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A B S T R A C T

Asia plays a dominant role in global aquaculture, contributing over 88 % of the total aquaculture output, pri
marily through pond aquaculture systems used for the farming of fish, shrimp, and mussels. Coastal regions in 
Asia have experienced rapid spatial expansion of pond aquaculture. Recognizing the importance of spatial data in 
effectively monitoring and managing these systems, we present a methodological approach utilizing dense op
tical satellite time series archive data to analyze the spatio-temporal development of coastal pond aquaculture in 
Asia. This study builds on previous work that delineated all aquaculture ponds at a single-pond level for the 
entire coastal zone using a multi-sensor Earth Observation approach, integrating both SAR and optical satellite 
data. The resulting continental-scale vector dataset of mapped aquaculture ponds served as reference to derive 
spatio-temporal dynamics of coastal aquaculture. By utilizing multi-decadal Landsat archive data (1984–2019), 
we developed a framework to determine the annual status of each pond based on water masks derived from 
satellite time series. The methodology was applied across 22 coastal countries in South Asia, East Asia and 
Southeast Asia to investigate the development patterns of pond aquaculture. Using the complete, continental- 
scale dataset on annual pond aquaculture status, this research conducted geostatistical analyses of growth 
rates and spatial expansion patterns across various administrative levels, including national and district scales. 
Growth dynamics were examined for each individual country at 5- and 10-year time intervals. Between the 1980s 
and 2019, coastal Asia experienced significant expansion of pond aquaculture in time and space, with China, 
Indonesia, India, Vietnam, and Thailand emerging as the largest contributors. In 1988, reference aquaculture 
ponds covered around 6500 km2, increasing to over 19,000 km2 in 2019, representing a more than three-fold 
increase. Among the examined countries, China maintained the largest pond aquaculture industry, accounting 
for 40.6 % of the total active pond area in 2019, followed by Indonesia (13 %) and India (11.2 %).

1. Introduction

Asia dominates the global aquaculture industry, accounting for 88 % 
of global production, equivalent to 80.3 million tonnes in 2021 (FAO, 
2023), primarily through land-based pond aquaculture. The region’s 
long-standing tradition of fish and shrimp farming in these ponds has 
underpinned Asia’s central role in global aquaculture production (see 
Fig. 1). Overfishing, which has led to declining fish productions and 
stagnant catches, has further driven the growth of aquaculture to meet 
the rising demand for seafood (Akber et al., 2020; Naylor et al., 2021; 
Béné et al., 2016). Consequently, aquaculture has become the fastest- 
growing sector in the global food economy, now producing half of the 

world’s consumable fish. The rapid expansion of aquaculture, particu
larly in Asia, highlights the importance of spatial survey data, contin
uous mapping, and environmental monitoring in advancing research 
and ensuring sustainable practices. In Southeast and East Asia, aqua
culture has expanded rapidly since the 1990s, becoming a major in
dustry and key driver of employment. However, this growth has raised 
concerns about environmental impacts, including water pollution, 
destruction of mangrove forests (Aslan et al., 2021; Herbeck et al., 2020; 
McSherry et al., 2023) and coastal wetlands (Ballut-Dajud et al., 2022), 
and occupation of ecological land (Zhang et al., 2022). Unregulated 
wastewater discharge is a significant issue, releasing high loads of nu
trients and suspended solids into natural water bodies (Ahmed and 
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Thompson, 2019; Dauda et al., 2019). To address these impacts, sus
tainable aquaculture practices, such as improved wastewater treatment 
and sustainable land use, are essential. Climate change also poses a 
significant challenge, with rising sea levels, increasing water tempera
tures, and acidification affecting yields and economic stability (Maulu 
et al., 2021). Spatial data and information are crucial for effective 
management and preservation of natural water resources. In light of 
these concerns, spatial information and data are crucial for effective 
management and preservation of natural water resources. (See Fig. 2.)

