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Better software drives better research, a fundamental principle in the research 
software engineering community. Similarly, better architecture underpins better 
software, a core belief in the software engineering research community. Therefore, 
we advocate and emphasize the importance of designing robust architectures for 
research software to elevate the quality of research outcomes, and illustrate this 
with two case studies.

Research software—the software used in the gen-
eration of research results—is used across all dis-
ciplines in different ways. From modeling and sim-

ulation, data management, analysis, and visualization to 
experimental management, software has become cen-
tral to the production of research, the advancement of 
knowledge, and the decisions that are based on it.

Research software has been defined as including 
“source code files, algorithms, scripts, computational 
workflows and executables that were created during 
the research process or for a research purpose.”1 It can 

fulfill many different roles: instrument, model, tool, in-
frastructure, object of research, and research output 
in its own right.

The critical role that research software holds for 
reproducibility and confidence in results puts require-
ments on its development, maintenance, and availabil-
ity. Research software must be of sufficient quality to 
ensure that it produces correct results. It must also be 
FAIR—i.e., findable, accessible, interoperable, and re-
usable2—to ensure that it can be reused, and supports 
use in interconnection with other software from the 
same, as well as other, domains.

Research software is often long-lived, becoming 
more complex as it is reused and extended. Due to the 
nature of research culture and funding, development 
teams change frequently. Each new generation of re-
searchers (often Ph.D. students) and research software 
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engineers (RSEs) working on the software brings their 
own culture, experience, and domain background with 
them. This may benefit the software but can also lead 
to loss of knowledge and accrual of technical debta; 
lack of effort or documentation may result in “acciden-
tal” architectures that hinder, rather than support, the 
maintenance, extensibility, and evolution of the soft-
ware. The negative effect of accidental architectures 
may be amplified by the research context, where value 
is placed on new features that enable novel research, 
not on maintainability and refactoring. Similarly, re-
search funding rewards novelty and provides few re-
sources for maintenance, refactoring, and improving 
architecture. Reusability is not a static condition of a 
“final” version but a condition of adaptability to chang-
ing needs that requires as few resources as possible, 
even when adapting to new hardware architectures, 
such as GPU programming models.

In this article, we advocate and emphasize the 
importance of designing robust architectures for re-
search software. We present two case studies that 
analyze software maintainability through the use of 
static code analysis metrics. They highlight the impor-
tance of modularization for software quality and pro-
vide preliminary insights into the usefulness of metrics 
for assessing the maintainability of research software 
as an architectural trait.

SOFTWARE ARCHITECTURE
In software engineering, complexity is “anything relat-
ed to the structure of a software system that makes 
it difficult to understand and modify.” Software design 
is a key component in addressing complexity, which 
starts with software architecture, the process of mak-
ing design decisions that lead to a set of structures 
needed to reason about a software system, outlining 
the system in terms of its elements, their properties, 
and relationships, which distinguishes itself from 
the details of a fine-grained system description.3 For 
large, complex software systems, the design of the 
overall system structure presents a critical challenge. 
This level of design has been addressed in a number 
of ways, including informal diagrams and descriptive 
terms, module interconnection languages, and appli-
cation domain-specific frameworks.

The software architecture establishes a link be-
tween the software systems requirements and the sys-
tem design, providing a rationale for design decisions 

aThe concept of technical debt refers to the cost of tradeoffs 
incurred when a development team consciously or uncon-
sciously makes suboptimal technical decisions to achieve 
short-term goals at the expense of creating a technical solu-
tion that minimizes complexity and cost in the long-term.

and encompassing decisions about architecturally 
significant requirements, which can then be evalu-
ated early in the development process. For example, 
system performance is heavily impacted by the com-
plexity of coordination and communication, especially 
when components are distributed across a network. 
In contrast, “organically grown” accidental software 
architectures lead to a range of symptoms, also known 
as “design smells,” including software rigidity, fragili-
ty, immobility, opacity, and viscosity, which results in 
high-maintenance and evolution costs, the foundation 
for software collapse, and death in all software invest-
ment.4 Additionally, accidental architectures make it 
harder to reason about the correctness of the code 
and its results.

The primary challenge in software engineering is 
the criteria for decomposing a large, complex system 
into modules. These modules should exhibit well- 
defined and stable interfaces and have high cohesion, 
i.e., the parts of a module are closely related and work 
well together. Additionally, dependencies between 
modules should be as low as possible, leading to a low 
coupling between the modules, which benefits the 
testability and reusability of components and services. 
Designing software to be stateless also has positive 
effects on testability and maintainability, and avoids 
side effects. In research software, this becomes rele-
vant when code needs to be parallelized, e.g., to run on 
high-performance computing clusters.

When a new RSE begins work on an existing soft-
ware system, the architecture should typically be the 
first element they review. This can be extremely chal-
lenging if the architecture is undocumented, which is 
often true. In such cases, reverse engineering the ar-
chitecture from the code (architectural recovery and 
reconstruction) can aid in understanding the program; 
however, this is not without its own challenges and is 
an established area of research. As an embodiment 
of initial design decisions, establishing a sustainable 
software architecture is critical as it includes choices 
that are costly and difficult to alter later, making them 
crucial for careful consideration.5

RESEARCH SOFTWARE  
ENGINEERING

The production, operation, and maintenance of soft-
ware that meets these standards requires profession-
al research software practice, i.e. expert application 
of software engineering. The application of software 
engineering methods, tools, and practices in research 
is called research software engineering, and its practi-
tioners research software engineers. It is important to 
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note that not all research software, perhaps not even 
the majority, is developed by RSEs. Some domain re-
searchers, or “researcher developers,” also write code 
to support their research, albeit often without the ap-
plication of software engineering methods.

