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A B S T R A C T

The physical dimension of cities and its spatial patterns play a crucial role in shaping society and urban dynamics. Understanding the complexity of urban systems 
requires a detailed assessment of their physical structure. Urban geography has long focused on framing typologies to represent common patterns in the urban fabric 
using various methodologies. However, only recent advancements in computational methods and global land cover data have enabled to comprehensively identify 
typologies of urban patterns at the city scale through new unsupervised approaches. Nevertheless, typologies of finer-grained patterns at intra-urban scale have not 
yet been explored comprehensively at a global level. In this paper, building upon these advances, we explore the intra-urban patterns of more than 1500 cities across 
the globe. We rely on a Local Climate Zone land cover classification to represent the multidimensional variabilities of intra-urban morphology. Adapting a deep 
learning based unsupervised clustering approach, we find a typology of 138 intra-urban patterns. Analyzing the results of this data-driven approach, we prove that 
each pattern identified is unique, i.e. statistically different, in its composition and configuration. With this study summarizing the global diversity of the urban fabric, 
we reveal that any city of the world can be described as a specific assemblage of a fraction of these 138 universal patterns. These universal patterns reveal a 
predominance at a global scale of built-up forms of low density in the intra-urban fabric.

1. Introduction

From one street to the next, from one neighborhood to the next, the 
urban tapestry endlessly changes in an almost seamless manner, 
continuously presenting ever-new spectacles of arrangements of shapes, 
weaving of volumes, materials and more at each turn of a corner. Such is 
the remarkable morphological diversity that a single city can exude on 
its own.

Now, looking beyond the confines of one city, we see that this 
morphological diversity does intensify manifold. Beholding a neigh
boring city, a city in another country, or even a city in another continent, 
chances are that the urban fabric of this other city could then feel 
astonishingly alien and singular. So much so that, paradoxically, the 
fabric of one city in comparison to another one, would show clear signs 
of sameness in contrast to its internal diversity.

The segments of the urban fabric in these two cities, although rich of 

their own internal diversities, once juxtaposed, have this own internal 
diversity sometime fade in light of the differences between them. If we 
then apply this juxtaposition to the pieces of the urban fabric of many 
cities, between their internal and external diversities what should be 
expected? Beneath all the imaginable tweaks of the fabric, big and small, 
making pieces of urban fabric seem similar or different, would we 
observe re-occurring patterns being revealed? And if so, could we cap
ture the essences of the templates that underlie these re-occurring pat
terns? In every city, all at once? In other words, we pose here the 
question of whether we can draw a universal typology of the urban 
fabric.

Despite the seemingly purely theoretical character of these intro
ductory questions, we see this at the core of very pragmatic issues in the 
field of urban planning. For instance, over the last decades, the world 
itself has become impressively more urban (UN, 2018). Thus, the study 
of urban phenomena, be they economic, environmental, political or 
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social, becomes increasingly relevant. Correspondingly, the relevance of 
urban morphology rises as the field of research studying the spatial 
expression of cities, i.e. the backdrop and backbone structuring and 
shaping these urban phenomena (Batty, 2009; Kostof, 1991; Lefebvre, 
1974; Lynch, 1992; Wentz et al., 2018). Ultimately, there is a rising need 
to explore, catalog and study the intra-urban patterns of the fabric of 
cities at a global scale to develop the understanding of fine-grained 
phenomena of the main human habitat: cities.

While this need has recently become more pressing, the field of 
urban morphology has not waited for recent times to concern itself with 
this topic. Since the 19th century (Andrews, 1993; Bertyák, 2021; 
Durand, 1805, 1825) and more prominently hereafter over the last 60 
years (Alexander et al., 1977; Bertyák, 2021; Castex et al., 1997; Cataldi 
et al., 2002; Fleischmann et al., 2021a; Kostof, 1991, 1992; Lynch, 1992; 
Muratori, 1960; Panerai et al., 1999; Taubenböck et al., 2018) a large 
fraction of the research on urban morphology was focused on finding 
common patterns in the urban fabric and to derive typologies.

Over the last decade, to meet the need for systematic knowledge 
about the spatial dimension of cities, the field of urban morphology has 
been operating a shift towards more quantitative techniques of analysis, 
as identified in (Bertyák, 2021; Dibble et al., 2017; Fleischmann et al., 
2021b). This shift was vastly supported and embodied by the production 
of and access to: 1) increasing volume and coverage of systematic 
geographical datasets, e.g.: (Angel et al., 2016; Arsanjani et al., 2015; 
Boeing, 2017; Demuzere et al., 2022; Herfort et al., 2021; Microsoft, 
2020; Zhu et al., 2021, 2022) and 2) scalable computational tools 
(Biljecki and Chow, 2022; Boeing, 2017; Bosch, 2019; Fleischmann, 
2019) combined into adequate methodologies tackling diverse 
geographical data types (Arribas-Bel and Fleischmann, 2022; Boeing, 
2019; Fleischmann et al., 2021a; Fleischmann and Arribas-Bel, 2022; 
Pont and Olsson, 2018; Taubenböck et al., 2020; Wang et al., 2023). 
These two aspects of the new quantitative turn of the field – massive 
quantitative data and scalable tools to leverage them – compounded 
neatly to open new horizons for the development of typologies of the 
urban fabric.

The access to quantitative data permitted the field to notably turn 
away from methodologies centered on the almost ex-ante creation of 
typologies, e.g.: (Alexander et al., 1977; Braunfels, 1976; L. Krier, 1998; 
R. Krier and Rowe, 1991; Panerai et al., 1999) which tend to focus on the 
more noteworthy historical types and, as a result, forego unspectacular, 
ordinary, or culturally less important types (Bertyák, 2021; Kostof, 
1991). While these precursor works laid the foundation of the field, this 
approach was prone to potential culturally biased preconception of what 
types exist or are worthy of being described and what their character
istics should be. Against these shortcomings, the quantitative turn of the 
field translated itself into more data-driven empirical approaches, and 
notably, toward unsupervised clustering methodologies, e.g.: (Boeing, 
2019; Fleischmann et al., 2021a; Gil et al., 2012; Lemoine-Rodríguez 
et al., 2020; Pont and Olsson, 2018; Taubenböck et al., 2020). Such 
methodologies, indeed, focus on finding clusters (i.e. groups, or cate
gories) of data samples from a dataset sharing similar traits, without 
having to rely on prior constraints of which samples should be grouped 
together or what the expected categories should be. The field of urban 
morphology, until now was primarily using traditional statistical tech
niques such as k-means (e.g.: (Taubenböck et al., 2020)), or Ward hi
erarchical clustering (e.g.:(Boeing, 2019; Fleischmann et al., 2021a)). 
While these methods are well suited for these tasks, they scale poorly 
with the amount of data or of dimensionality (de Amorim, 2015; Jin and 
Han, 2010). In the meantime, deep learning applied to computer vision 
have now seen the development of more scalable methods of high ac
curacy performance on popular computer vision benchmarks. (Van 
Gansbeke et al., 2020), for example developed the SCAN method that 
reached an accuracy of 88.3 % on the benchmark dataset CIFAR-10 
(Krizhevsky, 2009) in an unsupervised setting. Following, (S. Park 
et al., 2021) developed the SCAN + RUC framework that reached 90.1 % 
in the same context. These two approaches have now been recently 

bested by the TURTLE approach (Gadetsky et al., 2024) with a 99.5 % 
accuracy. While research applying the latter type of methods in the field 
of urban morphology remains rare, forays in this research directions are 
already promising (e.g.: (Wang et al., 2024)).

Although these purely data-driven, unsupervised clustering meth
odologies bypass the mentioned pitfalls of more classical approaches, 
they often do not suffice in themselves. For this reason, they are often 
complemented by further analysis based on expert knowledge for 
interpreting the clustering results and framing a typology of cities, for 
which the clusters are representative. Combining in this way a data- 
driven approach and expert knowledge has been identified to enable 
the formulation of better informed and more objective typologies 
(Bertyák, 2021; Fleischmann et al., 2021a).

In recent years, a critical mass of diverse data (e.g.: vector, land-use/ 
land-cover classification) concerning urban morphology was reached, 
such that they present global coverage (Herfort et al., 2021; Microsoft, 
2020; Zhou et al., 2022; Zhu et al., 2022). Their global coverage and 
their completeness (in the data sense (Dempster et al., 1977; Eiben et al., 
2021; Rubin, 1976)) now enable to develop data-driven global and as 
complete as possible typologies. While any typology, even on frag
mentary empirical data is informative, a complete (to the extent of 
current capacities) and global typology would bring new grounds for 
more universal comparisons across the globe and across types.

Managing to leverage the global dimension of these new datasets the 
field of urban morphology produced a few global typologies of cities 
based on their urban fabric, e.g.: (Boeing, 2019; Chakraborty et al., 
2024; W. Chen et al., 2024; Lemoine-Rodríguez et al., 2020; Taubenböck 
et al., 2020; Zhou et al., 2022). We see these studies as pioneering work 
in the use of global datasets on urban fabric and deriving typologies at a 
macro-scale (Wu et al., 2025).

Literature shows that several urban issues have direct impacts at the 
urban meso-scale (Wu et al., 2025), for example urban heat islands 
(Lemoine-Rodríguez et al., 2022), air pollution (Zeng et al., 2024), noise 
pollution (Staab et al., 2023), traffic (Ulvi et al., 2024), walkability 
(Droin et al., 2024), social segregation (Tammaru et al., 2021), among 
others. This emphasizes the need of global research at this scale to 
support urban planning. Yet, to the best of our knowledge, no studies 
have proposed global and complete (i.e. universal) typology of intra- 
urban patterns at the meso-scale. To help bridge this gap, we aim in 
this study at developing a data-driven methodology for framing a uni
versal typology of the intra-urban fabric.

