

 

𝑤𝐻𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
+

∙  𝑘𝐿
⃗⃗⃗⃗ = 𝑠𝐻𝐻 (19) 

 

𝑤𝑉𝑉⃗⃗ ⃗⃗ ⃗⃗  ⃗
+

∙  𝑘𝐿
⃗⃗⃗⃗ = 𝑠𝑉𝑉 (20) 

 

When using these polarization states in (18), the DInSAR coherence in HH and VV can be 

obtained. Beyond these standard polarization states, the unitary vector 𝑤⃗⃗  allows to compute 

DPolInSAR coherences for any polarization state that is a complex combination of all 

polarizations. 

The polarization state 𝑤⃗⃗  is characterized by the 𝛼 angle which can be directly estimated from 

the scattering matrix with: 

 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
|𝑠𝐻𝐻 + 𝑠𝑉𝑉|

√2√|𝑠𝐻𝐻|2 + |𝑠𝐻𝑉|2 + |𝑠𝑉𝐻|2 + |𝑠𝑉𝑉|2
) , 0° ≤ 𝛼 ≤ 90°. 

(21) 

 

An 𝛼 angle of zero degrees corresponds to surface like scattering. In comparison, an 𝛼 angle 

of 90° corresponds to dihedral scattering [66].  

It is worth highlighting again that this thesis is concerned with repeat-pass DPolInSAR, with 

ideally zero spatial baseline, focusing on temporal changes. This is in contrast to the more 

common across track PolInSAR approaches, where images of a scene are acquired from two 

slightly different locations but at the same time, being sensitive to the height [68]. In across-track 

PolInSAR, the goal is to obtain information on the vertical distribution of different scattering 

mechanisms [64]. This method is widely used for the estimation of forest parameters [64], [69] 

and also for the characterization of crop parameters [70], [71]. 
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1.3 Physical Quantities of Snow 

Snow on the ground can be described as a porous medium of ice particles in air [72]. An 

important physical property of snow, which is investigated in this thesis, is the SWE. It combines 

the information of two physical quantities of snow: the snow depth 𝑍 and snow density 𝜌. 𝑍 

describes the vertical height of the snow pack relative to the ground surface.  𝜌  is a measurement 

of the snow mass in a known reference volume [73]. Accordingly, the SWE is calculated with: 

 

𝑆𝑊𝐸 =
1

𝜌𝑤
 ∫ 𝜌(𝑍) 𝑑𝑍 

𝑍

0
≈ 𝑍𝜌/𝜌𝑤,  (22) 

 

where 𝜌𝑤 is the density of water [32]. 𝑆𝑊𝐸 is usually measured in the units of mm and 

corresponds to the depth of water over a given area if the snow pack melted instantaneously [73]. 

1.4 Microwave Interaction with Snow 

The interactions of microwaves with snow are governed by the dielectric properties of the 

snow [74]. Microwaves are able to penetrate into dry snow and thus are able to measure snow 

parameters. The ability to penetrate into the snow pack depends on the frequency, imaging 

geometry and also on the snow conditions. Even in firn, penetration depths of up to 9 m in C-band 

and 14 m in L-band have been observed in Greenland [22] and 20 m for C-band and 8 m for X-

band in Antarctica [75]. 

One issue affecting the penetration depth is the presence of liquid water inside the snow pack. 

It is therefore possible to differentiate between dry and wet snow. The Liquid Water Content 

(LWC) is close to zero in dry snow, while wet snow is characterized by an increased LWC of  > 

1% [76]. The presence of water in wet snow leads to an increased loss of energy inside the snow 

pack [77]. As it is important for this thesis that the radar wave is able to penetrate through the 

entire snowpack, only dry snow is considered. 

Volume scattering may also have an impact on the penetration depth. However, when the ice 

inclusions in the snow volume are much smaller than the used radar wavelengths, volume 

scattering can be neglected. This is the case for frequencies below 20 GHz [78], which are used 

in this study. However, for higher frequencies such as Ku-band, volume scattering effects become 

more important and require consideration [79], [80].  

The permittivity of the snow pack depends on the permittivity of air 𝜀𝑎𝑖𝑟 and ice 𝜀𝑖𝑐𝑒, as dry 

snow can be described as a mixture of ice and air. For microwave frequencies, the real part of 𝜀𝑖𝑐𝑒 

does not depend on the frequency or temperature. Therefore, the same applies to the permittivity 

of snow, which can be characterized by the ice volume fraction and thus depends on the snow 

density [81].  
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The permittivity is a complex variable. The real part of permittivity can generally be 

approximated for dry snow with densities below 𝜌 < 0.4𝑔/𝑐𝑚3 and for frequencies below 

10GHz with [78]: 

 

𝜀 = 1 + 1.6𝜌 + 1.86𝜌3 (23) 

 

The imaginary part is related to absorption and can be neglected for dry snow [81].  

Snow densities from freshly fallen snow have been measured in a range from 0.01 −

0.25 𝑔/𝑐𝑚3 [82]. Older and more settled snow is associated with densities above 0.3 𝑔/𝑐𝑚3 [83]. 

 

The microstructure of the snow pack also has an impact on the interaction with microwaves. 

Computer micro tomogram scanners can be used to measure the 3-dimensional structure of a snow 

sample. It can be observed that snow is an anisotropic medium, so that the structure of the particles 

of the ice-air-mixture differs depending on the observation direction. The measurements show 

also that the anisotropy changes over time [84].  

A parameter which describes the anisotropic structure of the snow pack is the structural 

anisotropy. It is the normalized difference of the x and z dimension of the ice grains 𝑎𝑥 and 𝑎𝑧 

[50]: 

 

A =
𝑎𝑥 − 𝑎𝑧

0.5 ∗ (𝑎𝑥 + 𝑎𝑧)
 (24) 

 

The structural anisotropy becomes positive for oblate spheroids, as in the case of fresh snow, 

(see Fig. 2, left) and negative for prolate particles for older snow (see Fig. 2, right).  

Using the structural anisotropy, the snow is modelled as ellipsoidal ice inclusions, that have 

the permittivity 𝜀𝑖𝑐𝑒, within an air background, that has the permittivity 𝜀𝑎𝑖𝑟 [50]. The effective 

permittivity for each axis can be calculated using the Maxwell-Garnett mixing formula [85]: 

 

 

Fig. 2.  Structural anisotropy: oblate particles (left), prolate particles (right).  
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𝜀𝑒𝑓𝑓,𝑖 = 𝜀𝑎𝑖𝑟 + 𝑓𝜀𝑎𝑖𝑟
𝜀𝑖𝑐𝑒−𝜀𝑎𝑖𝑟

𝜀𝑎𝑖𝑟+(1−𝑓)𝑁𝑖(𝜀𝑖𝑐𝑒−𝜀𝑎𝑖𝑟)
.  (25) 

 

 𝑖 can be replaced with x, y, z for each dimension. 𝑓 describes the volume fraction of the ice, 

which depends on the snow density. 𝑁𝑖 is the depolarization factor, that can be calculated for each 

axis of the ellipsoid by integrating over the variable 𝑠, which has a squared distance unit, with:  

 

𝑁𝑖 =
𝑎𝑥𝑎𝑦𝑎𝑧

2
∫

d𝑠

(𝑠+𝑎𝑖
2)√(𝑠+𝑎𝑥

2)(𝑠+𝑎𝑦
2)(𝑠+𝑎𝑧

2)

∞

0
.  (26) 

 

For oblate spheroids, as in the case of fresh snow, the condition 𝑎𝑥 = 𝑎𝑦 > 𝑎𝑧 holds. The 

solutions of the integral in this case are:  

 

𝑁𝑥 = 𝑁𝑦 =
1

2
(1 − 𝑁𝑧), 

(27) 

 

𝑁𝑧 =
1 + 𝑒2

𝑒3
(𝑒 − arctan 𝑒). 

(28) 

 

The parameter 𝑒 is related to the anisotropy 𝐴 with:  

 

𝑒 = √(
2 + 𝐴

2 − 𝐴
)
2

− 1. 

(29) 

 

Prolate spheroids, which can be associated with older snow or firn, have the condition 𝑎𝑥 >

𝑎𝑦 = 𝑎𝑧. In this case, the integral can be solved with:  

 

𝑁𝑥 =
1 − 𝑒2

2𝑒3
(ln

1 + 𝑒

1 − 𝑒
− 2𝑒 ), 

(30) 

 

𝑁𝑦 = 𝑁𝑧 =
1

2
(1 − 𝑁𝑥). 

(31) 

 

The depolarization factors can be inserted in (25) to obtain the effective anisotropic 

permittivities. This way, the permittivity depending on the polarization can be obtained. However, 

compared to (23), assumptions on the anisotropy of the snow pack are required.   
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1.5 SAR Phase Difference Techniques for Snow Parameter Retrieval  

1.5.1 Interferometry  

The interferometric phase between two repeat-pass SAR measurements can be used to 

estimate the SWE change between them [31]. When radar waves travel through a boundary of 

two mediums with different permittivities, such as snow and air, they are refracted [86]. Thus, 

when a radar wave travels from the sensor through air and reaches the snow pack, it is refracted 

and changes its direction and propagation speed, see Fig. 3. This results in a change in optical 

path length that depends on the amount of snow and can be measured by the phase of the radar 

wave. When the snow pack changes between two measurements, e.g. due to snow fall, the 

resulting path delay can be measured with the interferometric phase ΔΦ𝑆:  

 

ΔΦ𝑆 = −2 𝑘Δ𝑍 (cos Θ − √𝜀 − sinΘ2) (32) 

 

𝑘 = 2𝜋/𝜆 is the wavenumber depending on the wavelength 𝜆, Δ𝑍 is the depth of the snow 

depth change and Θ is the incidence angle of the radar wave [31]. The part in the parentheses 

depends on the density (see (23)).  

 

Fig. 3.  Refraction of a radar wave inside a snow pack. In snow free conditions, the radar wave would 

travel to the ground without being refracted (dashed line). When the ground is covered by snow of the 

height 𝑍, the wave is refracted inside the snow pack, because the dielectric constant of snow ε is different 

than the dielectric constant of air εair (solid line). The difference in optical path length can be related to 

the SWE.  
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A numerical approximation for the density related part of (32) has been presented, in order to 

model a linear relation between the interferometric phase difference and the SWE change, which 

can be calculated with [32]:  

 

ΔΦ𝑆 = 2 𝑘
𝛼

2
 ( 1.59 + Θ

5
2)  Δ𝑆𝑊𝐸. 

(33) 

 

𝛼 is a parameter close to 1. It can be adapted for different 𝜌 and Θ in order to reduce the Root 

Mean Square Error (RMSE) between the numerical approximation and the exact solution. For a 

fixed 𝛼 = 1, the maximum error obtained for incidence angles smaller than 40° lies below 3%.  

However, one limitation of the retrieval is the fact that the interferometric phase lies in an 

interval between [-π, π]. This means that only a limited range of SWE change values can be 

retrieved unambiguously, as has been reported for example in [31], [32], [40]. An example for 

different frequencies is shown in Fig. 4 using (33). It can be seen that the interval in which the 

SWE change can be estimated unambiguously depends on the wavelength and is greater for longer 

wavelengths. However, for smaller SWE changes shorter wavelengths provide a higher 

sensitivity.  

1.5.2 Polarimetry 

The CPD between the VV and HH polarimetric channels can be correlated to the depth of 

freshly accumulated snow. Since snow has an anisotropic structure, the signal delay of the radar 

wave differs for VV and HH polarizations, see Fig. 5. When snow is accumulating, it aligns 

 

Fig. 4.  Δ𝑆𝑊𝐸 in dependence of the interferometric phase for X-, C- and L-band for Θ = 34°. At an 

interferometric phase of ΔΦ𝑠 = 𝜋 the phase wrap threshold is reached. 
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horizontally because the particles are compressed by their weight. The horizontal alignment leads 

to a slower propagation speed of the horizontally polarized radar wave. Over time, the ice grains 

align more vertically due to temperature gradients. This slows down the propagation velocity of 

the vertically polarized radar waves. Therefore, the CPD becomes positive for fresh snow and 

negative for older snow packs [49]. 

In order to exploit the information of the CPD, it is essential to describe how the permittivity 

differs for each polarization. Therefore, the permittivities for each axis are calculated using (25)-

(31), which can be linked to the refractive indices with:  

 

𝑛𝑥,𝑦
2  = 𝜀𝑒𝑓𝑓,𝑥 = 𝜀𝑒𝑓𝑓,𝑦,  (34) 

  

𝑛𝑧
2  =  𝜀𝑒𝑓𝑓,𝑧.  (35) 

  

These refractive indices in x, y, z dimension need to be translated into the radar geometry, 

which uses the horizontal and vertical polarization basis. This can be done by the following 

equations [50]:  

 

𝑛𝐻  = 𝑛𝑥,𝑦,  (36) 

  

 

Fig. 5.  Refraction of a polarized radar wave in a snow pack. When the ground is covered by snow of the 

height 𝑍, the radar wave is refracted in the snow pack, because the dielectric constant of snow 𝜀 is different 

than the dielectric constant of air 𝜀𝑎𝑖𝑟. Due to the fact that snow is an anisotropic medium, the dielectric 

constant of the snow is different for HH and VV, depending on the anisotropy 𝐴 of the snow pack. This 

results from the orientation of the ice inclusions in air. Therefore, the refraction is different for HH and 

VV polarized radar waves.   
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𝑛𝑉 = √𝑛𝑥,𝑦
2 + (1 −

𝑛𝑥,𝑦
2

𝑛𝑧
2 ) 𝑛𝑎𝑖𝑟

2 sin2 Θ.  
(37) 

  

 The refractive indices 𝑛𝐻 of the H-polarized wave and 𝑛𝑉 of the V-polarized wave are then 

used to calculate the CPD Φ𝐶𝑃𝐷 [50]: 

 

Φ𝐶𝑃𝐷 = (−1)2𝑘𝑍 (√𝑛𝑉
2 − sin2 Θ − √𝑛𝐻

2 − sin2 Θ).  (38) 

 

This equation can be used to estimate the thickness of the fresh snow layer by assuming the 

anisotropy and density of the snow pack.  

 

1.6 Research Objectives and Questions  

The main research objective of this thesis is the improvement of the SWE change retrieval 

using repeat-pass interferometric and polarimetric SAR data.  

The first key aspect is solving the phase wraps of the interferometric phase, which has a 

significant impact on the results, especially when high SWE changes occur and for measurements 

with short wavelengths. In the easiest case, phase wraps can be solved using ground-based 

measurements, if available. To reduce/eliminate the dependency on ground-based data, two 

approaches are proposed: The first uses multiple SAR frequencies, while the second relies on 

copolar phase differences to solve the phase wrap ambiguity.   

A second key aspect is the combination of interferometric and polarimetric techniques with 

the goal to make use of their respective advantages and mitigate their weaknesses. This includes 

the exploitation of the anisotropic structure of the snow, which affects different polarizations in a 

different way. The goal of this approach is to take this feature into account and use polarimetric 

phase differences to improve the interferometric SWE change estimates. 

A third key aspect is establishing a theoretical modelling framework that allows a direct 

consideration of polarimetric interferometric measurements into one unified DPolInSAR model 

that enables a DPolInSAR-based SWE retrieval. In this framework, the influence of changes of 

snow parameters such as depth and anisotropy on the modeled DPolInSAR parameters are 

investigated and utilized for an improved SWE retrieval. 

 

The main research objective can be achieved by answering the following research questions: 

 

• What are the performance tradeoffs of the DInSAR SWE change retrieval algorithm 

between different spaceborne SAR sensors with different frequencies? 
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• Are there ways to solve the interferometric phase wrap problem in the DInSAR SWE 

retrieval and which data dimensions are required for this? 

 

• How can interferometric and polarimetric SAR measurements be combined in a 

unified DPolInSAR model?   

 

• What is the added value of polarimetric phase information in the DInSAR SWE change 

algorithm? 

 

• Can the DPolInSAR model improve the SWE change retrieval? 

  

1.7 Organization of the Thesis 

In the beginning of this thesis, the motivation and introduction of the topic are presented in 

Chapter 1 ‘Introduction’. The relevant background on SAR measurements for the scope of this 

thesis is described, followed by an introduction into SAR techniques for the retrieval of snow 

parameters. This chapter includes the research objectives and questions in Section 1.6, which will 

be addressed in the Chapters 2 to 4. 

Chapter 2 ‘The Potential of Multifrequency Spaceborne DInSAR Measurements for the 

Retrieval of Snow Water Equivalent’ describes the SWE change retrieval using SAR acquisitions 

in different frequencies. Furthermore, an approach is presented that uses multifrequency SWE 

change estimates in order to improve the retrieval.  

Chapter 3 ‘Combining Differential SAR Interferometry and Copolar Phase Differences for 

Snow Water Equivalent Estimation’ shows how the use of the CPD change between the 

measurements can help to improve the SWE change estimates.  

In Chapter 4 ‘Exploring DPolInSAR Coherence Regions for Snow Water Equivalent 

Estimation’ an approach is presented to combine interferometric and polarimetric measurements 

in a DPolInSAR model. 

Finally, in Chapter 5 ‘Conclusions’ the results of this thesis are summarized and concluded, 

followed by and outlook for future research.  
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Abstract 

 

The snow water equivalent (SWE) is the amount of water contained in a snow pack and 

is, therefore, an important variable for hydrological and climate models. Differential 

interferometric synthetic aperture radar (DInSAR) techniques can relate the 

interferometric phase of two repeat-pass SAR acquisitions to the SWE change between 

them. However, only a limited interval of SWE change can be retrieved unambiguously 

due to phase wraps of the interferometric phase. This interval strongly depends on the 

wavelength of the radar wave. Additional information, for instance ground 

measurements of SWE, is required to identify whether the SWE change exceeded that 

interval and to correct the phase wraps. In the study, the performance of X-, C- and L-

band spaceborne SAR acquisitions for SWE estimation is analyzed, demonstrating the 

advantages and limitations of different frequencies. Shorter wavelengths show a higher 

accuracy for SWE estimations, while longer wavelengths are less affected by phase 

wraps. A multifrequency approach is proposed where L-band acquisitions are used to 

correct the phase wraps in the C-band SWE retrieval. The accuracy decreases slightly, 

but this approach allows a more robust SWE retrieval without the need of additional 

ground measurements. For current spaceborne SAR missions, temporal decorrelation 

and phase calibration are limiting factors. 