Satellite remote sensing is widely acknowledged for enabling large- 
scale, routine mapping and monitoring of aquaculture sites at different 
spatial and temporal resolutions. Earth Observation (EO)-based long- 
term monitoring offers unique insights into the complex interactions 
between aquaculture and surrounding ecosystems. However, most 
studies on the spatio-temporal development of aquaculture have been 
conducted at local or regional scales rather than continental ones (Duan 
et al., 2021; Duan et al., 2021; Stiller et al., 2019; Zhe et al., 2020; Zhe 
et al., 2020). Cloud cover is limiting the data collection with passive 
optical satellite sensors, particularly in tropical and subtropical coastal 
regions, where building a cloud-free dataset is difficult - even with EO 
missions like Landsat or Sentinel-2, which feature higher revisit fre
quencies and wider swath widths. Active radar sensors such as Sentinel- 
1, operating in the longer microwave range, overcome this limitation by 
being less influenced by atmospheric conditions and offering weather- 
independent imaging (Ottinger and Kuenzer, 2020). Advanced remote 
sensing methods, including machine learning methods, such as image 
segmentation, support vector machine, and neural networks, have been 
applied to extract aquaculture features. Image segmentation-based 
feature extraction (Fu et al., 2019; Zhang et al., 2020) have been 
applied to preprocessed satellite imagery data and integrated method
ological approaches combining spectral, spatial, geometric, morpho
logical, topographic, and topological features to separate aquaculture 
from other land cover types (Ottinger et al., 2022; Ottinger et al., 2017; 
Prasad et al., 2019; Sun et al., 2020; Tian et al., 2022; Wang et al., 2022; 
Xia et al., 2020). In addition to edge-oriented image segmentation 

methods (e.g., Laplace or Sobel operators, Canny Edge Algorithm 
(Canny, 1986)), thresholding is widely used for object recognition in 
digital image processing (Hay et al., 2003; Li and Lee, 1993; Liu et al., 
2006). Recent studies have examined long-term dynamics of aquacul
ture ponds at single-pond level in China’s Pearl River Delta and Yellow 
Rover Delta (Stiller et al., 2019). Non pond-specific approaches 
analyzing the spatiotemporal development of aquaculture areas with EO 
data focus on detecting agglomerations of larger pond areas (not at 
single pond level). Such studies have been conducted for Hainan Island 
(Fu et al., 2021), coastal China (Duan et al., 2021; Ren et al., 2019; Wang 
et al., 2023), Vietnam (Zhe et al., 2020), and Southeast Asia (Jiang et al., 
2024; Luo et al., 2022; Zhang et al., 2023).

This paper introduces an innovative EO-based approach for moni
toring the spatiotemporal development of land-based pond aquaculture 
in the coastal zone of Asia, focusing on a comprehensive cross-country 
analysis of long-term aquaculture dynamics. This was achieved 
through the use of high-resolution Earth Observation data, particularly 
Sentinel-1 and Sentinel-2, to derive a detailed reference dataset of pond 
aquaculture (Ottinger et al., 2022), complemented by an extensive 
analysis of the entire Landsat archive to assess water coverage of each 
pond object over time. For the first time, our study offers a pan-Asian, 
high-resolution analysis of pond aquaculture development patterns, 
overcoming the limitations of previous research that have focused on 
local or regional scales. While previous studies primarily focused on 
detecting pond areas at regional or national scales, our approach goes a 
step further by tracking the evolution of each individual pond over time. 
Using the computational power of Google’s Earth Engine platform and 
analysis ready datasets, we efficiently processed large-scale, multi- 
decadal data, enabling detailed assessments of aquaculture dynamics. 
Our study goes beyond monitoring aquaculture status for the reference 
pond dataset by conducting spatial analyses of pond distribution pat
terns, as well as examining temporal changes in pond development at 
both national and sub-national levels. Additionally, we compared 
satellite-derived aquaculture pond areas with official statistics on pond 
production from FAO, enabling a validation of spatially explicit 

Fig. 1. Bar chart: Aquaculture production in inland waters and marine areas among Asian countries in 2021; Donut chart: Share of aquaculture production among 
continents and the top 5 global producers in 2021. Data source: FAO (2021). Figure updated and modified according to Ottinger et al. (2022).
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aquaculture trends against reported aquaculture production data. This 
approach provides a unique, granular perspective on pond aquaculture 
development, offering insights into the local and regional trends across 
Asia. It also assesses the impact of local policies and environmental 
factors on pond development, providing valuable information for 

sustainable coastal aquaculture management. By understanding the 
historical and current status of individual ponds, decision-makers can 
develop targeted strategies for sustainable aquaculture practices, 
contributing to evidence-based management and ensuring long-term 
food security. The sub-national level analysis also allows for a more 

Fig. 2. Map of coastal aquaculture ponds in Asia. The pond dataset was derived from satellite-based Earth observation time series data (Sentinel-1 and Sentinel-2) for 
the year 2019. Data source: Ottinger et al. (2022).
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nuanced understanding of regional disparities and potential areas, aid
ing for targeted interventions.