Towards this end, we propose in this study to leverage the recent 
advances in term of comprehensive dataset by using a globally consis
tent land cover classification (Zhu et al., 2022) that relies on the Local 
Climate Zones scheme developed by (Stewart and Oke, 2012), as a fine- 
grained proxy of the intra-urban landscape (see section Data). We apply 
the best accuracy yielding unsupervised deep-learning framework (at 
the time of this study) combining the Semantic Clustering by Adopting 
Nearest neighbors (SCAN) framework (Van Gansbeke et al., 2020) and 
the Robust learning for Unsupervised Clustering (RUC) framework (S. 
Park et al., 2021) to find the existing clusters of intra-urban patterns in a 
data-driven way (see section Methodology). With this, we identify 
clusters with unique composition and configuration characteristics (see 
section Results) capturing in a consistent way the universal elementary 
bricks constituting each and every city of our world.

2. Study design

In this study, we propose to frame a typology of the internal elements 
of the urban fabric derived from a data-driven approach. Fig. 1 illustrates 
these concepts and the data (further described in Data section) used as 
proxy.

In this study, the urban fabric is considered as the physical aspect of 
the city in its spatialized extent. We consider the urban fabric to be a 
highly heterogeneous spatial arrangement of voids and solids of 
different natures (built and/or natural landscapes). In that sense we are 
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focusing here on the composition and the configuration of both the man- 
made and the natural elements of a city following (Wentz et al., 2018). 
The land use types are not considered here, as we focus solely on the 
physical aspect of the city. A global multidimensional dataset of urban 

land cover classification (LCZ) is used as a proxy of the urban fabric. To 
frame a typology of the internal elements of the urban fabric, we pursue 
the identification of the recurring spatial patterns within our global 
urban land cover classification dataset at an intra-urban scale. To do so, 

Fig. 1. Design of the study.
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we employ the SCAN + RUC framework on sub-segments (later referred 
to as patches) of the LCZ classification. Considerations on urban di
mensions, resolution of the urban land cover classification and compu
tational necessities of the SCAN + RUC framework drove the final 
dimensions of the patches (see section Methodology). The patches sharing 
similar patterns are clustered together through the SCAN + RUC 
framework. Finally, we analyze the typical compositions and configu
rations of the urban landscapes of the clusters identified and of their 
patches and draw our conclusions on the universal typology of intra- 
urban patterns drawn from this.

3. Data

3.1. Study sites – Morphological urban areas

The focus of this study is to frame a typology of intra-urban patterns 
that is as comprehensive and global as possible. We used the Morpho
logical Urban Areas (MUAs) of these cities as provided by (Taubenböck 
et al., 2019). This delineation of urban areas was made in a data-driven 
way for all major cities with more than 300,000 inhabitants across all 
continents as of in 2019 by distinguishing the urban areas from distant 
rural hinterlands. It does so by considering the gradient of decreasing 
built-up density from the urban center to the periphery and finding the 
specific threshold of density adequate for each urban area. While this 
dataset primarily focuses on major cities, its definition permeates cities 
administrative boundaries and allows to capture the smaller cities in 
their vicinity, representing the diversity of city types and scales. This 
mask of urban areas according to the boundaries of cities’ main 
morphological body ensures a consistent definition of the spatial unit at 
which we analyzed the urban fabric of our study sites (cf. Fig. 1).

The final list of study sites comprised 1523 MUAs (cf. Fig. 1 and 
covered an area of roughly 360,000 km2.

3.2. Urban fabric – Local Climate Zones classification

As a proxy for the urban fabric we used a land cover classification 
following the classification scheme of the Local Climate Zones (LCZ) 
introduced in (Stewart and Oke, 2012). The LCZ scheme is comprised of 
seventeen classes, ten of which are of built types and seven of them are 
natural or non-built types. Each class of the LCZ scheme can be primarily 
characterized by its type (built, vegetation, surface) as well as its density 
and its height, representing multiple dimensions of the urban fabric. In 
addition, each class within the LCZ scheme is characterized by other 
secondary features such as sky view factors, aspect ratios, impervious 
surface fractions, terrain roughness classes and more making it a richly 
detailed classification scheme (Stewart and Oke, 2012). Therefore, 
although this scheme of classification was primarily developed to 
accommodate for urban climate analysis, its classes based on morpho
logical features of the urban fabric make it valuable for the study of urban 
morphology (Bechtel et al., 2015; Debray et al., 2021; Demuzere et al., 
2021; Lemoine-Rodríguez et al., 2022; Taubenböck et al., 2020; von 
Szombathely et al., 2017; Wentz et al., 2018).

We used a LCZ classification at a resolution of 100 m * 100 m 
introduced in (Zhu et al., 2021). The global LCZ classification was 
produced based on scenes of Sentinel-1 and -2 satellite imagery. This 
dataset covers various extents surrounding the urbanized parts of the 
cities, therefore, as mentioned above, we curated the data to our set of 
study sites. Beyond the relevance of the LCZ classification discussed 
above, this dataset is chosen because of the high accuracy reported for 
this product as well as its global coverage (Zhu et al., 2021, 2022), which 
was a key factor of the present study.

4. Methodology

4.1. Disaggregation of LCZ classification into patches

The disaggregation of the LCZ classification data was operationalized 
following by three considerations.

First, it is identified (e.g. in (Wu et al., 2025)) that urban patterns can 
be analyzed across distinct scales that can be summarized into three 
categories: the micro-scale (corresponding to the scale of analysis of e.g. 
individual street blocks, land parcels or singular buildings), the meso- 
scale (corresponding to the scale of analysis of e.g. district, neighbor
hoods or street layout), and the macro-scale (corresponding to the scale 
of analysis of e.g. a city agglomeration or a metropolitan area) (Wu et al., 
2025). In the present study we are aiming at drawing a typology of intra- 
urban patterns at a meso-scale. While numerous studies refer to the meso- 
scale (e.g.: (Boeing, 2020; W. Chen et al., 2024; Lim et al., 2017; Mu 
et al., 2020; Ramiaramanana et al., 2025; Schirmer and Axhausen, 2016; 
Sharifi, 2019; Wu et al., 2025)) no metric dimensions are univocally 
identified for this scale. Based on these works we suggest a range of 
metric dimensions to analyze the meso-scale of the urban fabric as being 
comprised between 500 m to 5 km depending on the domain of 
application.

Second, the SCAN + RUC framework (further detailed in the next 
sections) relies on the use of a ResNet-18 convolutional neural network 
(He et al., 2015) which input square patches of data of systematic di
mensions. The SCAN + RUC framework was developed and tested for 
patches of size 32 * 32 pixels.

Third and last, we consider the Modifiable Area Unit Problem 
(MAUP) (cf. (Openshaw, 1984)) in the disaggregation of our data. The 
MAUP is a bias that can appear when the selection of the extent of a 
study area (here meaning the disaggregation into patches) can affect 
directly the measure. To reduce this bias at a set dimension of patches, 
one strategy is to enforce an overlap between neighboring patches 
(Weigand et al., 2023).

As a result, we operationalized the subsetting of the urban fabric 
through the systematic disaggregation of the LCZ classification data into 
square tiles (patches) of 32 pixels by 32 of the LCZ classification. With the 
100 m resolution of the LCZ classification this corresponds to regions 
with a side length of 3.2 km (cf. Fig. 1) which falls into dimensions of 
meso-scale areas, and which is large enough to reflect coherent urban 
patterns and their heterogeneity yet small enough to allow meaningful 
comparisons within and across cities of different scales. We extracted 
these patches in each study site with a 2/3 overlapping ratio and encoded 
them on 17 binary layers accounting for the presence of each of the 17 
LCZ classes at each pixel position of the patch. Doing so, we produced 
roughly 315,000 patches, accounting for a cumulated area of roughly 
360,150 km2 without overlap (resp. roughly 3,225,600 km2 with 
overlap).

4.2. Framework for unsupervised clustering

Recent progress in the field of unsupervised clustering using deep 
learning showcased newly developed capacities to identify and cluster 
similar spatial patterns in raster based input with state-of-the-art accu
racy in large amounts of data (Han et al., 2020; Ji et al., 2019; S. Park 
et al., 2021; Qian et al., 2022; Van Gansbeke et al., 2020). From this pool 
of new methods, we selected the one yielding the best accuracy to our 
knowledge at the time of the study, namely the SCAN + RUC framework 
(S. Park et al., 2021).

This approach relies on the successive use of three consecutive 
frameworks on their own: the SimCLR (Simple framework for Contras
tive Learning of visual Representations) (T. Chen et al., 2020), the SCAN 
framework (Van Gansbeke et al., 2020) and the RUC framework (S. Park 
et al., 2021). Further description of these individual frameworks is given 
in the following sections. The combination of these three frameworks 
demonstrated high accuracies of 90.1 % (resp. 86.6 %) on major 
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computer vision benchmark image datasets such as the Canadian Insti
tute For Advanced Research 10 dataset (CIFAR-10) introduced in 
(Krizhevsky, 2009) (resp. Self-Taught Learning 10 dataset (STL-10) 
introduced in (Coates et al., 2011)), among others (S. Park et al., 2021).

The resulting SCAN + RUC framework can be understood as 
comprised of four sub-tasks (see Fig. 2): 1) the learning of discriminative 
features from patches using contrastive learning; 2) the pooling of similar 
patches based on learned features; 3) the training of the model based on 
highly confident prototypes; and 4) the refining of the model around 
clean samples only.

For this study, the RUC + SCAN framework had to be slightly 
adapted to the context of our research hypothesis and data. In the next 
sections, we give a synthetized explanation of each of the four sub-tasks 
of the framework and explain the adaptations made. For the purpose of 
consistency and clarity, we adapted the original technical vocabularies 
employed in (T. Chen et al., 2020; S. Park et al., 2021; Van Gansbeke 
et al., 2020) to a consistent vocabulary adapted to the concepts of this 
study.

4.3. SimCLR: Learning discriminant features

The first step of our method comprised the use of the SimCLR 
framework (T. Chen et al., 2020). The main goal of this step of the 
framework was for a neural network to learn semantically meaningful 
features in our set of roughly 315,000 patches that served as the base for 
clustering done in further steps of the framework.

