
45Computing in Science & EngineeringPublished by the IEEE Computer SocietyApril-June 2025

Better software drives better research, a fundamental principle in the research
software engineering community. Similarly, better architecture underpins better
software, a core belief in the software engineering research community. Therefore,
we advocate and emphasize the importance of designing robust architectures for
research software to elevate the quality of research outcomes, and illustrate this
with two case studies.

Research software—the software used in the gen-
eration of research results—is used across all dis-
ciplines in different ways. From modeling and sim-

ulation, data management, analysis, and visualization to
experimental management, software has become cen-
tral to the production of research, the advancement of
knowledge, and the decisions that are based on it.

Research software has been defined as including
“source code files, algorithms, scripts, computational
workflows and executables that were created during
the research process or for a research purpose.”1 It can

fulfill many different roles: instrument, model, tool, in-
frastructure, object of research, and research output
in its own right.

The critical role that research software holds for
reproducibility and confidence in results puts require-
ments on its development, maintenance, and availabil-
ity. Research software must be of sufficient quality to
ensure that it produces correct results. It must also be
FAIR—i.e., findable, accessible, interoperable, and re-
usable2—to ensure that it can be reused, and supports
use in interconnection with other software from the
same, as well as other, domains.

Research software is often long-lived, becoming
more complex as it is reused and extended. Due to the
nature of research culture and funding, development
teams change frequently. Each new generation of re-
searchers (often Ph.D. students) and research software

© 2025 The Authors. This work is licensed under a Creative Com-
mons Attribution 4.0 License. For more information, see https://
creativecommons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2025.3573887
Date of publication 29 May 2025; date of current version
24 July 2025.

THEME ARTICLE: RESEARCH SOFTWARE ENGINEERING:
DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Better Architecture, Better Software,
Better Research
Stephan Druskat , German Aerospace Center, 12489, Berlin, Germany

Nasir U. Eisty , University of Tennessee, Knoxville, TN, 37916, USA

Robert Chisholm , University of Sheffield, S1 4DP, Sheffield, U.K.

Neil P. Chue Hong , University of Edinburgh, EH8 9BT, Edinburgh, U.K.

Ryan C. Cocking , University of Sheffield, S3 7RH, Sheffield, U.K.

Myra B. Cohen , Iowa State University, Ames, IA, 50011, USA

Michael Felderer , German Aerospace Center and University of Cologne, 51147, Cologne, Germany

Lars Grunske , Humboldt-Universität zu Berlin, 10099, Berlin, Germany

Sarah A. Harris , University of Sheffield, S3 7RH, Sheffield, U.K.

Wilhelm Hasselbring , Kiel University, 24098, Kiel, Germany

Thomas Krause , Humboldt-Universität zu Berlin, 10099, Berlin, Germany

Jan Linxweiler , Technical University Braunschweig, 38106, Braunschweig, Germany

Colin C. Venters , European Organization for Nuclear Research, 1211, Geneva 23, Switzerland

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4925-7248
https://orcid.org/0000-0001-5228-4664
https://orcid.org/0000-0003-3379-9042
https://orcid.org/0000-0002-8876-7606
https://orcid.org/0000-0001-9142-8261
https://orcid.org/0000-0003-2443-2425
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0000-0002-8747-3745
https://orcid.org/0000-0002-2812-1651
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0003-3731-2422
https://orcid.org/0000-0002-2755-5087
https://orcid.org/0000-0001-8664-9107

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

46 Computing in Science & Engineering April-June 2025

engineers (RSEs) working on the software brings their
own culture, experience, and domain background with
them. This may benefit the software but can also lead
to loss of knowledge and accrual of technical debta;
lack of effort or documentation may result in “acciden-
tal” architectures that hinder, rather than support, the
maintenance, extensibility, and evolution of the soft-
ware. The negative effect of accidental architectures
may be amplified by the research context, where value
is placed on new features that enable novel research,
not on maintainability and refactoring. Similarly, re-
search funding rewards novelty and provides few re-
sources for maintenance, refactoring, and improving
architecture. Reusability is not a static condition of a
“final” version but a condition of adaptability to chang-
ing needs that requires as few resources as possible,
even when adapting to new hardware architectures,
such as GPU programming models.

In this article, we advocate and emphasize the
importance of designing robust architectures for re-
search software. We present two case studies that
analyze software maintainability through the use of
static code analysis metrics. They highlight the impor-
tance of modularization for software quality and pro-
vide preliminary insights into the usefulness of metrics
for assessing the maintainability of research software
as an architectural trait.

SOFTWARE ARCHITECTURE
In software engineering, complexity is “anything relat-
ed to the structure of a software system that makes
it difficult to understand and modify.” Software design
is a key component in addressing complexity, which
starts with software architecture, the process of mak-
ing design decisions that lead to a set of structures
needed to reason about a software system, outlining
the system in terms of its elements, their properties,
and relationships, which distinguishes itself from
the details of a fine-grained system description.3 For
large, complex software systems, the design of the
overall system structure presents a critical challenge.
This level of design has been addressed in a number
of ways, including informal diagrams and descriptive
terms, module interconnection languages, and appli-
cation domain-specific frameworks.

The software architecture establishes a link be-
tween the software systems requirements and the sys-
tem design, providing a rationale for design decisions

aThe concept of technical debt refers to the cost of tradeoffs
incurred when a development team consciously or uncon-
sciously makes suboptimal technical decisions to achieve
short-term goals at the expense of creating a technical solu-
tion that minimizes complexity and cost in the long-term.

and encompassing decisions about architecturally
significant requirements, which can then be evalu-
ated early in the development process. For example,
system performance is heavily impacted by the com-
plexity of coordination and communication, especially
when components are distributed across a network.
In contrast, “organically grown” accidental software
architectures lead to a range of symptoms, also known
as “design smells,” including software rigidity, fragili-
ty, immobility, opacity, and viscosity, which results in
high-maintenance and evolution costs, the foundation
for software collapse, and death in all software invest-
ment.4 Additionally, accidental architectures make it
harder to reason about the correctness of the code
and its results.