RSEs employ research software engineering across 
many different scholarly disciplines. In addition to be-
ing software experts, they also sufficiently understand 
the research in the respective disciplines to enable its 
translation into software. RSEs are as diverse as the 
disciplines they work in, and around 54.5% hold a doc-
torate themselves.6 They may work embedded in fixed-
term research projects, in a particular research group, 
or as part of a central institutional team. They may also 
specialize in a particular subdiscipline of software en-
gineering, e.g., modeling and simulation, optimization, 
or application development. Although RSEs are not 
necessarily formally trained software developers, and 
only around 23% studied computer science, they have 
had, on average, more than six years of software devel-
opment experience.

SOFTWARE ARCHITECTURE  
IN RESEARCH SOFTWARE  
ENGINEERING

Research software is often developed with limited re-
sources and without a long-term maintenance vision, 
which can lead to organic growth of accidental archi-
tecture and ultimately to software collapse.

Research software always has an architecture, but 
it may not always be formally defined or standardized. 
Research often involves exploring new ideas, meth-
odologies, and data. Unlike in other domains, require-
ments may be unknown or change fundamentally 
and frequently. This can lead to rapid prototyping and 
frequent software design changes, making settling 
on a structured architecture challenging. Research 
typically prioritizes producing results and advancing 
knowledge over applying software engineering princi-
ples and practices.7 As a result, researchers may prior-
itize functionality and performance over architectural 
concerns.

Researchers’ diverse backgrounds, expertise in 
software development,6 different coding styles and 
practices make enforcing standardized architectures 
across projects difficult. Available resources in proj-
ects for activities, such as architectural design and 
documentation, are limited, and further disincentiv-
ized by academic reward systems that value novelty 
over sustainability and reusability. Differing experi-
ence with and perspectives on software architecture 
between interdisciplinary collaborators or changes 

in code ownership over time can lead to accidental 
architectures. Additionally, research software varies 
widely in codebase size, lifetime, development team 
size, and purpose in research. Between applications 
in modeling, simulation and data analytics, prototyp-
ing in technology research, and research infrastruc-
ture,8 it is challenging to establish unified architectural  
approaches for research software. All of the afore-
mentioned factors influence the feasibility of applying  
architectures at a specific point in the software  
lifecycle, or applying architectures at all.

Agile development fits well with how most re-
searchers work. Finding the right balance for archi-
tecture work is the art of agile architecture ownership. 
We can expect a coalescence of architecture work and 
agile software development practices, e.g., where ro-
bust architecture makes agile refactoring possible or 
easier. Architecture owners should make decisions at 
the most responsible moment, not the last possible 
moment.9

Despite its emphasis on flexibility and experimen-
tation, research software can benefit significantly 
from a well-defined architecture that enhances the 
software’s maintainability by making it easier to under-
stand, extend, and modify over time. As researchers 
frequently revisit their software for future experiments 
or publications, a clear architectural design provides 
a solid foundation for these endeavors. Moreover, a 
modular architecture promotes reusability, allowing 
components of the software to be shared across proj-
ects or among researchers, thus fostering collabora-
tion and accelerating progress in the field.

As projects grow in complexity or scope, a 
well-structured architecture facilitates the scalability 
of the software to handle larger datasets, more sophis-
ticated algorithms, or increased computational de-
mands. Additionally, a robust architecture contributes 
to the software’s reliability and robustness, reducing 
the likelihood of errors or unexpected behavior during 
experiments or data analysis. This reliability is essen-
tial for ensuring the validity and integrity of research 
results.

Furthermore, a well-designed architecture serves 
as a foundation for documentation and reproducibility. 
Architectural design descriptions document the soft-
ware’s structure, functionality, and dependencies, en-
hancing the reproducibility of research results by en-
abling other researchers to understand and replicate 
the software environment and workflows. Clear archi-
tectural guidelines also facilitate collaboration among 
team members by providing a common framework for 
understanding and contributing to the software. This 
collaboration is essential for leveraging collective 
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expertise and accelerating research progress while 
easing the onboarding process for new team members 
who need to understand the software’s structure and 
design principles.

EVALUATING RESEARCH  
SOFTWARE ARCHITECTURE  
USING SOFTWARE METRICS

Software engineering research has developed metrics 
and tools to evaluate different aspects of software 
quality. Metrics, often derived using static code anal-
ysis, are generally helpful in gauging overall software 
quality. This is especially relevant for developers join-
ing an existing or legacy software project. These in-
sights can serve as starting point for an in-depth inves-
tigation of the software architecture that considers 
design documentation and original developers. Met-
rics can highlight potential architectural issues whose 
resolution should be prioritized to increase software 
maintainability.

The National Aeronautics and Space Administra-
tion Software Assurance Technology Center argues 
that effective evaluation of software maintainability 
is a combination of size (lines of code or LOC) and 
cyclomatic complexity.b While maintainability is com-
plex and depends on less easily measurable factors, 
such as human cognition, knowledge retention, and 
team culture, metrics can provide valuable indicators 
of the quality and maintainability of a codebase. Soft-
ware components with both a high cyclomatic com-
plexity and a large size tend to have low maintainabil-
ity. Components with low size and high complexity 
are also a reliability risk because they tend to be very 
terse code, which is difficult to change or modify. 
Other common metrics that static code analysis pro-
vides include code smells, bugs, vulnerabilities, and 
test coverage.

Some metrics are related to architecture, others 
are not. For an examination of software architecture, 
it is therefore important to understand what a metric 
expresses and how it is related to the quality attribute 
that is observed.

