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A B S T R A C T

Under the mounting pressure from global warming, green roofs emerge as a valuable source for climate adap
tation, particularly in compact metropolises where green space is limited. Consequently, there is a need to 
quantitatively evaluate the potential for roof greening where it is most needed and suitable. Despite the 
increasing importance of this issue, there have been limited studies on the effectiveness of remote sensing and 
deep learning in identifying the potential for roof greening in many cities. To address this, we have created a 
GreenRoof dataset, comprising approximately 6400 pairs of remote sensing images and corresponding masks of 
roofs with high greening potential in four European cities. Afterward, we exploit the capabilities of deep learning 
methods to identify roofs that are suitable for greening from remote sensing images. Using 15 German cities as a 
case study for future urban rooftop planning, we estimate the spatial potential for retrofitting green roofs. 
Structural parameters for prioritizing green roof implementation include vegetation coverage, thermal envi
ronment, and building density. Results indicate that the total area suitable for green roof retrofitting exceeds 20 
% of the roof area in the 15 German cities examined. The spatial analysis effectively reflects variation in demand 
and suitability for green roof retrofitting across different cities. In conclusion, this study provides a versatile 
screening approach utilizing remote sensing, deep learning, and spatial analysis, which can be readily adapted to 
inform municipal policies in other cities aiming to promote green roofs and enhance sustainable urban 
development.

1. Introduction

The report from the Intergovernmental Panel on Climate Change 
(IPCC) (Lee et al., 2023) indicates that global warming has elevated the 
global mean surface temperature by 1.1 ◦C, comparing the periods from 
1850 -1900 to 2011–2020. This trend is associated with an uptick in the 
intensity and frequency of extreme weather events, which inflict severe 
impacts on ecosystems, infrastructure, and human communities 
(Diffenbaugh et al., 2017; Rossati, 2017; Wang et al., 2017). Mitigating 
global warming requires a range of climate actions focused on fostering 
sustainable practices and curbing greenhouse gas emissions. One recent 
research (Massaro et al., 2023) indicates that urban vegetation signifi
cantly contributes to reducing the urban population’s exposure to heat 
extremes. As vegetation offers cooling effects through the processes of 
evapotranspiration and shading, numerous cities worldwide have 

undertaken greening initiatives. These efforts include expanding parks, 
planting street trees, and installing green roofs (Karteris et al., 2016; Li 
et al., 2015). Regrettably, often the limited available space in combi
nation with the high costs of urban land renders establishing or main
taining tree-planted areas prohibitively expensive, if not entirely 
unfeasible. Roof greening, however, without the need for additional 
space, offers a comparatively resource-efficient solution for enhancing 
green infrastructure in densely built environments (Liu et al., 2022).

Green roofs incorporate vegetation, soil, and a waterproofing 
membrane on top of buildings. The vegetation on green roofs cools the 
air, thanks to the evapotranspiration process, which contributes to the 
decrease in indoor and outdoor temperatures. In this case, green roofs 
offer the benefit of mitigating the urban heat island (UHI) effect (Alcazar 
et al., 2016; Langemeyer et al., 2020), ensuring thermal comfort during 
the summer (He et al., 2020; Herath et al., 2021; Leichtle et al., 2023; 

* Corresponding author at: Data Science in Earth Observation, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany.
E-mail addresses: qingyu.li@tum.de (Q. Li), hannes.taubenboeck@dlr.de (H. Taubenböck), xiaoxiang.zhu@tum.de (X.X. Zhu). 
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Sharma et al., 2018), and addressing urban green inequality issues (Guo 
et al., 2024). Additionally, green roofs offer numerous environmental 
advantages, including the alleviation of noise pollution, reduction of 
stormwater runoff, and improvement of air quality (Manso et al., 2021; 
Shafique et al., 2018; Tomson et al., 2021; Vijayaraghavan, 2016).

Given the prevalence of existing buildings in cities, it is valuable to 
undertake a thorough examination of the feasibility of implementing 
green roofs as retrofits for these structures. Delving into potential 
assessment methods for roof greening holds practical significance in 
formulating effective planning policies to construct eco-friendly and 
more climate-resilient cities. Various types of data have been employed 
to identify the potential of roof greening at city-scale. Some studies rely 
on existing geodata that include different characteristics of buildings. 
Municipal census data are employed to assess the suitability of imple
menting green roofs in Seoul (Gwak et al., 2017) and Shenzhen (Hong 
et al., 2019), respectively. Based on both national and municipal census 
data, (Silva et al., 2017) and (Slootweg et al., 2023) ensure the viability 
of retrofitting green roofs in Lisbon and Amsterdam, respectively. Some 
research additionally adopts Light Detection and Ranging (LiDAR) data 
to acquire precise three-dimensional (3D) building models. These 
studies aim to delineate the roofs as well as the slope of roofs to identify 
the suitability of roof greening in cities such as Lisbon, Braunschweig, 
Liege, Nador, and Donosti-San Sebastián (Gandini et al., 2023; Grun
wald et al., 2017; Joshi et al., 2020; Lambarki et al., 2022; Santos et al., 
2016). This is because roofs with slopes of 10

◦

or more demand 
increased consideration compared to flat roofs (Joshi et al., 2020; Silva 
et al., 2017; Slootweg et al., 2023). Non-flat roofs experience faster 
drying, posing a risk to planted vegetation. Furthermore, such roofs have 
an elevated risk of erosion, necessitating more intricate and costly 
structural measures. Compared to airborne LiDAR data, spaceborne or 
airborne optical remote sensing data are generally more cost-effective 
and readily available for covering large geographic areas. Moreover, 
aerial imagery has become freely available in many cities, making it 
easier for researchers, planners, and policymakers to use remote sensing 
data in their work. Through visual interpretation, (Shao et al., 2021) 
manually delineates flat roofs on aerial imagery in Luohe. By analyzing 
remote sensing images, (Xu et al., 2021) utilize a deep learning method 
to discern whether buildings feature flat or sloped roofs in Xiamen. 
However, existing studies predominantly focus only on one city or a 
specific area in the city, with limited attention to conducting potential 
assessments for large scale analysis across multiple cities. In this 
research, we close this gap using remote sensing imagery and deep 
learning methods.