The primary challenge in software engineering is
the criteria for decomposing a large, complex system
into modules. These modules should exhibit well-
defined and stable interfaces and have high cohesion,
i.e., the parts of a module are closely related and work
well together. Additionally, dependencies between
modules should be as low as possible, leading to a low
coupling between the modules, which benefits the
testability and reusability of components and services.
Designing software to be stateless also has positive
effects on testability and maintainability, and avoids
side effects. In research software, this becomes rele-
vant when code needs to be parallelized, e.g., to run on
high-performance computing clusters.

When a new RSE begins work on an existing soft-
ware system, the architecture should typically be the
first element they review. This can be extremely chal-
lenging if the architecture is undocumented, which is
often true. In such cases, reverse engineering the ar-
chitecture from the code (architectural recovery and
reconstruction) can aid in understanding the program;
however, this is not without its own challenges and is
an established area of research. As an embodiment
of initial design decisions, establishing a sustainable
software architecture is critical as it includes choices
that are costly and difficult to alter later, making them
crucial for careful consideration.5

RESEARCH SOFTWARE
ENGINEERING

The production, operation, and maintenance of soft-
ware that meets these standards requires profession-
al research software practice, i.e. expert application
of software engineering. The application of software
engineering methods, tools, and practices in research
is called research software engineering, and its practi-
tioners research software engineers. It is important to

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 47April-June 2025

note that not all research software, perhaps not even
the majority, is developed by RSEs. Some domain re-
searchers, or “researcher developers,” also write code
to support their research, albeit often without the ap-
plication of software engineering methods.

RSEs employ research software engineering across
many different scholarly disciplines. In addition to be-
ing software experts, they also sufficiently understand
the research in the respective disciplines to enable its
translation into software. RSEs are as diverse as the
disciplines they work in, and around 54.5% hold a doc-
torate themselves.6 They may work embedded in fixed-
term research projects, in a particular research group,
or as part of a central institutional team. They may also
specialize in a particular subdiscipline of software en-
gineering, e.g., modeling and simulation, optimization,
or application development. Although RSEs are not
necessarily formally trained software developers, and
only around 23% studied computer science, they have
had, on average, more than six years of software devel-
opment experience.

SOFTWARE ARCHITECTURE
IN RESEARCH SOFTWARE
ENGINEERING

Research software is often developed with limited re-
sources and without a long-term maintenance vision,
which can lead to organic growth of accidental archi-
tecture and ultimately to software collapse.

Research software always has an architecture, but
it may not always be formally defined or standardized.
Research often involves exploring new ideas, meth-
odologies, and data. Unlike in other domains, require-
ments may be unknown or change fundamentally
and frequently. This can lead to rapid prototyping and
frequent software design changes, making settling
on a structured architecture challenging. Research
typically prioritizes producing results and advancing
knowledge over applying software engineering princi-
ples and practices.7 As a result, researchers may prior-
itize functionality and performance over architectural
concerns.

Researchers’ diverse backgrounds, expertise in
software development,6 different coding styles and
practices make enforcing standardized architectures
across projects difficult. Available resources in proj-
ects for activities, such as architectural design and
documentation, are limited, and further disincentiv-
ized by academic reward systems that value novelty
over sustainability and reusability. Differing experi-
ence with and perspectives on software architecture
between interdisciplinary collaborators or changes

in code ownership over time can lead to accidental
architectures. Additionally, research software varies
widely in codebase size, lifetime, development team
size, and purpose in research. Between applications
in modeling, simulation and data analytics, prototyp-
ing in technology research, and research infrastruc-
ture,8 it is challenging to establish unified architectural
approaches for research software. All of the afore-
mentioned factors influence the feasibility of applying
architectures at a specific point in the software
lifecycle, or applying architectures at all.

Agile development fits well with how most re-
searchers work. Finding the right balance for archi-
tecture work is the art of agile architecture ownership.
We can expect a coalescence of architecture work and
agile software development practices, e.g., where ro-
bust architecture makes agile refactoring possible or
easier. Architecture owners should make decisions at
the most responsible moment, not the last possible
moment.9

Despite its emphasis on flexibility and experimen-
tation, research software can benefit significantly
from a well-defined architecture that enhances the
software’s maintainability by making it easier to under-
stand, extend, and modify over time. As researchers
frequently revisit their software for future experiments
or publications, a clear architectural design provides
a solid foundation for these endeavors. Moreover, a
modular architecture promotes reusability, allowing
components of the software to be shared across proj-
ects or among researchers, thus fostering collabora-
tion and accelerating progress in the field.

As projects grow in complexity or scope, a
well-structured architecture facilitates the scalability
of the software to handle larger datasets, more sophis-
ticated algorithms, or increased computational de-
mands. Additionally, a robust architecture contributes
to the software’s reliability and robustness, reducing
the likelihood of errors or unexpected behavior during
experiments or data analysis. This reliability is essen-
tial for ensuring the validity and integrity of research
results.

Furthermore, a well-designed architecture serves
as a foundation for documentation and reproducibility.
Architectural design descriptions document the soft-
ware’s structure, functionality, and dependencies, en-
hancing the reproducibility of research results by en-
abling other researchers to understand and replicate
the software environment and workflows. Clear archi-
tectural guidelines also facilitate collaboration among
team members by providing a common framework for
understanding and contributing to the software. This
collaboration is essential for leveraging collective

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

48 Computing in Science & Engineering April-June 2025

expertise and accelerating research progress while
easing the onboarding process for new team members
who need to understand the software’s structure and
design principles.