2.1 Introduction 

The seasonal snow cover is an essential variable for climate and hydrological models. While 

the high albedo and emissivity of snow have an important impact on the Earth’s energy budget 

[1], increasing temperatures lead to accelerated melting of snow, and also of land ice, which 

results in a sea level rise [2],[3]. 
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Rising temperatures also cause the alteration of runoff regimes in mountainous areas, which 

has a high impact on regions where people rely on snowmelt for their water supply and water 

storage capabilities are not sufficient [4]. 

A parameter which can be used to characterize this is the snow water equivalent (SWE), which 

describes the amount of liquid water stored in a snow pack and is thus an important variable in 

hydrological models for runoff predictions [5].  

Ground-based measurements of SWE provide precise information but can typically cover only 

small areas and are performed on a limited number of locations, as snow covered areas are often 

characterized by extreme weather conditions and are located in remote regions which can be hard 

to access. A wider coverage is typically achieved by interpolation of sparsely sampled data, 

leading to large uncertainties and coarse spatial resolution. 

However, the employment of remote sensing techniques enables a wide coverage and high 

temporal resolution. Microwave sensors offer the possibility to monitor the Earth’s surface in a 

systematic way independently from sunlight illumination and weather conditions. This is 

particularly important for high latitude regions, which are affected by polar darkness [6] and often 

covered by clouds [7]. 

Passive microwave sensors like radiometers are able to deliver global snow products, 

including SWE, on a daily basis [8], [9]. The retrieval algorithms rely on the link between the 

brightness temperature and the presence of snow on the observed surface [10]. However, the snow 

signal measured by passive sensors saturates for deep snow packs [11]. In addition, the global 

daily coverage offered by such sensors is achieved at the cost of a spatial resolution on kilometer-

scale [12].  

Active microwave sensors, on the other hand, like synthetic aperture radars (SARs), offer a 

spatial resolution on meter-scale [13], which is required for an accurate mapping of mountainous 

areas and heterogeneous landscapes and could significantly enhance SWE information products.  

The sensitivity of SAR measurements to snow properties has been already demonstrated in 

early studies [14], [15] opening the way towards the retrieval of relevant parameters, such as snow 

depth and SWE.  

Different SWE retrieval models based on radiative transfer models have been established [16], 

[17], [18]. In cases of wet snow, the retrieval of snow depth has also been attempted with single-

pass radar interferometry by differencing two digital elevation models (DEMs) [19]. Other studies 

have shown that the polarizations of radar waves can be utilized for the retrieval of snow 

parameters [20], [21].  

A promising and straightforward approach to retrieve SWE has been proposed first in [22], 

and then, in [23], exploiting differential interferometry (DInSAR) between two temporally 

separated SAR acquisitions. It relies on the fact that microwaves are refracted in dry snow which 

has an effect on the interferometric phase. The theory shows that changes in SWE between two 

acquisitions cause a change in the path delay of the radar waves which provides a direct link 

between the temporal evolution of SWE and the interferometric phase measured by the SAR 
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system. The model proposed in [22] has been further refined in [23] in order to extend its 

applicability to a wider range of snow densities. 

The method has been successfully demonstrated using time series data from a tower-based 

instrument measuring with a temporal baseline of 4 hours [23] and also with a multifrequency 

tower-based experiment, analyzing the influence of environmental effects on the coherence [24].  

The transferability of such an approach to the spaceborne case has been already assessed in 

several studies [25],[26],[27], [28]. Some of which showed that the revisit time of current missions 

is one of the main limiting factors, as well as the lack of validation data. However, only single-

frequency measurements were assessed.  

This study aims to provide further insights into the SWE estimation from multifrequency 

spaceborne data using the approach of [23]. Datasets at different frequencies, X-, C- and L-band, 

acquired by operational satellite SAR missions (TanDEM-X, Sentinel-1 and ALOS-2) are jointly 

exploited to assess the main aspects determining the performance, such as the temporal resolution 

and the different interferometric sensitivities. The estimated SWE values are compared to ground-

based measurements from a test site in Finland. Particular emphasis is put on the estimation error 

due to phase wrapping of the interferometric phase. This is analyzed by utilizing the ground 

measurements for the phase wrap correction. Furthermore, a multifrequency solution is presented, 

where measurements with different frequencies are exploited to correct for missing phase cycles. 

Such a multifrequency approach reduces the necessity for external SWE information to solve 

phase wrapping, which is essential for future large scale spaceborne applications. 

The rest of this article is organized as follows. In Section 2.2, the model of [23] relating 

DInSAR measurements to SWE changes is described, and its frequency-dependent sensitivity 

analyzed. Section 2.3 presents the employed experimental ground measurements and spaceborne 

SAR datasets as well as the processing steps. The results of the SWE estimation, including the 

ground-based and multifrequency phase wrap corrections, are reported and discussed in Section 

2.4. Finally, Section 2.5 concludes this article. 

2.2 Theory and Methods 

2.2.1 Relationship DInSAR Phase and SWE Change 

The SWE parameter combines the information on snow density 𝜌𝑠  and snow depth  𝑍𝑠 and 

refers to the theoretical depth of water which is obtained if the snow pack melted instantaneously. 

It can be expressed as  

 

𝑆𝑊𝐸 =
1

𝜌𝑤
 ∫ 𝜌𝑠(𝑧) 𝑑𝑧 

𝑍𝑠

0

≈ 𝑍𝑠𝜌𝑠/𝜌𝑤 (1) 

 

where 𝜌𝑤 is the density of water. 
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The model proposed in [23] for SWE change estimation of dry snow using repeat-pass SAR 

interferometry is based on a nearly linear relationship between the SWE change and the 

differential interferometric phase between two SAR acquisitions [22]. 

The interaction between the radar waves and snow is governed by the dielectric properties of 

snow. Since snow has a different dielectric constant than air, a radar wave experiences refraction 

when propagating through a snow layer, as shown in Fig. 1. When comparing the optical path 

length of the wave for snow-free and snow-covered conditions, a path delay can be observed, 

which results from the different path length due to refraction in the snow pack and also from the 

different propagation speed of the radar wave in the snow. This path delay also occurs in the case 

of a snow depth change Δ𝑍𝑠 between two measurements and is proportional to Δ𝑍𝑠. Such delay 

translates into a DInSAR phase difference which can be, in turn, linked to the snow depth change. 

By considering the geometry in Fig. 1, a nearly linear relationship between the SWE change and 

the differential interferometric phase between two SAR acquisitions can be obtained. The relation 

between the interferometric phase difference ΔΦs and SWE change Δ𝑆𝑊𝐸 is then the following 

[23]: 

 

ΔΦ𝑠 = 2 𝑘
𝛼

2
 ( 1.59 + Θ

5
2)  Δ𝑆𝑊𝐸, (2) 

 

where 𝛼 is a parameter close to 1, which can be adjusted to reduce the root mean square error 

(RMSE) between the numerical approximation and the exact solution for different snow densities 

and incidence angles. For snow densities between 0.2 𝑔/𝑐𝑚3 and 0.4 𝑔/𝑐𝑚3 and incidence 

 

Fig. 1.  Refraction of a radar wave in a snow pack. When the ground is covered by snow of the height ZS, 

the radar wave travels first the distance ΔRair,sc in air and is then refracted in the snow pack, because the 

dielectric constant of snow ϵs is different than the dielectric constant of air ϵair. After the distance ΔRs,sc, 

it reaches the ground. For snow-free conditions, the radar wave travels the distance ΔRair,sf.  
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angles between 30° and 40°, 𝛼 is lying in the range from 0.98 to 1. However, when using a fixed 

value of  𝛼 = 1 the maximum error for incidence angles smaller 40° lies below 3% [23]. 

For dry snow, which is of interest for this study, the absorption is assumed to be negligible 

and is, therefore, not considered. Furthermore, volume scattering in the snow pack is not 

considered, as it can be neglected for dry snow and frequencies below 20 GHz [29]. 

It can be seen in (2) that the interferometric phase difference is positive if the 𝑆𝑊𝐸 increases 

between the two acquisitions, due to the linear relation between Δ𝑆𝑊𝐸 and ΔΦs.  

By rearranging (2) an expression for the SWE change Δ𝑆𝑊𝐸  is obtained  

 

Δ𝑆𝑊𝐸 =
ΔΦ𝑠

𝑘𝛼 (1.59 + Θ
5
2)

, 
(3) 

 

In Fig. 2,  Δ𝑆𝑊𝐸 is plotted against ΔΦs for an incidence angle of Θ = 34° for different 

frequencies. The used frequencies are in X-band 9.65 GHz, in C-band 5.41 GHz and in L-band 

1.26 GHz. It can be seen that the Δ𝑆𝑊𝐸 estimation has a strong dependence on the wavelength. 

Moreover, since the DInSAR phase can only be used to calculate a SWE change between two 

acquisitions [see (3)], it just allows to monitor the differential SWE over time. The estimation of 

the total SWE requires a time series of measurements starting at snow-free conditions or an initial 

guess of SWE and a cumulative sum of the Δ𝑆𝑊𝐸 estimates.  

 

 
 

Fig. 2.  SWE change in dependence of the interferometric phase for X-, C- and L-band. For a certain SWE 

change, smaller interferometric phases are measured for longer wavelengths. 
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2.2.2 ΔSWE Estimation Threshold Due to Phase Wrapping 

It has to be taken into consideration that only a limited range of Δ𝑆𝑊𝐸 can be retrieved 

unambiguously using (3) since the differential interferometric phase can be only measured in an 

interval between [−𝜋, 𝜋]. An example for X-band is shown in Fig. 3 for an incidence angle of 

Θ = 34°. The solid line represents the interval [−𝜋, 𝜋], which corresponds to a range of SWE 

changes of [-8.37 mm, 8.37 mm]. This is the interval which can be estimated unambiguously. For 

higher Δ𝑆𝑊𝐸, the phase would exceed π. However, in that case, the phase wraps again to -π. 

Therefore, the results for Δ𝑆𝑊𝐸 values which would correspond to ΔΦs values in the interval 

[π,3π], are the same as for the interval [−𝜋, 𝜋]. The same occurs when a Δ𝑆𝑊𝐸 decrease exceeds 

the negative threshold of the interval.  

The interval, in which Δ𝑆𝑊𝐸 values can be retrieved unambiguously, strongly depends on the 

wavelength and is approximately seven times larger for L-band than for X-band. Fig. 4 shows the 

upper boundary of this Δ𝑆𝑊𝐸 interval (before phase wrapping occurs) at X-, C- and L-band in 

dependence of the incidence angle. The interval generally decreases with larger incidence angles 

as the path length of the radar wave in the snow pack increases. Because Δ𝑆𝑊𝐸 values exceeding 

this interval result in phase wraps of Δ𝜙𝑠, they need to be detected and compensated for a correct 

Δ𝑆𝑊𝐸 estimation. 

 

 

Fig. 3.  SWE change in dependence of the interferometric phase. SWE change values above the phase wrap 

threshold suffer from phase wraps and will be underestimated (red dotted line), which can be corrected by 

adding a phase cycle (green line). 
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2.2.3 Ground-Based and Multifrequency DInSAR Phase Correction for ΔSWE 

Estimations 

For the investigation of the phase wrapping issue, ground measurements of Δ𝑆𝑊𝐸 are used in 

this study to correct for phase wraps. It is assumed that the retrieved phase values suffer from 

phase wrapping errors in cases where the ground-based measurements lie outside the above-

mentioned interval. The results are then corrected by adding a full phase cycle, as indicated by 

the green line in Fig. 3. This enables the retrieval of Δ𝑆𝑊𝐸 values outside of [−𝜋, 𝜋]. The ground 

measurements also may contain measurement errors. Therefore, for ground measurements within 

+/- 5% of the boundary of the interval, it is checked whether a phase wrap correction needs to be 

applied in order to improve the results. 

Another way to correct the phase wraps is a multifrequency approach, exploiting the fact that 

long wavelength measurements are less affected by phase wraps. In this study, Δ𝑆𝑊𝐸 estimates 

from SAR acquisitions with a longer wavelength (e.g. ALOS-2) are used to correct the Δ𝑆𝑊𝐸 

estimates from shorter wavelength data (e.g. Sentinel-1). If the acquisitions are acquired at 

different dates, the SWE change estimates from the longer wavelength are linearly interpolated 

between the measurement dates. Phase wraps of the shorter wavelength data are corrected as 

follows. When the SWE change estimates including the standard deviation of the longer 

wavelength measurements are below the phase wrap threshold, no correction is performed. In the 

case that the threshold lies within the standard deviation of the SWE change estimate of the longer 

wavelength, it is calculated if adding a phase cycle decreases the difference between the SWE 

 

 

 

Fig. 4.  SWE change between two acquisitions for a phase difference ΔΦs = π in dependence of the 

incidence angle for X-, C- and L-band. Higher SWE changes suffer from phase wrapping. The equivalent 

thresholds apply for negative changes. The vertical lines indicate the incidence angles of the satellite data 

used in this study (blue: TanDEM-X, orange: Sentinel-1, and green: ALOS-2). 
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change estimates of the two frequencies. If so, a phase cycle is added. In the case that the SWE 

change estimate including the standard deviation lies above the threshold, a phase cycle is added. 

2.2.4 ΔSWE Deviation Due to Phase Standard Deviation in Dependence of the 

Coherence 

The interferometric phase is estimated from N interferogram samples to reduce phase noise. 

The probability density function 𝑝𝑑𝑓 of the phase Φ is given by [30] 

 

𝑝𝑑𝑓(Φ,𝑁) =
Γ(𝑁 +

1
2) (1 − |𝛾|2)𝑁|𝛾| cos(Φ − Φ0)

2√𝜋Γ(𝑁)(1 − |γ|2 cos2(Φ − Φ0))
𝑁+

1
2

+ 
(1 − |𝛾|2)𝑁

2π
2𝐹1 (𝑁, 1,

1

2
, |𝛾|2 cos2(Φ − Φ0)) 

(4) 

 

where 𝛾 is the complex coherence (see Section 2.3.3). The 𝑝𝑑𝑓 is used to calculate the standard 

deviation of the phase in dependence of the coherence for different numbers of samples (i.e. 

looks). As can be seen in Fig. 5, the phase standard deviation significantly decreases for a higher 

number of samples.  

Since the SWE change is calculated using the interferometric phase, the phase standard 

deviation can be converted into a Δ𝑆𝑊𝐸 estimation error with (3). The Δ𝑆𝑊𝐸 estimation errors 

for different frequencies are displayed in Fig. 6 for 1 and 81 looks. Since the error is proportional 

to the frequency, the  Δ𝑆𝑊𝐸 estimation error is higher for the L-band than for the X-band.  

 

 

Fig. 5.  Standard deviation of the phase in dependence of the coherence for 𝑁 = 1; 25; 81; and 121 

samples. It can be observed, that the standard deviation decreases for higher coherence values and larger 

number of looks.  
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2.3 Experimental Data 

2.3.1 SAR Data 

A list of the utilized SAR data can be found in Table I.  

The TanDEM-X (TDX) data set contains a time series for the winter 2010-2011 acquired in 

strip map mode. X-band data in VV and VH polarisations are available with a temporal baseline 

of 11 days. The incidence angle is 34°.  

 

 

Fig. 6.  Δ𝑆𝑊𝐸 error resulting from the standard deviation of the phase for X-, C-, and L-bands. For each 

band, the results for 1 and for 81 samples in a multilook window are compared. The obtained Δ𝑆𝑊𝐸 error 

is proportional to the frequency. 

  

TABLE I 

SATELLITE ACQUISITIONS 

Satellite  

(frequency) 
Dates  Incidence angle 

 

Channel 

Applied 

Multilook 

(rgxaz) 

TDX 

(9.65 GHz) 

 

2010-10-25  

– 2011-03-17 

 

Every  

11 days 

 

34° VV, 

VH 

9x9 

Sentinel-1 

(5.41 GHz)  

 

2019-11-06  

– 2020-03-17 

 

Every  

6 days 

 

38° VV, 

VH 

7x3 

ALOS-2 

(1.26 GHz) 

2019-12-30  

– 2020-03-21 

 

Every  

14 days 

45° HH, 

HV 

5x5 
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To investigate C-band, Sentinel-1 data were chosen for the winter 2019-2020. Because there 

were two polar orbiting satellites, a repeat-pass time of 6 days can be achieved.  The polarisations 

are VV and VH, with an incidence angle of 38°. 

Additionally, ALOS-2 acquisitions in L-band are also available from the winter 2019-2020 

with a temporal resolution of 14 days. HH and HV were acquired with an incidence angle of 45°.  

Here, it has to be considered that due to data availability, the X-band data was acquired 9 years 

before the C- and L-bands data. However, the months which are covered are similar. Furthermore, 

due to the higher backscatter and coherence, the co-pol channel, either VV or HH, was used in 

this study. 

2.3.2 Ground Data and Test Site 

The Arctic Space Observation Centre lies close to the city of Sodankylae in northern Finland; 

see Fig. 7. The intensive observation area (IOA; N67.36183, E26.63415) is a test site where 

ground measurements are performed. It is located in a forest opening that is surrounded by a pine 

forest with about 15m high trees. The area is flat and lies approximately 175 m above sea level. 

In the winter 2010-2011 manual measurements of snow properties, like SWE, depth and 

temperature were performed at the IOA. The measurement dates are not more than 3 days apart 

from the satellite acquisitions, and are therefore used for the validation of the satellite data.  

Since 2015, daily automated SWE measurements [31] are performed using a snow scale at the 

IOA, where the snow accumulation is weighted over a centre panel (see Fig. 7). Weather 

parameters (i.e. temperature, snow depth, wind speed) are provided by an automated weather 

station (AWS) [32]. 

 

 

 

Fig. 7.  Snow scale that measures the SWE of the snow pack at the IOA [31] with location on the map. 

The accumulated snow is weighted over the center plate. 
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2.3.3 Interferometric Processing 

The satellite radar data is processed using the TanDEM-X Interferometric processor (TAXI) 

by German Aerospace Center [33], which is adapted to ALOS-2 and Sentinel-1, for which the 

InSAR processing is performed on a burst by burst basis. For all satellites, the reference and 

secondary images were geometrically co-registered by using a DEM and orbit information, 

common band filtering was applied and the flat earth phase was compensated.  

The complex coherence γ is calculated between two nearest-neighbor (consecutive) 

acquisitions, either for the VV or for the HH channel, with the shortest temporal baseline possible, 

using the cross correlation of both signals with  

 

𝛾 =
〈𝑠1𝑠2

∗〉

√〈𝑠1𝑠1
∗〉〈𝑠2𝑠2

∗〉
  (5) 

 

where 𝑠1 and 𝑠2 are the signals of the reference and secondary images, respectively, and 〈… 〉 

represents the expectation value. Appropriate multilooking is required to achieve sufficient 

theoretical Δ𝑆𝑊𝐸 estimation performance (see Section 2.2.4). The multilooking windows for the 

different frequencies can be found in Table I and are adapted to match the forest opening of the 

IOA.  