2. Study region

The investigated study region encompasses the coastal zone of Asia 
spanning South Asia, Southeast Asia, and East Asia, covering a total of 
22 countries and a coastline that extends 300,000 km (as depicted in 
Table 1). To delineate the coastal zone of Asia (CZA) for this study, a 
calculation was performed by establishing a 200-km buffer both towards 
the land and the sea, originating from a detailed representation of Asia’s 
coastline. With the aim of facilitating the efficient processing of annual 
water masks derived from satellite time series data across the entire 
Asian coastal zone, we defined and used coastal segments for further 
processing. Therefore, a total of 261 distinct coastal parcels (as illus
trated in Fig. 4) - each spanning an interval of 200 km - were calculated 
as lateral segments along the coastline within a 200 km wide coastal 
buffer. Extending from Iran in the west to Western New Guinea in the 
southeast, and encompassing Japan in the northeast, the coastal zone is 
densely populated and has a cumulative population of more than 1.726 
billion people (2015) within a 200 km distance from the coastline 
(European Commission, Joint Research Centre, 2015; see Table 1). This 
represents 41 % of the total population of the countries in this zone and 
accounts for 20 % of the global population. Along Asia’s coast, the low- 
lying, flat-topography areas (including lagoons, estuaries, river deltas) 
facilitated the rapid expansion of pond aquaculture. Rapid socio- 
economic development, increased urbanization, and coast-ward migra
tion (Neumann et al., 2015), however, dramatically changed the coastal 
regions in Asia during the last two decades. Land use changes were 
closely related to the expanding farming of crops (e.g., paddy rice), fish 
and shrimp, which are the main food source for millions of people. At 
both continental and national scales, significant variations in aquacul
ture production exist across different regions. The five leading 
aquaculture-producing nations collectively contribute over 80 % of the 

global output, with all located in Asia: China (51.2 million t), India (9.4 
million t), Indonesia (5.5 million t), Vietnam (4.7 million t), and 
Bangladesh (2.6 million t) (FAO, 2023; see Table 1). Notably, in 2021, 
China’s share in global aquaculture production exceeded half, ac
counting for 63 %, thereby underscoring its important role within the 
aquaculture food sector in recent times.

3. Data & methods

3.1. Data

3.1.1. Reference ponds
The reference pond areas for the spatio-temporal analysis of aqua

culture development are based on an automatic multi-sensor approach 
for object-based extraction of land-based pond aquaculture which was 
developed by Ottinger et al. (2022). This approach generated the first 
comprehensive, continental-scale dataset of mapped pond aquaculture 
at the single objects level. The dataset was created for the year 2019 
using space-borne image time series data acquired by the Sentinel-1 and 
Sentinel-2 missions, both integral parts of the Copernicus Earth Obser
vation Program operated by the European Space Agency (ESA). The 
automatic extraction method applied for the entire Asian coastal zone 
utilized all accessible Sentinel-1 Ground Range Detected (GRD) and 
Sentinel-2 Surface Reflectance (SR) images for the same year. Utilizing 
the Digital Elevation Model (DEM) from the Shuttle Radar Topography 
Mission (SRTM), the initially identified polygons were refined by 
considering the relief they occupied; specifically, only those situated in 
flat and low-lying coastal areas were retained. Subsequently, these 
polygons were additionally filtered based on size and shape features to 
exclude other types of water bodies unrelated to aquaculture ponds. 
When compared to the very high-resolution optical imagery accessible 
on Google Earth, the mapping result for coastal ponds demonstrated an 
overall accuracy of 91.9 % (Ottinger et al., 2022). The final pond vector 
dataset from Ottinger et al. (2022) covers ponds across the entire coastal 

Table 1 
Overview of all countries to the study region sorted by aquaculture production (descending order).

Country Number of reference 
pondsa

Reference pondsa area 
[ha]

Coastline 
lengthb

[km]

Population in 
the coastal zonec [in 

Mio]

Aquaculture production (AP) in 
tonnes in 

2021d

World 
rank 

by AP 
in 2021d

China1 1,432,575 1,153,618 34,362 429.65 51,221,122 1
Indonesia 383,805 269,251 97,680 250.32 9,403,000 2
India 345,116 224,548 13,166 386.57 5,515,227 3
Vietnam 662,390 151,486 6217 87.09 4,736,120 4
Bangladesh 167,346 71,524 2735 82.94 2,638,745 5
Thailand 260,713 140,990 8182 39.09 989,898 9
Myanmar 90,476 88,444 18,008 28.52 929,217 10
Philippines 86,991 91,581 34,541 96.78 928,821 11
Japan 48,594 14,279 30,725 121.38 621,580 14
Republic of Korea 13,434 15,550 14,930 48.4 581,995 15
Iran 19,209 10,495 5858 10.48 478,737 16
Cambodia 24,007 12,355 1430 10.91 347,350 19
Taiwan, Province of 

China
47,085 19,380 2863 23.06 274,500 23

Malaysia 30,543 17,168 12,465 29.73 238,082 25
Pakistan 29,326 23,684 4936 24.27 164,527 30
Dem. People’s Rep. 