EVALUATING RESEARCH
SOFTWARE ARCHITECTURE
USING SOFTWARE METRICS

Software engineering research has developed metrics
and tools to evaluate different aspects of software
quality. Metrics, often derived using static code anal-
ysis, are generally helpful in gauging overall software
quality. This is especially relevant for developers join-
ing an existing or legacy software project. These in-
sights can serve as starting point for an in-depth inves-
tigation of the software architecture that considers
design documentation and original developers. Met-
rics can highlight potential architectural issues whose
resolution should be prioritized to increase software
maintainability.

The National Aeronautics and Space Administra-
tion Software Assurance Technology Center argues
that effective evaluation of software maintainability
is a combination of size (lines of code or LOC) and
cyclomatic complexity.b While maintainability is com-
plex and depends on less easily measurable factors,
such as human cognition, knowledge retention, and
team culture, metrics can provide valuable indicators
of the quality and maintainability of a codebase. Soft-
ware components with both a high cyclomatic com-
plexity and a large size tend to have low maintainabil-
ity. Components with low size and high complexity
are also a reliability risk because they tend to be very
terse code, which is difficult to change or modify.
Other common metrics that static code analysis pro-
vides include code smells, bugs, vulnerabilities, and
test coverage.

Some metrics are related to architecture, others
are not. For an examination of software architecture,
it is therefore important to understand what a metric
expresses and how it is related to the quality attribute
that is observed.

Some of the mentioned metrics are related to
code-level attributes, not software architecture,
such as code smells, adherence to language-depen-
dent coding rules, or styles. Others, such as cyclo-
matic complexity, cognitive complexity,c and code

bCyclomatic complexity quantifies linearly independent
paths through source code, i.e., the number of decision points
in the code.
cCognitive complexity is a measure of the effort it takes to
understand code.

duplication relate to the maintainability and adapt-
ability of the software, and thus aim at the same
quality attributes as architectural design. Yet other
metrics, such as coupling and cohesion, are directly
related to architectural traits, such as modulariza-
tion, or they are a potential proxy for architectural
attributes.

One example of proxy metrics is change coupling.
Change coupling degrees quantify which parts of a
codebase are frequently changed together, e.g. in the
same commit. High change coupling degrees may un-
cover latent relations between different parts of the
codebase, and help identify architectural patterns
that break modularization and clean code principles.
The metric may also show semantic or domain re-
latedness of different code parts, and work as proxy
metric for lack of cohesion (see next paragraph). At
the same time, it could also be an artifact of a specif-
ic development paradigm or workflow, and thus un-
related to architecture altogether. Change coupling
is also potentially linked to coupling, which express-
es the degree of dependence of one component on
another. Coupling usually occurs as use of parts lo-
cated in other modules, but also as use of global vari-
ables. High coupling may necessitate changes in one
component whenever another changes, or lead to
defects in one component whenever a defect occurs
in another.

Cohesion expresses the degree to which elements
within the same component “belong together.” Cohe-
sion can be high if there is a strong relationship be-
tween the functionality of a component and the data
it processes, or a common purpose in the functionality
of a component. Cohesion increases if related code or
components are grouped. High cohesion, in contrast to
high coupling, is preferable, as cohesion is taken to im-
prove the maintainability and robustness of a software
component. Good software architecture combines
low coupling with high cohesion in well-modularized
software.

These useful but complex measures for good soft-
ware architecture are heavily context-dependent, not
easy to generalize, and hard to implement as rules for
static code analysis. In fact, metrics for coupling and
cohesion, such as “lack of cohesion in methods” or
“coupling between object classes,” are not implement-
ed in general-purpose static analysis tools, such as So-
narQube or CodeScene.

We suggest that software metrics can be useful
to evaluate some aspects of research software archi-
tecture. We argue they should be approached with
caution and with awareness that they must be care-
fully interpreted with regard to what they measure and

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 49April-June 2025

what they contribute to an understanding of the archi-
tectural trait of interest.

Below, we provide two examples for evaluating
the maintainability of research software using soft-
ware metrics. We use three different sets of metrics
provided by two different static analysis platforms.
SonarQube Cloud (https://sonarcloud.io, SonarSource
SA, Geneva, Switzerland) can continuously detect
issues in source code. It supports 36 programming
languages, including C, C++, COBOL, C#, Java, and
Python. CodeScene (https://codescene.io, CodeScene
AB, Malmö, Sweden) also provides insights into
higher-level attributes of analyzed software projects,
including architecture. It supports 32 programming
languages, including Rust and the ones mentioned
above, with the exception of COBOL. For this work, we
have used the free tier of SonarQube Cloud for open
source projects, and a trial version of the CodeScene
Pro plan using CodeScene Enterprise (version 6.7.3).

Our analysis focuses on:

	❯ SonarQube’s code-level issues
	❯ CodeScene’s refactoring targets: prioritizes com-

ponents with low code health and therefore high
return on investment (ROI) for refactoring

	❯ CodeScene’s architectural hotspots: prioritizes
architectural components based on understand-
ability, maintainability and evolvability.

Hexatomic
Hexatomicd is an open source extensible graphical
platform for manual and semiautomated multilayer
annotation of linguistic corpus data10 (see Figure 1). Its
original development was funded in the call “Research
Software Sustainability” by the German Research
Foundation (DFG) to investigate minimal infrastruc-
ture requirements for the sustainable provision of re-
search software.

Hexatomic was initially developed by two RSEs [0.5
full-time equivalent (FTE) each over three years] and
two student assistants (0.25 FTE each over one year).
One of the RSEs holds a Ph.D. degree in computer
science (but with no research focus on software engi-
neering), and the other is self-taught and holds an M.A.
degree in literature and language subjects.