Some of the mentioned metrics are related to 
code-level attributes, not software architecture, 
such as code smells, adherence to language-depen-
dent coding rules, or styles. Others, such as cyclo-
matic complexity, cognitive complexity,c and code 

bCyclomatic complexity quantifies linearly independent 
paths through source code, i.e., the number of decision points 
in the code.
cCognitive complexity is a measure of the effort it takes to 
understand code.

duplication relate to the maintainability and adapt-
ability of the software, and thus aim at the same 
quality attributes as architectural design. Yet other 
metrics, such as coupling and cohesion, are directly 
related to architectural traits, such as modulariza-
tion, or they are a potential proxy for architectural 
attributes.

One example of proxy metrics is change coupling. 
Change coupling degrees quantify which parts of a 
codebase are frequently changed together, e.g. in the 
same commit. High change coupling degrees may un-
cover latent relations between different parts of the 
codebase, and help identify architectural patterns 
that break modularization and clean code principles. 
The metric may also show semantic or domain re-
latedness of different code parts, and work as proxy 
metric for lack of cohesion (see next paragraph). At 
the same time, it could also be an artifact of a specif-
ic development paradigm or workflow, and thus un-
related to architecture altogether. Change coupling 
is also potentially linked to coupling, which express-
es the degree of dependence of one component on  
another. Coupling usually occurs as use of parts lo-
cated in other modules, but also as use of global vari-
ables. High coupling may necessitate changes in one 
component whenever another changes, or lead to  
defects in one component whenever a defect occurs 
in another.

Cohesion expresses the degree to which elements 
within the same component “belong together.” Cohe-
sion can be high if there is a strong relationship be-
tween the functionality of a component and the data 
it processes, or a common purpose in the functionality 
of a component. Cohesion increases if related code or 
components are grouped. High cohesion, in contrast to 
high coupling, is preferable, as cohesion is taken to im-
prove the maintainability and robustness of a software 
component. Good software architecture combines 
low coupling with high cohesion in well-modularized 
software.

These useful but complex measures for good soft-
ware architecture are heavily context-dependent, not 
easy to generalize, and hard to implement as rules for 
static code analysis. In fact, metrics for coupling and 
cohesion, such as “lack of cohesion in methods” or 
“coupling between object classes,” are not implement-
ed in general-purpose static analysis tools, such as So-
narQube or CodeScene.

We suggest that software metrics can be useful 
to evaluate some aspects of research software archi-
tecture. We argue they should be approached with 
caution and with awareness that they must be care-
fully interpreted with regard to what they measure and  
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what they contribute to an understanding of the archi-
tectural trait of interest.

Below, we provide two examples for evaluating 
the maintainability of research software using soft-
ware metrics. We use three different sets of metrics 
provided by two different static analysis platforms. 
SonarQube Cloud (https://sonarcloud.io, SonarSource 
SA, Geneva, Switzerland) can continuously detect 
issues in source code. It supports 36 programming 
languages, including C, C++, COBOL, C#, Java, and 
Python. CodeScene (https://codescene.io, CodeScene 
AB, Malmö, Sweden) also provides insights into  
higher-level attributes of analyzed software projects, 
including architecture. It supports 32 programming 
languages, including Rust and the ones mentioned 
above, with the exception of COBOL. For this work, we 
have used the free tier of SonarQube Cloud for open 
source projects, and a trial version of the CodeScene 
Pro plan using CodeScene Enterprise (version 6.7.3).

Our analysis focuses on:

	❯ SonarQube’s code-level issues
	❯ CodeScene’s refactoring targets: prioritizes com-

ponents with low code health and therefore high 
return on investment (ROI) for refactoring

	❯ CodeScene’s architectural hotspots: prioritizes 
architectural components based on understand-
ability, maintainability and evolvability.

Hexatomic
Hexatomicd is an open source extensible graphical 
platform for manual and semiautomated multilayer 
annotation of linguistic corpus data10 (see Figure 1). Its 
original development was funded in the call “Research 
Software Sustainability” by the German Research 
Foundation (DFG) to investigate minimal infrastruc-
ture requirements for the sustainable provision of re-
search software.

Hexatomic was initially developed by two RSEs [0.5 
full-time equivalent (FTE) each over three years] and 
two student assistants (0.25 FTE each over one year). 
One of the RSEs holds a Ph.D. degree in computer 
science (but with no research focus on software engi-
neering), and the other is self-taught and holds an M.A. 
degree in literature and language subjects.

Hexatomic reimplements an architectural proof- 
of-concept for integrating existing linguistic infrastruc-
ture software built in Ruby, using a Java-based appli-
cation framework, the Eclipse Rich Client Platform, 
with a strong focus on modularization and separation 
of concerns. Choosing it early in the development  
process facilitated architecturally aware design and im-
plementation over the complete course of the project.

dHexatomic source code: https://github.com/hexatomic/
hexatomic.

FIGURE 1.  Screenshot of the Hexatomic graphical user interface, showing simultaneous annotation of the same linguistic cor-

pus data in an editor for annotations represented as graphs and annotations represented as spans over tokenized text.

https://sonarcloud.io
https://codescene.io
https://github.com/hexatomic/hexatomic
https://github.com/hexatomic/hexatomic
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During initial funding [1 October 2018 (t0) – 31 De-
cember 2022 (t2)], the software architecture was docu-
mented from 5 May 2020e to support developers, and 
static code analysis with SonarQube Cloud was intro-
duced on 28 May 2020 (t1)f to assert the quality of all 
patches merged into the codebase. SonarQube Cloud 
has been continuously used on pull requests for Hex-
atomic until t2.