Following (T. Chen et al., 2020), for every epoch of training, each 
patch was augmented (i.e. modified slightly in its composition or 
orientation – see (T. Chen et al., 2020) –) into two different versions. A 
ResNet-18 neural network (He et al., 2015) was trained to find features 
that associated the two augmented versions of the patches and discrim
inated them from the other patches’ augmented versions. We kept 
technical aspects of this step as close to the one proposed in (T. Chen 
et al., 2020) as possible. We specifically kept the same augmentation 
operations adapted for the 17-channels encoding of the patches, albeit 
for the color distortions that we discarded as here they would have 
temper with the categorical nature of the LCZ classification. Due to 
limitations in computational capacities, the network was trained with 
batches of 256 patches. Therefore, to increase accuracy as indicated in 
(T. Chen et al., 2020), the network was trained for 500 epochs.

4.4. SCAN: Self-labelling unlabeled data

This second step was an adapted application of the SCAN framework 
(Van Gansbeke et al., 2020). The aim was to create relevant pseudo- 
labels for our unlabeled data. This step was comprised of two phases: 
First, we assigned temporary pseudo-labels for our patches by selecting 
their nearest neighbors in the latent space created by the SimCLR step. 
Through the SimCLR step, patches that were neighbors in this latent 
space shared similar features. Second, we refined these pseudo-labels in 
a self-supervised way, focusing on patches with highly confident pseudo- 
labels (i.e. patches with high values for the prediction probability of their 

respective assigned pseudo-label).
Based on the results in (Van Gansbeke et al., 2020), we selected the 

20 nearest neighbors of each patch in the latent space. From these 20 
neighbors, one other patch was randomly selected. Both patches are 
independently augmented in the same manner as in (Van Gansbeke 
et al., 2020), albeit, as explained above, for the color distortion. On these 
bases, a second network with a ResNet-18 backbone was initialized with 
the weights of the previous one trained within the SimCLR framework. 
Within this step, this second network was trained with a loss function 
which, both at the same time, rewarded the assignment of the same 
pseudo-label to these two patches and penalized the assignment of the 
same pseudo-labels to all patches of the same batch (Van Gansbeke et al., 
2020). Furthermore, we made the choice of using for this network a 
cluster head allocating 1024 possible pseudo-labels.

The choice of having 1024 pseudo-labels at this stage of the meth
odology was motivated by two reasons: The first reason was tied to the 
fact that these pseudo-labels correspond to groups of patches that are 
precursors to the final clusters. As we did not know a priori how many 
clusters we would find in our dataset (contrary to the seminal study 
proposing the SCAN framework (Van Gansbeke et al., 2020)), we didn’t 
restrict the clustering to a small number of groups. We therefore chose to 
deliberately risk, at this stage, over-clustering our data, meaning 
creating more groups than needed, over the risk of under-clustering, i.e. 
degenerating the clustering by having too few clusters with too many 
patches within them, losing the homogeneity of the clusters. This risk of 
over-clustering was accepted based on the knowledge that our modifi
cations of the further steps of the SCAN framework would allow us to 
correct it by aggregating pseudo-labels (see below). As for the second 
argument for this number of pseudo-labels, we empirically found that 
the method is insensitive to the change of numbers of pseudo-labels 
beyond 1024 and only induced more dimensionality for the computa
tion of subsequent steps. Therefore, the choice of 1024 pseudo-labels 
was a fitting trade-off for our present application. For this first phase 
of the SCAN step, the network was trained for 50 epochs on batches of 
384 patches. Here, the distribution of the number of patches across the 
pseudo-labels was uniform.

The second phase of the SCAN step focused on patches with high 
confidence in their pseudo-labelling to reduce the influence of inevitable 
false positive pseudo-labelling made during the first phase. This step was 
proposed by (Van Gansbeke et al., 2020) to retrain the neural network 
around high confidence samples called “prototypes” that are considered 
less prone to be false positives. We followed here the same logic as in 
(Van Gansbeke et al., 2020) but differed in the way we characterize 
prototypes.

(Van Gansbeke et al., 2020) proposed to define the prototypes as 
samples with a confidence score straightforwardly derived from the 
SoftMax value of the top-1 prediction of the pseudo-labelling above a 
threshold of 99.9 %. This threshold was defined in the frame of their 
seminal work with clearly defined classes of benchmark datasets such as 
STL-10 or CIFAR-10 on which the number of labels was known in 
advance. With our purposeful overshooting of the pseudo-label number, 
no sample reached such confidence, as the SoftMax score of each patch 

Fig. 2. Steps of the SCAN + RUC workflow adapted to our study.
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was spread across multiple pseudo-labels representing smaller pseudo- 
clusters closer in the latent space. We therefore adapted the definition 
of prototypes in our context as follows: the confidence score p̂x of a patch 
x was defined as the sum of the SoftMax values pxi of its top-3 predicted 
pseudo-labels i (see Eq. (1); the confidence threshold τi for a pseudo- 
label i was set as the standard deviation of confidence values σ(p)i for 
the pseudo-label subtracted from the maximum confidence max(p)i 
found for the pseudo-label (see Eq. (2). 

p̂x =
∑

i
max

3

(
pxi
)

(1) 

τi = max(p)i − σ(p)i (2) 

With these, we defined as prototypes of a pseudo-label i any patch x for 
which p̂x ≥ τi.

We used the sum of multiple top confidence values to account for the 
over-clustering of the patches. Our definition of the confidence score as 
the sum of the triplet of maximum-SoftMax-value patches with similar 
“confidence profiles” (i.e. similar triplets of maximum-SoftMax-values 
per pseudo-label) was made to account for the over-clustering of the 
patches. In our context of over-clustering, where multiple pseudo-labels 
were semantically overlapping this confidence score introduced the se
mantic connections between pseudo-labels frequently associated in their 
“confidence profile”. As the training progressed, to minimize the cross- 
entropy loss function, the confidence profiles of prototypes converged 
incrementally toward an increasingly dominant maximum-SoftMax- 
value for only one of their pseudo-labels. In turn, this meant that the 
other associated pseudo-labels were progressively de-allocated, and it 
effectively induced a merging of the associated pseudo-labels. There
fore, the use of the cross-entropy loss function combined with our spe
cific definition of the confidence score allowed to correct the over- 
clustering induced in the previous phase of the SCAN step while 
retaining the semantic connections between the original pseudo-labels.

At the same time, we had to avoid enforcing an under-clustering by 
assuming that too many pseudo-labels overlapped. Henceforth, we 
limited the sum to the top three values. We argue that this pseudo-label- 
individualized threshold allowed to account for the variability of the 
overall confidence scores between pseudo-labels.

Beside this adapted definition of prototypes, this phase of the SCAN 
remained the same as in (Van Gansbeke et al., 2020). The neural 
network was trained for 200 additional epochs with batches of 800 
patches) using the prototypes and their pseudo-labels in a self-supervised 
way. Like in the previous steps, the prototypes were augmented to avoid 
overfitting. The loss function used for the training of the network in this 
phase followed a regular cross-entropy formula that, contrary to the first 
step, did not force an equal distribution among the 1024 pseudo-labels.

4.5. RUC: Improving the self-labeling robustly

The last step of our framework was a straightforward application of 
the “hybrid strategy” of the RUC framework proposed in (S. Park et al., 
2021). The aim of this step was to improve the pseudo-labeling of the 
SCAN step by revising potentially mislabeled samples and adjusting the 
confidence of the results. The RUC was developed to be used as an add- 
on step on top of unsupervised frameworks such as SCAN. The original 
study presenting the RUC framework showed great benefits as an add-on 
to SCAN reaching high-end accuracies (S. Park et al., 2021).

For further details on the technical details of the RUC framework we 
refer to (S. Park et al., 2021). The “hybrid strategy” of the RUC frame
work was applied on the pseudo-labels obtained with the SCAN step. The 
training was operated over 200 epochs with minibatches of 110 samples. 
It is to be noted that the RUC step did not alter the number of pseudo- 
labels and therefore proposed as many clusters as the second phase of 
our SCAN adaptation. This step allowed us to obtain the final clusters on 
which we draw our universal typology of intra-urban patterns.

4.6. Analysis of results

As mentioned above, the accuracy of the SCAN + RUC framework 
has been evaluated on standard computer vision benchmarks with good 
results in a reproduceable way (S. Park et al., 2021; Van Gansbeke et al., 
2020). Although transferability of the high accuracy was expected be
tween standard benchmarks and our dataset, we chose to test the results 
of this framework in the context of our research by analyzing the clusters 
obtained through this framework and the statistical differences between 
them.

In that purpose, we characterized the patterns of the patches using 
landscape metrics, drawing on previous studies assessing urban form for 
a wide range of scales (Huang et al., 2007; Inostroza et al., 2013; 
Lemoine-Rodríguez et al., 2020; Taubenböck et al., 2009).

Using the Python library Pylandstats (Bosch, 2019), we computed a 
set of 91 typical landscape metrics inspired by the commonly used 
software FRAGSTATS (Bosch, 2019; McGarigal et al., 2023) on each of 
the patches of our dataset. The aim of using a large amount of landscape 
metrics was to characterize in a multi dimension fashion the configu
rations and compositions of each single patch. This set comprised metrics 
that allowed to describe the characteristics of intra-urban composition 
and configuration.