 

Fig. 8.  Coherence of the HH channel for the L-band acquisition on the 09.03.2020/23.03.2020 in range 

and azimuth coordinates. (a) For the total SAR scene. The area of the test site is marked in yellow. (b) 

Zoom in to the test site. The test site and the calibration point are marked with green and red, respectively. 
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One example of the L-band HH interferometric coherence |𝛾| is shown in Fig. 8(a) for the 

image pair of the 09.03.2020 and 23.03.2020. Particularly low coherence values correspond to 

lakes and rivers. Fig. 8(b) shows a zoom in to the test site marked with green. In general, 

coherences are rather low, showing the challenging DInSAR scenario due to the large temporal 

baselines.  

The interferometric phase is calculated from the coherence between the two acquisitions and 

the flat earth phase is removed. To obtain only the phase contribution from the snow pack, any 

atmospheric phase contributions have to be removed. This is achieved by a phase calibration at a 

stable scatterer in the vicinity of the test site. Due to the lack of proper calibration targets, a stable 

scatterer is identified by finding a resolution cell with particular high and temporally stable 

backscatter and coherence. The high coherence of the stable scatterer, corresponding to buildings, 

and its location near the test site is marked in red in Fig. 8(b) for an L-band example. More 

sophisticated atmospheric phase calibration methods, like, for example, [34] and [35], were 

investigated but failed due to the generally low coherence in the data.   

 

2.4 Results 

2.4.1 ΔSWE Estimation X-Band  

The temperature and SWE data are displayed in Fig. 9 for the dates of the TDX acquisitions. 

Except for the first acquisition date, the temperature was below zero degrees and the SWE was 

increasing. 

The time series of the coherence for the VV channel over the test site is displayed in Fig. 10. 

It shows that the coherences are rather small, but are especially low between the 19.12.2010 and 

30.12.2010 and between the 30.12.2010 and 10.01.2010 reaching values below 0.2. The 

comparison with the ground measurements (see Fig. 9) reveals that for these measurements 

especially high temperature gradients were encountered. Including the only negative SWE change 

in the time series, this might explain the small coherences as a larger change in snow structure 

can be expected [36].  

After calculating the coherence and the interferometric phase, (3) is applied for the Δ𝑆𝑊𝐸 

estimation. Fig. 11(a) shows the Δ𝑆𝑊𝐸 ground measurements and the DInSAR-retrieved SWE 

changes between the acquisition dates. Since only SWE differences between two acquisitions can 

be retrieved from the Δ𝑆𝑊𝐸 estimation model, the values would have to be added over time to 

obtain a total SWE. However, a large discrepancy between the retrieved and measured SWE 

changes can be observed with an RMSE before the correction of phase wraps of RMSEb,X 

=13.12mm.  
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Fig. 9.  (a) Air temperature and (b) Total SWE measurements at the TanDEM-X acquisition dates. 

 

 
 

Fig. 10.  Coherence for the X-band data. In the x-axis labels, the first date represents the reference 

acquisition and the second date the secondary acquisition of the interferogram.    
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As mentioned, since the DInSAR phase lies in a range between [−𝜋, 𝜋], SWE differences 

outside this interval cannot be retrieved from the satellite data due to phase wrapping. For the used 

frequency and incidence angle that interval corresponds to a SWE change in the range of [-8.37 

mm, 8.37 mm]. The upper boundary is marked with a blue vertical line in Fig. 4. After using the 

ground measurements to detect phase wraps and to correct these by adding the appropriate amount 

of phase cycles, the Δ𝑆𝑊𝐸 estimations displayed in Fig. 11(b) are obtained, showing a better 

correlation between the measured and retrieved Δ𝑆𝑊𝐸 values with a RMSE after correction of 

RMSEa,X=4.92 mm. There are some discrepancies, but the general trend is well represented with 

the retrieved and corrected Δ𝑆𝑊𝐸 values. Since the phase wrap correction has a big impact on 

the results particularly for short wavelengths, we calculated the RMSE relative to a full phase 

cycle (i.e. the ΔSWE change which corresponds to 2π phase) to have a better comparison between 

 

 

 

Fig. 11.  Ground measured and from X-band data retrieved SWE change values. (a) Before phase wrap 

correction. (b) After phase wrap correction using the ground measurements.      
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frequencies, which is discussed in Section 2.4.4. Without the phase wrap correction, it is not 

possible to retrieve the SWE change correctly in this case because the ground measurements show 

that the threshold for phase wraps is often exceeded.  

Therefore, it is important to correct for phase wraps when performing the Δ𝑆𝑊𝐸 retrieval 

using DInSAR X-band data with a temporal baseline of 11 days.   

 

2.4.2 ΔSWE Estimation C-Band 

In Fig. 12, the temperature and the total amount of SWE for the winter 2019-2020 are 

displayed. The vertical grid lines represent the 6 days between the Sentinel-1 acquisitions. Overall 

it can be seen, that for both investigated winters in this study, the SWE is almost steadily 

increasing, but especially in the 2019-2020 winter, the temperatures were sometimes above zero 

degrees. 

 

 

 

Fig. 12.  (a) Air temperature and (b) total SWE measurements. The vertical grid lines correspond to the 

Sentinel-1 acquisitions. The colors mark the 14 days temporal baseline between the ALOS-2 acquisitions 
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The coherences for the VV polarized C-band data are displayed in Fig. 13. In many cases, the 

coherences are very low. The coherences can be compared to the temperature data in Fig.12. It 

can be seen that in many cases, the air temperature rises above zero degrees likely resulting in 

snow melt, which causes the low coherences. The gray background colors mark the measurements 

where the temperature was above zero degrees either at the first or second acquisition of the 

interferogram. However, the coherence can also decrease if the temperature was above zero 

degrees between the acquisitions and the snow pack refroze again, resulting in a refrozen melt 

layer which might contribute to the backscattering and thus bias the ΔSWE retrieval. This may 

have been the cause for the low coherence 30.11.2019/06.12.2019.   

The Δ𝑆𝑊𝐸 retrieval is also applied to the interferometric phase of the Sentinel-1 acquisitions. 

Note that in this case the investigated winter is 2019-2020, and thus, differs from the X-band 

estimations. 

The interval in which the SWE change can be retrieved unambiguously is [-14.32 mm, 14.32 

mm] (orange vertical line in Fig. 4).  Fig. 14(a) shows the SWE differences for temporal baselines 

of 6 days with a RMSE before correction of RMSEb,C = 13.47 mm. Also here, the ground-measured 

SWE changes often exceed the phase wrap threshold and therefore the missing phase cycles need 

to be corrected. The obtained results are displayed in Fig. 14(b). The RMSE between the ground 

measurements and retrieved SWE changes is RMSEa,C= 9.46 mm after correction. Although some 

similarities can be observed for the general trend, in many cases, the discrepancy is very high. A 

possible reason here may be again large temperature gradients, as, for example, on the 18.12. 

/24.12.2019 or the 23.01/29.01.2020 when a larger snow structure change can be expected which 

can have a not yet fully understood effect on the phase [24]. Another possible reason for that 

might be the positive temperature which occurred many times throughout the time series. This 

 

 

Fig. 13.  Coherence for the C-band data. In the x-axis labels, the first date represents the reference 

acquisition and the second date the secondary acquisition of the interferogram. The gray background marks 

the measurements where the temperature was above zero degrees either at the first or second acquisition 

of the interferogram.   
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causes not only low coherences, resulting in large phase standard deviations, and thus, Δ𝑆𝑊𝐸 

estimation errors, but also in potential systematic errors. Due to the resulting snowmelt, the radar 

wave will get attenuated in the snow pack [37] and is not able to penetrate to the ground when the 

temperature is above zero degrees at the acquisition time. This may be the reason for the following 

discrepancies: for the underestimations, because less snow is propagated by the radar wave, but it 

might be also seen as an overestimation in the plot, in case where the snow was significantly 

underestimated and the measured phase is, therefore, one phase cycle off. This shows, that the 

selected winter season, which was chosen due to its coincidence with the available ALOS-2 data, 

was not optimal due to the weather conditions. However, it is also clear that the phase wrapping 

issue plays an important role in the Δ𝑆𝑊𝐸  estimations using C-band data with a temporal baseline 

of 6 days. Nonetheless, some general trends can be represented with the retrieved SWE change. 

 

 

 

 

Fig. 14.  Ground measured and from C-band data retrieved SWE change values. (a) Before phase wrap 

correction. (b) After phase wrap correction using the ground measurements. The gray background marks 

the measurements where the temperature was above zero degrees either at the first or second acquisition 

of the interferogram.   
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2.4.3 ΔSWE Estimation L-Band 

The ground measurements for the ALOS-2 acquisitions are also displayed in Fig. 12, which 

cover roughly the second half of the temporal coverage of Sentinel-1. The colours mark the 14 

days temporal baseline between the dates of the ALOS-2 acquisitions.  

Fig. 15(a) shows the ALOS-2 L-band coherences in the HH polarization. The coherences are 

often very low over the test site. Here, the same winter as for C-band was investigated. As it can 

be seen in Fig. 12, the temperatures at the acquisition times were often above zero degrees, causing 

low coherences as a result of snow melt. 

For the ALOS-2 wavelength and incidence angle the calculated threshold for phase wrapping 

is outside the interval of [-54.4 mm, 54.4 mm]. This is always larger than the ground measured 

SWE changes. Therefore, phase wrap corrections do not have to be considered for the L-band 

data. The results for the Δ𝑆𝑊𝐸 retrieval are shown in Fig. 15(b) with the RMSE between the 

 

    

 

 

Fig. 15.  (a) Coherence for the L-band data. In the x-axis labels, the first date represents the reference 

acquisition and the second date the secondary acquisition of the interferogram. (b) Ground measured and 

from L-band data retrieved SWE change values. The gray background marks the measurements where the 

temperature was above zero degrees either at the first or second acquisition of the interferogram.      
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retrieved and measured SWE change being RMSEb,L = 17.76 mm. Since it is the same winter as 

for the C-band measurements, the temperatures above zero degrees (Fig. 12) are a problem again. 

The general trend can be represented, but especially the second measurement point has a high 

discrepancy between the estimated Δ𝑆𝑊𝐸 from the ALOS-2 data and the ground measurements 

and the discrepancy is even higher than for the following interferograms, where the coherence 

was lower and the temperature higher. For this point, the temperature decreases by 35°C in the 

week before the second acquisition after being shortly above zero degrees. This high temperature 

gradient may have some influence on the snow structure. In [24], a decorrelation was observed 

for high temperature gradients, which may also be linked to changes in the snow properties. 

However, these effects need to be analyzed more, since this ALOS-2 interferogram has an 

unusually high coherence. Even if the snow cover can be seen as an isolating layer, high 

temperature changes may also have an influence on the ground. Since L-band measurements are 

also able to penetrate into frozen ground [38], this might also affect the interferometric phase. 

2.4.4 Comparison of ΔSWE Estimation From Different Frequencies 

The results of the different frequencies are compared directly in a scatter plot showing every 

SWE change estimation. Fig. 16(a) shows the estimated SWE changes compared to the ground 

measured values before phase wrap correction. Many points are underestimated, especially for 

the small wavelengths of X- and C-bands. This results from the smaller nonambiguous phase 

interval of retrievable SWE changes for shorter wavelengths. 

After phase wrap correction, the results in Fig. 16(b) are obtained. The highest improvement 

can be observed for X-band. This underlines the fact that, for X-band SAR measurements, phase 

wraps of the interferometric phase after a SWE increase are important to correct for the used 

temporal baseline. For the X-band, the phase wrap correction has a large impact compared to the 

relatively small interval of unambiguous ΔSWE estimates. Nevertheless, the small wavelengths 

can contribute to higher ΔSWE estimation accuracies than larger wavelengths, but are rather only 

applicable for shorter temporal baselines or in a multifrequency approach (see Section 2.4.6). For 

the C-band, the points where the phase wraps were corrected according to the ground 

measurements are now slightly overestimated. In the case of the L-band measurements, no phase 

wrap correction was necessary. Even though one clear outlier can be observed at L-band, related 

to strong temperature changes, other points represent well the general trend. In order to allow for 

a better comparison between the frequencies, for each frequency, a relative RMSE (RMSErel) is 

calculated, by setting the RMSE after correction in relation to the 2π phase cycle interval 

(Δ𝑆𝑊𝐸2𝜋_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) with:  

 

𝑅𝑀𝑆𝐸𝑟𝑒𝑙 =
𝑅𝑀𝑆𝐸𝑎

Δ𝑆𝑊𝐸2𝜋𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

, (7) 
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shown in Table II. The performance of the L-band retrieval shows a smaller RMSErel 

compared to the X- and C-bands results, meaning that here the retrieval performed the best in 

relation to the phase wrap interval. The individual errors after correction are however smaller for 

shorter wavelengths. Therefore, the sensitivity to retrieve smaller changes is higher for smaller 

wavelengths, even though the overall results are better for longer wavelengths. Note here, that 

this comparison is not optimal, as different temporal baselines and different winters are compared.  

Across all frequencies, it can be observed in Fig. 16(b) that smaller SWE changes are mostly 

underestimated, while higher SWE changes are mostly overestimated. A factor influencing the 

Δ𝑆𝑊𝐸 retrieval is the phase calibration (see Section 2.3.3). Since the reference point is not ideal, 

a random error in the phase calibration could have been induced. Furthermore, as it is not known 

whether the stable point was covered by snow or not, the reference phase might contain some 

signal delay due to snow. When calibrating the phase over the test site according to this reference, 

an underestimation can be expected. However, this disagrees with the overestimations for higher 

SWE changes. A reason for the general differences is the likely wet snow in C- and L-bands, 

resulting in discrepancies between the estimated and measured SWE changes (see Section 2.4.2) 

 

 

TABLE II 

RMSE PHASE WRAP CORRECTION FROM GROUND MEASUREMENTS 

Frequency X band C band L band 

RMSEb (mm) 13.12 13.47 17.76 

RMSEa (mm) 4.92 9.46 17.76 

RMSErel  0.29 0.33 0.16 
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Fig. 16.  Scatter plot of the retrieved SWE changes compared to the ground measured SWE changes for 

X-, C- and L-bands. (a) Before correcting the phase wraps based. (b) After correcting the phase wraps 

based on the ground measurements.  
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2.4.5 Spatial C-Band ΔSWE Estimation 

For an assessment of the spatially distributed ΔSWE retrieval, with the potential for high 

spatial resolution and large-scale coverage with spaceborne SAR, the SWE change is estimated 

in the area around the in situ station. Fig. 17(a) shows an optical true-color image of the area and 

Fig. 17(b) displays the CORINE landcover information [39]. The area is mostly covered with 

forest and peat bogs, while the urban areas in the north belong to the town of Sodankylae. Fig. 

17(c) displays the corresponding SWE change map of the area calculated from the Sentinel-1 

interferogram between 28.03.20 and 05.03.20.  

During this timeframe, the SWE remained stable at the in situ station. In the Δ𝑆𝑊𝐸 map, 

inland water bodies appear noisy as expected due to temporal decorrelation. Close to the in situ 

station, almost no SWE change is measured, which is in accordance with the ground 

measurements. The large peat bog in the center of the study area shows a noticeable positive 

ΔSWE. This may be due to the lower terrain which favors snow accumulation due to wind effects. 

 

 

Fig. 17.  Map of the area around the station. (a) Optical image. (b) CORINE landcover classes. (c) SWE 

change map from Sentinel-1 using the 28.02/05.03.20 interferogram. The red dot marks the location of the 

test site.  
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 However, the phase signal which is measured might not only result from the SWE change, 

but also from the properties of the bogs. In the urban areas of Sodankylae, the SWE change has a 

tendency toward negative SWE change values with some variations. This may be the result from 

small-scale local SWE changes caused by anthropogenic structures. Further investigation is 

needed to analyze the influence of different land cover on the SWE change retrieval.   

 

2.4.6 Multifrequency Phase Wrap Correction 

Previously, ground measurements were used to correct the phase wraps of Δ𝑆𝑊𝐸 estimations 

in X-band (see Section 2.4.1) and C-band (see Section 2.4.2), as they suffer from phase wraps if 

the SWE change exceeds a certain threshold. 

However, the goal is to correct the Δ𝑆𝑊𝐸 estimations without requiring ground 

measurements. This can be achieved using a multifrequency approach. In this study, the L-band 

data (see Section 2.4.3) are not affected by phase wraps because of its long wavelength. As the L- 

and C-bands data were acquired in the same winter, L-band Δ𝑆𝑊𝐸 estimates are used to detect 

and correct phase wraps in the C-band data. Due to the different acquisition dates and temporal 

baselines for the ALOS-2 and Sentinel-1 images, the retrieved SWE changes from ALOS-2 are 

linearly interpolated between the measurement dates. Fig. 12(b) shows that it is reasonable to 

assume a linear SWE change. Then, the interpolated SWE change from the L-band measurements 

is used to detect where a phase cycle needs to be added to the C-band Δ𝑆𝑊𝐸 estimations. By 

correcting the C-band values accordingly, the results in Fig. 18 are obtained with an RMSE after 

multifrequency phase wrap correction of RMSEa,multi,C = 10.09 mm, while the RMSE before 

correction for this interval was RMSEb,multi,C = 13.38 mm, which is the same as the single frequency 

RMSEb,C result, but only for the time span covered by the L-band data. Here, discrepancies can be 

observed with some clear overestimations in the middle of the time series, which are related to 

the L-band overestimations in Fig. 15. However, the error is only slightly larger than for the 

ground-based corrected C-band results in Fig. 14(b), which is RMSEa,groundC, = 9.66 mm, 

summarized in Table III. When comparing the Δ𝑆𝑊𝐸 results after phase wrap corrections from 

the multifrequency approach and the one from the ground measurements, seen in Fig. 14(b), 9 of 

the 13 Δ𝑆𝑊𝐸 estimates utilized for the multifrequency approach were corrected or not corrected 

in the same way. Furthermore, it has to be taken into consideration that the investigated winter 

was not optimal due to high temperatures and low coherences. However, this shows that L-band 

Δ𝑆𝑊𝐸 estimates can be used to correct phase wraps in smaller wavelength SAR measurements 

like C-band, because the L-band measurements are less likely to suffer from phase wraps. Even 

though the performance of this approach was not yet completely satisfying, due to the discrepancy 

of the L-band data to the ground measurements, this method is promising, because it enables the 

phase wraps correction without the need of additional ground measurements. This is essential for 

future large-scale space borne applications. Unfortunately, no winter exists where all three 

frequencies were acquired contemporaneously. 
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2.5 Conclusion 

The SWE change is retrieved using the DInSAR phase difference for X-, C- and L-bands. 