Figure 2 presents software metrics for versions 
of Hexatomic produced between t1 and t2. Figure 2(a) 
shows the number of “issues” detected by SonarQube 
Cloud for tagged versions of Hexatomic. Analysis of 
the first tagged version after the introduction of So-
narQube Cloud (version v0.4.3) yielded 145 issues. In 
subsequent versions, the RSEs removed code smells 
from the codebase. Version v0.5.1 showed four issues 
and number of issues remained low until t2 (v1.0.1).

We retrospectively analyzed Hexatomic versions 
between t1 and t2 with CodeScene to evaluate its main-
tainability as an attribute of software architecture, 
and to compare architectural hotspots with issues 
related to maintainability. Figure 2(b) and (c) show Co-
deScene’s visualization of refactoring targets at t1 and 
t2, respectively. At t1, Hexatomic includes four compo-
nents (“bundles”, 8811 LOC). CodeScene identified five 
Java files as “refactoring targets” and four “priority re-
factoring targets” with low code health and high ROI 
for refactoring. At t2 (18,920 LOC, five bundles), Co-
deScene identified one priority refactoring target due 
to complex conditionals and nested conditional logic: 
ProjectManager.java (466 LOC) contains logic for manag-
ing linguistic corpus projects in Hexatomic. The file 
has “change coupling” degrees of 55% and 37% with 
the project management GUI (Figure 1, left), and the 
handler code for opening projects.

To find out if these instances of change coupling re-
late to factual coupling between objects, we analyzed 
ProjectManager.javag with PMDh (version 7.8.0)i , a multi-
lingual static code analyzer. The respective PMD anal-
ysis rule (category/java/design.xml/CouplingBetwee-
nObjects) found 27 coupling instances in the class 
(default threshold: 20), a potential architectural issue. 
The class contains logic for corpus creation and open-
ing projects, and could be refactored into two classes.  

eSee https://archive.softwareheritage.org/swh:1:rev:355fce8624 
fda08e9d1611aae2f9280cd9b811be.
fSee https://archive.softwareheritage.org/swh:1:cnt:1e9944a8 
ad5e0c8476c6d5aea9773974f1562059;path=/.travis.
yml;lines=46-56.
gSee https://archive.softwareheritage.org/swh:1:cnt:1fff97af0 
03af2d720095d5ba27a82654bf5a239.
hPMD website: https://pmd.github.io/.
iPMD version 7.8.0: https://archive.softwareheritage.org/swh: 
1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464.

ProjectManager.java uses one constant of one of two 
highly change-coupled classes, OpenSaltDocumentHandler. 
java, three times. The constant refers to document 
identifiers for which persisted state is retrieved in the 
project manager class. Arguably, this constant is se-
mantically closer to project management than han-
dling logic, and could be declared in ProjectManager.java 
to reduce coupling. For ProjectManager.java the number 
of coupling issues related to change coupling is low, 
suggesting that change coupling does not function as 
proxy metric for coupling in this case.

Figure 2(d) and (e) show CodeScene’s “architectur-
al hotspots” visualizations of Hexatomic bundles at t1 
and t2. Architectural hotspots compromise the under-
standability, maintainability, and evolvability of code. 
Between t1 and t2, the number of components that 
require extra maintenance effort, which may slow de-
velopment (yellow in Figure 2) has been reduced from 
4/5 to 2/6. This suggests that architecture health has 
improved over time.

However, the architecture of Hexatomic has not 
changed between t1 and t2, while one bundle handling 
corpus formats was added. Although there seems to 
be correlation between the existence of code-level is-
sues in the codebase and overall architectural quality, 
we cannot assume causation. We argue that issues 
and architectural hotspots relate to the same target, 
maintainability, and thus emit correlated results. This 
points to a shortcoming in static code analysis plat-
forms. These analyze measurable attributes of a code-
base (here: maintainability), but not necessarily more 
complex architectural attributes, such as scalability 
and reproducibility.

In addition to refactoring, using architecturally 
strong frameworks can improve software architecture. 
Hexatomic is based on the Eclipse Rich Client Plat-
form, which prescribes a highly modular architecture 
based on the OSGi specificationj: Bundles encapsulate 
functionality and provide interfaces. Functionally re-
lated bundles are collected in features, which are com-
bined in an application. Hexatomic uses this structure 
to separate the GUI from project management, format 
handling, data viewers, and annotation editors.

We argue that the architecture of Hexatomic at t2 
is improved as a combined effect of strong modulariza-
tion and using service/event-based architectural pat-
terns, and refactoring efforts. Without the high degree 
of modularization, refactoring would have been hard-
er or impossible to achieve. With regard to coupling, 
the implementation overall follows good architectural 
practice, with some lack of separation of concerns. 

j https://docs.osgi.org/specification.

https://archive.softwareheritage.org/swh:1:rev:355fce8624fda08e9d1611aae2f9280cd9b811be
https://archive.softwareheritage.org/swh:1:rev:355fce8624fda08e9d1611aae2f9280cd9b811be
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1fff97af003af2d720095d5ba27a82654bf5a239
https://archive.softwareheritage.org/swh:1:cnt:1fff97af003af2d720095d5ba27a82654bf5a239
https://pmd.github.io/
https://archive.softwareheritage.org/swh:1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464
https://archive.softwareheritage.org/swh:1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464
https://docs.osgi.org/specification
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(a)

(b) (c)

(d) (e)

FIGURE 2.  Hexatomic: (a) SonarQube issues, (b) and (c), differences in prioritized refactoring targets, and (d) and (e) differences 

in architectural hotspots in bundles between SonarQube Cloud introduction (t1) and end of initial funding period (t2). Colors: (b) and 

(c) White: not a target; yellow: refactoring target; red: priority refactoring target. (d) and (e) Yellow: problematic; green: healthy.
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The development context of Hexatomic provided a 
clear focus on software quality, which has likely con-
tributed to an overall maintainable, well-structured 
codebase as evidenced through static code analysis 
[Figure 2(e)].