Hexatomic reimplements an architectural proof-
of-concept for integrating existing linguistic infrastruc-
ture software built in Ruby, using a Java-based appli-
cation framework, the Eclipse Rich Client Platform,
with a strong focus on modularization and separation
of concerns. Choosing it early in the development
process facilitated architecturally aware design and im-
plementation over the complete course of the project.

dHexatomic source code: https://github.com/hexatomic/
hexatomic.

FIGURE 1.  Screenshot of the Hexatomic graphical user interface, showing simultaneous annotation of the same linguistic cor-

pus data in an editor for annotations represented as graphs and annotations represented as spans over tokenized text.

https://sonarcloud.io
https://codescene.io
https://github.com/hexatomic/hexatomic
https://github.com/hexatomic/hexatomic

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

50 Computing in Science & Engineering April-June 2025

During initial funding [1 October 2018 (t0) – 31 De-
cember 2022 (t2)], the software architecture was docu-
mented from 5 May 2020e to support developers, and
static code analysis with SonarQube Cloud was intro-
duced on 28 May 2020 (t1)f to assert the quality of all
patches merged into the codebase. SonarQube Cloud
has been continuously used on pull requests for Hex-
atomic until t2.

Figure 2 presents software metrics for versions
of Hexatomic produced between t1 and t2. Figure 2(a)
shows the number of “issues” detected by SonarQube
Cloud for tagged versions of Hexatomic. Analysis of
the first tagged version after the introduction of So-
narQube Cloud (version v0.4.3) yielded 145 issues. In
subsequent versions, the RSEs removed code smells
from the codebase. Version v0.5.1 showed four issues
and number of issues remained low until t2 (v1.0.1).

We retrospectively analyzed Hexatomic versions
between t1 and t2 with CodeScene to evaluate its main-
tainability as an attribute of software architecture,
and to compare architectural hotspots with issues
related to maintainability. Figure 2(b) and (c) show Co-
deScene’s visualization of refactoring targets at t1 and
t2, respectively. At t1, Hexatomic includes four compo-
nents (“bundles”, 8811 LOC). CodeScene identified five
Java files as “refactoring targets” and four “priority re-
factoring targets” with low code health and high ROI
for refactoring. At t2 (18,920 LOC, five bundles), Co-
deScene identified one priority refactoring target due
to complex conditionals and nested conditional logic:
ProjectManager.java (466 LOC) contains logic for manag-
ing linguistic corpus projects in Hexatomic. The file
has “change coupling” degrees of 55% and 37% with
the project management GUI (Figure 1, left), and the
handler code for opening projects.

To find out if these instances of change coupling re-
late to factual coupling between objects, we analyzed
ProjectManager.javag with PMDh (version 7.8.0)i , a multi-
lingual static code analyzer. The respective PMD anal-
ysis rule (category/java/design.xml/CouplingBetwee-
nObjects) found 27 coupling instances in the class
(default threshold: 20), a potential architectural issue.
The class contains logic for corpus creation and open-
ing projects, and could be refactored into two classes.

eSee https://archive.softwareheritage.org/swh:1:rev:355fce8624
fda08e9d1611aae2f9280cd9b811be.
fSee https://archive.softwareheritage.org/swh:1:cnt:1e9944a8
ad5e0c8476c6d5aea9773974f1562059;path=/.travis.
yml;lines=46-56.
gSee https://archive.softwareheritage.org/swh:1:cnt:1fff97af0
03af2d720095d5ba27a82654bf5a239.
hPMD website: https://pmd.github.io/.
iPMD version 7.8.0: https://archive.softwareheritage.org/swh:
1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464.

ProjectManager.java uses one constant of one of two
highly change-coupled classes, OpenSaltDocumentHandler.
java, three times. The constant refers to document
identifiers for which persisted state is retrieved in the
project manager class. Arguably, this constant is se-
mantically closer to project management than han-
dling logic, and could be declared in ProjectManager.java
to reduce coupling. For ProjectManager.java the number
of coupling issues related to change coupling is low,
suggesting that change coupling does not function as
proxy metric for coupling in this case.

Figure 2(d) and (e) show CodeScene’s “architectur-
al hotspots” visualizations of Hexatomic bundles at t1
and t2. Architectural hotspots compromise the under-
standability, maintainability, and evolvability of code.
Between t1 and t2, the number of components that
require extra maintenance effort, which may slow de-
velopment (yellow in Figure 2) has been reduced from
4/5 to 2/6. This suggests that architecture health has
improved over time.

However, the architecture of Hexatomic has not
changed between t1 and t2, while one bundle handling
corpus formats was added. Although there seems to
be correlation between the existence of code-level is-
sues in the codebase and overall architectural quality,
we cannot assume causation. We argue that issues
and architectural hotspots relate to the same target,
maintainability, and thus emit correlated results. This
points to a shortcoming in static code analysis plat-
forms. These analyze measurable attributes of a code-
base (here: maintainability), but not necessarily more
complex architectural attributes, such as scalability
and reproducibility.

In addition to refactoring, using architecturally
strong frameworks can improve software architecture.
Hexatomic is based on the Eclipse Rich Client Plat-
form, which prescribes a highly modular architecture
based on the OSGi specificationj: Bundles encapsulate
functionality and provide interfaces. Functionally re-
lated bundles are collected in features, which are com-
bined in an application. Hexatomic uses this structure
to separate the GUI from project management, format
handling, data viewers, and annotation editors.