Korea
9037 9521 4896 23.71 77,560 43

Sri Lanka 11,089 15,428 3930 20.58 50,759 47
Singapore – – 490 5.44 5244 92
Brunei Darussalam 829 502 298 0.43 4768 98
China, Hong Kong SAR 1024 1356 1101 5.93 3909 101
Timor-Leste 224 68 803 1.17 391 142
ROI total 3,663,813 2,004,501 299,705 1726 79,211,550

1 including Macao SAR; ROI: Region of interest (ROI) refers to all Asian countries, which cover the coastal zone of Asia (CZA).
a Area (in ha) of reference pond aquaculture objects per country, source: Ottinger et al. (2022).
b Coastline length calculated from vector data on administrative areas from the GADM (GADM, 2012) dataset.
c GHS-POP R2015A-GHS population grid, derived from GPW4 (European Commission, Joint Research Centre, 2015).
d Aquaculture production (excluding photosynthetic active organisms such as seaweed) according to FAO Fishery and Aquaculture Statistics.
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zone of Asia, as depicted in Figure 2. This dataset comprises a total of 3.6 
million pond features from 22 countries (see Table 1). As no specific 
details were provided regarding the type of pond water, it was assumed 
that the reference ponds encompassed both freshwater and brackish 
water ponds.

3.1.2. Landsat satellite data
In this study, annual water masks were created using all available 

optical satellite images acquired by the Landsat fleet covering the entire 
Asian coastal zone. The Landsat program, a longstanding Earth obser
vation initiative, comprises seven satellites jointly operated by the Na
tional Aeronautics and Space Administration (NASA) and the United 
States Geological Survey (USGS). These satellites capture multispectral 
optical data with a ground resolution of 30 m and operate on an 
approximate revisiting cycle of 16 days (see Table 2). The extensive and 
openly accessible Landsat archive containing multi-spectral time series 
data, provides valuable long-term Earth Observation monitoring capa
bilities for high-resolution and large-scale mapping of water dynamics 
and is therefore suitable to spatio-temporal development (status of 
water coverage) for pond aquaculture objects.

In our research, Landsat Surface Reflectance (SR) products from the 
Google Earth Engine (GEE) (Gorelick et al., 2017) were utilized. These 
are accessible in an analysis-ready format (ARD) and have been pre
processed applying radiometric calibration, orthorectification, and at
mospheric calibration. For the scope of this study, Landsat SR images 
captured from January 1, 1984, to December 31, 2019, were selected to 
match with the temporal range corresponding to the reference ponds 
which were detected for the year 2019. Details about each sensor can be 
found in Table 2. The spatial and temporal coverage of Landsat scenes 
varies, with areas situated within overlapping zones between two or 
more Landsat footprints undergoing more frequent imaging than regions 
outside these overlapping zones. Images from the late 1980s and early 
1990s are less prevalent during the observed time span. Since this study 
generated annual water masks, the count of observations per year was a 
focal point. To also address the Landsat 7 striping issue caused by the 
Scan Line Corrector (SLC) failure, we utilized temporal compositing by 
aggregating multiple images from different dates into annual composites 
(e.g. median, see section 3.2.1), effectively filling gaps and reducing the 
striping effect, ensuring reliable and accurate data for our analysis. 
Fig. 3 illustrates the total observation counts within the complete 
Landsat archive-based image time series stack at the pixel level from 
1984 to 2019. The red areas in Fig. 3 represent locations where the 
number of images is below 100. However, these red areas are primarily 
located over the sea and did not affect the analysis, which focused on 
land-based pond objects along the coastal zone. The vast majority of the 
land areas have more than 250 images for the study period, which is 
sufficient to generate annual water masks and conduct a thorough 
analysis of the water status for the land-based reference pond objects.