Fluctuating Finite Element Analysis
Fluctuating finite element analysisk (FFEA) is a biomo-
lecular modeling program designed to perform contin-
uum mechanics simulations of globular and fibrous 
proteins.11 A unique aspect of FFEA is that finite ele-
ment meshes, which represent the deformable protein 
structure, are subject to thermal fluctuations during a 
simulation. This feature is essential to capturing pro-
tein behavior because they are nanoscale objects. 
Protein dynamics are saved to a trajectory file that can 
then be visualized; Figure 3 displays representative 
snapshots of four biomolecular systems.

The FFEA software was inspired by the “resolu-
tion revolution” in cryoelectron microscopy that has 
provided structural biologists with information about 
increasingly large biomolecular complexes, which are 
outside the regime accessible to conventional atomis-
tic molecular simulation tools.12 The software has been 
in development since 2010, by nine authors, leading to 
11 publications. It consists of a C++ simulation plat-
form and a Python package (FFEATools) that provides 
additional tools for managing simulations.

Typical of research software, the majority of FFEA’s 
code has been developed by Ph.D. students and post-
doctoral researchers, with expert domain knowledge 
but lacking formal training in software engineer-
ing. Each researcher focused on implementing new 

k FFEA: https://ffea.bitbucket.io/.

functionality required to achieve their specific re-
search objectives over a period of two to three years, 
with limited access to guidance from previous devel-
opers who had since moved on. They typically followed 
their own development style without fully familiarizing 
themselves with, or adhering to, a standardized ap-
proach for the entire codebase, resulting in a highly 
inconsistent architecture.

In April 2024, the FFEA C++ codebase was 24,429 
LOC, with scant developer documentation and only 
62 test cases. These tests offered limited coverage, 
with some consistently failing and others considered 
“flaky,” yielding inconsistent results across runs. Over 
more than a decade of mostly independent develop-
ment, FFEA’s scope expanded organically, leaving earli-
er components undermaintained.

FFEA is capable of modeling two types of com-
ponents, “blobs” (tetrahedral meshes) and 1D “rods” 
(Figure 3), along with interactions between the two 
types. These two components are largely independent 
within the codebase, with limited shared architectur-
al design. The “blob” architecture follows an object- 
orientated approach, with errors handled via the re-
turn of error codes. In contrast, the “rod” is implement-
ed with many static functions and handles errors using 
exceptions. Both components heavily utilized manual 
memory management, typical of C++ written when the 
project was started.

In July 2024, an RSE (0.36 FTE over five months) with 
a Ph.D. degree in computer science, collaborated with 
the most recent developer (one FTE over five months), 
a self-taught programmer with a Ph.D. degree in  
biophysics, to modernize FFEA and improve its main-
tainability for future developers. This work involved 

(a) (b)

(c)

FIGURE 3.  Representative snapshots of FFEA simulations. (a) Cytoplasmic dynein motor protein attached to its microtubule 

track. (b) Myosin 5a motor protein attached to its actin filament track. (c) Fibrin blood clotting protein, assembled into a protofi-

bril. (a) Contains only blobs, (b) contains blobs and rods, and (c) contains only rods. Scale bars: 10 nm.

https://ffea.bitbucket.io/
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updating and simplifying the build configuration, 
adopting modern C++ standards, resolving failing and 
flaky tests, addressing memory access violations, 
and reducing code duplication (Figure 4). Howev-
er, enhancements to FFEA’s high-level architecture 
were constrained by inherent domain complexity and 
the absence of adequate documentation or testing, 
which hindered both a thorough understanding of the 
codebase and confidence in implementing significant 
changes.

Static analysis of FFEA’s source, with SonarQube 
Cloud, was performed at the start and end of this 
project. The number of issues identified within the 
source code decreased from 5014 to 2233, in partic-
ular the number of high priority issues dropped from 
1200 to 385. The type of issues identified by this static 
analysis largely inherit from the C++ Core Guidelines,l 
which provide modern best practices for writing safe, 
efficient, and maintainable C++ code. They range from 
high-priority issues, such as using modern techniques 
that limit code misuse, to low priority style recommen-
dations that add clarity to make the code easier for 
users to parse.

In contrast, SonarQube Cloud’s measures of cyc-
lomatic complexity and cognitive complexity have not 
changed significantly. For example, src/Blob.cpp, which 

l https://isocpp.github.io/CppCoreGuidelines/CppCore 
Guidelines.

dropped from 640 to 174 issues, only saw its cyclo-
matic complexity score drop from 663 to 583, and its 
cognitive complexity drop from 932 to 830. Similarly, 
test coverage at the end of the project was still low at 
61% of lines and 37% of branches. This confirms our 
interpretation that architectural complexity is largely 
distinct from code-level smells. Many code smells may 
reduce the safety and readability of a localized area of 
code. However, addressing these has limited impact to 
improving the maintainability of the whole codebase, 
where issues are far more challenging to address at a 
late stage.

DISCUSSION
Static code analysis tools are helpful in analyzing spe-
cific aspects of software architecture. Metrics, such 
as cyclomatic and cognitive complexity, as well as 
some types of issues, such as code smells, relate to 
the understandability and maintainability of a code-
base. However, not all relevant metrics are provided 
by established static code analysis tools. More com-
plex metrics related to architecture are often con-
text-dependent or hard to quantify, or require the use 
of additional tools providing more in-depth analysis 
for specific architectural measurements or specific 
programming languages. Metrics for more easily mea-
surable attributes are often readily available, but their 

(a) (b)

FIGURE 4.  FFEA: CodeScene-detected refactoring targets in ffea module. Refactoring reduced the number of priority refactoring 

targets from three (a) to two (b).