As mentioned above, green roofs offer a range of environmental and 
socioeconomic advantages. For instance, they can significantly lower 
the expense of cooling through the evapotranspiration and shading of 
vegetation, especially in exposed urban areas with high building den
sity, where the temperature is often measured high in summer (Leichtle 
et al., 2023). Green roofs also serve a vital function in offering areas for 
relaxation and educational purposes by incorporating greenery in areas 
with a general lack of available green spaces (Gwak et al., 2017). 
However, the potential advantages of green roofs can be different based 
on structural parameters, e.g., vegetation coverage, thermal environ
ment, and building density in a particular neighborhood. When retro
fitting green roofs for sustainable urban development, it is an advantage 
to select locations that maximize these benefits while operating within 
budgetary constraints. The objective of this study is to undertake a 
thorough analysis of the feasibility of roof greening in neighborhoods 
taking into account different structural settings.

Against this background, the contribution of our paper is threefold: 
(1) We address the task of mapping roofs with high greening potential 
from aerial imagery. We develop and provide a GreenRoof dataset to the 
science community, consisting of around 6.4 K pairs of aerial images 
covering four cities across Europe and their annotated masks of roofs 
with high greening potential. (2) We evaluate the capabilities of our 
deep learning network to identify roofs appropriate for greening and 

validate this by comparing with results obtained from official geodata. 
(3) We apply the approach to 15 German cities to investigate the po
tential for roof greening. In particular, we highlight some key parame
ters that allow a spatial prioritization of green roofs: vegetation cover in 
the surrounding area, thermal environment, and building density.

By integrating aerial remote sensing data with deep learning models, 
this study enhances the precision and scalability of roof greening po
tential assessments, moving beyond traditional survey or statistical 
methods. This advancement provides a replicable framework that can be 
applied to other urban areas worldwide. Therefore, one key innovation 
of this study lies in its methodological generalization capabilities and, 
thus, in its broad applicability. Unlike previous studies, which typically 
focus on isolated or specific cities, our study spans multiple cities with 
diverse urban environments. On the one hand, our GreenRoof dataset is 
multi-city, enabling broader generalizability and cross-city compari
sons, which are crucial for identifying green roof potential in various 
urban contexts. On the other hand, this study investigates both large and 
small cities and areas of various densities in Germany, filling a gap in 
cross-regional roof greening potential assessment.

2. Data sets and study areas

In this study, we establish a geographically diverse dataset, which we 
call “the GreenRoof dataset”, encompassing four European cities. Recent 
IPCC climate change scenarios (IPCC, 2022) project that European cities 
are among the most exposed globally to rising temperatures, with urban 
areas expected to experience disproportionately high-temperature in
creases (Taubenböck et al., 2024). This emphasizes the critical need for 
adaptive strategies, such as roof greening, to enhance urban resilience in 
Europe.

Fig. 1 (a) illustrates the cities included: Berlin, Germany; Brussels, 
Belgium; Helsinki, Finland; and Vienna, Austria. On the one hand, 
remote sensing images and 3D building models of these cities are pub
licly accessible for research. On the other hand, they feature a variety of 
structural characteristics of building patterns and urban climates being 
large capital cities with cultural significance, economic importance, and 
political relevance within Europe. Berlin and Vienna experience a 
moderate continental climate with warm summers, cold winters, and 
notable UHI effects in densely built-up areas. Brussels has a temperate 
maritime climate, with mild winters and moderate summers but 
frequent rain and humidity. Located in Northern Europe, Helsinki has a 
cold climate with long, snowy winters and mild summers.

The GreenRoof dataset comprises 6400 pairs of remote sensing im
ages and their corresponding greening potential maps with ground 
reference annotations. Each image is sized at 512 × 512 pixels and has 
three spectral bands (Red, Green, and Blue). Employing a 7:1:2 ratio, we 
randomly partitioned the 6400 image-map pairs into training, valida
tion, and test data for each city (Table 1). Fig. 2 illustrates the example 
data in the GreenRoof dataset.

The remote sensing imagery of the GreenRoof dataset is collected 
from different sources, and its spatial resolution ranges from 0.1 m/pixel 
to 0.2 m/pixel (Table 2). We implemented a time- and cost-efficient 
pipeline to generate pixel-wise annotations for roofs with high 
greening potential as follows: Initially, 3D building models corre
sponding to remote sensing imagery were collected from various sources 
(Table 2). Subsequently, we calculated the slope of individual roofs 
based on existing 3D building models. More specifically, the 3D models 
of cities utilized in this study are level of detail (LOD) 2 models. These 
include basic roof shapes and heights, which allow for slope calculation 
by analyzing the orientation and angles of roof planes. In LOD2 data, 
roofs are often segmented into individual planes with defined co
ordinates. For each roof plane, we calculate the surface normal vector 
that represents the perpendicular direction to the roof plane. The slope is 
computed relative to the horizontal plane using the normal vector. We 
further annotated the roofs whose slopes fulfilled the structural roof 
criterion. Due to maintenance challenges, erosion, etc., we considered 

Q. Li et al.                                                                                                                                                                                                                                        



Cities 159 (2025) 105782

3

Fig. 1. (a) Geospatial distributions of four European cities in our GreenRoof dataset. The illustrated building patterns and types reveal variable types across locations 
and cities with different potentials for roof greening. (b) Geospatial distributions of 15 cities in the state of Bavaria, Germany.
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roofs with high greening potential to have a slope between 0 and 10◦

(assessments in Silva et al., 2017; Joshi et al., 2020; and Slootweg et al., 
2023). All data were then cropped into patches with dimensions of 512 
× 512 pixels without overlap among neighboring patches. Finally, to 
address potential inaccuracies, a manual verification process was 
employed, discarding any noisy data where annotations were incorrect 
or missing for roofs with high greening potential.