3.1.3. Administrative data
The spatial and temporal evolution of pond aquaculture will be 

presented across various administrative levels, spanning from the na
tional to the district level. The administrative data has been downloaded 

from the Database of Global Administrative Areas (GADM) (GADM, 
2012). For the 22 countries (see Table 1) the number of districts con
taining reference ponds is 92 for China, 390 for Indonesia, 121 for India, 
502 for Vietnam, 40 for Bangladesh, 362 for Thailand, 31 for Myanmar, 
1092 for Philippines, 1121 for Japan, 147 for South Korea, 26 for Iran, 
118 for Cambodia, 21 for Taiwan, 123 for Malaysia, 6 for Pakistan, 111 
for North Korea, 194 for Sri Lanka, 29 for Brunei, 12 for Hong Kong SAR, 
and 27 for Timor-Leste.

3.1.4. National statistical data on aquaculture production
The Food and Agriculture Organization of the United Nations (FAO) 

member countries voluntarily report their fisheries and aquaculture data 
to the organization, and FAO then compiles and analyzes this informa
tion to produce global, regional, and country-specific reports on aqua
culture. These data are freely accessible through FAO’s FishStatJ 
software, which provides statistical databases on fisheries and aqua
culture time series from 1950 onwards (FAO, 2023). We downloaded the 
data set ‘Global aquaculture production quantity (1950 - 2021)’ and 
compared it with the water coverage time series of the mapped pond 
aquaculture area in the discussion section. To align with the objectives 
of this research, we refined the FAO dataset to include production 
quantities specifically for fish, crustaceans, and mollusks (excluding 
aquatic photosynthetic organisms, such as sea weed) cultivated in fresh 
and brackish water across all 22 coastal Asian countries. This refinement 
was achieved by applying filters based on criteria such as country, cul
ture system, and species. The resultant subset of the dataset specifically 
represents the production quantity of fish, crustaceans, and mollusks 
from freshwater and brackish water culture in all 22 coastal Asian 
countries, forming a key focus in this study.

3.2. Methods

For all the reference ponds detected and extracted using Sentinel-1 
and Sentinel-2 data for the year 2019, we established a framework 
(see Fig. 4) to determine the yearly aquaculture status for each indi
vidual pond. This determination was based on annual water masks 
derived from the multi-decadal time series data provided by the Landsat 
archive spanning the period from 1984 to 2019. A receiver operating 
characteristic (ROC) test was used to delineate detailed water masks for 
overlaying with the pond reference dataset. This method allows us to 
assess aquaculture pond presence over time for the reference pond 
dataset by checking how these water masks align with the reference 
dataset, assuming that active ponds are covered by water during the 
Landsat observation period.

3.2.1. Water mask generation
Water masks were generated using a unique threshold applied to an 

annually derived water index image, which was processed based on 
Landsat time series data for each coastal parcel. A total of 261 water 
mask files were created, corresponding to the 261 coastal parcels out
lined in Fig. 3. Each water mask file contains 35 bands, with each band 
representing the annual water mask for a given year from 1985 to 2019. 
To identify the optimal combination of water index and reducer for 

Table 2 
Details on the Landsat missions and spectral bands relevant for the study.

Satellite Instrument Operational from-to Revisit time Spatial resolution* Swath width Bands Band width (μm)

Landsat 4 Thematic Mapper (TM) 1982–1993 16 d 30 m 185 km
Blue 

Green 
Red 
Nir 

Swir1 
Swir2

L4/L5/L7 | L8 
0.45–0.52 | 0.45–0.51 
0.52–0.60 | 0.53–0.59 
0.62–0.69 | 0.64–0.67 
0.77–0.90 | 0.85–0.88 
1.55–1.75 | 1.57–1.65 
2.08–2.35 | 2.11–2.29

Landsat 5 Thematic Mapper (TM) 1984–2011 16 d 30 m 185 km
Landsat 7 Enhanced Thematic Mapper (ETM+) 1999 16 d 30 m 185 km

Landsat 8 Operational Land Imager (OLI) 2013 16 d 30 m 185 km

* Spatial resolution for the short-wave channels; TM has an additional thermal infrared (TIR) band with a spatial resolution, the ETM+ is equipped with a 15 m 
Panchromatic (PAN) band and 60 m TIR band, and OLI has a 15 m PAN band.
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accurately extracting water bodies and depicting the pond water 
coverage status on an annual basis for a long-term time series (based on 
Landsat data), a receiver operating characteristic curve analysis, 
referred to as ROC test hereafter, was conducted. Eight coastal test sites 
distributed along the coastal zone of Asia were utilized for this analysis 
(see Fig. 5). Initially, all Landsat images captured in 2019 were selected 
and preprocessed to remove clouds and cloud shadows. Each cloud-free 
image was then used to calculate four distinct water indices for the ROC 
test: Normalized Difference Water Index (NDWI) (McFeeters, 1996), 
Modified Normalized Difference Water Index (MNDWI) (Xu, 2006), 
Automated Water Extraction Index (AWEI) (Feyisa et al., 2014) and the 
water index proposed by Fisher et al. (2016), referred to as WIFI in this 
study. The equations for calculating these indices can be found in 
Table 3.