To test if the clusters identified were different in terms of their 
patches’ composition and configuration, these quantitative metrics were 
utilized as basis for two series of statistical tests. Since our dataset is 
large (ca. 315,000 patches), we discarded the use of a typical Null Hy
pothesis Significance Testing (NHST) as it was expected to lack power to 
inform us on the differences between clusters and would trivially be 
invalidated (Khalilzadeh and Tasci, 2017; Lakens, 2013; Nakagawa and 
Cuthill, 2007). First, a Mann-Whitney (Wilcoxon, 1945) post-hoc test 
was performed to evaluate which pairs of clusters differed significantly. 
This non-parametric test is suited for contexts where the characteristics 
of the statistical distribution of the metrics are a priori unknown and 
where cluster sizes might differ (Fay and Proschan, 2010; J. Liu et al., 
2022). Second, we performed a series of tests on the effect size of the 
differences between the clusters. For the effect size measure, for each 
landscape metric we first computed the overall effect size of all clusters 
and second the effect sizes between clusters pairs. For categorical met
rics, Cramer’s V measure (Cramér, 1991) was computed and for 
continuous metrics, we computed the effect size using the η2, ε2 and ω2 
(Carroll and Nordholm, 1975; Cohen, 1973; Hays, 1973; Lakens, 2013). 
For these different measure of effect sizes we report below the categories 
of effect size they are associated with (no effect, small effect size, me
dium effect size, large effect size) as per in (Khalilzadeh and Tasci, 
2017). Following recommendations to tailor the interpretations of these 
results to the domain of application (Cohen, 1988; Sawilowsky, 2009), 
we suggest interpretations for these four categories. We interpret “no 
effect” as corresponding to the fact that the difference between the 
measured metric of any pair of samples across the two different groups is 
not enough that we could expect any differences in the landscapes along 
the consideration of this particular metric. We interpret a small effect 
size as the fact that the difference between the measured metric of any 
pair of samples across the two different groups is enough to be consid
ered different although the landscape themselves might still share 
similarly looking features along the consideration of this particular 
metric. Correspondingly, a medium effect size corresponds to the fact 
that the difference between the measured metric of any pair of samples 
across the two different groups is enough to be considered different 
although the landscape themselves have different features along the 
consideration of this particular metric. Last, a large effect size is here 
interpreted as the fact that the difference between the measured metric 
of any pair of samples across the two different groups is enough to be 
considered different although the landscapes themselves have very 
different features, to the extent that, along the metric considered, they 
look nothing alike. In each case, we report further below the amount and 
percentage of landscape metrics and the percentage of pairs pertaining 
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to each category of effect size. As this could foster skewed results coming 
from the correlations between landscape metrics, we filtered from the 
original set of landscape metrics, a subset where no landscape metrics 
share any strong correlations (at a threshold of p < 0.7). A summary of 
the 91 metrics formulas, along with their correlations and the subset 
finally selected can be found in Appendix A-B.

After this statistical evaluation, we explored the geographical sig
nificance of the compositions and configurations of the landscapes of the 
patches and the clusters. We did so by performing a principal components 
analysis of the landscape metrics and reporting on the general distri
butions and co-linearity of key explicative metrics being the share of the 
different LCZ classes across the patches as well as eight landscape metrics 
pertaining to the configuration and composition of the patches. We 
namely used the Entropy as a measure of the diversity of composition 
within a patch; the median area of segments within the patch (Med. 
Area), as a measure of the typical size of “pockets” of the same LCZ class 
within a patch; the Relative Mutual Information (RMI) as a measure of 
the tendency of neighboring pixels of a patch to be of the same LCZ class; 
the median Shape Index (Med. Shape Index), as a measure of the typical 
shape complexity of the homogeneous sub-regions of the same LCZ class 
in a patch; the share of pixels belonging to the most dominant LCZ class 
in the patch (Top-1 %), as a measure of dominance of its landscape; the 
share of pixels belonging to the second most dominant LCZ class in the 
patch (Top-2 %), as an indicator of the hegemonic or multi-faceted 
composition of the its landscape; the coefficient of variation of the 
area (CV of Area) of segments within the patch, as a measure of the 
variation of the side of homogeneous sub-regions of the same LCZ class; 
the coefficient of variation of the Shape Index (CV of Shape Index) of 
the segments, as a measure of the diversity of the shapes of homoge
neous sub-regions of the same LCZ class.

5. Results

5.1. Typology of intra-urban patterns

Applying the SCAN + RUC framework on the more than 315, 000 
patches of our global dataset, we obtained 138 clusters. Each patch 
considered in our approach was classified into one of these 138 clusters, 
meaning that 138 types of intra-urban patterns are sufficient to define 
the urban fabric of any city in the world. We found that the 138 clusters 
presented overall a rich breadth of distinctive visual features and in
ternal consistency. We organized the identified intra-urban pattern 
types by order of their shares of built-up LCZ classes computed at the 
cluster level. A summary of exemplary patches, morphological de
scriptions and semantic interpretations of the typical landscapes of the 
138 identified intra-urban pattern types can be found in Appendix C. A 
subset of this summary for 10 pattern types along the gradient of the 138 
ordered clusters is presented in Fig. 3.

This richness of patterns was of course not without a few similarities 
between clusters as can be visually understood in Figs. 4A-B. We further 
found that the clusters vary in representativity as they featured between 
92 and 5, 689 patches with a median of 2, 313 (Fig. 5).

The characteristic landscapes of each cluster was found to be quali
tatively different between each of them while internal diversity was also 
observed at the individual cluster level (cf. Figs. 4A-B and Appendix C). 
Overall, we observed a large diversity of landscape compositions and 
configurations across the clusters identified (Appendix C). Some clusters 
were largely dominated by vegetation (e.g.: clusters 1 and 15), some 
others were mainly comprised of dense built-up (e.g.: clusters 107, 121 
and 138), while some others were more heterogeneous, exhibiting 
similar proportions of vegetation and built-up (e.g.: clusters 30, 48 and 
63). Conversely, the clusters differed in configurations, i.e. some of them 
featured homogeneous areas (e.g.: clusters 1 and 138), some were more 
divided (e.g.: cluster 59, 77, 128), some were interspersed (e.g.: clusters 
10, 22, 56, 100, 125), or some presented multiple small scale homoge
neous sub-regions (e.g.: clusters 28, 55, 116).

We found quantitatively that the share of the built-up type ‘LCZ-8: 
large low-rise buildings’ was dominant in 45 of the identified clusters 
while representing 18.9 % of the global urban fabric being the most 
represented LCZ class. Second on this rank was ‘LCZ-D: low plants that 
presented similar shares of the global urban fabric (18.6 %) and was 
dominant in 22 clusters. Overall, we found that 65.6 % of the global 
urban fabric is built-up and 34.4 % is not while 118 clusters were on 
average dominantly built-up against 20 that were on average domi
nantly non-built-up (Fig. 5).

Interestingly, we further observed that built-up forms of low density 
(LCZ-4: Open high-rise; LCZ-5: Open midrise; LCZ-6: Open low-rise; 
LCZ-8: Large low-rise; LCZ-9: Sparsely built) together represented 
48.6 % of the global urban fabric and accounted for more than half of the 
surface in 52.9 % of all patches and in 71 out of 138 types of the clusters. 
Exposed soil and low vegetation non-built-up cover types (LCZ-D: Low 
plants; LCZ-E: Bare rock or paved; LCZ-F: Bare soil or sand) accounted 
for 22.9 % of the LCZ share of the global urban fabric, were sharing 
above half of the surface in 9.2 % of all patches and in 11 out of 138 
clusters. Against this, we found that dense built-up forms (LCZ-1: 
Compact high-rise; LCZ-2: Compact midrise; LCZ-3: Compact low-rise; 
LCZ-7: Lightweight low-rise) accounted for 13.8 % of the LCZ share of 
the global urban fabric, were sharing above half of the surface in 8.1 % 
of all patches and in 8 out of 138 clusters, while higher vegetation (LCZ-A: 
Dense trees; LCZ-B: Scattered trees; LCZ-C: Busch, scrub) accounted for 
9.4 % of the LCZ share of the global urban fabric, were sharing above 
half of the surface in 2.2 % of all patches and in 1 out of 138 clusters 
(Fig. 5).

5.2. Statistical tests

The Mann-Whitney post-hoc test, resulted in the observation that 
across the set of 49 non-strongly correlated metrics, on average 84.2 % 
of the cluster pairs presented significant differences (at a threshold of p 
< 0.05). At the minimum, one landscape metric presented 31.7 % of the 
cluster pairs to be significantly different, and at the maximum, one 
metric presented 94.5 % of the pairs to be significantly different.

Analyzing the different effect size measures for the continuous 
landscape metrics, we observed only marginal differences of a range of 
10− 4 units between the values of η2, ε2 and ω2 which was to be expected 
thanks to the large sample sizes in our study. In no case did these mar
ginal differences change the effect size category for any landscape 
metrics. We found that a large majority of 34 metrics out of 49 presented 
overall large effect sizes. 10 metrics showed medium effect sizes, and 5 
metrics presented small effect sizes with no metric presenting an insig
nificant effect size. These effect sizes results represent the fact that for 
the overall dataset grouped into the 138 clusters identified, the patches 
are significantly different at least to a small extent in term of features of 
their landscapes.

Analyzing the effect sizes between pairs of clusters for each of these 
49 metrics, we found that on average for the landscape metrics, a large 
majority of 77.2 % of the pairs of clusters presented a significant effect 
size (of which, respectively, 28.5 % presented a small effect size, 21.4 % 
a medium effect size, 27.6 % a large effect size). These effect sizes results 
represent the fact that each pair of the 138 clusters identified are on 
average significantly different at least to a small extent in term of fea
tures of their landscapes.

Moreover, we identified that the pairs of clusters that presented non- 
significant effect sizes were not the same across different landscape 
metrics. This indicated that the clusters identified by our approach might 
have shared some features but differed on a multi-dimensional level 
considering multiple landscape metrics.

To summarize, we observed that our approach identified clusters that 
were quantitatively different in terms of the morphology of their patches, 
represented by measures of their compositions and configurations. 
These quantitative statistical results coincided with the qualitative 
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Fig. 3. Exemplary patches, morphological descriptions, exemplary satellite picture (credit: Bing Aerial Imagery) and semantic interpretation of 10 intra-urban 
pattern types (I-UPTs) along the gradient of the ordered 138 I-UPTs.
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assessment developed in Fig. 3 and Appendix C and allowed to relativize 
the fact that some cluster pairs visually seemed to be similar. Some pairs 
of clusters indeed were found to share some features of their landscapes, 
but our multi-dimensional approach still highlighted that their land
scapes differed significantly.