Furthermore, we chose 15 cities to investigate the effectiveness of 
remote sensing and deep learning for identifying the potential of roof 
greening. These 15 cities are situated in the state of Bavaria, located in 
Southeast Germany (Fig. 1 (b)), a region characterized by a continental 
and Alpine-influenced climate. Bavarian cities experience significant 
seasonal temperature variations, with warm summers and cold winters, 
as well as periodic heatwaves that intensify UHI effects in densely 
populated areas. We have selected these cities because the mapping 
agency in the state of Bavaria, Germany, has recently released remote 
sensing images at 0.4 m/pixel and 3D building models for the whole 
state under an open data license (Vermessungsverwaltung, 2023). The 
chosen cities, Wolfratshausen, Weilheim, Wasserburg, Schweinfurt, 
Rosenheim, Regensburg, Muenchen, Landshut, Landau, Kulmbach, 
Kronach, Hemau, Deggendorf, Bad Toelz, and Ansbach, collectively 
accommodate approximately 3 million residents. Their spatial bound
aries are established by administrative delineations. These 15 cities 
display variations in size, gross domestic product (GDP), and popula
tion. Consequently, investigating these cities can be considered a reli
able representation of various urban patterns.

Considering the positive effects of green roofs, we also aim to identify 
in this study suitable locations for green roof retrofitting by incorpo
rating three structural parameters, including vegetation coverage, 
thermal environment, and building density. We do this against the 
background that green retrofitting should be prioritized where there is 
less green space per se, where it is already better, or where the building 
density is very high. Specifically, Landsat 8 OLI/TIRS satellite imagery 
(Table 3) corresponding to 15 German cities in the summertime (June, 
July, and August) of 2023 (Roy et al., 2014) have been used. Based on 
mean values of the normalized difference vegetation index (NDVI) 
(Rouse et al., 1974) and the land surface temperature (LST) (Li et al., 
2013), derived from the three-month composites, the diverse structural 
parameters of vegetation coverage and thermal environment are rep
resented. Building density maps of 15 German cities are derived from 
open 3D building models (Vermessungsverwaltung, 2023).

3. Methodology

3.1. Overview

This paper outlines a two-step process for identifying the potential of 
roof greening, comprising 1) extraction of roofs possibly suitable for 
greening from remote sensing imagery and 2) geographic-spatial eval
uation of roof greening potential for climate adaptation.

Initially, the GreenRoof dataset covering four European cities is 
employed to pre-train a deep learning model. Subsequently, we adopt 
two strategies to identify roofs possibly suitable for greening from 

Table 1 
Data Split in the GreenRoof dataset.

City Train Val Test

Berlin 1120 160 320
Brussels 1120 160 320
Helsinki 1120 160 320
Vienna 1120 160 320

Fig. 2. Example data in the GreenRoof dataset. The first row refers to remote sensing imagery, while the second row denotes masks for roofs with high 
greening potential.

Table 2 
Data source used for GreenRoof dataset.

City Country Remote sensing imagery 3D building model

Spatial 
resolution

Source Source

Berlin Germany 0.2 m/ 
pixel

https://www.ber 
lin.de/sen/sbw/s 
tadtdaten/geopor 
tal/landesvermess 
ung/geotopograph 
ie-atkis/dop-digita 
le-orthophotos

https://www.adv-onl 
ine.de/AdV-Pro 
dukte/Weitere-Pro 
dukte/3D- 
Gebaeudemodelle-Lo 
D

Brussels Belgium 0.1 m/ 
pixel

https://datastore. 
brussels/web/ur 
bis-download

https://datastore.br 
ussels/web/urbis 
-download

Helsinki Finland 0.2 m/ 
pixel

https://hri.fi/da 
ta/en/dataset/hels 
ingin-ortoilma 
kuvat

https://hri.fi/data/e 
n_GB/dataset/helsi 
ngin-3d-kaupunki 
malli

Vienna Austria 0.15 m/ 
pixel

https://www.wie 
n.gv.at/stadtent 
wicklung/stadtve 
rmessung/geodate 
n/orthofoto

https://www.data. 
gv.at/katalog/datas 
et/generalisiertes-da 
chmodell

Table 3 
Characteristics of Landsat 8.

Band Spectral region Spatial resolution

Band 1 Coastal Aerosol 30 m/pixel
Band 2 Blue 30 m/pixel
Band 3 Green 30 m/pixel
Band 4 Red 30 m/pixel
Band 5 Near infrared (NIR) 30 m/pixel
Band 6 Short wavelength infrared 1 (SWIR1) 30 m/pixel
Band 7 Short wavelength infrared 2 (SWIR2) 30 m/pixel
Band 8 Panchromatic 15 m/pixel
Band 9 Cirrus 30 m/pixel
Band 10 Thermal infrared 1 (TIR1) 100 m/pixel
Band 11 Thermal infrared 2 (TIR2) 100 m/pixel
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remote sensing imagery collected from 15 Bavarian cities: (a) a direct 
application of the pre-trained model and (b) a fine-tuning of the pre- 
trained model with local samples.