In a next step, all images were aggregated at the pixel-level using a 
reducer. To account for potential outliers during the ROC test, the me
dian operator was selected as the reducer method. To enhance the 

detection of ponds intermittently covered by water throughout the year, 
the 95th percentile was also employed as a secondary reducer for the 
test. The output of this step consisted of images representing the median 
values of NDWI, MNDWI, AWEI, WIFI, as well as the 95th percentile 
values of NDWI, MNDWI, AWEI, and WIFI for the year 2019. For each of 
these images, Otsu’s method was applied to establish an initial threshold 
for the extraction of water bodies. Otsu’s method (Otsu, 1979), a 
threshold selection technique, distinguishes objects based on the histo
gram of pixel values within an image. It performs optimally when the 
histogram exhibits two distinct peaks, representing objects and the 
background, with a significant valley between them. To ensure a 
bimodal distribution (two peaks) of DN values in each histogram, the 
water index images were processed at a parcel-level basis (refer to 
coastal parcels in Fig. 3). Each parcel consisted of two 200 km buffer 
areas, one extending inland and the other towards the sea (Ottinger 
et al., 2022), ensuring an even distribution of land and water areas. 
From each reduced image, multiple water masks were generated by 

Fig. 3. Top: Map of the study region, including a total of 261 coastline parcels that encompass a coastline of ~200 km in length. Bottom: Data coverage of Landsat 
Archive (LS4-LS8) data from 1984 to 2019 for the coastal zone of Asia.
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applying the automatically derived Otsu’s threshold. The entire pro
cessing workflow for this task was conducted using the Google Earth 
Engine (GEE) Python API (Gorelick et al., 2017) running on a docker 
environment on a local Linux server.

For the ROC test, a total of 64 water masks were generated for the 
test sites through a combination of the median and 95th percentile 
reducer, water index, and a global threshold (8 combinations for each of 
the 8 test sites resulted in a total of 64 water masks to be used for the 
ROC test). These water masks were used as input at each test site, 
spanning every year from 1984 to 2019 and covering the entire study 
area (coastal zone of Asia). All images underwent preprocessing steps, 
including the removal of cloud and cloud shadows, and NDWI, MNDWI, 
AWEI, and WIFI bands were computed and added to each image. Sub
sequently, the images were organized into image stacks for each year, 
and these annual stacks were reduced to new images representing the 
annual median and 95th percentile for all four water indices. OTSU’s 
threshold was then computed and applied to each reduced image to 
delineate water bodies from the land surface. Water pixels were assigned 
the integer value 1, land pixels were assigned integer value 0 and no data 
pixels were assigned the integer value 2.

For accurate analysis, the water mask must closely match the actual 
ground truth ponds. However, the reference ponds were not used as 
ground truth for the ROC test because the reference ponds dataset does 
not include other types of water bodies, such as rivers or lakes, as 
illustrated in Fig. 5. Using the EO derived reference pond dataset as 

ground truth could lead to an overestimation of the false positive rate in 
the ROC analysis. Therefore, the ground truth ponds were manually 
delineated based on very high-resolution images from Google Satellite, 
ensuring a more accurate representation of pond boundaries (Fig. 6A-
6G).

The ROC curve serves as a method for quantifying diagnostic accu
racy, with the true positive rate (TPR) and false positive rate (FPR) 
represented on the Y and X axes, respectively. As the ROC curve ap
proaches the left and top boundaries of the graph (see Fig. 6), it indicates 
an increasing proximity to perfect accuracy. In this study, individual 
parameter pairs were plotted on the ROC graph, where a point’s prox
imity to the upper-left boundary indicates a higher precision in match
ing the derived water mask to the ground truth water body layer. To 
assess this alignment, each water mask was overlaid onto the ground 
truth water body layer, and points were sampled at 30-m intervals. A 
sampled point was classified as a true positive (TP) or true negative (TN) 
if it indicated “water” or “non-water” on both layers. False positives (FP) 
were identified when a sample was labeled as “water” on the derived 
water mask but as “non-water” on the ground truth pond layer, while 
false negatives (FN) occurred when a sample was labeled as “non-water” 
on the derived water mask but should have been identified as “water”. 
The ROC curves plot the true positive rate (TPR) versus the false positive 
rate (FPR) for different parameter combinations. TPR is the proportion 
of reference water pixels that are correctly classified (or producers’ ac
curacy), and FPR is the proportion of reference non-water pixels 