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
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improvement does not necessarily have a positive 
impact on architecturally relevant attributes. Addi-
tionally, while metrics can serve as a starting point for 
architectural analysis, more comprehensive insights 
must be gained from other sources, such as design 
documents or developers.

Considering architecture and software design as 
important parts of research software engineering is 
essential through the complete lifetime of a research 
software project. Failure to do this can lead to acci-
dental architectures and increasingly unmaintainable 
code, especially in research software projects with a 
long lifetime. Continuously monitoring the software 
maintainability is feasible through integrating static 
code analysis into continuous integration pipelines. 
Open source static code analysis tools exist (e.g., 
PMD). Some platforms are free for open source proj-
ects or academic use. In our examples, static code 
analysis tools provided leads for the identification of 
potential architectural issues, even if they failed to 
provide the relevant metrics themselves.

Where new developers regularly join the project  
(e.g., as Ph.D. students), it is important to provide doc-
umentation and implement decision and onboarding 
processes that include a discussion of software ar-
chitecture, e.g., via lightweight architectural decision 
records.

Existing architectural patterns and concepts, 
such as modularization, support maintainability, scal-
ability, and robustness of research software and can 
have a positive impact on software sustainability and 
the reproducibility of research results. Using existing 
frameworks that enforce modularization can be help-
ful in achieving solid software architecture, although 
resources must be available to assess advantages and 
disadvantages of using these frameworks, and to learn 
how they work.

It falls upon software engineering research to 
develop generalizable metrics that provide relevant 
information about software architecture, and devel-
op cost-effective and usable open source tools that 
help RSEs evaluate the architecture of their soft-
ware projects. To achieve this, software engineering 
researchers need to work more closely with RSEs to 
understand their unique needs with respect to the 
heterogeneity of RSEs’ educational backgrounds, 
technical experience and domain-relatedness. Ad-
ditionally, RSEs often operate under resource con-
straints that do not favor a focus on maintainability, 
refactoring activities without visible results in the 
form of research outputs, or the acquisition of expen-
sive tools whose necessity may not be immediate-
ly clear to decision makers. However, there is still a 

pressing need for new tooling to fit today’s emergent 
and dynamic environments, where essential research 
software is explicitly designed for continuous evolv-
ability and adaptability without incurring prohibitive 
architectural technical debt.

CONCLUSION
Considering software architecture in research soft-
ware engineering safeguards its robustness, maintain-
ability, scalability, and evolvability. This is important in 
research, where teams often change and developers 
have diverse backgrounds and expertise, and research 
objectives progress.

We presented two examples for the architecture 
evaluation of research software projects using soft-
ware metrics. Our examples showed that refactoring 
activities to remove code-level issues do not necessar-
ily have significant positive impact on the complexity 
and maintainability of research software. Metrics can, 
however, provide leads for identifying architectural 
issues. Factors that positively influence the architec-
tural quality of software included the use of modular-
ization frameworks, and a consistent focus on software 
quality in research software projects.

Practical Implications
In more actionable terms, to achieve better software 
through better architecture, and better research 
through better software, we recommend for new  
research software projects that RSEs spend time  
considering potentially suitable designs and design 
principles for the software they will implement, taking 
into account maintainability, extensibility, adaptability, 
and reusability. This consideration can be supported by 
the software architecture literature and by assessment 
of available modularization frameworks. Some pro-
gramming languages provide standard mechanisms 
for modularization, such as Python’s extension points. 
Regardless of the technical solution for modularization, 
modules should encapsulate semantically connected 
code and use interfaces for interoperation with other 
modules to minimize coupling and maximize cohesion.

Outcomes of architectural decision processes 
should be documented in a way that suits the devel-
opers. RSEs should not be concerned with getting ev-
erything “right” at the beginning of development, but 
should be aware of balancing the short-term needs of 
the research with the longer-term implications for the 
software. Architecture and software design can be 
iterated alongside the development process, where 
new insights into the problem domain may trigger a 
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design iteration. The software’s role in research and 
the target technology readiness level8 can guide it-
erations: The higher the technology readiness level 
and the wider the potential reuse, the more important 
intentional, conscious software design and architec-
ture become.

To support architecture iterations, we recommend 
that RSEs use some automation from the start. Static 
code analysis can be run in continuous integration, e.g., 
using the platforms mentioned above. Even if analysis 
metrics do not provide comprehensive architectural 
insights or flag all relevant design smells, they can un-
cover issues at code level and act as regular reminders 
to consider architectural (and code) quality, and to re-
flect design decisions. One prerequisite for using such 
metrics is that RSEs reflect the metrics’ meaning and 
expressive value: While they are easy to measure and 
track, they may not provide a comprehensive picture 
of architectural quality. Changes in software design 
and architecture should always be documented in a 
way that retains design knowledge independently of 
individuals.

For developers joining legacy research software 
projects, we recommend that static code analysis 
metrics be used by RSEs as an entry point to an ar-
chitectural analysis of the software they will work 
on. Higher-level architectural views, such as those 
presented in Figure 2(d) and (e), can support a basic 
understanding of the modularity of hitherto unfamiliar 
software. Building on this, they should then consult ex-
isting design documentation where available.

Software engineering researchers should work 
closely with RSEs to understand their unique needs, 
and develop suitable metrics and usable open source 
tools to support them.

In any case, considering the design and architec-
ture of research software, learning and following ba-
sic good practices, and leveraging existing tools that 
support this effort is time well spent. It may save RSEs 
time and effort over the software lifecycle, and helps 
making research software more maintainable, extensi-
ble, adaptable, and reusable, ultimately improving the 
quality of research outcomes.