Based on the prediction as well as the official data, a geographic- 
spatial evaluation of roof greening potential is subsequently estab
lished using three structural parameters (vegetation coverage, thermal 
environment, and building density) to represent the demand for roof 

greening in specific neighborhoods. The analysis of both data sets in 
parallel is the basis for determining the accuracy of the remote sensing 
approach. A detailed illustration of the process is illustrated in Fig. 3.

3.2. Extraction of roofs possibly suitable for greening

In this study, we localize the feasibility of green roofs based on the 

Fig. 3. Study design and major research steps.
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physical properties of the roof. According to the concept used here, 
green roofs are potentially possible on flat roofs and pitched roofs with a 
maximum slope of 10◦. While some open-source products (e.g., Open
StreetMap (OSM) (OpenStreetMap contributors, 2023), Microsoft 
(Microsoft), and Google (Sirko et al., 2021)) provide building maps, the 
information on roof slopes is, however, not incorporated into these data. 
However, visual features in remote sensing images enable the identifi
cation of specific roof types possibly suitable for greening. Leveraging 
advances in deep learning techniques, certain convolutional neural 
networks (CNNs) proficiently learn these visual features, facilitating 
target identification.

In our study, a vital module of the implemented framework is the 
deep learning model, which significantly impacts the final extraction 
results of potential green roofs. Hence, we have evaluated the perfor
mance of different CNNs. To validate the effectiveness of the local 
adaptation strategy, we carry out an analysis of results that are obtained 
by CNNs in relation to official data, respectively.

3.2.1. Convolutional neural networks
CNNs are powerful deep learning architectures extensively applied in 

image segmentation tasks, where the goal is to assign a category label to 
each pixel in an image. For roof greening suitability, CNNs are trained to 
recognize features linked to flat or gently sloping surfaces—key criteria 
for greening potential—by processing labeled image data from previ
ously identified green roofs. As CNNs learn to map these features, they 
assign each pixel a probability of being part of a suitable or non-suitable 
roof, enabling accurate and efficient segmentation. Specifically, this 
study uses CNNs to segment images into ‘potential green roof’ and ‘non- 
potential green roof’ classes. Six CNNs including U-Net (Ronneberger 
et al., 2015), Efficient-UNet (Baheti et al., 2020), DeepLab v3+ (Chen 
et al., 2018), HRNet (Yuan et al., 2020), SegFormer (Xie et al., 2021), 
FC-DenseNet (Jégou et al., 2017) are applied, tested and compared for 
segmenting roofs suitable for roof greening. These six CNNs have been 
tested as they are popular networks in building segmentation tasks 
(Wang et al., 2023).

Initially, we utilize the training and validation sets of the GreenRoof 
dataset to train different CNNs. To evaluate the accuracy of potential 
green roofs extracted by the CNNs, two widely used metrics, Intersection 
over Union (IoU) and F1 score (Li et al., 2024), are employed. The 
respective formulas are as follows: 

IoU =
TP

TP + FP + FN
(1) 

F1 score =
2 × precision × recall

precsion + recall
(2) 

precision =
TP

TP + FP
(3) 

recall =
TP

TP + FN
(4) 

where FN, FP, and TP indicate the numbers of false negatives, false 
positives, and true positives, respectively. These metrics are computed at 
the pixel level. The F1 score represents the harmonic mean between 
precision and recall. The CNN model that exhibits the most favorable 
outcomes in the test set of the GreenRoof dataset is chosen for the 
application.

3.2.2. Local adaptation strategy
Subsequently, we implement two strategies to identify potential 

green roofs in 15 Bavarian cities. The first approach is without local 
adaptation, which involves directly applying the pre-trained model 
based on the four cities to infer information from the unseen remote 
sensing imagery. The second strategy is local adaptation. Here, we 
additionally collect a small amount of training (140 pairs of patches) and 

validation (60 pairs of patches) samples in each German city. All sam
ples are randomly distributed in each city to ensure a good representa
tion of different building types in the city center and in rural areas. For 
each city, the pre-trained model undergoes fine-tuning with local sam
ples before being used for inference. The effectiveness of local adapta
tion is assessed by comparing the results from the two strategies. In 
addition, we also compare and evaluate these strategies in reference to 
official data. Here, we apply the approach that acquires more similar 
metrics (e.g., the total area of potential green roofs) to the official data 
for further study.

3.3. Geographic-spatial evaluation of roof greening potential

Green roofs offer environmental and socioeconomic benefits, 
encompassing reduced energy expenditures for cooling and the estab
lishment of recreational areas (Gwak et al., 2017; Langemeyer et al., 
2020). Based on these benefits, the prioritization of implementing green 
roofs may differ depending on diverse spatial conditions. For instance, 
the demand for green roof retrofitting is higher in regions characterized 
by low vegetation coverage and high temperatures. Geographic-spatial 
analysis of roof greening potential is capable of finding areas with ex
pected stronger effects and thus with higher priority for green roof 
retrofitting, providing essential support for decision-making processes.

For the implementation of greening transformations on existing 
buildings, this study conducts a spatial analysis considering three 
structural parameters to describe different urban settings: vegetation 
coverage, thermal environment, and building density. Specifically, we 
calculate the ratio of potential green roofs to all roofs based on structural 
parameters and this ratio serves to measure the greening potential. 
Then, we compare the ratios derived from our prediction with those 
from official data. The motivation is to investigate if the deep learning 
method and remote sensing data provide sufficient accuracy to identify 
the roof greening potential when official geodata are unavailable.

3.3.1. Vegetation coverage
Since existing green infrastructure contributes to reducing the de

mand for new green spaces like green roofs, surrounding vegetation 
coverage is chosen as one indicator to evaluate the demand for roof 
greening.

Specifically, the NDVI is calculated to quantify surrounding vegeta
tion coverage. 