Since the interferometric phase lies in an interval between [-π, π], only a range of SWE change 

values can be retrieved unambiguously. For larger changes of SWE, phase wraps occur. To 

investigate the effect of the phase wrap errors, they are corrected with ground measurements in 

this study. Furthermore, a multifrequency approach is presented to overcome the necessity of 

ground measurements, which could pave the way towards a DInSAR SWE information product 

with spaceborne SAR.  

At the X-band, the main limitation for the Δ𝑆𝑊𝐸 retrieval is the phase wrapping of the 

measured interferometric phase. Because of the short wavelength, the interval where the SWE 

change can be retrieved unambiguously is smaller compared to longer wavelengths, such as L-

  

 

Fig. 18.  Ground measured and from C-band data retrieved SWE change values. The phase wraps are 

corrected with the L-band SWE estimations.   

  

TABLE III 

RMSE MULTIFREQUENCY PHASE WRAP CORRECTION  

Frequency C band 

RMSEb,multi,C (mm) 13.38 

RMSEa,multi,C (mm) 10.09 

RMSEa,groundC (mm) 9.66 
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band. This could be potentially overcome by using temporal baselines much shorter than 11 days 

in order to reduce the observed SWE change and in turn to minimize the occurrence of phase 

wraps. 

For the C-band, with a temporal baseline of 6 days, the phase cycles also needed to be 

corrected, which improved the results. However, the remaining discrepancies result most likely 

from several short melt events during the observed winter.  

When using L-band SAR data with a 14 days temporal baseline, the correction for lost phase 

cycles was not necessary, because the SWE change did not exceed the phase wrapping threshold. 

Here, the same winter was analyzed as for the C-band data, confirming the possible influence of 

high temperature gradients and melt events. Moreover, only a short time series was available, 

limiting the performance assessment. However, except for one distinct outlier, the general Δ𝑆𝑊𝐸 

trend was reproduced by the L-band data.  

Thus, when choosing a suitable frequency for Δ𝑆𝑊𝐸 estimations, it has to be considered that 

longer wavelengths can monitor higher SWE changes without the need to correct for phase cycles. 

However, if the phase wraps can be corrected, the Δ𝑆𝑊𝐸 estimation is more accurate at shorter 

wavelengths. This highlights the potential of multifrequency approaches. 

In future studies, it would be advantageous to take simultaneous measurements at different 

frequencies, ensuring same weather and snow conditions. Also, identical temporal baselines 

between the measurements would increase the comparability of the results. Moreover, the choice 

of the test site is also very important.  In this case, the test site was a small opening located in a 

forested area. Therefore, some trees in the multilooking window might have affected the resulting 

Δ𝑆𝑊𝐸 retrievals. Furthermore, also the weather conditions play an essential role. Here, especially 

in the winter analyzed in C and L-bands, the temperatures often exceeded zero degrees. This may 

have led to wet snow. Since the method relies on the fact that the radar wave propagates through 

the whole snow pack and wet snow may cause attenuation of the radar wave, this affects the 

estimation results. Therefore, areas with stable weather conditions below zero degrees would be 

preferable. The calibration of the interferometric phase also plays a crucial role for the Δ𝑆𝑊𝐸 

estimation. In this study, a stable scatterer was found close to the test site. However, even if this 

stable scatterer had the highest backscatter and coherence in this region, it is not guaranteed that 

it was not covered by snow during the acquisition, which would also induce an effect on the 

interferometric phase. Therefore, a corner reflector close to the test field from which snow is 

regularly removed would be of advantage. Thinking about future spaceborne SAR applications, 

the phase calibration might be one of the most challenging points. 

This study demonstrated the potential and limitations of SAR acquisitions with different 

frequencies to estimate SWE changes using the DInSAR phase. A promising multifrequency 

approach is presented to overcome some of the limitations. It combines Δ𝑆𝑊𝐸 estimates from 

two frequencies to correct the phase wraps without the need of ground measurements. This is 

particularly of interest for upcoming multifrequency SAR missions, like the dual-frequency L- 

and S-band NASA-ISRO SAR (NISAR) mission [40]. Another possibility will be the combination 

of Sentinel-1 with ROSE-L [41], allowing the combination of C- and L-bands measurements. 
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Further favorable aspects of ROSE-L and Sentinel-1 are the identical orbits and repeat-pass 

intervals and a short time interval between their acquisitions. These missions will enable the 

potential of multifrequency approaches for the estimation of SWE changes, exploiting the high 

sensitivity of high frequencies with the large non-ambiguous phase interval of smaller 

frequencies. 
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Abstract 

 

The amount of water in a snow pack can be described by the snow water equivalent 

(SWE). SWE is a crucial parameter for hydrological models, for example, for flood 

predictions. Previous studies have shown that the interferometric phase between two 

repeat-pass synthetic aperture radar (SAR) measurements can be used to determine the 

change in SWE. However, a limitation of this method is phase wraps. To overcome this, 

the copolar phase difference (CPD) between the VV and HH channel can be used, which 

has been proven to be related to the depth of freshly accumulated snow. 

This study proposes an approach to incorporate the information on the fresh snow 

accumulation from the CPD into the interferometric SWE retrieval algorithm. The aim 

is to detect and correct interferometric phase wraps. First results using airborne SAR 

data indicate that including the CPD improves the accuracy of the SWE retrieval.  

3.1 Introduction 

Snow water equivalent (SWE) refers to the amount of water in the snow pack and is required 

as an input parameter for hydrological models [1], for example, flood forecasting models [2]. With 

remote sensing, SWE measurements can be acquired on a global scale [3]. Passive microwave 

sensors are used to obtain large scale SWE products but suffer from low spatial resolution [4].  In 

contrast, active microwave sensors such as synthetic aperture radar (SAR) offer the possibility of 

monitoring the Earth at a meter scale [5].   

Especially, repeat pass differential interferometric SAR (DInSAR) can be used to estimate the 

SWE change between two acquisitions as there is a clear physical relationship between the SWE 

change and the DInSAR phase. Microwaves are refracted in the snow pack because the snow has 

different dielectric properties than air. This causes a phase delay which can be measured using the 

interferometric phase [6], [7].  
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However, the 2π ambiguity of the interferometric phase introduces phase wraps, leading to 

wrong SWE change estimates. These phase wraps occur when the SWE change between two 

acquisitions is above (or below) a certain wavelength-dependent threshold. 

Applying polarimetry, the copolar phase difference (CPD) between the vertical VV and 

horizontal HH copolarized channels can indicate the amount of freshly fallen snow [8],[9],[10]. 

A physical model has been presented in [11], that uses the CPD to invert the snow depth, by 

assuming the density and anisotropy of a snow pack. 

Since the CPD measurements can be linked to the amount of fresh snow, this study aims to 

include the CPD measurements into the DInSAR retrieval in order to estimate phase wraps of the 

interferometric phase.  

In this letter, we therefore propose to combine the DInSAR SWE estimation with the 

polarimetric information of the radar waves to improve the performance of the retrieval.  

3.2 Methods 

3.2.1 SWE Estimation Using DInSAR 

The change in SWE Δ𝑆𝑊𝐸𝐼𝑛𝑓 between two temporally separated SAR measurements can be 

retrieved using the  interferometric phase ΔΦ𝐼𝑛𝑓 between the acquisitions [6], [7]. The 

interferometric phase ΔΦ𝐼𝑛𝑓 can be obtained from the complex interferometric coherence 𝛾𝐼𝑛𝑓, 

which describes the cross correlation between the signal at the first acquisition 𝑆1 and at the second 

acquisition 𝑆2 with 

 

ΔΦ𝐼𝑛𝑓 = arg(𝛾𝐼𝑛𝑓) = arg (
〈𝑆1𝑆2

∗〉

√〈𝑆1𝑆1
∗〉〈𝑆2𝑆2

∗〉
). (1) 

 

Radar waves are refracted in a dry snow pack due to the difference in dielectric properties 

between snow and air. This causes a change in the optical path length of the radar wave, which 

depends on the amount of snow. The relation between the SWE change Δ𝑆𝑊𝐸𝐼𝑛𝑓 and 

interferometric phase ΔΦ𝐼𝑛𝑓 can be written as [7]  

 

Δ𝑆𝑊𝐸𝐼𝑛𝑓 =
ΔΦ𝐼𝑛𝑓

2𝑘 
𝛼

2
 ( 1.59+Θ

5
2)

. 
(2) 

 

In this case, 𝑘 = 2𝜋/𝜆 is the wavenumber that depends on the wavelength 𝜆. 𝛼 is a parameter 

around 1, which is used to reduce the root mean square error (RMSE) between the exact solution 

and the numerical approximation. For a fixed value of  𝛼 = 1, the maximum error for incidence 

angles smaller 40° lies below 3%, as has been shown in [7], therefore 𝛼 = 1 will be used. Θ is the 

incidence angle of the radar wave.  
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One limitation of this method is that the interferometric phase can only be measured in the 

range [-180°, 180°]. As a result, only Δ𝑆𝑊𝐸𝐼𝑛𝑓 in a certain interval can be estimated. Fig. 1 shows 

ΔSWEInf in dependence of the interferometric phase assuming an exemplary incidence angle of 

34° for X-, C- and L-band. Furthermore, the ratio between Δ𝑆𝑊𝐸𝐼𝑛𝑓 and 𝜆 is displayed to show 

the linear dependency independent of the wavelength. Longer wavelengths like L-band have the 

ability to measure higher Δ𝑆𝑊𝐸𝐼𝑛𝑓 while shorter wavelengths like X- and C-band have a higher 

sensitivity to smaller changes.  SWE change values exceeding the interval, as shown by the SWE 

change values for +/-180° interferometric phase in Fig. 1, would result in phase wraps. These 

phase wraps have to be corrected for an accurate Δ𝑆𝑊𝐸𝐼𝑛𝑓 estimation. 

3.2.2 Link Between CPD and Snow Parameters 

The CPD Φ𝐶𝑃𝐷 can be calculated from the complex polarimetric coherence 𝛾𝐶𝑃𝐷 between the 

vertical polarized signal 𝑆𝑉𝑉 and the horizontal polarized signal 𝑆𝐻𝐻, and can be described by the 

difference between the phase Φ𝑉𝑉 and Φ𝐻𝐻 

 

Φ𝐶𝑃𝐷 = arg(𝛾𝐶𝑃𝐷) = arg (
〈𝑆𝑉𝑉𝑆𝐻𝐻

∗ 〉

√〈𝑆𝑉𝑉𝑆𝐻𝐻
∗ 〉〈𝑆𝑉𝑉𝑆𝐻𝐻

∗ 〉
) =   Φ𝑉𝑉 − Φ𝐻𝐻.  (3) 

 

The delay of a signal in an anisotropic snowpack depends on its polarization. The anisotropy 

is caused by the horizontal alignment of freshly accumulated snow grains [11]. This results in a 

decrease of the propagation speed of horizontally polarized radar waves, increasing the Φ𝐶𝑃𝐷. 

After a few days or weeks, the snow structure becomes more vertically oriented due to the 

 

Fig. 1. SWE change 𝛥𝑆𝑊𝐸𝐼𝑛𝑓 in dependence of the interferometric phase for an incidence angle of 34°. 

The solid lines show the changes for X-, C- and L-band. The dashed line represents the SWE change 

divided by the wavelength. 
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temperature gradients that exist along the snow depth, which then can be associated with a slower 

propagation speed of the vertical polarized radar waves, decreasing the CPD [8].  

The model proposed in [11] shows that the snow depth 𝑍𝑠 can be linked to the Φ𝐶𝑃𝐷 as 

 

Φ𝐶𝑃𝐷 = −
4𝜋

𝜆
𝑍𝑠 (√𝑛𝑉

2 − sin2(Θ) − √𝑛𝐻
2 − sin2(Θ)).  (4) 

 

𝑛𝑉 and 𝑛𝐻 are the refractive indices for the vertically and horizontally polarized radar waves 

and can be estimated by assuming a density 𝜌𝑠 and anisotropy 𝐴 of the snow pack [11]. For fresh 

snow, density values around 𝜌𝑠 = 0.2 g/cm3 can be measured with positive anisotropies [11].  

3.2.3 Combination of DInSAR and CPD for SWE Estimation 

The aim is to use (2) to estimate Δ𝑆𝑊𝐸𝐼𝑛𝑓. In the next step, polarimetric information is 

included to check whether phase wraps occurred. For that, the CPD change ΔΦ𝐶𝑃𝐷 between the 

two images is calculated and linked to the snow depth change Δ𝑍𝑠 according to (4), with 

 

Δ𝑍𝑠 = −
ΔΦ𝐶𝑃𝐷

4𝜋
𝜆

(√𝑛𝑉
2 − sin2(Θ) − √𝑛𝐻

2 − sin2(Θ))
. (5) 

 

Now, Δ𝑍𝑠 can be linked to the Δ𝑆𝑊𝐸𝐶𝑃𝐷 by assuming the snow density using the 

approximation  

 

Δ𝑆𝑊𝐸𝐶𝑃𝐷 ≈ ΔZs ∗ ρs/ρwater. (6) 

 

The density of water is notated with ρwater. 

Δ𝑆𝑊𝐸𝐶𝑃𝐷 from (6) is now used to estimate the amount of phase cycles which need to be 

corrected in the Δ𝑆𝑊𝐸𝐼𝑛𝑓 estimate to obtain corrected SWE change values. The applied correction 

criterium is  

 

|Δ𝑆𝑊𝐸𝐼𝑛𝑓 − Δ𝑆𝑊𝐸𝐶𝑃𝐷| < ΔSWEInf(Φ = 𝜋). (7) 

 

With the criterium we check whether adding an interferometric phase cycle reduces the 

difference between Δ𝑆𝑊𝐸𝐼𝑛𝑓 and Δ𝑆𝑊𝐸𝐶𝑃𝐷 and if it applies then the missing phase cycle 

[ΔSWEInf(Φ = 2𝜋)] is added. This step is repeated until the correction criterium is not valid 

anymore. This approach is more robust than translating Δ𝑆𝑊𝐸𝐶𝑃𝐷 directly into interferometric 

phase cycles, because it ensures that no phase wrap is added if the actual Δ𝑆𝑊𝐸𝐼𝑛𝑓 is slightly 

below and Δ𝑆𝑊𝐸𝐶𝑃𝐷 is slightly above the phase wrap threshold, as adding the missing phase 

cycles would increase the difference between the two observables.  
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3.3 Data 

In March 2021, the DLR’s airborne radar system F-SAR performed fully polarimetric C-band 

(λ= 5.65 cm) and L-band (λ= 22.63 cm) measurements over a snow-covered area in the Austrian 

Alps. These acquisitions were part of the SARSimHT-NG study by ESA [12]. In the time frame 

of the F-SAR acquisitions, snow parameters like snow depth, density and SWE were measured 

by a ground team from ENVEO [13]. The first interferometric image pair is from measurements 

on the 02.03./06.03.2021 with a small snowfall event (Δ𝑆𝑊𝐸𝐼𝑛𝑓 ≈ 10 mm) below the phase wrap 

threshold. The second interferometric pair from 06.03./19.03.2021 contains a larger snow fall 

event (Δ𝑆𝑊𝐸𝐼𝑛𝑓 ≈ 70 mm), resulting in phase wraps. To calculate Δ𝑆𝑊𝐸𝐼𝑛𝑓, the interferometric 

phase is calibrated with the closest corner reflector which was placed in the measured scene. Snow 

was removed from the corner reflectors during the measurements.  

3.4 Results 

3.4.1 Sensitivity of the Model 

Fig. 1 shows that in the DInSAR model, the first phase wrap for Θ=34° occurs at Δ𝑆𝑊𝐸𝐼𝑛𝑓/𝜆 =

0.27. This corresponds to a SWE change of Δ𝑆𝑊𝐸𝐼𝑛𝑓,𝑊𝑟𝑎𝑝,𝐶 = 15.3 mm at C-band and 

Δ𝑆𝑊𝐸𝐼𝑛𝑓,𝑊𝑟𝑎𝑝,𝐿 = 61.1 mm at L-Band, representing the need to correct phase wraps at small 

wavelengths. 

When determining the ΔSWE𝐶𝑃𝐷 from the polarimetric phase and comparing it to the phase 

wraps of Δ𝑆𝑊𝐸𝐼𝑛𝑓, the results in Fig. 2 are obtained. The lines mark the SWE changes for three 

different densities at two different anisotropies in the figures. The red area above the first 

horizontal line represents the region where the SWE change would be high enough to observe one 

wrap of the DInSAR phase. The yellow marked area corresponds to SWE changes that result in 

two wraps in the DInSAR phase and so forth. 

Phase wraps of the CPD phase are not expected even for large SWE changes. The sensitivity of 

the CPD phase to SWE changes (lines in Fig. 2) is significantly lower than when using the 

DInSAR phase (Fig. 1). Furthermore, Δ𝑆𝑊𝐸𝐶𝑃𝐷 depends on density and anisotropy assumptions. 

Therefore, the CPD model is only used to assess the number of interferometric phase wraps and 

the DInSAR model is used for the actual estimation of the SWE change.  

The influence of phase noise affects the SWE change estimate and can be analyzed by means 

of the interferometric and polarimetric coherence. The estimation error for the phase  can be 

calculated using the Cramer-Rao bounds [14] 

 

σΦ =
1

|𝛾|

√1−|𝛾|2 

√2𝑁
 . (8) 
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|γ| is the coherence amplitude and N are the number of looks. The error can be translated into a 

wavelength independent estimation error for the SWE change. For the DInSAR case, (2) is used 

and the results in dependence of the coherence are shown in Fig. 3. The estimation error decreases 

when a higher number of looks is used. For the data, a window size of 81 is used. The points 

correspond to F-SAR measurements at the in situ SWE locations. The L-band measurements have 

higher coherences, due to less temporal decorrelation, which leads to smaller Δ𝑆𝑊𝐸𝐼𝑛𝑓 errors 

relative to the wavelength. 