5.3. Morphological characteristics

Plotting the result of the first two principal components (PC1 and 
PC2) of the PCA, we obtained the following biplots (Fig. 6). The first 
component PC1 explained 30.6 % of the variance and represented best 
the Entropy, the CV of Area and Top-1 % and Top-2 % for the landscape 
metrics. It also explained the best shares of ‘LCZ-1: Compact high-rise’, 

Fig. 4A. Visualization of the 138 clusters defining the urban fabric of cities. Each cluster is represented by a line of 5 of its patches being at the 1st, 20th, 40th,60th, 
80th and 100th centiles of the closest neighbors of the cluster’s centroid (i.e. the 5 patches describe a gradient from the closest to the centroid to the furthest from the 
centroid of the clusters, in the embedded space of the neural network). The figure is organized by clusters of increasing shares of built-up LCZ classes (LCZ 1 to 10), 
from top to bottom and left to right. (cluster 1 to 72).
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‘LCZ-5: Open midrise’, ‘LCZ-8: Large low-rise’, ‘LCZ-10: Heavy in
dustry’, ‘LCZ-B: Scattered trees’, ‘LCZ-C: Bush’, ‘scrubs’, and ‘LCZ-F: 
Bare soil or sand’. PC2 explained 12.1 % of the variance and represented 
best the CV of the Shape Index, Med. Shape Index, RMI and Med. Area 
for the landscape metrics. It represented best the shares of ‘LCZ-2: 
Compact midrise’, ‘LCZ-3: Compact low-rise’, ‘LCZ-4: Open high-rise’, 

‘LCZ-6: Open low-rise’, ‘LCZ-7: Lightweight low-rise’, ‘LCZ-9: Sparsely 
built’, ‘LCZ-A: Dense trees’, ‘LCZ-D: Low plants’, ‘LCZ-E: Bare rock or 
paved’, and ‘LCZ-G: Water’.

While we could observe a mixture of more diverse values of built-up 
share on the left part of the plot, on the right the points spread to the 
lower right part of the biplots where we observed more extreme ones 

Fig. 4B. Visualization of the 138 clusters defining the urban fabric of cities. Each cluster is represented by a line of 5 of its patches being at the 1st, 20th, 40th,60th, 
80th and 100th centiles of the closest neighbors of the cluster’s centroid (i.e. the 5 patches describe a gradient from the closest to the centroid to the furthest from the 
centroid of the clusters, in the embedded space of the neural network). The figure is organized by clusters of increasing shares of built-up LCZ classes (LCZ 1 to 10), 
from top to bottom and left to right. (cluster 73 to 138).
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with a strong divide between highly built-up and conversely highly non- 
built-up clusters and patches. Additionally, we observed lower built-up 
forms on the upper part of the plot and more compact ones on the left 
of the plot, while vegetation land cover seemed dominant in the lower 
part of the plot.

This biplots further helped us to identify groups of associated LCZ 
classes. For example, we found ‘LCZ-3: Compact low-rise’, ‘LCZ-6: Open 
low-rise’, ‘LCZ-9: Sparsely built’ and to a more minor effect ‘LCZ-7: 
Lightweight low-rise’ to be jointly grouped in patches of the urban fabric 
while being antagonistic to the group formed by ‘LCZ-A: Dense trees’, 
‘LCZ-D: Low plants’ and ‘LCZ-G: Water’. We identify LCZ classes ‘LCZ-8: 
Large low-rise’ and ‘LCZ-F: Bare soil or sand’ to be co-jointly present and 
negatively related to the presence of LCZ classes ‘LCZ-1: Compact high- 
rise’, ‘LCZ-2: Compact midrise’, and ‘LCZ-C: Bush, scrub’. Lastly, we 
identified that ‘LCZ-4: Open high-rise’, ‘LCZ-5: Open midrise’, ‘LCZ-10: 
Heavy industry’ and ‘LCZ-B: Scattered trees’ were associated.

Based on this, we divided empirically these biplots in 4 quadrants: 
Upper right corresponding to mostly built-up clusters and patches of low- 
rise building types; Lower right corresponding to a high presence of non- 
built-up areas, among which mostly ‘LCZ-D: Low plants’; Lower left 
corresponding to open built-up forms with dense to scattered trees; 
Upper left corresponding mostly to compact built-up forms with little 
vegetation.

With this, looking at the landscape metrics, we saw that the upper 
right quadrant is positively colinear to Top-1 % and CV of Area, indi
cating that these highly built-up clusters and patches were hegemonically 
covered by a single LCZ class with very small scattering of secondary 

LCZ classes. The lower right quadrant showed some collinearity with 
Med. Area and Med. Shape Index, a strong one with RMI and some 
negative collinearity with Top-2 %, indicating these clusters and patches 
presented mostly landscapes of multiple medium sizes clearly defined 
segments of more than two different LCZ classes with probably a slightly 
dominant one. The lower left quadrant was strongly associated with 
Entropy and strongly negatively associated with CV of Area. This indi
cated clusters and patches with scattered landscapes of multiple segments 
of the same sizes with a balanced mix of LCZ classes such as LCZ-4, LCZ- 
5, LCZ-10, and LCZ-B. Last, the upper left quadrant presented collin
earity with CV of Shape Index and Top-2 %, as well as strongly negative 
association with RMI indicating clusters and patches with speckled ho
mogeneous sub-regions of different complexities with generally two LCZ 
classes sharing most of the landscape. In general, we observed that the 
right side of these biplots showed more homogeneous clusters and 
patches while the left side exhibited more heterogeneous clusters and 
patches.

6. Discussion

The volumes and voids, the coverage, height and density of the built- 
up and vegetation vary greatly within the urban fabric. This renders the 
urban fabric extremely textured and richly heterogeneous. Previous 
studies showed the relevance to analyze types of urban fabric in their 
relations to urban functions and indirect physical socio-economic as
pects (Arribas-Bel and Fleischmann, 2022; Batty and Longley, 1994; 
Wandl and Hausleitner, 2021; Wang et al., 2023; Whitehand, 2001), 

Fig. 5. LCZ compositions of the clusters, and number of patches per cluster. Clusters are ordered by increasing share of built-up LCZ classes.
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their historical processes (Cozzolino, 2020; Debray et al., 2023; Dovey, 
2020; Fleischmann et al., 2021a) the inequal distribution of different 
types of urban fabric across the globe (Debray et al., 2021; Lemoine- 
Rodríguez et al., 2020; Taubenböck et al., 2020; Zhu et al., 2022), or 
within the cities themselves (Adams, 2005; Fleischmann et al., 2021a; R. 
E. Park et al., 1925). Yet, how rich is the urban fabric, how many faces 
does it present at a global level are questions that were not consistently 

addressed until now and kept largely unsatisfactory unanswered. 
Without answering these questions, any attempt at global, consistent 
comparisons between cities on urban phenomena related to their intra- 
urban morphology are arduous and uncertain, if not impossible.

The emergence, over the last decade, of global datasets and powerful 
data-driven methods enable now to steer towards systematic and 
quantitative approaches allowing empirical analysis and proof over 

Fig. 6. Biplots of the patches and the centroids of the clusters identified according to the two first principal components of the landscape metrics feature space. The 
first biplot focuses on the share of the LCZ classes and the second one on the landscape metrics. The loadings (length of the arrows) of the shares of the different LCZ 
classes have been magnified by a factor 3 in the first biplot for ease of reading (inner small black arrows are to scale). Each background point in the biplot corresponds 
to a patch of which color signifies its share of built-up surface. Each foreground point corresponds to the patch closest to the centroid of its cluster, in the embedded 
space of the neural network. Its color corresponds to the predominant LCZ class in its cluster.
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observations on urban morphology. Leveraging these, we developed in 
this study a consistent method to derive a global and complete (i.e. 
universal) typology of the urban fabric across the globe by identifying 
clusters of similar intra-urban patterns among patches of urban fabric. We 
proved that the clusters identified are statistically different in terms of 
compositions and configurations of their patches, showing well defined 
types of intra-urban patterns as opposed to a continuum. With this, we 
prove that a universal typology of intra-urban patterns is attainable, and 
we provide the first insights into it.

We found that the diversity of patterns within the urban fabric can be 
summarized at a global level in 138 intra-urban pattern types. This 
result means that any large city on our globe can be, in an abstract view, 
seen as a complex jigsaw puzzle of which each and any pieces is drawn 
from this pool of only 138 types we identified. We find that different 
interpretations of this number of 138 intra-urban pattern types can make 
it seem very low or, conversely, high. In face of all combinations of 
compositions and configuration that we could imagine for the elemen
tary unit patches at the base of our method (17322), the fact that 138 
types of intra-urban patterns are identified speaks for a great regularity 
of pattern types across the globe. At the same time, 138 types reflects a 
great richness of a nuanced typology as some of these types are ac
counting for as little as less than 0.05 % of the urban fabric of the world 
and the most prevalent type accounts for only 1.8 % of the global fabric. 
Further, through the analysis of the specific morphological character
istics of the typical landscapes of the patches associated to these types, 
we demonstrated the great variability existing between these 138 types. 
Therefore, the universal typology of intra-urban patterns here identified 
allows for a nuanced representation of the complexity and diversity of 
meso-scaled patterns existing throughout the global urban fabric.

Although diverse, we further found that most of this diversity is 
dominated by one specific built-up type: LCZ-8 corresponding to large 
low-rise buildings and one landcover type: LCZ-D corresponding to very 
low vegetation. ‘LCZ-8: large low-rise buildings’ are typical of industrial 
and commercial parks among others and are found to amount to 18.9 % 
of the global urban fabric accounting for more than a fourth of the built- 
up surface of the global urban fabric. ‘LCZ-D: low plants’ is associated 
with extents of grass in urban parks and with peripheral or interstitial 
fragmented herbaceous areas and we find it to amount to 18.6 % of the 
global urban fabric, making it account for more than the half of the non- 
built-up part of the global urban fabric. What’s more, we find these two 
LCZ classes to be correlated. On an even more generalized level we 
further observe that built-up forms of low-density cover around half of 
the global urban fabric and is predominant in half of the patterns we 
found. This information corroborates with previous studies (Hu et al., 
2021; Taubenböck, 2021; Taubenböck et al., 2025) and clearly identifies 
that the current way our cities are being built, across the globe, is 
prevalently steered towards low density forms and low urban and peri- 
urban vegetation typical result from the urban sprawl. These over- 
present patterns of the current urbanization actively foster ineffective 
land consumption (Hu et al., 2021; Taubenböck et al., 2025), specific 
nefarious mobility patterns (Rode et al., 2017), lower ecosystem services 
(Chang et al., 2017) among many other issues.