We argue that the architecture of Hexatomic at t2
is improved as a combined effect of strong modulariza-
tion and using service/event-based architectural pat-
terns, and refactoring efforts. Without the high degree
of modularization, refactoring would have been hard-
er or impossible to achieve. With regard to coupling,
the implementation overall follows good architectural
practice, with some lack of separation of concerns.

j https://docs.osgi.org/specification.

https://archive.softwareheritage.org/swh:1:rev:355fce8624fda08e9d1611aae2f9280cd9b811be
https://archive.softwareheritage.org/swh:1:rev:355fce8624fda08e9d1611aae2f9280cd9b811be
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1e9944a8ad5e0c8476c6d5aea9773974f1562059;path=/.travis.yml;lines=46-56
https://archive.softwareheritage.org/swh:1:cnt:1fff97af003af2d720095d5ba27a82654bf5a239
https://archive.softwareheritage.org/swh:1:cnt:1fff97af003af2d720095d5ba27a82654bf5a239
https://pmd.github.io/
https://archive.softwareheritage.org/swh:1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464
https://archive.softwareheritage.org/swh:1:rel:ac04c37bfb25f5b2ad24ebc506978aca8707f464
https://docs.osgi.org/specification

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 51April-June 2025

(a)

(b) (c)

(d) (e)

FIGURE 2.  Hexatomic: (a) SonarQube issues, (b) and (c), differences in prioritized refactoring targets, and (d) and (e) differences

in architectural hotspots in bundles between SonarQube Cloud introduction (t1) and end of initial funding period (t2). Colors: (b) and

(c) White: not a target; yellow: refactoring target; red: priority refactoring target. (d) and (e) Yellow: problematic; green: healthy.

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

52 Computing in Science & Engineering April-June 2025

The development context of Hexatomic provided a
clear focus on software quality, which has likely con-
tributed to an overall maintainable, well-structured
codebase as evidenced through static code analysis
[Figure 2(e)].

Fluctuating Finite Element Analysis
Fluctuating finite element analysisk (FFEA) is a biomo-
lecular modeling program designed to perform contin-
uum mechanics simulations of globular and fibrous
proteins.11 A unique aspect of FFEA is that finite ele-
ment meshes, which represent the deformable protein
structure, are subject to thermal fluctuations during a
simulation. This feature is essential to capturing pro-
tein behavior because they are nanoscale objects.
Protein dynamics are saved to a trajectory file that can
then be visualized; Figure 3 displays representative
snapshots of four biomolecular systems.

The FFEA software was inspired by the “resolu-
tion revolution” in cryoelectron microscopy that has
provided structural biologists with information about
increasingly large biomolecular complexes, which are
outside the regime accessible to conventional atomis-
tic molecular simulation tools.12 The software has been
in development since 2010, by nine authors, leading to
11 publications. It consists of a C++ simulation plat-
form and a Python package (FFEATools) that provides
additional tools for managing simulations.

Typical of research software, the majority of FFEA’s
code has been developed by Ph.D. students and post-
doctoral researchers, with expert domain knowledge
but lacking formal training in software engineer-
ing. Each researcher focused on implementing new

k FFEA: https://ffea.bitbucket.io/.

functionality required to achieve their specific re-
search objectives over a period of two to three years,
with limited access to guidance from previous devel-
opers who had since moved on. They typically followed
their own development style without fully familiarizing
themselves with, or adhering to, a standardized ap-
proach for the entire codebase, resulting in a highly
inconsistent architecture.

In April 2024, the FFEA C++ codebase was 24,429
LOC, with scant developer documentation and only
62 test cases. These tests offered limited coverage,
with some consistently failing and others considered
“flaky,” yielding inconsistent results across runs. Over
more than a decade of mostly independent develop-
ment, FFEA’s scope expanded organically, leaving earli-
er components undermaintained.

FFEA is capable of modeling two types of com-
ponents, “blobs” (tetrahedral meshes) and 1D “rods”
(Figure 3), along with interactions between the two
types. These two components are largely independent
within the codebase, with limited shared architectur-
al design. The “blob” architecture follows an object-
orientated approach, with errors handled via the re-
turn of error codes. In contrast, the “rod” is implement-
ed with many static functions and handles errors using
exceptions. Both components heavily utilized manual
memory management, typical of C++ written when the
project was started.

In July 2024, an RSE (0.36 FTE over five months) with
a Ph.D. degree in computer science, collaborated with
the most recent developer (one FTE over five months),
a self-taught programmer with a Ph.D. degree in
biophysics, to modernize FFEA and improve its main-
tainability for future developers. This work involved

(a) (b)

(c)

FIGURE 3.  Representative snapshots of FFEA simulations. (a) Cytoplasmic dynein motor protein attached to its microtubule

track. (b) Myosin 5a motor protein attached to its actin filament track. (c) Fibrin blood clotting protein, assembled into a protofi-

bril. (a) Contains only blobs, (b) contains blobs and rods, and (c) contains only rods. Scale bars: 10 nm.

https://ffea.bitbucket.io/

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 53April-June 2025

updating and simplifying the build configuration,
adopting modern C++ standards, resolving failing and
flaky tests, addressing memory access violations,
and reducing code duplication (Figure 4). Howev-
er, enhancements to FFEA’s high-level architecture
were constrained by inherent domain complexity and
the absence of adequate documentation or testing,
which hindered both a thorough understanding of the
codebase and confidence in implementing significant
changes.

Static analysis of FFEA’s source, with SonarQube
Cloud, was performed at the start and end of this
project. The number of issues identified within the
source code decreased from 5014 to 2233, in partic-
ular the number of high priority issues dropped from
1200 to 385. The type of issues identified by this static
analysis largely inherit from the C++ Core Guidelines,l
which provide modern best practices for writing safe,
efficient, and maintainable C++ code. They range from
high-priority issues, such as using modern techniques
that limit code misuse, to low priority style recommen-
dations that add clarity to make the code easier for
users to parse.

In contrast, SonarQube Cloud’s measures of cyc-
lomatic complexity and cognitive complexity have not
changed significantly. For example, src/Blob.cpp, which

l https://isocpp.github.io/CppCoreGuidelines/CppCore
Guidelines.

dropped from 640 to 174 issues, only saw its cyclo-
matic complexity score drop from 663 to 583, and its
cognitive complexity drop from 932 to 830. Similarly,
test coverage at the end of the project was still low at
61% of lines and 37% of branches. This confirms our
interpretation that architectural complexity is largely
distinct from code-level smells. Many code smells may
reduce the safety and readability of a localized area of
code. However, addressing these has limited impact to
improving the maintainability of the whole codebase,
where issues are far more challenging to address at a
late stage.