ACKNOWLEDGMENTS
The authors thank Ben Hanson (University of Leeds, 
U.K.) and Molly Gravett (Utrecht University, The Neth-
erlands) for providing the fluctuating finite element 
analysis models of cytoplasmic dynein and myosin 
5a, respectively. The images in Figure 3 were cap-
tured using the PyMOL (https://pymol.org) molecular 
visualisation system. The authors were supported 

by the German Research Foundation (DFG), Grants 
391160252 (S.D. and T.K.) and 528713834 (W.H.), the 
U.K. Research and Innovation (N.P.C.H., Grants EP/
S021779/1 and AH/Z000114/1 for the Software Sus-
tainability Institute), the Wellcome Trust (Grant 
222381/Z/21/Z), and the University of Sheffield, and by 
the U.S. Department of Energy Office of Science, Bi-
ological and Environmental Research division Award 
DE-SC0025510.

REFERENCES
	 1.	 M. Gruenpeter et al. “Defining research software: 

A controversial discussion.” Zenodo, doi: 10.5281/

zenodo.5504016.

	 2.	 N. P. Chue Hong et al., “FAIR principles for research 

software (FAIR4RS principles).” Zenodo, doi: 10.15497/

RDA00068.

	 3.	 L. Bass, P. Clements, and R. Kazman, Software 

Architecture in Practice, 4th ed. Reading, MA, USA: 

Addison-Wesley Professional, 2021.

	 4.	 C. Lilienthal, Sustainable Software Architecture: 

Analyze and Reduce Technical Debt. San Rafael, CA, 

USA: Rocky Nook, 2019.

	 5.	 C. C. Venters et al., “Sustainable software engineering: 

Reflections on advances in research and practice,” Inf. 

Softw. Technol., vol. 164, Dec. 2023, Art. no. 107316, doi: 

https://doi.org/10.1016/j.infsof.2023.107316.

	 6.	 S. Hettrick et al. “International RSE survey 2022.” 

Zenodo, doi: 10.5281/zenodo.7015772.

	 7.	 N. U. Eisty et al., “Use of software process in research 

software development: A survey,” in Proc. 23rd Int. 

Conf. Eval. Assessment Softw. Eng., New York, NY, USA: 

ACM, 2019, pp. 276–282, doi: 10.1145/3319008.3319351.

	 8.	 W. Hasselbring et al., “Multi-dimensional research 

software categorization,” Comput. Sci. Eng., early 

access, Mar. 27, 2025, doi: 10.1109/MCSE.2025.3555023.

	 9.	 W. Hasselbring, “Software architecture: Past, 

present, future,” in The Essence of Software 

Engineering, V. Gruhn and R. Striemer, Eds., Cham, 

Switzerland: Springer-Verlag, 2018, pp. 169–184, doi: 

10.1007/978-3-319-73897-0_10.

	 10.	 S. Druskat, T. Krause, C. Lachenmaier, and B. Bunzeck, 

“Hexatomic: An extensible, OS-independent platform 

for deep multi-layer linguistic annotation of corpora,” 

J. Open Source Softw., vol. 8, no. 86, Art. no. 4825, Jun. 

2023, doi: 10.21105/joss.04825.

	 11.	 A. Solernou et al., “Fluctuating finite element analysis 

(FFEA): A continuum mechanics software tool for 

mesoscale simulation of biomolecules,” PLoS Comput. 

Biol., vol. 14, no. 3, Mar. 2018, Art. no. e1005897, doi: 

10.1371/journal.pcbi.1005897.

https://pymol.org
https://doi.org/10.1016/j.infsof.2023.107316
http://dx.doi.org/10.1145/3319008.3319351
http://dx.doi.org/10.1109/MCSE.2025.3555023
http://dx.doi.org/10.1007/978-3-319-73897-0_10
http://dx.doi.org/10.21105/joss.04825
http://dx.doi.org/10.1371/journal.pcbi.1005897
http://dx.doi.org/10.5281/zenodo.5504016
http://dx.doi.org/10.5281/zenodo.5504016
http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.5281/zenodo.7015772


RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

56 Computing in Science & Engineering April-June 2025

	 12.	 R. O. Dror et al., “Biomolecular simulation: A 
computational microscope for molecular biology,” 
Annu. Rev. Biophys., vol. 41, no. 1, pp. 429–452, Jun. 
2012, doi: 10.1146/annurev-biophys-042910-155245.

STEPHAN DRUSKAT is a software engineering researcher at 

the German Aerospace Center (DLR), 12489, Berlin, Germany, 

and Fellow of the Software Sustainability Institute. His research 

interests include research software sustainability, empirical 

and evidence-based (research) software engineering and re-

search software intelligence. He is a co-founder of the German 

Society for Research Software, and member of the Society for 

Research Software Engineering and the German Association 

for Computer Science, where he co-founded the special inter-

est group on research software engineering. Druskat received 

his M.A degree in English philology, modern German literature 

and linguistics from the Free University Berlin. Contact him at 

stephan.druskat@dlr.de.

NASIR U. EISTY is an assistant professor of computer science 

at the University of Tennessee, Knoxville, 39716, TN, USA. His 

research interests include software engineering, AI for software 

engineering, research software engineering, and software secu-

rity. Eisty received his Ph.D degree in computer science from the 

University of Alabama. Contact him at neisty@utk.edu.

ROBERT CHISHOLM is a research software engineer in the 

School of Computer Science at the University of Sheffield, S1 

4DP, Sheffield, U.K. His research interests include performance 

optimization and parallel computing. Chisholm received his 

Ph.D. degree in computer science from the University of Shef-

field. Contact him at robert.chisholm@sheffield.ac.uk.