The topology we developed is broadly applicable in urban planning, 
particularly at the meso-scale where many urban phenomena—such as 
urban heat islands, air pollution dispersion, and accessibility barriers 
—are structured. By identifying and characterizing 138 intra-urban 
pattern types, we offer a consistent ground for future research on 
several urban challenges. It is our aim that this typology can be used as 
the basis for cross-city and cross-type comparisons, supporting a better 
understanding of how different urban fabrics perform, therefore 
informing more effective planning practices.

We overall see the results of this study as proving the capacity of our 
methodology to find a universal typology of the urban fabric. The use of 
an unsupervised clustering approach combined with a large global 
dataset proves to be highly promising for identifying patterns of the 
urban fabric. With this, we hope to inspire new comparative global 

investigations of the urban fabric. Nonetheless, against these positive 
results, we account for a few shortcomings that need to be considered in 
the interpretation of our result.

Despite their high accuracy, the LCZ classification and MUAs used in 
this study contain uncertainties that may impact the resulting typology. 
The LCZ classification presents uneven levels of confusion across cate
gories (Zhu et al., 2022). Common misclassifications include LCZ-3: 
compact low-rise with LCZ-7: lightweight low-rise; LCZ-8: large low- 
rise and LCZ-10: heavy industry; and last LCZ-C: bush, scrubs with 
LCZ-D: low plants and LCZ-F: bare soil or sand. While these differences 
are semantically small, they may introduce bias in our input patches. 
While our method is robust to noise, a larger bias in the input data could 
have as consequence the creation of spurious cluster. This specific bias- 
induced error could not be quantified in this study. Comparison with 
other LCZ classifications (e.g. (Demuzere et al., 2022)) could potentially 
help quantify this error. Future studies using the ordinal values of the 
LCZ as opposed to categorical values could be, on their own, able to 
circumvent this potential error as the confused LCZ classes share these 
same ordinal characteristics. Further, the MUAs might have some in
fluence on the typology we found. The MUAs include cities larger than 
3000 000 inhabitants and smaller settlements in their direct vicinity. As 
smaller cities further away from major urban areas are not included in 
these datasets, patterns exclusive to small cities might be invisibilized in 
our study which cannot be here straightforwardly quantified. Further 
studies could investigate if some additional patterns are identified using 
alternative datasets (e.g.: (Corbane et al., 2019; Demuzere et al., 2022; 
Esch et al., 2017)). Further, it is to be acknowledged once more that the 
performance of the SCAN + RUC framework in the specific context of 
our study could not be quantified in term of accuracy. Our study, by 
design, could not be based on prior typologies and therefore other 
support was needed to test our results. Nevertheless, the statistical tests 
we led showed conclusive results that the clusters identified are indeed 
morphologically different and the qualitative analysis of the patterns 
further confirmed that the patterns identified are not only coherent but 
semantically different. On these grounds, the SCAN + RUC was well 
adapted to the task at hand and showcased the transferability of unsu
pervised computer vision frameworks in geographical analysis tasks as 
suggested in (W. Chen et al., 2024; P. Liu and Biljecki, 2022; Wang et al., 
2024; Wang and Biljecki, 2022). Yet, these do not allow for a straight
forwardly comparable evaluation of the performance of different 
methods. Therefore, in a frame of comparative research, we encourage 
future work to directly compare their typology obtained to the one here 
presented to better inform a baseline typology of intra-urban patterns.

In general, the typology framed by our unsupervised approach is not 
definitive in its number of types or in the details of its content. There
fore, the results of our study, at this stage, can be further investigated 
and improved.

7. Conclusion and outlook

It had been acknowledged for over a century that capturing the di
versity of the urban fabric by drawing its typology is a relevant research 
direction. However, attempts at any universal typology have been pre
vented by a lack of comprehensive data and accordingly effective 
methods. Developments in data, methods and processing power open a 
new avenue for research in this domain.

Indeed, deriving empirically such a universal objective typology is a 
process paved with methodological pitfalls and technical hurdles. In 
recent years, advances in the fields of remote sensing and machine 
learning allowed to progressively circumvent these technical and 
methodological obstacles. Stepping on these advances, we adapted a 
deep learning unsupervised approach and applied it to comprehensive 
and systematic data used to proxy the urban fabric on a global scale. 
With this, we derived the first comprehensive universal typology of the 
intra-urban patterns produced empirically, i.e. based on more than 
1,500 cities across the globe. Our data-driven approach identified 138 
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intra-urban pattern types representing characteristic landscape compo
sition and configuration. Information gained from this typology allows 
to better understand the physical dimension of the current global ur
banization. We believe that this result is one among many that a uni
versal typology of intra-urban patterns can provide.

Going forward, we identify five main directions to develop the 
approach presented in this study. First, we see the semantic interpreta
tion of each intra-urban pattern type proposed in this study as refinable. 
There is no claim here that the semantic interpretation we put forth for 
the 138 types of intra-urban patterns are fully representative of each of 
their instances across the globe. We encourage further refinement of the 
semantic description of each pattern type to present a unified pattern 
vocabulary as conceptualized for example in (Wu et al., 2025). (Arribas- 
Bel and Fleischmann, 2022; Fleischmann and Arribas-Bel, 2022) show
cased that the range of patterns identified is only partially represented 
by supervised classification scheme of land use or urban functions. 
Therefore, we envision that a systematic approach should not only rely 
on land use categories or functional characteristics but should also be 
based in the location of the patterns in the cities (e.g., in the urban core 
or the urban fringe) and their direct spatial interactions with each other. 
As with the 138 types found here, the task of semantically describing 
each and every type identified is all the more arduous. In a fashion 
inspired by (Fleischmann et al., 2021a), a hierarchical approach could 
be used to summarize “families” of intra-urban pattern types at a 
generalized level and work from there toward finer levels of the se
mantic details of the typology, depending on research or planning goals. 
It is to be noted that hierarchical approaches are not as straightforward 
in the case of typologies derived from deep learning as for traditional 
feature spaces. Nonetheless recent advances in that field, specifically on 
hierarchical unsupervised clustering (Afchar et al., 2022), are promising 
and could be employed in the future.

Second, we believe that the comprehensiveness of the typology 
showcased in this study can be further extended. In our approach, we 
included cities with 300,000 inhabitants or more and all secondary cities 
or settlements in their direct vicinity. Although we are confident that our 
typology empirically captures most intra-urban pattern types, smaller 
urban areas are not captured in our data. These cities, due to their socio- 
economical or historical idiosyncrasies might exhibit pattern types that 
we did not identify in our study. Therefore, we encourage future studies 
to investigate the use of alternative datasets (e.g. (Corbane et al., 2019; 
Esch et al., 2017)) to include such cities.

Third, we are convinced and demonstrated that the explored SCAN 
+ RUC framework proofed to be highly suited to detect patterns in our 
data. Yet we believe that future work can build upon our approach to 
propose even more performant methods. While the SCAN + RUC 
framework was the highest accuracy yielding method at the time of the 
study, development of new unsupervised approaches such as the TUR
TLE framework (Gadetsky et al., 2024) seem to significantly outperform 
it. If adequate technical adaptations would allow for the TURTLE to be 
operated in a fully unsupervised fashion (including without prior 
knowledge on the number of labels), we are convinced its results on the 
task developed in this study would achieve new unprecedented levels of 
confidence.

Fourth, while the results of this study represent a rich snapshot of the 
state of the global urban fabric, multitemporal LCZ data does not yet 
exist. Once available, our framework could be applied to assess the 
global evolution of intra-urban patterns over time. We encourage future 
research expanding on the present study to use arising multi-temporal 

datasets to further develop understanding of the dynamics of the 
intra-urban morphology (Wentz et al., 2018) and of its diversity 
(Chakraborty et al., 2024; Lemoine-Rodríguez et al., 2020).

Fifth and finally, while the typology drawn in this study presents 
insights on the existing diversity of patterns in the urban fabric at a 
global scale, we envision this typology to be used in applied research. 
The typology here presented and the methodology to draw can be used 
as base input for domain specific applications. We encourage further 
studies to use the intra-urban pattern types identified as a scheme and to 
cross it with a wide range of spatial datasets (e.g.: socio-economic fac
tors, housing capacities, urban heat islands, pollution, walkability, ac
cess to vegetation, access to amenities, health data, risk exposure…) to 
cross-examinate how urban phenomena differ across different types of 
urban fabric. We believe that such groundwork could vastly improve our 
understanding of performances of certain urban planning practices in 
regard to current global challenges faced by cities (United Nations, 
2015).

With this approach, we provide the field of urban morphology with 
new methodological ground and empirical bases for cross-city and cross- 
regional comparative analysis of the urban fabric and its pertaining 
phenomena. We see this study as a precursor for further work in the 
same direction with improved technical capacities, built-upon method
ology, larger data coverage of higher accuracies or richer data basis. 
Further, with this work, we aim to trigger a range of geographical in
vestigations that could provide new types of empirical insights on the 
sustainability of different types of urban fabric, on their geographical 
distributions at a global level or on the way cities are structured. In this 
perspective, we encourage future studies to employ this typology to 
investigate the urban fabric from the intra-urban scale to the global 
scale.
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Appendix A:. List of metrics

Metric 
nr.