DISCUSSION
Static code analysis tools are helpful in analyzing spe-
cific aspects of software architecture. Metrics, such
as cyclomatic and cognitive complexity, as well as
some types of issues, such as code smells, relate to
the understandability and maintainability of a code-
base. However, not all relevant metrics are provided
by established static code analysis tools. More com-
plex metrics related to architecture are often con-
text-dependent or hard to quantify, or require the use
of additional tools providing more in-depth analysis
for specific architectural measurements or specific
programming languages. Metrics for more easily mea-
surable attributes are often readily available, but their

(a) (b)

FIGURE 4.  FFEA: CodeScene-detected refactoring targets in ffea module. Refactoring reduced the number of priority refactoring

targets from three (a) to two (b).

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

54 Computing in Science & Engineering April-June 2025

improvement does not necessarily have a positive
impact on architecturally relevant attributes. Addi-
tionally, while metrics can serve as a starting point for
architectural analysis, more comprehensive insights
must be gained from other sources, such as design
documents or developers.

Considering architecture and software design as
important parts of research software engineering is
essential through the complete lifetime of a research
software project. Failure to do this can lead to acci-
dental architectures and increasingly unmaintainable
code, especially in research software projects with a
long lifetime. Continuously monitoring the software
maintainability is feasible through integrating static
code analysis into continuous integration pipelines.
Open source static code analysis tools exist (e.g.,
PMD). Some platforms are free for open source proj-
ects or academic use. In our examples, static code
analysis tools provided leads for the identification of
potential architectural issues, even if they failed to
provide the relevant metrics themselves.

Where new developers regularly join the project
(e.g., as Ph.D. students), it is important to provide doc-
umentation and implement decision and onboarding
processes that include a discussion of software ar-
chitecture, e.g., via lightweight architectural decision
records.

Existing architectural patterns and concepts,
such as modularization, support maintainability, scal-
ability, and robustness of research software and can
have a positive impact on software sustainability and
the reproducibility of research results. Using existing
frameworks that enforce modularization can be help-
ful in achieving solid software architecture, although
resources must be available to assess advantages and
disadvantages of using these frameworks, and to learn
how they work.

It falls upon software engineering research to
develop generalizable metrics that provide relevant
information about software architecture, and devel-
op cost-effective and usable open source tools that
help RSEs evaluate the architecture of their soft-
ware projects. To achieve this, software engineering
researchers need to work more closely with RSEs to
understand their unique needs with respect to the
heterogeneity of RSEs’ educational backgrounds,
technical experience and domain-relatedness. Ad-
ditionally, RSEs often operate under resource con-
straints that do not favor a focus on maintainability,
refactoring activities without visible results in the
form of research outputs, or the acquisition of expen-
sive tools whose necessity may not be immediate-
ly clear to decision makers. However, there is still a

pressing need for new tooling to fit today’s emergent
and dynamic environments, where essential research
software is explicitly designed for continuous evolv-
ability and adaptability without incurring prohibitive
architectural technical debt.

CONCLUSION
Considering software architecture in research soft-
ware engineering safeguards its robustness, maintain-
ability, scalability, and evolvability. This is important in
research, where teams often change and developers
have diverse backgrounds and expertise, and research
objectives progress.

We presented two examples for the architecture
evaluation of research software projects using soft-
ware metrics. Our examples showed that refactoring
activities to remove code-level issues do not necessar-
ily have significant positive impact on the complexity
and maintainability of research software. Metrics can,
however, provide leads for identifying architectural
issues. Factors that positively influence the architec-
tural quality of software included the use of modular-
ization frameworks, and a consistent focus on software
quality in research software projects.

Practical Implications
In more actionable terms, to achieve better software
through better architecture, and better research
through better software, we recommend for new
research software projects that RSEs spend time
considering potentially suitable designs and design
principles for the software they will implement, taking
into account maintainability, extensibility, adaptability,
and reusability. This consideration can be supported by
the software architecture literature and by assessment
of available modularization frameworks. Some pro-
gramming languages provide standard mechanisms
for modularization, such as Python’s extension points.
Regardless of the technical solution for modularization,
modules should encapsulate semantically connected
code and use interfaces for interoperation with other
modules to minimize coupling and maximize cohesion.

Outcomes of architectural decision processes
should be documented in a way that suits the devel-
opers. RSEs should not be concerned with getting ev-
erything “right” at the beginning of development, but
should be aware of balancing the short-term needs of
the research with the longer-term implications for the
software. Architecture and software design can be
iterated alongside the development process, where
new insights into the problem domain may trigger a

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 55April-June 2025

design iteration. The software’s role in research and
the target technology readiness level8 can guide it-
erations: The higher the technology readiness level
and the wider the potential reuse, the more important
intentional, conscious software design and architec-
ture become.

To support architecture iterations, we recommend
that RSEs use some automation from the start. Static
code analysis can be run in continuous integration, e.g.,
using the platforms mentioned above. Even if analysis
metrics do not provide comprehensive architectural
insights or flag all relevant design smells, they can un-
cover issues at code level and act as regular reminders
to consider architectural (and code) quality, and to re-
flect design decisions. One prerequisite for using such
metrics is that RSEs reflect the metrics’ meaning and
expressive value: While they are easy to measure and
track, they may not provide a comprehensive picture
of architectural quality. Changes in software design
and architecture should always be documented in a
way that retains design knowledge independently of
individuals.