 The error due to the phase noise can be estimated also for the polarimetric case using the 

Cramer-Rao bounds. By propagating the phase error in (5), the following equation for the error is 

obtained:  

 

 

 

 
 

Fig. 2. Estimated SWE change 𝛥𝑆𝑊𝐸𝐶𝑃𝐷/ 𝜆 calculated from the CPD change for different snow densities 

for an incidence angle of 34°. The background colors indicate to which amount of missing phase cycles 

this would correspond in the DInSAR model for 𝛥𝑆𝑊𝐸𝐼𝑛𝑓. The assumed anisotropies are: (top) A=0.2 

(bottom) A=0.3. 
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𝜎Δ𝑍𝑠
= √(

𝜕Δ𝑍𝑠

𝜕ΦCPD,1
)
2

σΦCPD,1

2 + (
𝜕Δ𝑍𝑠

𝜕ΦCPD,2
)
2

σΦCPD,2

2  . (9) 

 

The error 𝜎Δ𝑍𝑠
 can be translated into a SWE change error using (6). As the relative SWE change 

errors are higher in the polarimetric case than in the DInSAR case, the number of looks has been 

increased as shown in Fig. 4. It is observed that C-band has higher mean polarimetric coherences 

than L-band, with associated smaller Δ𝑆𝑊𝐸𝐶𝑃𝐷 errors in C-band. 

 

 
 

Fig. 3. Error for SWE change divided by wavelength due to phase noise in dependence of the 

interferometric coherence for 9 and 81 looks. The points are the C- and L-band measurements.  

 
 

Fig.  4. Error for SWE change divided by wavelength due to phase noise in dependence of the polarimetric 

coherence for 81 and 625 looks for a snow density of ρs = 0.1 g/cm3 and anisotropy of A = 0.3. The points 

are the C- and L-band measurements.  
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3.4.2 Examples Using F-SAR data 

The F-SAR data can be utilized to calculate Δ𝑆𝑊𝐸𝐼𝑛𝑓 with (2). The comparison between the 

estimation results and the in situ measurements are presented in Fig. 5 (top) for both wavelengths 

and both polarizations. Here it has to be pointed out that interferometric coherences below 0.25 

 
 

Fig. 5. Retrieved SWE values for C- and L-band in dependence of the in situ measurements. (Top) Before 

phase wrap correction. (Middle) After phase wrap correction based on the in situ measurements. (Bottom) 

After phase wrap correction based on the CPD model assuming a snow density of ρs = 0.1g/cm3 and 

anisotropy of A=0.2. 
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were masked out to keep the error below 10% of the phase wrap threshold, as well as incidence 

angles below 20° and slopes higher than 25%. Moreover, as the CPD change will be used for 

phase wrap corrections later, pixels with polarimetric coherences below 0.6 are also masked out, 

so that the Δ𝑆𝑊𝐸𝐶𝑃𝐷  error does not exceed half of the DInSAR phase wrap threshold. It can be 

seen that especially for higher in situ changes, the C-band estimations are clearly underestimated, 

indicating phase wraps due to the SWE change.  

For validation of the phase wrap correction, in situ measurements are used to check if the 

actual SWE change was above the phase wrap threshold and to correct the SWE estimates 

accordingly. This results in Fig. 5 (middle). The C-band and L-band SWE estimates have been 

clearly improved with the in situ based phase wrap correction. This step shows the importance of 

accurate phase wraps estimations, especially for shorter wavelengths. 

To test the proposed method, the CPD change between the images is calculated and used with 

(5) and (6) to estimate the occurrence of phase wraps. One example is shown in Fig. 5 (bottom) 

assuming a snow density of ρs = 0.1 g/cm3 and anisotropy of A=0.2. It can be seen that some 

phase wraps are correctly predicted, while some are not identified or not sufficiently corrected.  

For a better comparison between the frequencies, the relative RMSE (RMSErel) between the 

measurements and the retrieved SWE changes is calculated and set in relation to the wavelength 

with  

 

𝑅𝑀𝑆𝐸𝑟𝑒𝑙 = 𝑅𝑀𝑆𝐸/λ . (10) 

 

The results of which are displayed in Table I. In general, the L-band retrieval has a smaller 

RMSErel compared to the C-band results. After performing the in situ correction, the C-band 

results show a higher improvement. This results from the fact that C-band estimations suffer more 

from phase wraps than the L-band estimations due to the shorter wavelength. Therefore, it is more 

likely that phase wraps in C-band have to be 

 

TABLE I 

RMSEREL OF THE SWE CHANGE ESTIMATES  

 𝑅𝑀𝑆𝐸𝑟𝑒𝑙  

Wavelength C-band L-band 

Polarization  VV HH VV HH  

No Correction 1.10 1.13 0.19 0.19 

In Situ Correction 0.13 0.12 0.05 0.05 

CPD Correction  

𝐴 = 0.2, 𝜌𝑠 = 0.1 g/cm3 0.72 0.72 0.05 0.05 

                 𝜌𝑠 = 0.2 g/cm3 0.74 0.72 0.05 0.05 

                 𝜌𝑠 = 0.3 g/cm3 0.72 0.71 0.14 0.15 

𝐴 = 0.3, 𝜌𝑠 = 0.1 g/cm3 0.86 0.82 0.05 0.05 

                 𝜌𝑠 = 0.2 g/cm3 0.78 0.81 0.05 0.05 

                 𝜌𝑠 = 0.3 g/cm3 0.73 0.69 0.05 0.05 
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corrected. When performing the correction based on the CPD change, the results depend on the 

assumptions of snow density and anisotropy. For both wavelengths, the results improve compared 

to the uncorrected as some phase wraps can be reconstructed. However, the accuracy depends on 

the assumptions. As only the fresh snow change between the measurements is considered, 

assuming a small snow density and a rather high anisotropy seems appropriate. However, the 

preferred assumptions might depend on the snow conditions and the time span between the 

acquisitions. 

The insufficient phase wrap detections in the CPD correction may result from the fact that 

snow metamorphism can occur between the acquisition dates. Due to the change in particle 

orientation, the measured CPD change does not solely represent the depth of fresh snow. This 

may improve for shorter temporal baselines.  

However, the overall performance of the SWE retrieval improves compared to no correction 

and should be considered, when in situ data is unavailable. 

 

3.5 Conclusions 

The combination of DInSAR and PolSAR can help to identify and correct for phase wraps of 

the DInSAR SWE change estimates and can therefore improve the retrieval. However, the 

correction has still a lower accuracy than when in situ data is used for phase wrap correction. One 

reason could be snow metamorphism which occurs between the measurements. Over time, the 

snow becomes more vertically orientated, leading to a CPD change that is not solely related to 

fresh snow. Another difficulty with the CPD model is that it requires assumptions on the snow 

density and anisotropy, which have an impact on its accuracy. However, the CPD correction 

improves the estimation in comparison to no correction, particularly for shorter wavelengths such 

as C-band. Therefore, the CPD model can contribute to efforts deriving SWE change directly from 

remote sensing SAR data without the need to incorporate in situ data, towards accurate large-scale 

measurements of SWE changes. 
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Abstract 

 

Snow Water Equivalent (SWE) is an important parameter in hydrology. The 

interferometric phase measured with Differential Interferometric Synthetic Aperture 

Radar (DInSAR) can be used to estimate the SWE change between two SAR 

acquisitions. However, only a limited interval of SWE changes can be retrieved 

unambiguously due to phase wraps depending on the wavelength. Furthermore, the 

polarization of the radar wave affects the SWE change estimates. In this study, 

interferometric and polarimetric observables are combined. A Differential Polarimetric 

Interferometric SAR (DPolInSAR) approach is proposed to model PolInSAR 

coherences that can potentially contribute to overcome limitations in SWE change 

estimations. The effect of snow changes on the PolInSAR coherence regions are 

investigated, revealing differences for changes in snow depth and anisotropy. Based on 

the DPolInSAR model, a SWE change retrieval is proposed, that tries to find the 

parameters for snow depth, density and anisotropy which minimize the difference 

between modelled and measured coherence regions. The RMSE between the 

DPolInSAR estimates and ground measurements improves compared to using only one 

polarization. 

4.1 Introduction 

Snow melt plays a crucial role for runoff predictions and flood protection. Due to increasing 

temperatures, the amount of melt water and timing of the runoff are changing. This has a huge 

impact on regions where people are relying on snow melt for their water supply [1].  

A key observable combining the information on depth and density of the snow pack is the 

Snow Water Equivalent (SWE) and is therefore important as an input parameter for hydrological 

models [2].  

Different remote sensing methods can be used to measure SWE [3], [4], but operational 

methods suffer from coarse resolution and saturation effects. Widely used are active radar sensors 

like Synthetic Aperture Radars (SARs), because they offer the possibility to monitor the Earth’s 
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surface on a meter-scale [5]. Moreover, SAR sensors are capable of performing measurements 

that are not affected by weather and illumination conditions [6]. Given that SAR signals are able 

to penetrate into snow, they are sensitive to snow parameters [7].  

It has been shown in [8] that repeat-pass interferometric SAR measurements (DInSAR) can 

be used to estimate SWE changes in dry snow. This method relies on the fact that snow has a 

different permittivity than air, which causes a refraction of the radar waves.  The corresponding 

path delay depends on the SWE change between the acquisitions and can be measured with the 

interferometric phase. The method has been first demonstrated using ERS-1/2 tandem data [8].  

Dedicated tower experiments were used to exploit the relationship between the DInSAR phase 

and SWE change in [9], where the authors presented a modification to the density related part of 

the model in [8]. They established a linear relation between interferometric phase and SWE 

change, obtaining results with a high accuracy. Here, a dense time series was used to overcome 

the effect of temporal decorrelation, which affects the accuracy of the SWE change estimates. 

Reasons for decorrelation of interferometric coherence in different frequencies were analyzed in 

[10],  showing that snow melt is one of the main factors of decorrelation and that higher 

frequencies are more affected, decreasing the performance of the SWE retrieval. Meanwhile, for 

low frequencies the SWE accumulation profile showed good agreements with in situ 

measurements.  

Compared to tower-based measurements, airborne SAR measurements can achieve a higher 

spatial coverage. Campaigns evaluating the potential of the interferometric phase for SWE 

retrieval where conducted, e.g. with the Uninhabited Aerial Vehicle SAR (UAVSAR) over North 

America [11], [12], [13], [14], [15], presenting good results over non forested areas and 

mentioning the need of reference phase and an approximation of the density as a limitation. 

Another airborne campaign was conducted over the Alps using the DLRs airborne system F-SAR 

[16]. Data from the latter will be also used in this study.  

Several studies have used the interferometric phase of repeat-pass space borne SAR 

measurements to estimate the SWE change, showing a good agreement with ground-based 

measurements. Sensors with different frequencies were used, for example C band (wavelength 

𝜆 = 5.65 𝑐𝑚) [17], [18], [19], [20], [21], [22] and L band (𝜆 = 22.62 𝑐𝑚) [23], [24]. It was 

demonstrated using Sentinel-1 C band data that it is important to correct for the atmospheric phase 

delay [21]. Additionally, it was shown that low temporal coherence is one of the main reasons for 

a lower accuracy of the SWE change retrieval [17], [18], [19], [21] as well as the presence of wet 

snow [19], [20]. Furthermore, the vegetation inside the estimation window affects the SWE 

estimation results [22]. A wider coverage for validation was achieved by comparing the results 

from L band data from ALOS-2 to SWE change estimates from a snow model, showing a high 

agreement except for forested areas with temperatures close to zero degrees [24]. Furthermore, 

decorrelation due to permittivity changes of snow has been reported [25].  Another limitation of 

the retrieval is the 2π interval of the interferometric phase, resulting in a limited range of 

unambiguous SWE change values that can be retrieved before interferometric phase wraps occur 

[9]. One possibility of solving the phase wraps without additional ground measurements was 
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proposed in [26] by using a multifrequency approach to use the SWE change estimates of lower 

frequencies to correct for phase wraps of higher frequencies. This improves the accuracy retrieval, 

but the method is also limited due to phase calibration challenges and the availability of 

multifrequency measurements.  

In addition to DInSAR, there are also methods that use polarimetric SAR (PolSAR) for the 

estimation of snow properties. In [27], [28] the backscatter of the cross polarized channels in VV 

and VH was used to retrieve the snow depth having the highest agreement at 500m and 1km 

resolution. It has been also demonstrated that the Copolar Phase Difference (CPD) between the 

VV and HH channel can be related to snow depth [29], [30], [31]. A model has been developed, 

where the CPD depends on the snow anisotropy, density and depth [29], [32]. The model has been 

successfully applied in studies using X band (𝜆 = 3.1 𝑐𝑚) data for example in [33] relying on 

density assumptions and in [34], having SWE errors up to 45%. In C and L band, the CPD model 

was applied to correct interferometric phase wraps in the DInSAR SWE retrieval [35], relying as 

well on density and anisotropy assumptions.  Furthermore, it has been shown that for shorter 

wavelengths, inversions using the CPD are challenging due to phase wraps [36]. Nevertheless, 

these studies have demonstrated the potential for retrieving information on the snow pack from 

polarimetric measurements. 

The objective of this study is to improve the accuracy of SWE change retrieval by not only 

using interferometric SAR measurements, but by also incorporating polarimetric information. To 

achieve this, they are combined by forming differential polarimetric interferometric SAR 

(DPolInSAR) coherences. A model is established to simulate DPolInSAR coherence regions and 

the effects of different snow changes on the coherence region parameters are investigated. The 

goal is to advance the theoretical understanding of temporal coherence regions influenced by snow 

accumulation and snow anisotropy. Based on this, a retrieval of snow changes from coherence 

regions is demonstrated by finding the parameters for snow depth, density and anisotropy which 

minimize the difference between modelled and measured coherence regions. 

In Section 4.2, the data utilized in this study are described. Section 4.3 presents the model of 

[9] for SWE change retrieval and introduces the polarization dependence of the estimates. A 

PolInSAR SWE change framework is established in Section 4.4 followed by the DPolInSAR 

SWE change retrieval in Section 4.5. The results are discussed in Section 4.6 and concluded in 

Section 4.7.  

4.2 Data 

In the frame of ESA’s SARSimHT-NG study [37] DLR conducted an airborne SAR campaign 

over an alpine site located in the Woergetal valley in the Austrian Alps. A time series of eight 

flights from the 2nd to the 19th of March 2021 was acquired including fully polarimetric SAR data 

at C band and L band. A polarimetric Pauli RGB color composite at C band is shown in Fig. 1. 
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There were two snowfall events during the campaign that are investigated in this study. The 

first (referred to in this paper as Inf1) occurred at the beginning of the campaign on the 5th of 

March followed by a more significant snowfall event (Inf2) which occurred between the 14th and 

the 18th of March. The interferograms used in this study are shown in Table I. The campaign was 

accompanied by ground measurements of snow depth and density at different locations in the 

valley performed by ENVEO [16]. 

 

Fig. 1. Polarimetric Pauli RGB color composite at C band of the test site in the Woergetal. The white 

points mark the locations of the ground measurement. 

TABLE I 

FSAR ACQUISITIONS 

Interferogram Dates 

(Primary/Secondary) 
Frequency  

SWE change 

(cm) 

 

Inf1 

 

 

03.03.2021/ 

06.03.2021 

 

 

C, L band 

 

≈ 1.15 

Inf2 

 

06.03.2021/ 

19.03.2021 

C, L band ≈ 6.75 
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4.3 Single-Pol DInSAR ΔSWE Estimation 

4.3.1 Relationship between DInSAR phase and ΔSWE 

SWE expresses the amount of liquid water in the snow pack and can be described as the 

theoretical depth of water that would be obtained if the snowpack were to melt completely. 

Accordingly, SWE depends on the snow density 𝜌 and snow depth 𝑍 using:  

 

𝑆𝑊𝐸 =
1

𝜌𝑤
 ∫ 𝜌(𝑍) 𝑑𝑍 

𝑍

0

≈ 𝑍𝜌/𝜌𝑤 (1) 

 

where 𝜌𝑤 is the density of water. 

The change of SWE Δ𝑆𝑊𝐸, caused by a change of snow density and/or depth, is attempted to 

be measured by exploring differential interferometric phase measurements, as first proposed in 

[8]. As snow has different dielectric properties than air, radar waves when propagating through 

snow pack are refracted and change their propagation velocity, as shown in Fig. 2. 

Accordingly, any SWE change can be associated with an optical path length difference that 

can be measured by means of a differential phase. It is assumed that in dry snow the main 

scattering contribution comes from the underlying ground and volume scattering can be neglected 

for frequencies below 20GHz [38]. So, it is assumed that the radar waves can travel through the 

entire snow volume. By taking into account the geometry in Fig. 2, the interferometric phase 

difference ΔΦ can be related to the snow depth change with [8]:  

 

Fig. 2. Refraction of radar waves inside a snow pack compared to the optical path length of snow free 

conditions (dashed line). The refractions are different for HH and VV due to the anisotropy of the snow 

pack.  
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ΔΦ = −2 𝑘Δ𝑍 (cos Θ − √𝜀(𝜌) − sin Θ2), (2) 

 

where 𝑘 = 2𝜋/𝜆 is the wavenumber depending on the wavelength 𝜆, Θ the incidence angle of the 

radar wave and 𝜀(𝜌) the permittivity of the snow, which depends on the snow density 𝜌. Based 

on a numerical approximation for the  density related part of the equation it has been attempted to 

model a linear relation between the interferometric phase difference and the Δ𝑆𝑊𝐸, which can be 

calculated with [9]: 

 

ΔΦ = 2 𝑘
𝛼

2
 ( 1.59 + Θ

5
2)  Δ𝑆𝑊𝐸. (3) 

 

The parameter 𝛼 is close to 1 and minimizes the Root Mean Square Error (RMSE) between 

the numerical approximation and the exact solution for different 𝜌 and Θ values. When the 

parameter 𝛼 is fixed to 𝛼 = 1 then the error lies below 3% for incidence angles smaller than 40°. 

In our study 𝛼 = 1 is used in the following. 

An important issue when estimating the SWE change using the DInSAR phase are phase 

wraps. They result from the fact that the interferometric phase can only be measured in a range 

between [-π, π] until a phase wrap occurs, therefore only a limited range of SWE change values 

can be retrieved unambiguously.  

The advantage of (3) is that the Δ𝑆𝑊𝐸 can be directly estimated from the interferometric 

phase. In (2) a relation between the permittivity and density of the snow is needed, as shown in 

[39], for example. However, this offers the possibility to incorporate different permittivities for 

different polarizations, in order to have a more precise description of the polarimetric 

observations. 