Fig. 4. Processing workflow. Left part (columns 1–2-3): Automatically derived water masks were computed to determine the aquaculture status (active/non-active/ 
cloud covered) for each pond object for the complete pond aquaculture dataset for the year 2019. This dataset was obtained through the multi-sensor (Sentinel-1 and 
Sentinel-2) approach by Ottinger et al. (2022).
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wrongly classified as water. From the ROC graph, it is evident that AWEI 
and WIFI were more effective water indices than NDWI or MNDWI. 
Regarding the reducer, we see that the median performed better than the 
95th percentile. The relationship between the thresholds associated with 
“median AWEI” and “median WIFI” and the distance from their points 
on the ROC curve to the upper-left boundary indicates that the WIFI 
median has the best combination of water index and reducer. For this 
reason, we selected the WIFI median for the subsequent generation of 
annual water mask based on Landsat time series data. These masks 
served as the data basis for determining the water coverage status for 
each individual pond polygon (active pond/non-active pond).

3.2.2. Pond status determination
By overlaying the annual water masks onto the reference ponds, the 

status of individual ponds for each year was determined based on the 

predominant pixel values covering each pond in the water masks. For 
example, if a pond covers a total of 2 × 2 pixels in the water mask, with 
two pixels having value of 1, one pixel with a value of 0, and one pixel 
with a value of 2 for a given year, it was considered active for that year. 
The determination process was carried out using the zonal statistics 
(zonal_stats) function from the rasterstats package in Python.

3.2.3. Regionally aggregated statistics
Following this, the time series of pond status for each pond and year 

were summarized at province- and district-level for each country to 
facilitate statistical analyses on administrative units. The parameters 
computed in this study to illustrate the pond aquaculture development 
over time and space include: 

(1) Annual area of active ponds (A) accumulated at the country level
(2) Annual density of pond area (ρponds) accumulated at the district 

level  

ρponds =
A in District

ADistrict
×100% 

(3) Annual growth rate of pond area (R) accumulated at the district 
level (y for year, Y for the 1-year interval) 

R1Y =
Ay+1 − Ay

Ay
×100% 

Fig. 5. Map showing the locations of all test sites along the coastal zone of Asia: A in India, B in Myanmar, C in Indonesia (Java), D in Vietnam, E in Philippines, F in 
Malaysia, G in Thailand, H in China, I in Indonesia (Saluwesi)) were used to select to generate water masks and test the performance of different water indices (see 
Table 2) and reducers. Red polygons: manually digitized water bodies on base images from VHR Google Earth satellite imagery; blue polygons: reference aquaculture 
ponds for the year 2019 as described in Ottinger et al. (2022). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 3 
Tested water indices. (B) for bands of Landsat images.

Index Equation

NDWI (McFeeters, 
1996)

(Bgreen – Bnir) / (Bgreen + Bnir)

MNDWI (Xu, 2006) (Bgreen - Bswir1) / (Bgreen + Bswir1)
AWEI (Feyisa et al., 

2014)
Bblue + 2:5 × Bgreen - 1:5 × (Bnir + Bswir1) - 0:25 × Bswir2

WIFI (Fisher et al., 
2016)

1:7204 + 171 × Bgreen + 3 × Bred - 70 × Bnir - 45 ×
Bswir1–71 × Bswir2
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(4) Average annual growth rates of pond area for a five-year interval 
(1986–2019) and ten-year interval (1991–2019) accumulated at 
the district level (T for time period, head for the first year of the 
period, tail for the last year of the period) 

R 5Y ∣ 10Y =
Ay+1 − Ay

Ay
×100% 

In cases where a pond predominantly covered pixels with a value of 2 
for a specific year, it was classified as “no data” for that year. It was 
found that the years in the mid-late 1980s and early 1990s exhibit larger 
data gaps (see Fig. 7). In total the overall share of no data pixels for all 
countries and years accounted for 2.37 %.

Fig. 6. ROC curves for different parameter combinations for all test sites.

Fig. 7. Bar plot showing the proportion of ponds for which Landsat data was not available (NaN values).
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3.2.4. Accuracy assessment
The accuracy of the generated water masks was evaluated by 

analyzing the percentage of reference ponds identified as active in the 
2019 water masks. The calculation was performed as follows: 

Accuracy =
Detected active ponds of 2019

Reference ponds
×100% (1) 

4. Results

The accuracy assessment revealed that the overall accuracy of 
derived pond status of 2019 matching the reference ponds was 83.1 %. 
The overall accuracy for the top five aquaculture producing countries 
China, Indonesia, India, Vietnam, and Thailand was 76.9 %, 88.6 %, 
81.5 %, 94.4 % and 89.2 % respectively.