NDVI =
NIR − RED
NIR + RED

(5) 

where NIR and RED are near-infrared and red bands of Landsat 8 sat
ellite imagery, and high values of NDVI suggest areas with more vege
tation cover. In consequence, we consider areas with NDVI values above 
a certain threshold as “green” and rate this area less relevant for green 
roof retrofitting. However, variations among different thresholds result 
in divergent outcomes. A larger threshold of NDVI indicates a smaller 
amount of green areas within the city. Due to discrepancies between the 
thresholds of NDVI and the specific characteristics of 15 cities, one 
certain threshold may not be suitable for deriving comprehensive re
sults. Hence, this study systematically adopts different thresholds (i.e., 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) in NDVI to define green urban areas. 
This offers flexibility for urban planners to determine roof greening 
priority in particular cities and adjust the thresholds accordingly. The 
roof greening potential in areas of various surrounding green fractions 
can then be derived.

3.3.2. Thermal environment
Green roofs can regulate urban temperatures by cooling rooftop 

areas through the evapotranspiration of vegetation. Thus, green roofs 
play a crucial role in actively mitigating the UHI effect (Langemeyer 
et al., 2020) that refers to the phenomenon of urban areas experiencing 
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higher temperatures than their rural surroundings due to human activ
ities (Leichtle et al., 2023). To investigate UHI patterns, we identify 
urban hot spots that have temperatures higher than the overall average.

LST derived from remote sensing data is commonly used to examine 
variations of UHI patterns (Guha et al., 2019). Landsat 8 satellite im
agery in summer (June, July, and August) of the year 2023 were ac
quired and processed to retrieve LSTs following the method in (Ermida 
et al., 2020). The mean summertime LST (averaged over June, July, and 
August) in 2023 is used to define urban hot spots, as outlined below 
(Ananyeva & Emmanuel, 2023; Guha et al., 2019): 

LST > a + 0.5 × b (6) 

where a and b represent the mean and standard deviation of the LST in 
the urban areas, respectively. In this study, the urban areas within the 
city correspond to artificial impervious areas that are defined in (Gong 
et al., 2020). Afterward, the roof greening potential in urban hot spots 
can be derived by overlaying the potential green roofs with urban “hot” 
spot maps.

3.3.3. Building density
Each city’s variability in urban morphology and pattern exhibits 

diverse requirements and varying suitability levels for roof greening. To 
determine the number of potential green roofs in suburban or peripheral 
urban structures compared to inner-city areas and other centers, we 
categorize building patterns in terms of building density to spatially 
identify the target classes mentioned. This helps to define spatial pri
orities for green roof retrofitting.

Using building maps from official data (Vermessungsverwaltung, 
2023), building density is calculated within each 100 m × 100 m grid 
cell. K-means clustering (Hartigan & Wong, 1979) is employed to cate
gorize these grid cells into five types: very high, high, medium, low, and 
very low dense regions. This overcomes the binary conceptualization of 
‘high’ and ‘low’. The goal of the five categories is to incorporate tran
sition areas between high and low-density regions, allowing a more 
nuanced spatial analysis (Li et al., 2022; Zhou et al., 2004) in suburban 
or peripheral urban structures, inner-city areas, and city centers. This 
allows us to evaluate the roof greening potential in dependence on the 
particular structural density of urban areas.

4. Results

4.1. Results of extracted potential green roofs

4.1.1. Comparison among different convolutional neural networks
This section compares the performance of various CNNs through 

quantitative measures (Table 4) and qualitative outcomes (Fig. 4) on the 
test set of the GreenRoof dataset. The findings indicate that U-Net out
performs other networks, showcasing superior results with an F1 score 
of 61.41 % and an IoU of 44.31 %. U-Net is structured with a contracting 
pathway to grasp contextual information and a mirrored expanding 
pathway, attaining precise segmentation masks. The above comparison 
underscores the effectiveness and robustness of U-Net in mapping po
tential green roofs, which can serve as the foundational framework for 
subsequent experiments.

4.1.2. Comparison between local adaptation and non-local adaptation
The effectiveness of remote sensing and deep learning in identifying 

the roof greening potential is investigated by comparing the perfor
mance of the two strategies - local adaptation and non-local adaptation - 
in 15 German cities. We first compare the ratios of potential green roofs 
to all roofs at an aggregated level of all 15 cities. When compared to the 
ratio obtained by the strategy without local adaptation (15.59 %), the 
ratio obtained by the strategy with local adaptation (20.30 %) is more 
similar to that from official data (29.75 %). Thus, the strategy with local 
adaptation enhances the model performance (i.e., an average improve
ment of 5.58 % in the ratio of potential green roofs vs. all roofs for 15 
cities is measured) by utilizing the annotated samples from the local city. 
Fig. 4 also illustrates that the general roof patterns for green retrofitting 
can be derived from CNNs, though the deviations in accuracy mainly 
stem from inaccuracies in defining the precise boundaries of individual 
roofs.

We further conduct a comparison of ratios on individual cities 
(Fig. 5). Despite leveraging local training samples, the deep learning 
model still exhibits underestimations of potential green roofs compared 
to official data in all cities. Specifically, an average underestimation of 
7.65 % in the ratio of potential green roofs vs. all roofs) is observed 
across all 15 cities. The underestimation varies significantly among 
different cities. The underestimation is severe in Schweinfurt (i.e., 18.83 
%), while our prediction is very similar to official data in Weilheim (i.e., 
0.06 %). This performance discrepancy arises from substantial differ
ences (e.g., building materials and urban morphology) between the 
Bavarian cities and the four European cities involved in the GreenRoof 
dataset.