Metric name Formula Description Type

General composition of the patches
​ Share of LCZ-1 aLCZ− 1/apatchWith aLCZ− 1 being the area covered by the LCZ-1 class 

in the patch and apatch being the area of the patch
The proportion of a patch that pixels of class LCZ-1, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-2 aLCZ− 2/apatch The proportion of a patch that pixels of class LCZ-2, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-3 aLCZ− 3/apatch The proportion of a patch that pixels of class LCZ-3, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-4 aLCZ− 4/apatch The proportion of a patch that pixels of class LCZ-4, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-5 aLCZ− 5/apatch The proportion of a patch that pixels of class LCZ-5, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-6 aLCZ− 6/apatch The proportion of a patch that pixels of class LCZ-6, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-7 aLCZ− 7/apatch The proportion of a patch that pixels of class LCZ-7, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-8 aLCZ− 8/apatch The proportion of a patch that pixels of class LCZ-8, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-9 aLCZ− 9/apatch The proportion of a patch that pixels of class LCZ-9, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-10 aLCZ− 10/apatch The proportion of a patch that pixels of class LCZ-10, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-A aLCZ− A/apatch The proportion of a patch that pixels of class LCZ-A, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-B aLCZ− B/apatch The proportion of a patch that pixels of class LCZ-B, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-C aLCZ− C/apatch The proportion of a patch that pixels of class LCZ-C, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-D aLCZ− D/apatch The proportion of a patch that pixels of class LCZ-D, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-E aLCZ− E/apatch The proportion of a patch that pixels of class LCZ-E, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-F aLCZ− F/apatch The proportion of a patch that pixels of class LCZ-F, 
between 0 (none) and 1 (fully).

Continuous

​ Share of LCZ-G aLCZ− G/apatch The proportion of a patch that pixels of class LCZ-G, 
between 0 (none) and 1 (fully).

Continuous

​ Dominant LCZ classes in the patches
​ Top 1 LCZ class lczk|∀lczi,alczk ≥ alczi With lczi being all the LCZ classes The LCZ class with the highest share in the patch Categorical
​ Top 2 LCZ class lczl |∀lczi\lczk,alczl ≥ alczi The LCZ class with the second highest share in the patch Categorical
​ Top 3 LCZ class lczm|∀lczi\lczk,l,alczm ≥ alczi The LCZ class with the third highest share in the patch Categorical
​ Top 4 LCZ class lczn|∀lczi\lczk,l,m,alczn ≥ alczi The LCZ class with the fourth highest share in the patch Categorical
​ Top 5 LCZ class lczp|∀lczi\lczk,l,m,n,alczp ≥ alczi The LCZ class with the fifth highest share in the patch Categorical
​ Importance of the dominant LCZ classes in the patches
​ Share of Top 1 LCZ 

class
aTop1LCZ/apatch The proportion of a patch that pixels of the Top 1 LCZ class 

in the patch, between 0 (none) and 1 (fully).
Continuous

​ Share of Top 2 LCZ 
class

aTop2LCZ/apatch The proportion of a patch that pixels of the Top 2 LCZ class 
in the patch, between 0 (none) and 1 (fully).

Continuous

​ Share of Top 3 LCZ 
class

aTop3LCZ/apatch The proportion of a patch that pixels of the Top 3 LCZ class 
in the patch, between 0 (none) and 1 (fully).

Continuous

​ Share of Top 4 LCZ 
class

aTop4LCZ/apatch The proportion of a patch that pixels of the Top 4 LCZ class 
in the patch, between 0 (none) and 1 (fully).

Continuous

​ Share of Top 5 LCZ 
class

aTop5LCZ/apatch The proportion of a patch that pixels of the Top 5 LCZ class 
in the patch, between 0 (none) and 1 (fully).

Continuous

​ Number of segments 
of Top 1 LCZ class

⃒
⃒
{
STop1LCZ

} ⃒
⃒With 

{
STop1LCZ

}
being the set of segments (i.e. 

contiguously homogeneous area of one specific class) of the Top 1 
LCZ class

The number of segments belonging to the Top 1 LCZ class. Continuous

​ Number of segments 
of Top 2 LCZ class

⃒
⃒
{
STop2LCZ

} ⃒
⃒ The number of segments belonging to the Top 2 LCZ class. Continuous

​ Number of segments 
of Top 3 LCZ class

⃒
⃒
{
STop3LCZ

} ⃒
⃒ The number of segments belonging to the Top 3 LCZ class. Continuous

​ Number of segments 
of Top 4 LCZ class

⃒
⃒
{
STop4LCZ

} ⃒
⃒ The number of segments belonging to the Top 4 LCZ class. Continuous

​ Number of segments 
of Top 5 LCZ class

⃒
⃒
{
STop5LCZ

} ⃒
⃒ The number of segments belonging to the Top 5 LCZ class. Continuous

(continued on next page)
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(continued )

Metric 
nr. 

Metric name Formula Description Type

​ Share of the largest 
segment of Top 1 LCZ 
class

max
( {

aSTop1LCZ

})
/apatch The proportion of the patch comprised by the largest 

segment of the Top 1 LCZ class, between 0 (none) and 1 
(fully).

Continuous

​ Share of the largest 
segment of Top 2 LCZ 
class

max
( {

aSTop2LCZ

})
/apatch The proportion of the patch comprised by the largest 

segment of the Top 2 LCZ class, between 0 (none) and 1 
(fully).

Continuous

​ Share of the largest 
segment of Top 3 LCZ 
class

max
( {

aSTop3LCZ

})
/apatch The proportion of the patch comprised by the largest 

segment of the Top 3 LCZ class, between 0 (none) and 1 
(fully).

Continuous

​ Share of the largest 
segment of Top 4 LCZ 
class

max
( {

aSTop4LCZ

})
/apatch The proportion of the patch comprised by the largest 

segment of the Top 4 LCZ class, between 0 (none) and 1 
(fully).

Continuous

​ Share of the largest 
segment of Top 5 LCZ 
class

max
( {

aSTop5LCZ

})
/apatch The proportion of the patch comprised by the largest 

segment of the Top 5 LCZ class, between 0 (none) and 1 
(fully).

Continuous

Morphologies of the dominant LCZ classes in the patches
​ Shape index of 

segments of Top 1 
LCZ class

∑{
eSTop1LCZ

}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√ With 

{
eSTop1LCZ

}
being the set of all the edges length of 

segments of Top 1 LCZ class in the patch.

Standardized measure of the cumulated length of edges the 
segments of Top 1 LCZ class shares with the rest of the 
patch. It is equal to 1 when the entire patch is comprised of 
the Top 1 LCZ class and increases without limit as the 
segments of Top 1 LCZ class become more disaggregated.

Continuous

​ Shape index of 
segments of Top 2 
LCZ class

∑{
eSTop2LCZ

}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√

Standardized measure of the cumulated length of edges the 
segments of Top 2 LCZ class shares with the rest of the 
patch. It is equal to 1 when the entire patch is comprised of 
the Top 2 LCZ class and increases without limit as the 
segments of Top 2 LCZ class become more disaggregated.

Continuous

​ Shape index of 
segments of Top 3 
LCZ class

∑{
eSTop3LCZ

}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√

Standardized measure of the cumulated length of edges the 
segments of Top 3 LCZ class shares with the rest of the 
patch. It is equal to 1 when the entire patch is comprised of 
the Top 3 LCZ class and increases without limit as the 
segments of Top 3 LCZ class become more disaggregated.

Continuous

​ Shape index of 
segments of Top 4 
LCZ class

∑{
eSTop4LCZ

}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√

Standardized measure of the cumulated length of edges the 
segments of Top 4 LCZ class shares with the rest of the 
patch. It is equal to 1 when the entire patch is comprised of 
the Top 4 LCZ class and increases without limit as the 
segments of Top 4 LCZ class become more disaggregated.

Continuous

​ Shape index of 
segments of Top 5 
LCZ class

∑{
eSTop5LCZ

}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√

Standardized measure of the cumulated length of edges the 
segments of Top 5 LCZ class shares with the rest of the 
patch. It is equal to 1 when the entire patch is comprised of 
the Top 5 LCZ class and increases without limit as the 
segments of Top 5 LCZ class become more disaggregated.

Continuous

​ Effective Mesh size of 
Top 1 LCZ class

∑{
a2

STop1LCZ

}

apatch

Measure of the aggregation of the Top 1 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

​ Effective Mesh size of 
Top 2 LCZ class

∑{
a2

STop2LCZ

}

apatch

Measure of the aggregation of the Top 2 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

​ Effective Mesh size of 
Top 3 LCZ class

∑{
a2

STop3LCZ

}

apatch

Measure of the aggregation of the Top 3 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

​ Effective Mesh size of 
Top 4 LCZ class

∑{
a2

STop4LCZ

}

apatch

Measure of the aggregation of the Top 4 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

​ Effective Mesh size of 
Top 5 LCZ class

∑{
a2

STop5LCZ

}

apatch

Measure of the aggregation of the Top 5 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

​ Diversity and aggregation of LCZ classes in the patches
​ Entropy −

∑

lcz
Plczi logb

(
Plczi

)
With Plczi being the proportion of pixels in 

the landscape belonging to the LCZ class lczi

Measures the LCZ composition diversity within the patch by 
considering the number of LCZ classes present and their 
relative abundance.

Continuous

​ Shannon Diversity 
index

−
∑

lcz
Plczi ln

(
Plczi

) Measures the LCZ composition diversity within the patch by 
considering the number of LCZ classes present and their 
relative abundance.

Continuous

(continued on next page)
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(continued )

Metric 
nr. 

Metric name Formula Description Type

​ Joint Entropy
−
∑

lczi∈lcz

∑

lczk∈lcz

[

Plczi

glczi,k∑
lczk∈lczglczi,k

][

logb

(

Plczi

glczi,k∑
lczk∈lczglczi,k

)]

With glczi,k being the number of pixels of class lczk neighboring 
pixels of LCZ class lczi

Measures the composition and configuration complexity of 
the patch by computing the frequency to which two 
adjacent pixels belong to the same LCZ class.