4.3.2 Polarization dependence of ΔSWE estimation 

In order to assess the effect of the radar polarization on Δ𝑆𝑊𝐸 estimation, Δ𝑆𝑊𝐸 is estimated 

by means of (3) using vertically polarized (VV) and horizontally polarized (HH) channels 

separately. Fig. 3 shows the difference between the two Δ𝑆𝑊𝐸 estimates Δ𝑆𝑊𝐸𝑉𝑉 and Δ𝑆𝑊𝐸𝐻𝐻 

at C band for the first and second interferogram. Areas with local slopes higher than 50% are 

masked out. 

In both images, considerable differences can be observed. Both the difference between 

Δ𝑆𝑊𝐸𝑉𝑉 and Δ𝑆𝑊𝐸𝐻𝐻 and its standard deviation increase in the second interferogram, associated 

to the bigger snowfall event (Table II). A 0.14 cm SWE difference between HH and VV is about 

12% of the total SWE change for the snowfall event in Inf1. 
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The discrepancy between the SWE change estimates in VV and HH indicates a dependency 

of the SWE change estimates on the used polarization. This highlights the importance of including 

polarimetric information in the SWE change retrieval, as it is necessary to account for polarization 

effects. Furthermore, it allows to gain additional information that can be incorporated in the SWE 

change algorithm. The reason for the discrepancy between the ΔSWEVV and ΔSWEHH estimates 

lies in the anisotropic nature of the snow that is discussed in the following. 

4.3.3 The Structural Anisotropy of Snow 

Snow packs appear anisotropic in the context of microwave propagation [32]. This is when 

non-spherical ice particles distribute with a preferential orientation. This anisotropic shape of 

spheroidal ice particles is described by the (structural) anisotropy A defined as the normalized 

difference of the x and z dimension of the ice particles 𝑎𝑥 and 𝑎𝑧 

 

Fig. 3.  Difference between the SWE change estimates in C band using the DInSAR VV and DInSAR HH 

phase. The left side is corresponding to Inf1 and the right side to Inf2. White areas are masked out due to 

local slopes higher than 50%. 

TABLE II 

DIFFERENCE BETWEEN SWE CHANGE ESTIMATES IN VV AND HH 

C-band Inf 1 Inf 2 

Abs Δ𝑆𝑊𝐸𝑉𝑉 – Δ𝑆𝑊𝐸𝐻𝐻 Difference 

(cm) 
0.140 +/- 0.197 0.328 +/- 0. 33 
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A =
𝑎𝑥−𝑎𝑧

0.5∗(𝑎𝑥+𝑎𝑧)
. (4) 

 

When snow settles, it forms rather horizontally aligned ice particles and the anisotropy 

becomes positive (see Fig. 2). Over the time, temperature gradients between atmosphere and the 

underlying soil force the ice particles to grow increasingly vertically imposing a negative 

anisotropy (see Fig. 2).  

The preferential orientation of non-spherical ice particles leads to an anisotropic (i.e. 

directionally different) permittivity in the snow pack, which makes the vertically and horizontally 

polarized radar waves propagate differently.  

To calculate the directional permittivities, the model described in [32] is used. In that, the 

snow is described as ice particles inside air. The effective permittivity for each dimension 𝑛 =

𝑥, 𝑦, 𝑧 for the ice-air mixture is calculated using the Maxwell Garnett formula [40]:  

 

𝜀𝑒𝑓𝑓,𝑛 = 𝜀𝑎𝑖𝑟 + 𝑓𝜀𝑎𝑖𝑟

𝜀𝑖𝑐𝑒 − 𝜀𝑎𝑖𝑟

𝜀𝑎𝑖𝑟 + (1 − 𝑓)𝑁𝑛(𝜀𝑖𝑐𝑒 − 𝜀𝑎𝑖𝑟)
. (5) 

 

𝜀𝑎𝑖𝑟 is the permittivity for air and 𝜀𝑖𝑐𝑒 for the ice particles. The ice volume fraction 𝑓 is defined 

by the snow density. For each dimension of the particle, the depolarization factors 𝑁𝑛 are 

calculated with:  

 

𝑁𝑛 =
𝑎𝑥𝑎𝑦𝑎𝑧

2
∫

𝑑𝑠

(𝑠 + 𝑎𝑛
2)√(𝑠 + 𝑎𝑥

2)(𝑠 + 𝑎𝑦
2)(𝑠 + 𝑎𝑧

2)

.
∞

0

 
(6) 

 

For oblate spheroids, as in the case of fresh snow, the condition 𝑎𝑥 = 𝑎𝑦 > 𝑎𝑧 holds. The 

solution of the integral in (6) is then given by [40]: 

 

𝑁𝑥 = 𝑁𝑦 =
1

2
(1 − 𝑁𝑧),  (7) 

 

𝑁𝑧 =
1 + 𝑒2

𝑒3
(𝑒 − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑒), (8) 

 

where 𝑒 is a parameter that depends on the anisotropy:  
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𝑒 = √(
2 + 𝐴

2 − 𝐴
)
2

− 1. (9) 

 

The depolarization factors from (7) and (8) are then used to calculate the effective permittivity 

for a mixture of air and ice using (5). In the last step, the effective permittivities in x,y,z dimension 

have to be translated to the horizontal and vertical polarization of the radar waves. 

 

𝜀𝐻  = 𝜀𝑒𝑓𝑓,𝑥;𝑦,  (10) 

 

𝜀𝑉 = 𝜀𝑒𝑓𝑓,𝑥;𝑦 + (1 −
𝜀𝑒𝑓𝑓,𝑥;𝑦

𝜀𝑒𝑓𝑓,𝑧
) 𝜀𝑎𝑖𝑟 𝑠𝑖𝑛2 Θ.  (11) 

 

Therefore, the effective permittivity 𝜀𝐻 for the horizontal and 𝜀𝑉 for the vertical polarization 

depend on the anisotropy and density of the snow pack, as well as on the local incidence angle 

[29], [32]. 

The obtained permittivities 𝜀𝐻 and 𝜀𝑉 are plotted for different anisotropies setting a fixed 

density and incidence angle in Fig. 4. A difference between the permittivities 𝜀𝑉 and 𝜀𝐻 can be 

observed, which is increasing for higher anisotropies because the difference of the refraction for 

the vertical and horizontal polarization increases. These permittivities can be used in (2) to 

calculate the polarization dependent interferometric phase for VV and HH. The difference 

between the phases in VV and HH will increase with the snow depth, since the length of the path 

through the anisotropic medium expands.  

 

Fig. 4.  Permittivity of the VV channel (blue) and the HH channel (orange) in dependence of the anisotropy. 

(𝜌 = 0.15 𝑔/𝑐𝑚3, Θ = 39°) 
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4.4 A PolInSAR ΔSWE Framework 

4.4.1 PolInSAR framework  

The starting point for establishing a PolInSAR framework for Δ𝑆𝑊𝐸 estimation are two 

scattering matrices [𝑆1] and [𝑆2] measured by an interferometric configuration. These two 

matrices can be vectorized in order to obtain the two associated scattering vectors 𝑘⃗ 𝐿1 and 𝑘⃗ 𝐿2:  

 

𝑘⃗ 𝐿𝑖 = 𝑣𝑒𝑐([𝑆𝑖]) = [𝑠𝐻𝐻
𝑖 , 𝑠𝑉𝐻

𝑖 , 𝑠𝐻𝑉
𝑖 , 𝑠𝑉𝑉

𝑖 ]𝑇 ,  (12) 

 

where 𝑖 ϵ [1,2] indicates the two interferometric measurements. The interferogram formed using 

a polarization state expressed by the unitary vector 𝑤⃗⃗  is:  

 

𝑠(𝑤⃗⃗ )1𝑠(𝑤⃗⃗ )2
∗ = (𝑤⃗⃗ + ∙ 𝑘⃗ 𝐿1) (𝑤⃗⃗ 

+ ∙ 𝑘⃗ 𝐿2)
∗ = 𝑤⃗⃗ +[𝛺𝐿]𝑤,⃗⃗⃗⃗   (13) 

 

and the associated (complex) interferometric coherence follows as  

 

𝛾(𝑤⃗⃗  ) =
𝑤⃗⃗ +〈[𝛺𝐿]〉𝑤⃗⃗ 

√(𝑤⃗⃗ +〈[𝐶1]〉𝑤⃗⃗ )(𝑤⃗⃗ +〈[𝐶2]〉𝑤⃗⃗ )
, (14) 

 

where 𝑘⃗ 𝐿1 ∙  𝑘⃗ 𝐿1
+ = [𝐶1], 𝑘⃗ 𝐿2 ∙  𝑘⃗ 𝐿2

+ = [𝐶2] and k⃗ L1 ∙  k⃗ L2
+ = [Ω𝐿]. The two measured scattering 

matrices [𝑆1] and [𝑆2] include the polarimetric propagation and scattering effects as 

 

[𝑆𝑖] = [𝑃2
𝑖][𝑆0𝑖][𝑃2

𝑖]𝑇 (15) 

 

and 

 

𝑘⃗ 𝐿𝑖 = [𝑃4
𝑖]𝑘⃗ 0𝐿𝑖 = [𝑃4

𝑖] vec([𝑆0𝑖]). (16) 

 

[S0i] is the scattering matrix and  𝑘⃗ 0𝐿𝑖 the scattering vector of the underlying scattering 

mechanism. The unitary propagation matrix [𝑃2
𝑖] characterizes completely the propagation 

medium in terms of two orthogonal eigen-polarizations with  
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[𝑃2
𝑖] = [

𝑐𝑜𝑠 𝛼𝑖 𝑠𝑖𝑛 𝛼𝑖  𝑒
𝑗𝛿𝑖

−𝑠𝑖𝑛 𝛼𝑖  𝑒
𝑗𝛿𝑖 𝑐𝑜𝑠 𝛼𝑖

] [𝑒
𝑗𝜅𝐴𝑖𝑟𝑖 0
0 𝑒𝑗𝜅𝐵𝑖𝑟𝑖

]  (17) 

 

The two eigen-polarizations are those polarizations that do not change when propagating 

through the medium. They are described by the Deschamps angles 𝛼𝑖 and 𝛿𝑖 while their 

propagation through the medium is described by the (complex) wavenumbers 𝜅𝐴𝑖, 𝜅𝐵𝑖 that include 

both attenuation and phase shifts (e.g. wavelength change). 𝑟𝑖 is the distance traveled in the 

medium.  

Since the preferred orientation of the non-spherical ice particles is often in the vertical or 

horizontal direction, the eigen-polarizations can be assumed to be given by the linear H and V 

polarizations. Accordingly, 𝛼𝑖 = 0 and 𝛿𝑖 = 0 and [𝑃2
𝑖] reduces to: 

 

[𝑃2
𝑖] = [𝑒

𝑗𝜅𝐻𝑖𝑟𝑖 0
0 𝑒𝑗𝜅𝑉𝑖𝑟𝑖

]. (18) 

 

𝜅𝐻𝑖 is the wavenumber of the horizontal polarization and 𝜅𝑉𝑖 the one of the vertical. [𝑃4
𝑖] is 

obtained with: 

 

[𝑃4
𝑖] = [𝑃2

𝑖] ⊗ [𝑃2
𝑖]𝑇 = 𝑒𝑥𝑝(𝑗2𝜅𝑖𝑟𝑖) [

𝑒𝑥𝑝(𝑗𝛥𝜅𝑖𝑟𝑖) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒𝑥𝑝(−𝑗𝛥𝜅𝑖𝑟𝑖)

] (19) 

 

where ⊗ denotes the Kronecker product, κi the mean and Δκi the differential wavenumber of the 

two eigen-polarizations: 

 

𝛥𝜅𝑖 = 𝜅𝐻𝑖 − 𝜅𝑉𝑖 , 𝜅𝑖 =
𝜅𝐻𝑖 + 𝜅𝑉𝑖

2
. (20) 

 

The interferogram formed using the polarization state 𝑤⃗⃗  is  

 

𝑠(𝑤⃗⃗ )1𝑠(𝑤⃗⃗ )2
∗ = (𝑤⃗⃗ +[𝑃4

1]𝑘⃗ 0𝐿1) (𝑤⃗⃗ 
+[𝑃4

2]𝑘⃗ 0𝐿2)
∗ = 𝑤⃗⃗ +[𝑃4

1][𝛺0𝐿][𝑃4
2]+ (21) 

 

and the associated interferometric coherence becomes:  

 

𝛾(𝑤⃗⃗ ) =
𝑤⃗⃗ +〈[𝑃4

1][𝛺0𝐿] [𝑃4
2]+〉𝑤⃗⃗ 

√(𝑤⃗⃗ +〈[𝑃4
1][𝐶01][𝑃4

1]+〉𝑤⃗⃗ )(𝑤⃗⃗ +〈[𝑃4
2][𝐶02][𝑃4

2]+〉𝑤⃗⃗ )
.. (22) 
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Assuming a homogeneous snow pack within the coherence estimation window, the following 

expression is obtained:  

 

𝛾(𝑤⃗⃗ ) =
𝑤⃗⃗ +[𝑃4

1]〈[𝛺0𝐿]〉 [𝑃4
2]+𝑤⃗⃗ 

√(𝑤⃗⃗ + [𝑃4
1]〈[𝐶0]〉[𝑃4

1]+𝑤⃗⃗  )( 𝑤⃗⃗ +[𝑃4
2]〈[𝐶0]〉[𝑃4

2]+ 𝑤⃗⃗  )
. (23) 

 

4.4.2 The DPolInSAR Case 

While the PolInSAR framework discussed in the previous section is general in terms of being 

valid for non-zero and zero spatial/temporal baselines, a closer look in the case of differential, e.g. 

repeat-pass with zero spatial baseline interferometry, is attempted in order to address the Δ𝑆𝑊𝐸 

estimation. As the focus is put on interpreting the polarimetric and interferometric phase 

differences induced by the snow pack, the underlying scattering process is assumed to be not 

changing for the moment so that  

 

[𝑆01] = [𝑆02] = [𝑆0] → 𝑘⃗ 0𝐿1 = 𝑘⃗ 0𝐿2 = 𝑘⃗ 0𝐿 ,     𝑘⃗ 0𝐿 ∙  𝑘⃗ 0𝐿
+ = [𝐶0],     [𝛺0𝐿] = [𝐶0] (24) 

 

The interferogram formed using w⃗⃗⃗  polarization becomes  

 

𝑠1𝑠2
∗ = 𝑤⃗⃗ +[𝑃4

1][𝐶0][𝑃4
2]+𝑤⃗⃗ = 𝑤⃗⃗ +[𝐴12] 𝑤⃗⃗  (25) 

 

where 

 

[𝐴12] = exp(2𝑗(𝜅1𝑟1 − 𝜅2𝑟2) [

𝑎11 𝑎12

𝑎21 𝑎22

𝑎13 𝑎14

𝑎23 𝑎24
𝑎31 𝑎32

𝑎41 𝑎42

𝑎33 𝑎34

𝑎43 𝑎44

], (26) 

 

with 

 

𝑎11 = 𝑐11 exp(𝑗𝛥𝜅1𝑟1) exp(−𝑗𝛥𝜅2𝑟2),  𝑎22 = 𝑐22, 

𝑎44 = 𝑐44 exp(−𝑗𝛥𝜅1𝑟1) exp(𝑗𝛥𝜅2𝑟2),  𝑎33 = 𝑐33, 

𝑎14 = 𝑎41
∗ = c14 exp(𝑗𝛥𝜅1𝑟1) exp(𝑗𝛥𝜅2𝑟2),  𝑎23 = 𝑎32

∗ = 𝑐23, 

𝑎12 = 𝑎21
∗ = c12 exp(𝑗𝛥𝜅1𝑟1),  𝑎13 = 𝑎31

∗ = 𝑐13 exp(𝑗𝛥𝜅1𝑟1), 

𝑎24 = 𝑎42
∗ = c24 exp(𝑗𝛥𝜅2𝑟2),  𝑎34 = 𝑎43

∗ = 𝑐34 exp(𝑗𝛥𝜅2𝑟2), 
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where 𝑐𝑖𝑗 are the elements of the underlying covariance matrix [𝐶0].  

Since the snow depth change is one focus of this study, the wavenumber is replaced with a 

wavenumber that projects the change in range direction to the actual snow depth change with: 

 

𝜅𝑖𝑟𝑖 = 𝜅̃𝑖𝑍𝑖 =
𝜅̃𝐻𝑖 + 𝜅̃𝑉𝑖

2
𝑍𝑖, (27) 

 

with 

 

𝜅̃𝐻 𝑜𝑟 𝑉 =
2𝜋

𝜆
(𝑐𝑜𝑠 Θ  − √𝜀𝐻 𝑜𝑟 𝑉 − 𝑠𝑖𝑛2 Θ  ). (28) 

 

Accordingly, the interferogram in the HH polarization is obtained for 𝑤⃗⃗ 𝐻𝐻 = [ 1, 0, 0, 0]𝑇  

 

𝑠1(𝑤⃗⃗ 𝐻𝐻)𝑠2
∗(𝑤⃗⃗ 𝐻𝐻)=|𝑠𝐻𝐻|2 𝑒𝑥𝑝(𝑗2(𝜅̃𝐻1𝑍1−𝜅̃𝐻2𝑍2)), (29) 

 

while the interferogram for the VV polarization is obtained for w⃗⃗⃗ VV = [ 0, 0, 0, 1]T  

 

𝑠1(𝑤⃗⃗ 𝑉𝑉)𝑠2
∗(𝑤⃗⃗ 𝑉𝑉)=|𝑠𝑉𝑉|2 exp(𝑗2(𝜅̃𝑉1𝑍1−𝜅̃𝑉2𝑍2)). (30) 

 

The (complex) interferometric coherence can be calculated for all polarization states with: 

 

𝛾(𝑤⃗⃗ ) =
w⃗⃗⃗ +[P4

1]〈[C0]〉 [P4
2]+w⃗⃗⃗ 

√(𝑤⃗⃗ + [𝑃4
1]〈[𝐶0]〉[𝑃4

1]+𝑤⃗⃗  )( 𝑤⃗⃗ +[𝑃4
2]〈[𝐶0]〉[𝑃4

2]+ 𝑤⃗⃗  )
. (31) 

 

The absolute value of the coherence is |𝛾(𝑤⃗⃗ )| = 1, which results as a direct consequence of 

the assumption of an invariant underlying scattering process and a homogeneous snow pack 

within the coherence estimation window. The set of interferometric coherences 𝛾(𝑤⃗⃗ ) obtained for 

all the possible polarization states 𝑤⃗⃗  plotted on the complex plane defines the so-called coherence 

region. 
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Fig. 5 shows such a coherence region for a snow-covered area of Inf1 in C band. It is generated 

by using 500 randomly sampled polarizations states 𝑤⃗⃗ . The interferometric phase is calibrated 

using a corner reflector in the scene. The radial location of each coherence locus corresponds to 

the absolute coherence value (blue arrow in Fig. 5), indicating the correlation between the two 

acquisitions of the interferogram. Its angular location is given by the phase (pink arrow in Fig. 5) 

of the interferogram formed using the associated polarization. Accordingly, it is related to the 

SWE change occurring between two acquisitions. It can be observed that there is a certain phase 

extent of the coherence regions, meaning the interferometric phases at different polarizations are 

not the same, which is expected after the results in Section 4.3.2. 