Fig. 6 showcases potential green roofs that are identified from 
remote sensing imagery, suggesting that the deep learning approach can 
effectively identify roofs possibly suitable for greening. However, 
human intervention may be further necessary to address some excep
tional circumstances. In addition, we did not incorporate buildings that 
are already greened in this analysis but classified them as potential green 
roofs if the physical parameters fit.

4.2. Spatial variation of roof greening potential

4.2.1. Differences of roof greening potential in non-green vs. green urban 
areas

To understand cities’ differences and similarities, we divide the 15 
cities into three categories based on their building areas, i.e., large, 
medium, and small cities. For each category, we derive the ratio of all 
roofs in green urban areas that are defined by different NDVI thresholds. 
The building areas of 15 cities are shown in Fig. 7 (a) and these cities are 
then ranked as large, medium, and small cities. Fig. 7 (b) shows the 
curves for each city and those for the average of each category. The 
NVDI threshold was observed to be associated with the division of green 
areas and non-green areas. A higher NDVI threshold value corresponds 
to a smaller share of green areas within the cities, leading to a reduced 
ratio of roofs located in green areas. Given an NDVI threshold, large 
cities usually have a lower ratio of roofs located in green areas when 
compared to medium and small ones.

Fig. 8 illustrates the roof greening potential in green urban areas and 
non-green urban areas, which are obtained by our prediction as well as 
from official data as a reference. The greening potential in green areas 
and non-green areas varies according to the thresholds of NDVI. How
ever, our prediction shows a similar trend as the official data. Specif
ically, the greening potential in non-green areas is higher than that in 
green areas when the NDVI threshold is smaller than 0.6, suggesting that 
the promotion of green roofs in German cities holds significant potential. 
We also find the roof greening potential in non-green areas differs in 
each city. The largest city among our sample Muenchen shows a rela
tively high proportion of potential green roofs in non-green areas, 
indicating great opportunities for roof greening within this city. 
Nevertheless, small cities such as Bad Toelz and Hemau have relatively 

Table 4 
Numerical results of different CNNs for mapping potential green roofs (%).

Method F1 score IoU

U-Net (Ronneberger et al., 2015) 61.41 44.31
Efficient-UNet (Baheti et al., 2020) 58.00 40.84
DeepLab v3+ (Chen et al., 2018) 56.73 39.60
HRNet (Yuan et al., 2020) 54.02 37.00
SegFormer (Xie et al., 2021) 48.33 31.87
FC-DenseNet (Jégou et al., 2017) 60.62 43.50

Q. Li et al.                                                                                                                                                                                                                                        



Cities 159 (2025) 105782

8

low potential for roof greening in non-green urban areas.

4.2.2. Roof greening potential in urban hot spots
According to the evaluation of official data, we calculate the ratio of 

roofs in 15 cities located in urban hot spots (Fig. 9). The ratios of 15 
cities show a wide variety, where 37 % of roofs are in hot spots of 
Muenchen and only 2 % of roofs are in hot spots of Hemau. This vari
ation between a large and a small city clearly reveals the different 
challenges of cities.

Fig. 10 presents the ratio of potential green roofs to all roofs in hot 
spots per city from our prediction as well as from official data as a 
reference. Despite being derived from various sources, the same pattern 
is observed, a larger share of roofs for green roof retrofitting is found in 
hot spots than in non-hot spots. Kulmbach and Landau have 

comparatively large proportions of roof greening potential in urban hot 
spots. This suggests that these cities have significant potential to regu
late urban climate by retrofitting green roofs.

4.2.3. Roof greening potential across areas of varying building density
Fig. 11 comprises pie charts illustrating the share of roofs across 

various building density regions for each city based on official data. 
Hemau has the largest share (50.00 %) of roofs located in city centers (i. 
e., regions with very high and high building densities), while this ratio is 
smallest in Kulmbach (24.08 %). Fig. 12 depicts the quantity of potential 
green roofs in 15 city centers obtained from official data and our pre
diction, respectively. Official data and our prediction exhibit a consis
tent trend where more potential green roofs are situated in city centers 
than in non-city centers. In the comprehensive evaluation of all cities, 
the city centers of Landau, Regensburg, and Muenchen, contribute to the 
relatively high potential for roof greening. This observation suggests 
that densely populated urbanized neighborhoods in these cities have 
significant potential for retrofitting green roofs, aligning with potential 
benefits for local communities.

5. Discussion

5.1. Methodological implications

This study demonstrates a method that allows deriving the potential 
for roof greening from remote sensing data using deep learning. To 
thoroughly evaluate roof greening potential, we have considered 
different structural parameters that incorporate vegetation coverage, 
thermal environment, and building density. Our approach is designed to 
be scalable and adaptable to different cities, as demonstrated by our 
application across various urban settings in Europe. The methodology 
can be applied to cities with similar data availability, enabling broader 
applications for green roof planning beyond European contexts.

Since not all cities, especially outside Europe and North America, 
have detailed 3D building models available, a deep learning model 
trained on high-resolution remote sensing images offers flexibility by 
allowing roof greening potential identification without the need for 3D 

Fig. 4. Prediction results on the Greenroof dataset. Columns from left to right are: U-Net (Ronneberger et al., 2015), Efficient-UNet (Baheti et al., 2020), DeepLab 
v3+ (Chen et al., 2018), HRNet (Yuan et al., 2020), SegFormer (Xie et al., 2021), FC-DenseNet (Jégou et al., 2017), remote sensing image, and ground truth mask.

Fig. 5. The ratios of potential green roofs to all roofs obtained from different 
sources in 15 Bavarian cities.
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models. This makes our approach more widely applicable and practical 
for global urban settings, where remote sensing data may be more 
accessible than 3D building models or very high resolution (VHR) digital 
surface models.