Continuous

​ Conditional Entropy
−
∑

lczi∈lcz

∑

lczk∈lcz

[

Plczi

glczi,k∑
lczk∈lczglczi,k

][

logb

(
glczi,k∑

lczk∈lczglczi,k

)]
Measures the configuration complexity of the patch in 
reflecting the spatial interspersions of the LCZ classes.

Continuous

​ Mutual Information Entropy − ConditionalEntropy Measures the aggregation in the patch by computing the 
difference between the composition complexity and the 
configuration complexity.

Continuous

​ Relative Mutual 
Information

MutualInformation
Entropy

Measures the aggregation by adjusting the Mutual 
information for the number of LCZ classes present in the 
patch.

Continuous

​ Contagion

1 +

∑
lczi

∑
lczk

[

Plczi

glczi,k∑
lczk

glczi,k

][

ln

(

Plczi

glczi,k∑
lczk

glczi,k

)]

2ln(m)

With m being the number of LCZ classes present in the patch

Measures the aggregation by computing the frequency to 
which two adjacent pixels belong to the same LCZ class.

Continuous

Landscape morphology of patches
​ Number of Segments |{S} |With {S} being the set of all segments in the patch The number of segments in the patch. Continuous
​ Share of the Largest 

Segment
max({aS})/apatchWith {aS} being the set of the area values all 
segments in the patch

The proportion of the patch comprised by its largest 
segment, between 0 (none) and 1 (fully).

Continuous

​ Shape Index
∑

{eS}

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√ With {eS} being the set of the edges length counted once 

between all segments in the patch

Standardized measure of the cumulated length of edges the 
segments of the patch. It is equal to 1 when the entire patch 
is comprised of the Top 5 LCZ class and increases without 
limit as the segments of Top 5 LCZ class become more 
disaggregated.

Continuous

​ Effective Mesh Size ∑{
a2

S
}

apatch

Measure of the aggregation of the Top 1 LCZ class based on 
its cumulative segments size distribution in the patch.

Continuous

Morphology of the segments within patches
(59–64) Areas {aS} On which values are computed: 

The mean (mn) 
The area-weighted mean (am) 
The median (md) 
The range (ra) 
The standard deviation (sd) 
The coefficient of variation (cv)

Areas values of each segment of the patch. Continuous

(65–70) Perimeters {eS} (1) mn
(2) am
(3) md
(4) ra
(5) sd
(6) cv

Edges length of each segment of the patch. Continuous

(71–76) Perimeter Area ratios {eS/aS} (7) mn
(8) am
(9) md

(10) ra
(11) sd
(12) cv

Perimeter Area ratios of each segment of the patch as a 
measure of shape complexity.

Continuous

(77–82) Shape indexes
{

eS

4 ̅̅̅̅̅̅̅̅̅̅̅apatch
√

}
(13) mn
(14) am
(15) md
(16) ra
(17) sd
(18) cv

Shape indexes of each segment of the patch as a 
standardized measure of shape complexity.

Continuous

(83–88) Fractal dimensions ⎧
⎨

⎩
2

ln
(eS

4

)

ln(aS)

⎫
⎬

⎭

(19) mn
(20) am
(21) md
(22) ra
(23) sd
(24) cv

Fractal dimensions values of each segment of the patch as a 
measure of shape complexity.

Continuous

​ Scattering of the LCZ classes
(89–91) Distance to nearest 

neighbors
{dS} (25) mn

(26) ra
(27) sd

Distances to the nearest segment of the same LCZ class for 
each LCZ class as a measure of their scatterings.

Continuous
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Appendix B:. Correlation matrices

1) Correlation matrix of all landscape metrics:

.
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2) Correlation matrix of not strongly correlated landscape metrics:

.

H. Debray et al.                                                                                                                                                                                                                                 International Journal of Applied Earth Observation and Geoinformation 141 (2025) 104610 

19 



3) Correlation matrix of explicative landscape metrics:
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.
Appendix C:. Qualitative analyses of the 138 intra-urban pattern types

.
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par J.-N.-L. Durand,... https://gallica.bnf.fr/ark:/12148/bpt6k5762681g.

Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., Szeider, S., 2021. The Parameterized 
Complexity of Clustering Incomplete Data (arXiv:1911.01465). arXiv. http://arxiv. 
org/abs/1911.01465.

Esch, T., Heldens, W., Hirner, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S., 
Strano, E., 2017. Breaking new ground in mapping human settlements from space – 
The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing 
134, 30–42. https://doi.org/10.1016/j.isprsjprs.2017.10.012.

Fay, M.P., Proschan, M.A., 2010. Wilcoxon-Mann-Whitney or t-test? On assumptions for 
hypothesis tests and multiple interpretations of decision rules. Statistics Surveys 4, 
1–39. https://doi.org/10.1214/09-SS051.

Fleischmann, M., 2019. momepy: Urban morphology measuring toolkit. Journal of Open 
Source Software 4 (43), 1807. https://doi.org/10.21105/joss.01807.

Fleischmann, M., Arribas-Bel, D., 2022. Geographical characterisation of British urban 
form and function using the spatial signatures framework. Scientific Data 9 (1). 
https://doi.org/10.1038/s41597-022-01640-8. Article 1. 

Fleischmann, M., Feliciotti, A., Romice, O., Porta, S., 2021a. Methodological foundation 
of a numerical taxonomy of urban form. Environment and Planning b: Urban 
Analytics and City Science 239980832110598. https://doi.org/10.1177/ 
23998083211059835.

H. Debray et al.                                                                                                                                                                                                                                 International Journal of Applied Earth Observation and Geoinformation 141 (2025) 104610 

25 

https://doi.org/10.1191/0309132505ph552xx
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0015
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0015
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0020
https://doi.org/10.1016/j.habitatint.2022.102641
https://doi.org/10.1016/j.habitatint.2022.102641
https://doi.org/10.1007/978-0-387-30440-3_69
https://doi.org/10.1007/978-0-387-30440-3_69
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0045
https://doi.org/10.3311/PPar.17988
https://doi.org/10.1016/j.compenvurbsys.2022.101809
https://doi.org/10.1016/j.compenvurbsys.2022.101809
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1007/s41109-019-0189-1
https://doi.org/10.1007/s41109-019-0189-1
https://doi.org/10.1177/2399808318784595
https://doi.org/10.1371/journal.pone.0225734
https://doi.org/10.1371/journal.pone.0225734
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0085
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0085
https://doi.org/10.1177/001316447503500304
https://doi.org/10.1177/001316447503500304
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0095
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0095
https://doi.org/10.51347/jum.v6i1.3899
https://doi.org/10.51347/jum.v6i1.3899
https://doi.org/10.1016/j.habitatint.2024.103024
https://doi.org/10.1016/j.habitatint.2024.103024
https://doi.org/10.1038/s41598-017-11559-5
https://doi.org/10.1038/s41598-017-11559-5
https://doi.org/10.1016/j.landurbplan.2023.104901
https://doi.org/10.1016/j.landurbplan.2023.104901
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0125
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0125
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0125
https://doi.org/10.1177/001316447303300111
https://doi.org/10.1177/001316447303300111
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0135
https://doi.org/10.1080/20964471.2019.1625528
https://doi.org/10.1080/20964471.2019.1625528
https://doi.org/10.1177/2399808319857451
https://doi.org/10.1177/2399808319857451
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0150
https://doi.org/10.1007/s00357-015-9167-1
https://doi.org/10.1007/s00357-015-9167-1
https://doi.org/10.1016/j.landurbplan.2023.104711
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0165
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.frontiersin.org/articles/10.3389/fenvs.2021.637455
https://www.frontiersin.org/articles/10.3389/fenvs.2021.637455
https://doi.org/10.5194/essd-14-3835-2022
https://doi.org/10.1177/2399808317725075
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0190
http://refhub.elsevier.com/S1569-8432(25)00257-2/h0190
https://doi.org/10.1016/j.compenvurbsys.2024.102115
http://archive.org/details/prcisdesleon02dura
https://doi.org/10.1016/j.isprsjprs.2017.10.012
https://doi.org/10.1214/09-SS051
https://doi.org/10.21105/joss.01807
https://doi.org/10.1038/s41597-022-01640-8
https://doi.org/10.1177/23998083211059835
https://doi.org/10.1177/23998083211059835


Fleischmann, M., Romice, O., Porta, S., 2021b. Measuring urban form: Overcoming 
terminological inconsistencies for a quantitative and comprehensive morphologic 
analysis of cities. Environment and Planning b: Urban Analytics and City Science 48 
(8), 2133–2150. https://doi.org/10.1177/2399808320910444.

Gadetsky, A., Jiang, Y., Brbic, M., 2024. June 6). Let Go of Your Labels with 
Unsupervised Transfer. Forty-First International Conference on Machine Learning.

Gil, J., Beirão, J.N., Montenegro, N., Duarte, J.P., 2012. On the discovery of urban 
typologies: Data mining the many dimensions of urban form. Urban Morphology 16 
(1), 27–40.

Han, S., Park, S., Park, S., Kim, S., Cha, M., 2020. Mitigating Embedding and Class 
Assignment Mismatch in Unsupervised Image Classification. In A. Vedaldi, H. 
Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (Vol. 12369, pp. 
768–784). Springer International Publishing. https://doi.org/10.1007/978-3-030- 
58586-0_45.

Hays, W.L., 1973. Statistics for the Social Sciences, 2. ed. Holt, Rinehart and Winston. 
He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Residual Learning for Image Recognition 

(arXiv:1512.03385). arXiv. https://doi.org/10.48550/arXiv.1512.03385.
Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J., Zipf, A., 2021. The 

evolution of humanitarian mapping within the OpenStreetMap community. 
Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-82404-z. Article 1. 
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Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., Dech, S., 2009. Urbanization in India 
– Spatiotemporal analysis using remote sensing data. Computers, Environment and 
Urban Systems 33 (3), 179–188. https://doi.org/10.1016/j. 
compenvurbsys.2008.09.003.
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