The color coding of the coherence loci is according to their polarimetric scattering angle alpha, 

α, expressing the scattering type interpretation of the associated polarization states w⃗⃗⃗  [41].  

 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
|𝑠𝐻𝐻 + 𝑠𝑉𝑉|

√2√|𝑠𝐻𝐻|2 + |𝑠𝐻𝑉|2 + |𝑠𝑉𝐻|2 + |𝑠𝑉𝑉|2
) , 0° ≤ 𝛼 ≤ 90°.  (32) 

 

 

Polarization states with α angles close to zero (blueish dots) have high coherence amplitudes, 

indicating a dominant surface-like underlying scattering, while α angles close to 90° (red dots) 

have lower coherence values due to a higher Signal to Noise Ratio (SNR) decorrelation 

contribution.  

 

 

Fig. 5. DPolInSAR coherence for 500 random polarization states (dots) for one location in Inf1 (C band). 

Colours indicate the α angle of the scattering vector.   
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4.5 DPolInSAR Retrieval 

4.5.1 DPolInSAR Coherence Modelling 

The DPolInSAR coherence region is modelled according to (31). The underlying scatterer is 

represented by its covariance matrix [𝐶0]. The propagation matrices [𝑃4
𝑖] describe the propagation 

through the snow pack and are defined in (19). The corresponding H and V wavenumbers 

projected onto snow depth 𝑍 are given by (28) and can be modeled in terms of the anisotropy A 

and density 𝜌 as described in Section 4.3.3. However, (31) does not consider any decorrelation 

effects that need to be introduced for a realistic modelling of the DPolInSAR coherence region.   

Temporal decorrelation due to a non-uniform snow accumulation inside the resolution cell is 

taken into account, as described in [17] with: 

 

𝛾𝑇 = 𝑒𝑥𝑝 (−
1

2
(
4𝜋

𝜆
)
2

𝜎𝑠
2(𝑐𝑜𝑠 Θ − √𝜀 − 𝑠𝑖𝑛 Θ2)

2
),  (33) 

 

where 𝜎𝑠 is the standard deviation of the snow depth inside the resolution cell. Accordingly, 𝛾𝑇 

may show a polarization dependency due to the different H and V wavenumbers. However, for 

small 𝜎𝑠 the effect is nearly the same for all polarizations. Therefore, this yields a constant shift 

of the absolute coherence values. 

The additive noise decorrelation due to low SNR levels [42] is: 

 

𝛾𝑆𝑁𝑅 =
1

√(1+𝑆𝑁𝑅1
−1)(1+𝑆𝑁𝑅2

−1) 

. 
(34) 

 

Since the different polarization states have different signal levels, the SNR decorrelation is not 

the same for all polarization states, which leads to possibly large variations in absolute coherence 

within one coherence region, see Fig. 5. 

4.5.1.1 Snow Depth Change 

First, the effect of a change in snow depth with fixed snow density is discussed for two 

different anisotropy scenarios. In the first case the anisotropy is set to A=0 (for both acquisitions), 

corresponding to isotropic snow. In the second case, the anisotropy is set to A=0.2 (for both 

acquisitions) corresponding to a freshly fallen snow scenario. The snow depth change is set in 

both cases to Δ𝑍 = 9 𝑐𝑚.   Fig. 6 shows the modelled coherence region for 500 random 

polarization states 𝑤⃗⃗ . The temporal decorrelation is set to 𝛾T = 0.925, assuming a 𝜎𝑠 = 1 𝑐𝑚, 

and the SNR decorrelation for a noise level of -20dB is computed. The underlying scattering 

process was assumed to be a Bragg-like scatterer.  
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Fig. 6 (left) shows that for the case of isotropic snow, all polarization states have the same 

phase values. Only the coherence amplitude is decreasing for higher alpha angles due to the SNR 

decorrelation. The introduction of anisotropy Fig. 6 (right) results in a wider spread of the phase 

values since the anisotropic structure of the snow is affecting the polarization states differently. 

The absolute interferometric phase of VV and HH for the second case is shown for different snow 

depth changes in Fig. 7.  

It can be seen that the interferometric phase increases for higher snow depth changes. It wraps 

at a snow depth change for the HH polarization at Δ𝑍𝐻𝐻 = 10.5 𝑐𝑚 and for VV at Δ𝑍𝑉𝑉 =

10.8 𝑐𝑚 for the assumed parameters and then continues to increase. Furthermore, the difference 

 

Fig. 6.  DPolInSAR coherence region at C band for a snow depth change of  Δ𝑍 = 9 𝑐𝑚 at Θ = 39°. Left: 

isotropic snow A=0, right: anisotropic snow A=0.2. The snow density is assumed 𝜌 = 0.15 𝑔/𝑐𝑚3.  The 

color coding is according to their polarimetric scattering angle alpha, α. 

  

 

Fig. 7.  Interferometric phase of the VV channel (blue) and the HH channel (orange) in dependence of the 

snow depth change. (C band, 𝜌 = 0.15 𝑔/𝑐𝑚3, Θ = 39°, A=0.2) 
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between the phases of the HH and VV channel increases with higher snow depth changes. This is 

due to the fact that for higher snow depths, the radar wave’s path delay through the anisotropic 

snow increases, which also causes a greater path length difference between VV and HH. This is 

similar to the results presented in Section 4.3.2, where also a discrepancy between VV and HH is 

observed, which increased for the bigger snow fall event, see Fig. 3. Here, it can be seen again 

that different SWE change estimates are obtained from the phases of the VV and HH channels 

when using the conventional single-pol DInSAR retrieval in (3). 

4.5.1.2 Anisotropy Change 

The influence of a change in the snow microstructure is modelled assuming an anisotropy 

change between the two acquisitions of Δ𝐴 = 0.1 (left) and Δ𝐴 = 0.2 in (right) and with a snow 

depth of 𝑍 = 9 𝑐𝑚 in Fig. 8.  

An increased anisotropy change mainly results in a larger phase variation within the coherence 

region, which results from the fact that with higher anisotropies the propagation differs 

increasingly for the different polarization states. The interferometric phases are shown in more 

detail in Fig. 9 which also demonstrates a small increase in the absolute phase with increasing 

phase differences between the VV and HH channel. 

The effect on the absolute phase can be explained by the fact, that along with the anisotropy 

increase also the average permittivity of the whole snow pack increases (see Fig. 4). As a result, 

so does the DInSAR phase of the VV and HH channels. The increasing difference between the 

VV and HH channels would again result in different SWE change estimates using (3) depending 

on the used polarization, showing the importance of considering the polarization information 

during SWE change retrieval.  

 

 

Fig. 8.  DPolInSAR coherence region at C band for an anisotropy change for  Z = 9 𝑐𝑚 at Θ = 39°. Left: 

Δ𝐴 = 0.1, right: Δ𝐴 = 0.2. The snow density is assumed 𝜌 = 0.15 𝑔/𝑐𝑚3.  The color coding is according 

to their polarimetric scattering angle alpha, α. 
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4.5.2 Retrieval Results 

The aim of this study is to use the DPolInSAR coherence regions to retrieve the SWE change 

between the two measurements. For that, the depth, density and anisotropy changes for the snow 

change are retrieved. For each pixel, the coherence region using (14) for the data is computed for 

random polarization states. Then the proposed DPolInSAR model is used to model the 

DPolInSAR coherences for different combinations of snow depth, density, and anisotropy 

changes. Here again, the coherence regions for the random polarization states are calculated. Now, 

the difference between the phases of the 𝑛 polarization states from the data and the model is 

computed for all combinations of snow depth, density, and anisotropy changes with the cost 

function 𝐶(𝑍, 𝜌, 𝐴): 

 

𝐶(𝑍, 𝜌, 𝐴) = ∑ |(𝛥𝛷𝑑𝑎𝑡𝑎,𝑖 − 𝛥𝛷𝑚𝑜𝑑𝑒𝑙,𝑖(𝑍, 𝜌, 𝐴))|
𝑛

𝑖=0
. (35) 

 

The goal is to find the minimal difference between the phases of the polarization states from 

the data and the model. The parameters of this minimum of 𝐶(𝑍, 𝜌, 𝐴) are then the depth, density 

and anisotropy estimate for the pixel. 

In Fig. 10 (top), an example for the 3D cost function 𝐶(𝑍, 𝜌, 𝐴) is visualized. The cost function 

is ranging from low to high values, with low values having a higher agreement between the data 

and the model. Different density-depth combinations, which correspond to the same SWE, lead 

to a line shaped minimum in the density-depth plane, as expected. The 2π phase wrap of the 

interferometric phase leads to further minima at the corresponding SWE interval. Fig. 10 (bottom) 

 

Fig 9.  Interferometric phase of the VV channel (blue) and the HH channel (orange) in dependence of the 

anisotropy change. (C band, 𝜌 = 0.15 𝑔/𝑐𝑚3, Θ = 39°, Z=9cm) 
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shows a 2D plot of the cost function in dependence of the SWE and anisotropy. It can be seen 

more in detail here, that the influence of SWE is much more prominent in the result than the 

anisotropy estimate. This is also expected after the results in Section 4.5.1, as the snow depth 

change or SWE change has a bigger effect on the absolute phase than the anisotropy change. Still, 

also a small effect of the anisotropy is present, which even allows to partly solve the 2π phase 

ambiguity for larger SWE changes.   

The depth and density corresponding to the minima of the cost functions are used to compute 

the SWE change estimate. Fig. 11 for Inf1 and Fig. 12 for Inf2 show the comparison between the 

ground measurements and the corresponding estimated SWE change values. Here, the results 

from the DPolInSAR model inversion (blue) and the SWE changes, which would be obtained 

from just using the single-pol DInSAR phase in VV (green) and HH (orange) and (3), are 

displayed in the top for C band and in the bottom for L band. 

 
 

Fig. 10.  Cost function for one location in Inf2 using L band. TOP: 3D plot of the cost function in 

dependence of 𝑍, 𝜌, 𝐴. Bottom: 2D plot of the cost function for Δ𝑆𝑊𝐸 and 𝐴. Color scale is ranging from 

low to high values of the cost function.    
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Note here, that in regions with local slopes, the ground measurements do not align with the 

local normal. In order to compare them to the retrieved SAR measurements, a factor of cos 𝛽 is 

included, with 𝛽 being the local slope angle [22]. 

For the small snow fall event in Fig. 11, the results between the different methods do not 

deviate much for neither C band nor L band. This indicates that both approaches, either using 

DPolInSAR or a single polarization and (3), agree. Still, the DPolInSAR estimates are slightly 

better. In the case of the bigger snow fall event, a clear difference between the DPolInSAR 

 

 

Fig. 11.  SWE change estimates of the PolInSAR model (blue), the DInSAR approach using the HH phase 

(orange), and the DInSAR approach using the VV phase (green) compared to ground based SWE change 

measurements for Inf1. Top: C band. Bottom: L band.  
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estimates and the DInSAR SWE change estimates can be observed (Fig. 12). The DInSAR SWE 

change estimates are clearly affected by the phase wrap problem. In L band, the DPolInSAR 

model is able to solve all phase wraps which occur in the DInSAR retrieval (Fig. 12 (bottom)). 

Also, those estimates which are not affected by a phase wrap are more accurate for the DPolInSAR 

retrieval. Even though not all phase wraps are resolved correctly for C band using the DPolInSAR 

approach (Fig. 12 (top)), it is still possible to resolve some phase wraps, improving the accuracy 

of the SWE change estimates.   

 

 

Fig. 12.  SWE change estimates of the DPolInSAR model (blue), the DInSAR approach using the HH 

phase (orange), and the DInSAR approach using the VV phase (green) compared to ground based SWE 

change measurements for Inf2. Top: C band. Bottom: L band. 
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Additionally, Table III shows the RMSEs for the SWE change estimates. In all cases, the SWE 

change retrieval from the DPolInSAR model inversion performs better than the basic DInSAR 

model using only one polarization. For the small SWE change event in Inf1, the difference 

between the RMSEs is quite low. However, for the bigger SWE change event in Inf2, the accuracy 

improves significantly when using the DPolInSAR model. This indicates that in case of big snow 

fall events, the model is able to significantly improve the accuracy of the SWE change estimates.   

4.6 Discussion 

The proposed DPolInSAR model has demonstrated the potential to improve the SWE change 

estimation compared to the conventional single-pol DInSAR model. However, it is still not 

possible to completely resolve the phase wrap problem, mentioned in Section 4.3.1. One reason 

for that is that there is partly an ambiguity between a snow depth change (see Section 4.5.1.1) and 

an anisotropy change (see Section 4.5.1.2). While for a snow depth change mainly an increase in 

absolute phase can be observed, in both cases also the phase extent of the coherence region 

increases. This increase in the phase extent results in an ambiguity, which cannot be solved so far. 

Nevertheless, using the DPolInSAR model it is still possible to correct for some phase wraps, 

which is an improvement compared to the DInSAR model, see Fig. 12.  

Similar to the conventional DInSAR approach, a limitation is the need of an absolute phase 

calibration in order to retrieve SWE changes [17]. Therefore, a reference phase is required, which 

in this study is a corner reflector.  

Compared to the conventional DInSAR approach, the DPolInSAR model requires at least 

copolar measurements in HH and VV. As a consequence, a number of satellites are not suitable 

for this approach, for example Sentinel-1, because it only performs co-cross polarized 

measurements [43]. However, the proposed method has potential for spaceborne sensors such as 

TanDEM-X [44], PAZ [45] and ALOS-2 [46] where dual polarimetric measurements in VV and 

HH are available, as well as for airborne SAR measurements. Also, upcoming copolar dual 

polarimetric SAR missions like NISAR [47] could exploit this method.  

TABLE III 

RMSE SWE CHANGE ESTIMATES 

Frequency C band L band 

Interferogram Inf1 Inf2 Inf1 Inf2 

RMSE Model 

(cm) 
0.41 3.22 0.44 1.43 

RMSE 

SWEVV (cm) 
0.46 6.86 0.46 6.72 

RMSE 

SWEHH (cm) 
0.44 6.76 0.46 5.75 
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4.7 Conclusions 

This study demonstrates the potential of combining DInSAR and PolSAR into a DPolInSAR 

model to estimate SWE changes. Depending on whether the interferometric phase of horizontally 

or vertically polarized channels is used for the single-pol SWE change retrieval, different SWE 

change estimates are obtained. The difference between the HH and VV estimates increases for 

higher SWE changes between the interferometric acquisitions. This shows that it is important to 

include the polarimetric information for a more accurate SWE change retrieval. 

In order to not only include, but also to use the additional information of the polarimetric 

measurements, a DPolInSAR model is introduced. This is achieved by combining existing 

interferometric and polarimetric snow models to derive DPolInSAR coherence regions. This 

combined model can be used to simulate temporal coherence regions for varying changes in snow 

depth and anisotropy, with the goal to understand the influence of snow changes on the coherence 

region parameters such as absolute phase and phase extent. An increase in snow depth results in 

an absolute phase change, as well as in an increase in phase extent of the coherence region. 

Meanwhile, a change in anisotropy primarily results in an increase of the phase extent. By 

exploiting these features, additional information can be retrieved, compared to the conventional 

single-pol DInSAR approach. 

The PolInSAR model is used to estimate snow changes from airborne SAR measurements by 

retrieving the parameters for snow depth, density and anisotropy which minimize the difference 

between measured and modeled coherence regions. In all cases the RMSE between the retrieved 

and in-situ measured SWE changes improves compared to only using a single polarization. In 

addition, the proposed DPolInSAR retrieval is able to partly solve the 2π phase wrap issue. 

Therefore, the proposed approach has potential for application in future dual-pol SAR missions. 
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5 Conclusions 
 

The main goal of this thesis is to analyze and improve the accuracy of interferometric SWE 

change retrieval by exploiting multifrequency data as well as polarimetric SAR measurements. 

The relevant studies, which were described in Chapters 2 to 4, are summarized and discussed with 

respect to the research goals of this thesis in the following sections.  

Firstly, Section 5.1 summarizes the applied methods and the conducted analyses. In Section 

5.2, the results and conclusions are outlined by answering the research questions of this thesis. 

Finally, Section 5.3 gives an outlook, which puts a focus on the possible use cases of the proposed 

approaches, remaining limitations, and potential research objectives in the future. 

5.1 Summary 

Chapter 1 ‘Introduction’ introduces the topic and presents the background for the SAR 

techniques utilized in this thesis. The main focus lies on interferometric and polarimetric SAR 

methods. The microwave interaction with the snow pack is governed by its dielectric properties. 

This is used in a DInSAR SWE change retrieval, which utilizes the snow-induced phase difference 

to estimate the SWE change. Polarimetric measurements can be linked to the amount of snow by 

exploiting the phase difference between vertical and horizontal polarizations, the CPD. This 

chapter also introduces the research objectives and questions of this thesis, which aim at the 

improvement of the SWE change retrieval combining both DInSAR and polarimetric information. 

In Chapter 2 ‘The Potential of Multifrequency Spaceborne DInSAR Measurements for the 

Retrieval of Snow Water Equivalent’, an existing SWE change retrieval method is applied to 

spaceborne SAR measurements with different frequencies over a test site in Finland in order to 

assess their respective potentials and limitations. For that, three different SAR sensors are 

investigated. For X-band, TanDEM-X data is used, while the Sentinel-1 dataset contains C-band 

SAR measurements and, ALOS-2 provides L-band acquisitions. Interferometric processing of the 

data is performed and the coherence and phase are calculated for short time series, which are then 

used to estimate the SWE changes between the measurements. The analysis highlights the known 

issues of the temporal decorrelation, which are related to snow melt, high frequencies, long revisit 

times, and the frequency-dependent appearance of phase wrap issues. In order to investigate phase 

wraps, ground-based measurements are used for their detection and to quantify the number of 

missing phase cycles. In the first step, this ground-based information is used to correct the 

DInSAR SWE change retrieval results by addition of missing phase cycles. In a second step, SWE 

estimates from different frequencies are combined. Here, frequencies which are less affected by 

phase wraps (i.e. longer wavelengths) are used to detect and correct phase wraps of frequencies 

that have a lower phase wrap threshold (i.e. shorter wavelengths). 