A critical aspect of our method is the quality and availability of 
remote sensing imagery, which significantly impacts the accuracy of 
results. When high-quality VHR remote sensing imagery is accessible, 
the approach has proven to achieve high accuracy in delineating roof 
features and estimating greening potential. However, in regions with 
limited or lower-quality data, uncertainties in the predictions may in
crease, particularly in identifying roof boundaries or classifying roof 
types. Despite these challenges, the methodology is flexible and can 
accommodate varying levels of data quality by further incorporating 
additional training data. For instance, we have shown that fine-tuning 
the model with localized datasets allows adapting to the specific 
urban morphologies of different regions. This adaptability highlights the 

model’s potential to serve as a versatile tool for urban greening initia
tives worldwide, even in cities where only basic geospatial data are 
available.

5.2. Research innovations

This study advances roof greening potential assessment by address
ing critical limitations in existing research. The main innovation is that 
our research has a broader geographic scope. Unlike former studies 
limited to single cities (Gandini et al., 2023; Hong et al., 2019; Silva 
et al., 2017; Slootweg et al., 2023), our study investigates cities across 
different building patterns and urban climates, offering greater gener
alizability and insight into roof greening potential across diverse urban 
contexts. Moreover, the application of U-Net for the segmentation of 
potential green roofs in this study, offering higher precision and scal
ability, represents a methodological advancement over manual visual 

Fig. 6. Zoomed-in results of predicted potential green roofs for a sample urban area.
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interpretation (Lambarki et al., 2022; Shao et al., 2021) or traditional 
mapping methods (Karteris et al., 2016) in prior studies. While past 
studies have sometimes included certain parameters (Joshi et al., 2020; 
Santos et al., 2016; Zhou et al., 2019), our approach goes further by 
integrating a comprehensive set of factors—vegetation coverage, ther
mal environment, and building density—as part of the green roof pri
oritization framework. This multi-criteria prioritization offers a more 
nuanced analysis that supports cities in developing targeted strategies to 
implement green roofs where they will have the greatest environmental 
impact, such as in areas with high heat retention or limited green space. 
The inclusion of these additional parameters sets our work apart by 
making it directly applicable to cities aiming for sustainability and 
resilience.

Our method holds considerable implications for sustainable urban 
development. This is because the results derived from our method can 
support city-level efforts to create more livable urban spaces through 

promoting green roofs. On the one hand, our approach identifies specific 
rooftops suitable for greening, offering data-driven insights for policy
makers and urban planners looking to implement green roofs effectively. 
On the other hand, this research also incorporates urban climate and 
environmental factors. This helps to identify rooftops that could provide 
the greatest environmental benefits, thus contributing to climate resil
ience in urban areas vulnerable to extreme heat.

5.3. Limitations and future research directions

In what follows, we discuss the limitations of this study from three 
aspects- data, methodology, and application.

In this research, remote sensing imagery collected from airborne 
sensors is utilized. Deep learning models facilitate mapping roofs that 
are possibly suitable for greening from remote sensing imagery. How
ever, a significant challenge for similar large-scale applications lies in 

Fig. 7. (a) Based on building areas, 15 cities are categorized into three types: large, medium, and small. (b) The ratio of roofs in green areas that are defined by 
different NDVI thresholds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Spatial variation of roof greening potential in green and non-green areas. Green areas are defined by different NDVI thresholds. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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obtaining such high-quality VHR remote sensing imagery. If such 
datasets are not available, this can be overcome by harnessing alterna
tive remote sensing data sources. For example, commercial satellites like 
Pleiades or WorldView offer remote sensing imagery with the necessary 
very high spatial resolution (~0.3 m/pixel). Theoretically, these satel
lite datasets cover the entire globe and are more cost-effective than 
aerial imagery. Nonetheless, the costs associated with such VHR data 
remain prohibitive for national, continental, or global applications. 
Lower resolution remote sensing data have shown to not allow for ac
curacies that are good enough for the assessment of green roof potential 
(Shao et al., 2021). We considered different structural parameters for 
geographic-spatial evaluation by exploiting data encompassing open- 
source Landsat satellite imagery and official building maps. For cities 
where official building maps are not publicly accessible, data from 
Microsoft (Microsoft) or OpenStreetMap (OpenStreetMap contributors, 
2023), which has released open building footprints worldwide, is an 
option. However, the accuracy is also not always satisfactory (Herfort 
et al., 2023). Beyond this, the classification of building outlines and 
densities from remote sensing data also has proven high potential (Li 
et al., 2022; Standfuß et al., 2023).

Methodologically, the geographic-spatial evaluation of potential 

green roofs heavily depends on the accuracy of potential green roofs 
extracted from deep learning approaches. Hence, it is crucial to address 
the methodological challenges associated with the deep learning model. 
Based on the quantitative evaluation in the test set of the GreenRoof 
dataset, U-Net demonstrates the highest accuracy among the six CNNs 
considered. U-Net achieves an F1 score of 61.41 % and an IoU of 44.31 
%, respectively. Despite the strategy with local adaptation achieving 
high accuracies, uncertainties persist. Specifically, an average underes
timation of 7.65 % in the ratio of potential green roofs vs. all roofs is 
observed in the 15 cities in our sample. This underestimation could 
affect the model’s precision when applied to new cities, particularly 
where roof structures or materials differ significantly from those in our 
European sample cities. In this case, users should be aware of the 
model’s tendency to underestimate and may consider applying local 
adjustments or thresholds to improve accuracy in new urban contexts. 
We recommend that future studies use this model as a preliminary 
screening tool, followed by more localized analysis where possible to 
refine the assessment. For example, exploring domain adaptation or 
domain generalization methods (Li et al., 2024) has been shown to 
improve the mapping results of potential green roofs, alleviating the 
underestimation. However, the constant underestimation allows for 
general conclusions from our prediction. Our findings generally suggest 
plausible geographic-spatial evaluation results, as confirmed by the 
similar trends derived from our prediction when comparing them to the 
official data. Therefore, for cities lacking 3D building models, our model 
provides an accessible, albeit approximate, tool for assessing green roof 
potential.