NEIL P. CHUE HONG is a professor of research software policy 

and practice at the University of Edinburgh, EH8 9BT, Edinburgh, 

U.K. and the director of the Software Sustainability Institute. 

His research interests include understanding the way in which 

specialist software used in research is developed and how 

policy and incentives can be used to improve maintenance and 

reusability. Hong received his M.Phys. degree in computational 

physics from the University of Edinburgh. Contact him at 

N.ChueHong@epcc.ed.ac.uk.

RYAN C. COCKING is a research software engineer in the 

School of Mathematical and Physical Sciences at the University 

of Sheffield, S3 7RH, Sheffield, U.K. His research interests 

include coarse-grained biomolecular simulations and software 

engineering. Cocking received his Ph.D. degree in computational 

biophysics from the University of Leeds. Contact him at ryan.

cocking@sheffield.ac.uk.

MYRA B. COHEN is a professor and the Lanh and Oanh 

Nguyen Chair in Software Engineering in the Department 

of Computer Science at Iowa State University, Ames, IA, 

50011, USA.  Her research interests are in software testing, 

search-based software engineering, and correctness of 

scientific software. Cohen received her Ph.D. degree from 

the University of Auckland, New Zealand. Contact her at 

mcohen@iastate.edu.

MICHAEL FELDERER is the director of the Institute of 

Software Technology at German Aerospace Center (DLR), 

51147, Cologne, Germany, and a full professor at the University 

of Cologne. His research interests include software 

engineering, artificial intelligence, and systems engineering. 

Felderer received his Ph.D. degree in computer science from 

the University of Innsbruck. He is a member of the Association 

for Computing Machinery and the German Association for 

Computer Science. Contact him at michael.felderer@dlr.de.

LARS GRUNSKE is a professor in the Department of Computer 

Science from the Humboldt-Universität zu Berlin, 10099, 

Berlin, Germany. His research interests include automated 

software engineering, formal methods and research software 

engineering research. Grunshe received his Ph.D. degree in 

computer science from the University of Potsdam (Hasso-

Plattner-Institute for Software Systems Engineering). Contact 

him at grunske@informatik.hu-berlin.de.

SARAH A. HARRIS is a professor of biological and materials 

physics in the School of Mathematical and Physical Sciences at 

the University of Sheffield, S3 7RH, Sheffield, U.K. Her research 

interests include multiscale modeling, biomolecular simulation, 

and molecular recognition. Harris received her Ph.D. degree in 

computational biophysics from the University of Nottingham. 

She and her colleagues developed FFEA to perform biomolecular 

simulations at mesoscopic length and timescales. Contact her 

at sarah.harris@sheffield.ac.uk.

WILHELM HASSELBRING is a professor of software engineer-

ing at Kiel University, 24098, Kiel, Germany, and an adjunct pro-

fessor at the University of Southampton, SO17 1BJ, Southampton, 

U.K. His research interests include software engineering, distrib-

uted systems, and open science. Hasselbring received his Ph.D. 

http://dx.doi.org/10.1146/annurev-biophys-042910-155245
mailto:michael.felderer@dlr.de
mailto:sarah.harris@sheffield.ac.uk
mailto:ryan.cocking@sheffield.ac.uk
mailto:ryan.cocking@sheffield.ac.uk


RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 57April-June 2025

degree in computer science from the University of Dortmund. He 

is a member of the Association for Computing Machinery, IEEE 

Computer Society, and the German Association for Computer 

Science, at which he is vice chair of the special interest group 

on research software engineering.  Contact him at hasselbring@

email.uni-kiel.de.

THOMAS KRAUSE is a researcher/research software engineer 

in the Department of German Studies and Linguistics at the 

Humboldt-Universität zu Berlin, 10099, Berlin, Germany. His 

research interests include developing methods and software for 

corpus linguistics to represent, analyze, and visualize linguistic 

annotations. Krause received his Ph.D. degree in computer 

science from  Humboldt-Universität zu Berlin. Contact him at 

thomas.krause@hu-berlin.de.

JAN LINXWEILER is the general manager of the Center 

for Mechanics, Uncertainty and Simulation in Engineering 

(MUSEN) at TU Braunschweig and head of IT and Research 

Services at the University library, Braunschweig, 38106, 

Braunschweig, Germany. His research interests include 

research software engineering research, high performance 

computing, research data management, and open ccience. 

Linxweiler received his Ph.D. degree in engineering and is a 

founding member of the German RSE association, for which 

he also serves as chairman of the board. Contact him at 

j.linxweiler@tu-braunschweig.de.

COLIN C. VENTERS is a research software engineer at European 

Organization for Nuclear Research, 1211, Geneva 23, Switzerland 

associated with the ATLAS experiment. His research interests 

include sustainable software engineering from a software 

architecture perspective. Venters received his Ph.D. degree 

from the University of Manchester, United Kingdom. He is a 

founding member of the Sustainability Design Alliance, and co-

author of the Karlskrona Manifesto for Sustainability Design.

Contact him at c.venters@cern.ch. 

Unlock Your Potential
WORLD-CLASS CONFERENCES —
Over 195 globally recognized conferences.

DIGITAL LIBRARY — Over 900k articles covering 
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your 
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the 
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions 
in the IEEE Computer Society Jobs Board.

NETWORK — Make connections in local Region, 
Section, and Chapter activities.

Explore membership today 
at the IEEE Computer Society
www.computer.org

CS-generic-halfhorizontal-Sept24.indd   1CS-generic-halfhorizontal-Sept24.indd   1 9/30/24   5:53 PM9/30/24   5:53 PM

mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:thomas.krause@hu-berlin.de

	045_IE-MCSE250031