For developers joining legacy research software
projects, we recommend that static code analysis
metrics be used by RSEs as an entry point to an ar-
chitectural analysis of the software they will work
on. Higher-level architectural views, such as those
presented in Figure 2(d) and (e), can support a basic
understanding of the modularity of hitherto unfamiliar
software. Building on this, they should then consult ex-
isting design documentation where available.

Software engineering researchers should work
closely with RSEs to understand their unique needs,
and develop suitable metrics and usable open source
tools to support them.

In any case, considering the design and architec-
ture of research software, learning and following ba-
sic good practices, and leveraging existing tools that
support this effort is time well spent. It may save RSEs
time and effort over the software lifecycle, and helps
making research software more maintainable, extensi-
ble, adaptable, and reusable, ultimately improving the
quality of research outcomes.

ACKNOWLEDGMENTS
The authors thank Ben Hanson (University of Leeds,
U.K.) and Molly Gravett (Utrecht University, The Neth-
erlands) for providing the fluctuating finite element
analysis models of cytoplasmic dynein and myosin
5a, respectively. The images in Figure 3 were cap-
tured using the PyMOL (https://pymol.org) molecular
visualisation system. The authors were supported

by the German Research Foundation (DFG), Grants
391160252 (S.D. and T.K.) and 528713834 (W.H.), the
U.K. Research and Innovation (N.P.C.H., Grants EP/
S021779/1 and AH/Z000114/1 for the Software Sus-
tainability Institute), the Wellcome Trust (Grant
222381/Z/21/Z), and the University of Sheffield, and by
the U.S. Department of Energy Office of Science, Bi-
ological and Environmental Research division Award
DE-SC0025510.

REFERENCES
	 1.	 M. Gruenpeter et al. “Defining research software:

A controversial discussion.” Zenodo, doi: 10.5281/

zenodo.5504016.

	 2.	 N. P. Chue Hong et al., “FAIR principles for research

software (FAIR4RS principles).” Zenodo, doi: 10.15497/

RDA00068.

	 3.	 L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice, 4th ed. Reading, MA, USA:

Addison-Wesley Professional, 2021.

	 4.	 C. Lilienthal, Sustainable Software Architecture:

Analyze and Reduce Technical Debt. San Rafael, CA,

USA: Rocky Nook, 2019.

	 5.	 C. C. Venters et al., “Sustainable software engineering:

Reflections on advances in research and practice,” Inf.

Softw. Technol., vol. 164, Dec. 2023, Art. no. 107316, doi:

https://doi.org/10.1016/j.infsof.2023.107316.

	 6.	 S. Hettrick et al. “International RSE survey 2022.”

Zenodo, doi: 10.5281/zenodo.7015772.

	 7.	 N. U. Eisty et al., “Use of software process in research

software development: A survey,” in Proc. 23rd Int.

Conf. Eval. Assessment Softw. Eng., New York, NY, USA:

ACM, 2019, pp. 276–282, doi: 10.1145/3319008.3319351.

	 8.	 W. Hasselbring et al., “Multi-dimensional research

software categorization,” Comput. Sci. Eng., early

access, Mar. 27, 2025, doi: 10.1109/MCSE.2025.3555023.

	 9.	 W. Hasselbring, “Software architecture: Past,

present, future,” in The Essence of Software

Engineering, V. Gruhn and R. Striemer, Eds., Cham,

Switzerland: Springer-Verlag, 2018, pp. 169–184, doi:

10.1007/978-3-319-73897-0_10.

	 10.	 S. Druskat, T. Krause, C. Lachenmaier, and B. Bunzeck,

“Hexatomic: An extensible, OS-independent platform

for deep multi-layer linguistic annotation of corpora,”

J. Open Source Softw., vol. 8, no. 86, Art. no. 4825, Jun.

2023, doi: 10.21105/joss.04825.

	 11.	 A. Solernou et al., “Fluctuating finite element analysis

(FFEA): A continuum mechanics software tool for

mesoscale simulation of biomolecules,” PLoS Comput.

Biol., vol. 14, no. 3, Mar. 2018, Art. no. e1005897, doi:

10.1371/journal.pcbi.1005897.

https://pymol.org
https://doi.org/10.1016/j.infsof.2023.107316
http://dx.doi.org/10.1145/3319008.3319351
http://dx.doi.org/10.1109/MCSE.2025.3555023
http://dx.doi.org/10.1007/978-3-319-73897-0_10
http://dx.doi.org/10.21105/joss.04825
http://dx.doi.org/10.1371/journal.pcbi.1005897
http://dx.doi.org/10.5281/zenodo.5504016
http://dx.doi.org/10.5281/zenodo.5504016
http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.5281/zenodo.7015772

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

56 Computing in Science & Engineering April-June 2025

	 12.	 R. O. Dror et al., “Biomolecular simulation: A
computational microscope for molecular biology,”
Annu. Rev. Biophys., vol. 41, no. 1, pp. 429–452, Jun.
2012, doi: 10.1146/annurev-biophys-042910-155245.

STEPHAN DRUSKAT is a software engineering researcher at

the German Aerospace Center (DLR), 12489, Berlin, Germany,

and Fellow of the Software Sustainability Institute. His research

interests include research software sustainability, empirical

and evidence-based (research) software engineering and re-

search software intelligence. He is a co-founder of the German

Society for Research Software, and member of the Society for

Research Software Engineering and the German Association

for Computer Science, where he co-founded the special inter-

est group on research software engineering. Druskat received

his M.A degree in English philology, modern German literature

and linguistics from the Free University Berlin. Contact him at

stephan.druskat@dlr.de.

NASIR U. EISTY is an assistant professor of computer science

at the University of Tennessee, Knoxville, 39716, TN, USA. His

research interests include software engineering, AI for software

engineering, research software engineering, and software secu-

rity. Eisty received his Ph.D degree in computer science from the

University of Alabama. Contact him at neisty@utk.edu.