Chapter 3 ‘Combining Differential SAR Interferometry and Copolar Phase Differences for 

Snow Water Equivalent Estimation’ combines the DInSAR SWE change retrieval with CPD 
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measurements of the two SAR acquisitions. For that, polarimetric C- and L-band data from DLR’s 

airborne radar system F-SAR are used. The flight campaign took place in Austria and was 

accompanied by ground-based measurements of snow properties, as well as the set-up of corner 

reflectors, which were used to create a reference phase. The differential interferometric phase is 

used to estimate the SWE change. Due to the fact, that the CPD can be related to the depth of 

fresh snow using an established model, an approach is presented that includes the CPD changes 

between two acquisitions to check whether the SWE change exceeded the phase wrap threshold 

and to reconstruct the missing phase cycles. The missing phase cycles are then corrected in the 

DInSAR SWE change estimate to achieve an improved SWE retrieval performance. 

Chapter 4 ‘Exploring DPolInSAR Coherence Regions for Snow Water Equivalent Estimation’ 

proposes a combination of interferometric and polarimetric measurements in a DPolInSAR 

approach. Here, the data from the same airborne campaign as described in Chapter 3 was used. 

By establishing a unified polarimetric interferometric model, the temporal polarimetric coherence 

for different polarization states can be simulated and displayed as coherence regions. This allows 

taking into account that the propagation of radar waves inside the snow pack depends on the 

polarization, and different snow changes and their effects on the temporal coherence region are 

analyzed. The temporal coherence regions of the data are calculated and compared to the model. 

The parameters for snow depth, density and anisotropy are estimated by minimizing the phase 

differences between model and data.  

5.2 Main Findings 

In the following, the results and conclusions will be summarized by addressing the research 

questions formulated in Chapter 1.6: 

 

• What are the performance tradeoffs of the DInSAR SWE change retrieval 

algorithm between different spaceborne SAR sensors with different frequencies? 

 

An existing DInSAR SWE change retrieval was analyzed for spaceborne SAR 

measurements in X-, C- and L-band in Chapter 2. The coherence amplitudes were low 

for X-band, due to the 11 day repeat cycle, but had particularly low values for 

interferograms measured around dates with high temperature gradients. Especially the 

winter for which the C- and L-band data was analyzed was often affected by 

temperatures above 0 degrees and melt events likely occurred between the acquisition 

dates. This prevents the radar wave to penetrate through the entire snowpack and might 

have introduced errors in the SWE change estimation. This can also be a reason for 

low coherences. As the coherence amplitude can be used as a measure for phase noise, 

this increases also the phase standard deviation.  

An important issue which affects the performance of the SWE change retrieval for 

all spaceborne SAR measurements is the calibration of the interferometric phase. 
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Errors in the reference phase directly affect the estimation results. In the presented 

study, the phase was calibrated using a stable scatterer close to the test site. However, 

it cannot be guaranteed that the stable scatterer was snow free in this case. Therefore, 

the presence of snow might have influenced the reference phase. 

For short wavelengths, such as X-band, one of the main limitations are the wraps 

of the interferometric phase. The interval in which SWE change can be retrieved 

unambiguously, i.e. before a phase wrap occurs, depends on the wavelength and is 

smaller for shorter wavelengths. In the investigated winter, this threshold was 

exceeded many times, partly due to the long temporal baseline of 11 days. Even the C-

band measurements with a shorter 6 days temporal baseline were affected. On the other 

hand, the L-band measurements with a 14 days temporal baseline did not exceed the 

phase wrap threshold indicating the usefulness of lower frequencies for unambiguous 

SWE change retrievals. However, a longer wavelength comes at the cost of a lower 

SWE change accuracy. 

The above-mentioned temporal baselines not only affect the likelihood of phase 

wraps, but severely impact the temporal decorrelation with the associated coherence 

loss. The 11 days baseline at X-band often led to very low coherences with barely 

useable phase information. However, under very stable conditions some 

interferograms showed coherences above 0.6. Even though 6 days at C-band and 14 

days at L-band theoretically favor higher coherences and thus more reliable phase 

information, the particular warm winter with many melt events often led to very low 

coherences as well. While it is known that shorter temporal baselines and longer 

wavelengths are favorable, these results demonstrate that also the opposite settings can 

yield useful information and that the overall DInSAR SWE retrieval depends on the 

stability of the snow conditions. 

When ground measurements are used to correct the missing phase cycles in X- and 

C-band, the RMSE between the X- and C-band estimates and the ground 

measurements improves significantly. In absolute terms, the RMSE is smallest for the 

X-band SWE change estimates after correction and has therefore the sensitivity to 

retrieve small changes. However, the dependence on the phase wrap corrections is the 

highest in this case. With respect to the RMSE relative to the phase wrap interval for 

each frequency, L-band has the best performance. 

In conclusion, longer wavelengths can be used to retrieve greater SWE changes 

without the need to compensate missing phase cycles and have the best performance 

relative to the phase wrap interval. However, when it is possible to correct the missing 

phase cycles, the accuracy increases for shorter wavelengths, indicating the potential 

for a multifrequency SWE change estimation approach. 
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• Are there ways to solve the interferometric phase wrap problem in the DInSAR 

SWE retrieval and which data dimensions are required for this? 

 

Two approaches to solve the interferometric phase wraps are presented in this 

thesis. The first exploits measurements at different frequencies and the second at 

different polarizations. For comparison, interferometric phase wraps were also 

corrected using ground measurements. 

The phase wraps of the interferometric phase, which affect the performance of the 

SWE change retrieval, depend on the amount of SWE change and on the frequency of 

the radar wave. The multifrequency approach presented in Chapter 2 combines the 

SWE change estimates from two different frequencies. It exploits the fact that ΔSWE 

estimates retrieved from measurements with longer wavelengths are less affected by 

phase wraps than shorter wavelengths.  

The results of the SWE change retrieval using the multifrequency approach 

improved compared to the case when no correction of the phase wraps was applied. 

This means that the retrieval based on a longer wavelength was able to detect phase 

wraps that occurred in the shorter-wavelength retrieval. 

However, using ground measurements for phase wrap correction yielded an even 

higher accuracy than using the multifrequency approach. One limitation in this study 

was that the C- and L-band measurements were acquired in the same winter, but not at 

the same dates and at the same temporal baseline. To compensate for this, SWE values 

were approximated by linear interpolation between the measurement dates, which may 

have introduced some discrepancies. Another reason for the lower accuracy may have 

been temperatures above zero degrees and associated melt events. 

Nevertheless, the multifrequency approach increased the accuracy compared to not 

correcting the phase wraps at all. This demonstrates that it is possible to solve phase 

wraps and thus to exploit the high sensitivity of short wavelengths in combination with 

the increased unambiguous phase interval of longer wavelengths. 

Polarimetry is an alternative approach to address the issue of phase wraps during 

SWE change retrieval. A method is presented in Chapter 3 that includes CPD 

differences in the SWE change retrieval. The difference between the CPD at the first 

acquisition and the CPD at the second acquisition can be linked to the snow depth 

change between them, if the snow density and anisotropy parameter are assumed. This 

snow depth change in combination with the density assumption is used to check 

whether phase wraps have to be corrected in the DInSAR SWE change estimates. The 

advantage of the CPD is that CPD phase wraps are not expected even for large changes 

in snow depth. However, the sensitivity of the CPD phase to SWE changes is lower 

than in the DInSAR case, which is why it is only used as a proxy to detect potential 

phase wraps in the DInSAR SWE change estimates. 
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The experiments demonstrated that the accuracy of the DInSAR SWE change 

retrieval can be improved using the CPD. This underlines that the CPD change between 

the measurements can be used as an approximation for the phase wrap correction 

without the need of using ground measurements. 

Again, when ground measurements are used for phase wrap correction, a higher 

accuracy is achieved compared to the CPD-based correction. Obviously, the 

underlying CPD model is a strong approximation of the real snow microstructure and 

does not account for all natural changes. Bulk assumptions on the snow density and 

anisotropy are required, which affects the accuracy of the retrieval. Furthermore, due 

to the temporal baseline between the measurements, snow metamorphism may occur, 

which affects the CPD but is not accounted for in the model. This and a SWE change 

both have an impact on the CPD change between the measurements, which leads to 

ambiguous CPD information. 

Nevertheless, the phase wrap correction using the CPD change partly enables the 

detection and correction of phase wraps and is therefore able to improve the accuracy 

of the SWE change retrieval compared to the conventional DInSAR approach without 

correction. The polarimetric information contained in the CPD is also used implicitly 

in the DPolInSAR retrieval in Chapter 4 where it also allows to account for phase 

wraps. 

 

• How can interferometric and polarimetric SAR measurements be combined in a 

unified DPolInSAR model? 

 

Interferometric and polarimetric measurements are combined in a DPolInSAR 

model as presented in Chapter 4. This is done by modeling polarimetric scattering 

matrices for two SAR images acquired at different times. The influence of the snow is 

included using propagation matrices, which take into account the different 

permittivities for vertically and horizontally polarized radar waves. This has the 

advantage that polarimetry is directly included and potentially allows to correctly 

model the polarization dependency of the radar wave traveling through the snow pack. 

The model requires snow depth, density, anisotropy and the underlying scattering 

mechanism of the surface below the snow pack as input parameters. This makes the 

model applicable to a wide range of snow change scenarios. The modeled scattering 

matrices are used to calculate the DPolInSAR coherences for different polarization 

states, which contain polarimetric as well as interferometric information. The absolute 

values of the DInSAR coherence correspond to the absolute coherence of a specific 

polarization state. Depending on how decorrelation effects affect the different 

polarization states, differences between the polarization states can be observed, 

revealing information that would not have been available using only one polarization. 

The phase contains the interferometric phase information for each polarization state, 
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which can be related to the snow change parameters. Since the polarimetric 

information is included in the model, the phase of all polarization states can be related 

to the same snow parameters, making it consistent compared to using the single 

polarization approach for different polarizations.   

 

• What is the added value of polarimetric phase information in the DInSAR SWE 

change algorithm? 

 

In the conventional DInSAR SWE change retrieval, no polarization dependency is 

taken into account. Therefore, the estimated SWE changes can differ for the same 

scene depending on whether, e.g., vertical or horizontal polarization was used for the 

estimation. The analysis of the polarization dependence in Chapter 4 reveals that the 

difference of the SWE change estimates of the vertical or horizontal polarization can 

potentially be neglected for small SWE changes. Here, a difference of 0.14 cm was 

detected for a SWE change event of approximately 1.15 cm. However, this discrepancy 

between the SWE change estimates of the vertical or horizontal polarization increases 

with higher SWE changes and needs to be considered for a more accurate SWE change 

retrieval. 

The approach presented in Chapter 3 takes advantage of the phase difference 

between the horizontal and vertical polarization. The CPD difference between two 

SAR acquisitions contains information about the snow change between them. This 

information can be used as an estimation for missing DInSAR phase cycles and 

therefore adds additional information to the retrieval. 

In order to further exploit polarimetric information, the DPolInSAR model is 

introduced in Chapter 4, which can be employed to simulate temporal coherences for 

different polarization states. A snow depth increase results in an absolute phase 

increase for all polarization states, but also in an increase of the phase extent of the 

coherence region for anisotropic snow. This reveals the phase differences for different 

polarizations states, which would not be accounted for in the single polarization 

DInSAR SWE change retrieval. When the anisotropy is increased, primarily the phase 

extent is increasing, while the effect on the absolute phase is rather small. However, 

this effect of an anisotropy change on the absolute phase would be misinterpreted as a 

SWE change in the DInSAR retrieval. 

As different snow parameter changes and underlying surfaces have an, although 

partly ambiguous, effect on the coherence region, its parameters may be used to 

retrieve them. These can then add information to the SWE change retrieval making it 

more robust. 
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• Can the DPolInSAR model improve the SWE change retrieval? 

 

The DPolInSAR model from Chapter 4 can be used to retrieve the SWE change. 

This is done by finding the parameters for snow depth, density and anisotropy that 

minimize the phase differences for the investigated polarization states between the 

model and the data. The snow depth and density estimates provide the SWE change 

estimate. In a direct comparison with the two DInSAR models using vertical and 

horizontal polarization, respectively, the DPolInSAR model achieves the highest 

accuracy. 

One advantage of the DPolInSAR model is that the polarization dependence of the 

DInSAR phase is not an error source as in the single-polarization case, but is explicitly 

considered as an information source. Furthermore, consistent SWE values can be 

retrieved for all polarizations as the polarization dependency of the radar wave is 

included. However, the model relies on assumptions, which might not describe a real 

snowpack completely accurately. Moreover, the DPolInSAR retrieval is able to partly 

solve the phase wraps of the measured phase as snow depth and anisotropy are 

considered jointly. However, it is not possible to solve all phase wraps. This may be 

due to the fact that both snow depth and anisotropy change have a partly ambiguous 

effect on the absolute phase and the phase extent of the coherence region, which is an 

error source in the retrieval.  

 

5.3 Outlook 

Although it was possible to present methods that address some limitations of SAR-based SWE 

change estimation, the investigations in this thesis also highlighted some important issues and 

open questions pertaining to SWE change retrieval. 

SWE change estimation requires consideration on which SAR data is suitable for which test 

site. TanDEM-X [1] X-band data with an 11 day repeat cycle might be not suitable for regions 

with very high SWE changes, as this would cause many phase wraps and a decorrelation of the 

signal. Here ALOS-2 [2] data with a temporal baseline of 14 days in L-band might be a better 

choice or Sentinel-1 [3] C-band data with a 12 day repeat cycle. A possibility for X-band data 

might be the combination of TanDEM-X and PAZ [4], as here temporal baselines of 7 and 4 days 

can be achieved. In the future, large SWE changes could be also measured with the upcoming 

NISAR [5] mission, which will acquire measurements at L-band and S-band every 12 days. A 

further opportunity will be L-band measurements from ROSE-L [6] with a repeat cycle of 12 days. 

In order to further investigate the multifrequency phase wrap correction approach, 

multifrequency measurements acquired at the same time would be immensely beneficial. This 

will ensure consistency in weather and snow conditions. Furthermore, the use of identical 

temporal baselines would enhance the comparability of the results. For airborne SAR 
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measurements, the DLR’s system FSAR would be a suitable candidate, which is able to acquire 

measurements at X-, C- and L-band simultaneously [7]. In the spaceborne case, the upcoming 

NISAR mission would be suitable. In this case, L-band measurements can be used to correct the 

more sensitive S-band SWE change estimates. An additional opportunity in the future will be the 

combination of Sentinel-1 C-band measurements with L-band acquisitions from ROSE-L. The 

orbits of both satellite systems are identical and have only a small temporal separation. The 

combination of these missions could benefit from the multifrequency phase wrap correction to 

provide the sensitivity of shorter wavelengths for SWE change estimation while being more robust 

to phase wraps that occur due to high SWE changes. Also, more direct combinations or data fusion 

of multifrequency measurements are worth investigating, by not only considering it for a phase 

wrap correction, but by exploring ways of exploiting the full information of the measurements at 

all frequencies while carefully considering their different sensitivities and inaccuracies. 

In order to exploit CPD changes for phase wrap correction, dual polarimetric measurements 

in VV and HH are needed. Therefore, this approach may be applied for airborne sensors, such as 

F-SAR, but also in current spaceborne missions such as TanDEM-X, PAZ, and ALOS-2, as well 

as for NISAR data in the future. Here, the results will depend on assumptions on the snowpack, 

and this approach might be more suitable for regions where the snow properties are approximately 

known. For the general assumptions used in this thesis, an improvement of the accuracy of the 

SWE change estimates was observed. Therefore, this approach may still be used as a proxy for 

phase wrap correction with low computational effort when no ground measurements are available. 

A more complex approach is the DPolInSAR model. Here, a next step will be the analysis of 

which polarization states or coherence region parameters of the DPolInSAR model are needed in 

order to successfully retrieve the SWE change for computational efficiency. So far, only the phase 

information between the data and model was compared. In the future, a potential approach can be 

to focus also on the absolute coherence values for the retrieval in order to have a larger observation 

space and achieve a higher accuracy. Furthermore, studies have shown that scattering inside the 

snow pack might occur even for C-band frequencies [8], which is not yet considered in the 

DPolInSAR model. This can be investigated by including models that describe scattering inside 

the snow pack [9] in the DPolInSAR model and by analyzing how the coherence region 

parameters are changing accordingly. Finally, a more robust SWE change retrieval could 

potentially be achieved by also including multifrequency information in the DPolInSAR model. 

One of the main limitations affecting the SWE change retrieval is the calibration of the 

interferometric phase. In Chapter 3 and Chapter 4 the phase of a corner reflector located in the 

scene was utilized to this end. It was ensured that the corner reflector was not covered with snow 

during the measurements, making it suitable for phase calibration. Due to the fact that no corner 

reflector was available in the study presented in Chapter 2, a stable scatterer was used. In future 

SAR applications for SWE change estimations, the phase calibration is a major limitation, 

particularly in areas where no reference phase can be measured. 

In future experiments, the characteristics of the test site need to be considered, although this 

aspect was not the focus of this thesis. The presence of trees inside the resolution cell may affect 
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the SWE change estimates and is an important factor when choosing the multilooking-window 

size. Here, a forest mask may be used to mark the location of trees [10]. 

Additionally, meteorological conditions are affecting the SWE change retrieval. At 

temperatures above zero degrees melting of the snow surface may occur. This may result in wet 

snow or the formation of an ice layer by the time the second acquisition is made for the 

interferogram. This would prevent the radar wave to penetrate through the entire snowpack which 

is a prerequisite for the SWE change retrieval using the interferometric phase change. Therefore, 

it is important for future applications to take temperature conditions into account and to generate 

a wet snow map to differentiate dry and wet snow [11]. 

The investigations in this thesis aim to enable a more accurate SWE change retrieval using 

SAR data. Remotely-sensed SWE from SAR data has the potential to provide information of this 

important parameter continuously at large spatial scales and high temporal and spatial resolution. 

This would reduce the dependency on ground-based measurements, the spatial interpolation of 

which can introduce significant errors in regions with a low density of measurement sites. 

Remotely-sensed SWE estimates can then be used as an input parameter to improve climate and 

hydrological models, for example to enable more accurate runoff predictions. These will be 

invaluable for water resource management and planning, particularly in the context of a changing 

climate. 
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