From an application standpoint, we only consider the slope of 
building roofs as the indicator for roof greening. Some semantic attri
butes and geometric structures of buildings, such as age, structure sta
bility, roof material, functional type, and roof superstructures, are not 
considered due to the absence of adequate training data. Thus, auto
matic detection and identification of these building characteristics at the 
city scale are currently unattainable. Old buildings are deemed unsuit
able for roof greening due to their historical significance or potential 
load capacity limitations that may compromise safety (Hong et al., 
2019). The greening of roofs naturally presupposes a certain structural 
stability of the building (Taubenböck et al., 2009; Aravena Pelizari et al., 
2021). Moreover, implementing green roofs using materials such as 
brick or steel has shown to be challenging (Hong et al., 2019). Compared 
to residential buildings, public and commercial buildings exhibit 
favorable suitability levels for green roof retrofitting (Liu et al., 2022). 
Furthermore, mapping the net available roof area is essential, consid
ering obstructions like elevator shafts and chimneys (Joshi et al., 2020). 

Fig. 9. The ratio of roofs in hot spots.

Fig. 10. Spatial variation of roof greening potential in hot spots and non-hot spots.
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Therefore, future studies are suggested to incorporate more building 
characteristics to identify the potential of roof greening. In this study, 
spatial prioritization in green roof planning is tailored to structural pa
rameters, including vegetation coverage, thermal environment, and 
building density. However, other parameters (e.g., natural hazards and 
air quality) are also crucial to quantitatively identifying the priority of 
green roof retrofitting in cities and are not considered in our research. 
The significant capacity of green roofs to substantially reduce rainwater 
runoff and delay runoff peaks suggests a greater potential benefit in 

mitigating urban flooding during heavy rainstorms (Liu et al., 2022). 
Green roofs also help to enhance air quality by utilizing vegetation as 
sinks for pollutants. Therefore, the evaluation of green roof imple
mentation at a city scale should consider areas with high vulnerability to 
floods and with dense road infrastructure.

6. Conclusion

The challenges posed by global warming on the environment, 

Fig. 11. The share of roofs in different building density regions.
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ecosystems, and human societies raise public concerns. To address this, 
vegetation is recognized as a crucial element to mitigate increased 
temperature by offering ecosystem services. However, in metropolitan 
areas, a lack of green space and land resources has led to an intensified 
focus on roof greening as they can leverage underexplored space to 
improve vegetation coverage. While some cities are actively promoting 
green roofs, the overall coverage remains limited. Therefore, there is a 
need to identify the potential for roof greening on existing buildings.

This paper creates GreenRoof, a public dataset of four European 
cities, including remote sensing images and ground reference masks of 
potential green roofs with slopes lower than 10◦. This study incorporates 
deep learning methods, specifically semantic segmentation networks, to 
extract potential green roofs (candidate rooftops for green roof retro
fitting) from remote sensing images. Additionally, structural parameters 
involving vegetation coverage, thermal environment, and building 
density are utilized to conduct spatial analysis for potential green roofs. 
The results derived from remote sensing and deep learning are closely 
aligned with those obtained by official geodata, offering both theoretical 
insights and practical significance. Therefore, combining remote sensing 
with deep learning offers an operational method for evaluating green 
roof potential on a city-wide scale and is especially valuable in cities 
lacking 3D building data. Furthermore, the results of quantitative and 
qualitative analyses for 15 cities indicate excellent roof greening po
tential in Germany, with potentially suitable buildings accounting for 
more than 20 % of the total building area. Our study advances meth
odological precision and offers a scalable, multi-city framework that 
integrates multiple key factors for green roof prioritization, presenting a 
rational foundation for decision-makers and urban planners to allocate 
resources toward sustainable urban development more effectively than 
many past research works.
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Santos, T., Tenedório, J. A., & Gonçalves, J. A. (2016). Quantifying the city’s green area 
potential gain using remote sensing data. Sustainability, 8, 1247.

Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and 
challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757–773.

Shao, H., Song, P., Mu, B., Tian, G., Chen, Q., He, R., & Kim, G. (2021). Assessing city- 
scale green roof development potential using unmanned aerial vehicle (UAV) 
imagery. Urban Forestry & Urban Greening, 57, Article 126954.

Sharma, A., Woodruff, S., Budhathoki, M., Hamlet, A., Chen, F., & Fernando, H. (2018). 
Role of green roofs in reducing heat stress in vulnerable urban communities—A 
multidisciplinary approach. Environmental Research Letters, 13, Article 094011.

Silva, C. M., Flores-Colen, I., & Antunes, M. (2017). Step-by-step approach to ranking 
green roof retrofit potential in urban areas: A case study of Lisbon, Portugal. Urban 
Forestry & Urban Greening, 25, 120–129.

Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., 
Keysers, D., Neumann, M., Cisse, M., & Quinn, J. (2021). Continental scale building 
detection from high resolution satellite imagery. arXiv:2107.12283 [cs] URL: htt 
p://arxiv.org/abs/2107.12283.

Slootweg, M., Hu, M., Vega, S. H., van’t Zelfde, M., van Leeuwen, E., & Tukker, A. 
(2023). Identifying the geographical potential of rooftop systems: Space competition 
and synergy. Urban Forestry & Urban Greening, 79, Article 127816.

Standfuß, I., Geiß, C., Kühnl, M., Droin, A., Mast, J., Wurm, M., Siedentop, S., Heider, B., 
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