ROBERT CHISHOLM is a research software engineer in the

School of Computer Science at the University of Sheffield, S1

4DP, Sheffield, U.K. His research interests include performance

optimization and parallel computing. Chisholm received his

Ph.D. degree in computer science from the University of Shef-

field. Contact him at robert.chisholm@sheffield.ac.uk.

NEIL P. CHUE HONG is a professor of research software policy

and practice at the University of Edinburgh, EH8 9BT, Edinburgh,

U.K. and the director of the Software Sustainability Institute.

His research interests include understanding the way in which

specialist software used in research is developed and how

policy and incentives can be used to improve maintenance and

reusability. Hong received his M.Phys. degree in computational

physics from the University of Edinburgh. Contact him at

N.ChueHong@epcc.ed.ac.uk.

RYAN C. COCKING is a research software engineer in the

School of Mathematical and Physical Sciences at the University

of Sheffield, S3 7RH, Sheffield, U.K. His research interests

include coarse-grained biomolecular simulations and software

engineering. Cocking received his Ph.D. degree in computational

biophysics from the University of Leeds. Contact him at ryan.

cocking@sheffield.ac.uk.

MYRA B. COHEN is a professor and the Lanh and Oanh

Nguyen Chair in Software Engineering in the Department

of Computer Science at Iowa State University, Ames, IA,

50011, USA. Her research interests are in software testing,

search-based software engineering, and correctness of

scientific software. Cohen received her Ph.D. degree from

the University of Auckland, New Zealand. Contact her at

mcohen@iastate.edu.

MICHAEL FELDERER is the director of the Institute of

Software Technology at German Aerospace Center (DLR),

51147, Cologne, Germany, and a full professor at the University

of Cologne. His research interests include software

engineering, artificial intelligence, and systems engineering.

Felderer received his Ph.D. degree in computer science from

the University of Innsbruck. He is a member of the Association

for Computing Machinery and the German Association for

Computer Science. Contact him at michael.felderer@dlr.de.

LARS GRUNSKE is a professor in the Department of Computer

Science from the Humboldt-Universität zu Berlin, 10099,

Berlin, Germany. His research interests include automated

software engineering, formal methods and research software

engineering research. Grunshe received his Ph.D. degree in

computer science from the University of Potsdam (Hasso-

Plattner-Institute for Software Systems Engineering). Contact

him at grunske@informatik.hu-berlin.de.

SARAH A. HARRIS is a professor of biological and materials

physics in the School of Mathematical and Physical Sciences at

the University of Sheffield, S3 7RH, Sheffield, U.K. Her research

interests include multiscale modeling, biomolecular simulation,

and molecular recognition. Harris received her Ph.D. degree in

computational biophysics from the University of Nottingham.

She and her colleagues developed FFEA to perform biomolecular

simulations at mesoscopic length and timescales. Contact her

at sarah.harris@sheffield.ac.uk.

WILHELM HASSELBRING is a professor of software engineer-

ing at Kiel University, 24098, Kiel, Germany, and an adjunct pro-

fessor at the University of Southampton, SO17 1BJ, Southampton,

U.K. His research interests include software engineering, distrib-

uted systems, and open science. Hasselbring received his Ph.D.

http://dx.doi.org/10.1146/annurev-biophys-042910-155245
mailto:michael.felderer@dlr.de
mailto:sarah.harris@sheffield.ac.uk
mailto:ryan.cocking@sheffield.ac.uk
mailto:ryan.cocking@sheffield.ac.uk

RESEARCH SOFTWARE ENGINEERING: DISCOVERING AND BRIDGING KNOWLEDGE GAPS

Computing in Science & Engineering 57April-June 2025

degree in computer science from the University of Dortmund. He

is a member of the Association for Computing Machinery, IEEE

Computer Society, and the German Association for Computer

Science, at which he is vice chair of the special interest group

on research software engineering. Contact him at hasselbring@

email.uni-kiel.de.

THOMAS KRAUSE is a researcher/research software engineer

in the Department of German Studies and Linguistics at the

Humboldt-Universität zu Berlin, 10099, Berlin, Germany. His

research interests include developing methods and software for

corpus linguistics to represent, analyze, and visualize linguistic

annotations. Krause received his Ph.D. degree in computer

science from Humboldt-Universität zu Berlin. Contact him at

thomas.krause@hu-berlin.de.

JAN LINXWEILER is the general manager of the Center

for Mechanics, Uncertainty and Simulation in Engineering

(MUSEN) at TU Braunschweig and head of IT and Research

Services at the University library, Braunschweig, 38106,

Braunschweig, Germany. His research interests include

research software engineering research, high performance

computing, research data management, and open ccience.

Linxweiler received his Ph.D. degree in engineering and is a

founding member of the German RSE association, for which

he also serves as chairman of the board. Contact him at

j.linxweiler@tu-braunschweig.de.

COLIN C. VENTERS is a research software engineer at European

Organization for Nuclear Research, 1211, Geneva 23, Switzerland

associated with the ATLAS experiment. His research interests

include sustainable software engineering from a software

architecture perspective. Venters received his Ph.D. degree

from the University of Manchester, United Kingdom. He is a

founding member of the Sustainability Design Alliance, and co-

author of the Karlskrona Manifesto for Sustainability Design.

Contact him at c.venters@cern.ch.

Unlock Your Potential
WORLD-CLASS CONFERENCES —
Over 195 globally recognized conferences.

DIGITAL LIBRARY — Over 900k articles covering
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions
in the IEEE Computer Society Jobs Board.

NETWORK — Make connections in local Region,
Section, and Chapter activities.

Explore membership today
at the IEEE Computer Society
www.computer.org

CS-generic-halfhorizontal-Sept24.indd 1CS-generic-halfhorizontal-Sept24.indd 1 9/30/24 5:53 PM9/30/24 5:53 PM

mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:thomas.krause@hu-berlin.de

	045_IE-MCSE250031