4.1. Overall development pattern of pond aquaculture in Asia

The annual derivation of the aquaculture area status for individual 
aquaculture objects provides valuable information about the extent of 
these areas and reveals trends over time. With our approach, multi- 
temporal dynamics of pond aquaculture at the single-pond level were 
derived for the coverage of complete Asia using multispectral satellite 
time series provided by complete Landsat archive with a 30 m spatial 
resolution. Examining the period from the 1980s to 2019, it is evident 
that Asia has experienced substantial expansion in pond aquaculture 
areas across its coastal regions. As illustrated in Fig. 8, the reference 
ponds covered over 19,000 km2 of land surfaces in 2019, while back in 
1988 the total area accounted for about 6500 km2. This rapid expansion 
observed over the three decades refers to a more than three-fold increase 
in total area. Among the examined countries, China utilizes by far the 
largest land area for pond aquaculture, followed by Indonesia, India, 
Vietnam and Thailand. From the reference ponds identified as active in 
1990, 42.4 % (3803 km2) were located in China, 14.4 % in India (1290 
km2), 8.5 % in Indonesia (757 km2), 7.5 % in Vietnam (676 km2), 7.0% 
in Thailand (630 km2) and the remaining 20.1 % distributed across the 
other 17 countries. From the reference ponds identified as active in 2019 
(see Fig. 8), 40.6 % (7856 km2) were located in China, 13 % in Indonesia 
(2661 km2), 11.2 % in India (2176 km2), 7.7 % in Vietnam (1492 km2), 
7.2 % in Thailand (1387 km2) and the remaining 19.6 % distributed 
across Philippines, Myanmar, Bangladesh, Pakistan, Taiwan, Malaysia, 
South Korea, Sri Lanka, Japan, Cambodia, Iran, North Korea, Hong 
Kong, Brunei, Macao and Timor-Leste.

In Asia, the overall aquaculture production has reached 80.3 million 
tonnes, constituting 88.3 % of the global aquaculture output (FAO, 
2023). A significant trend in freshwater aquaculture growth has been 
driven by the widespread development of value chains across countries 
in South and Southeast Asia over the past decades, for example in Andra 
Pradesh in India (Belton et al., 2017), Bangladesh, Myanmar, Thailand 
(Belton and Little, 2008) and Vietnam (Loc et al., 2010). The expansion 
in freshwater aquaculture across Asia can be attributed primarily to 
increasing demand of aquaculture products while at the same time 
declining wild inland fisheries, which were once crucial for rural live
lihoods and food security (Naylor et al., 2021).

Utilizing our EO-based pond aquaculture dynamics dataset, we have 
generated a map (see Fig. 9) that shows the spatio-temporal evolution of 
pond aquaculture at 5-year intervals. Fig. 9G, Fig. 9H and Fig. 9I high
light a distinct trend where the expansion of pond aquaculture areas is 
progressing inland wards - a pattern observed in various coastal regions. 
Since the initial development of aquaculture typically occurred near 
shorelines, the subsequent construction of newer ponds tends to take 
place in the available spaces situated behind the pre-existing ponds. This 
inland-ward driven spatial shift in aquaculture development reflects a 
dynamic development over time, contributing to the broader under
standing of the aquaculture landscape and its evolving footprint. Con
cerning the spatial expansion of aquaculture ponds, an analysis of 
regional disparities was conducted by assessing the proportion of the 
total area covered by active reference ponds within specific distance 
ranges from the coastline. This analysis relies on the final vector dataset, 
incorporating administrative unit information from GADM (GADM, 
2012), along with calculated coastline distances for each reference 
pond. From this dataset, we aggregated the annual area of active 
reference ponds within distinct coastline distance ranges. It can be 
observed that pond aquaculture exhibits a tendency to extend towards 
inland areas in Thailand, Myanmar, and Cambodia. The trend of inland- 
ward driven expansion is also evident for China, Bangladesh, and 
Pakistan, whereas this phenomenon is comparatively insignificant in 
Vietnam and India, and scarcely noticeable in Malaysia and Indonesia 
(refer to Fig. 10). However, certain considerations must be taken into 
account in this context. For example, the significant percentage of 
aquaculture ponds in Cambodia located at distances greater than 100 
km (Fig. 10, categorized in yellow) can be attributed to the high con
centration of Cambodia’s main aquaculture production around Lake 
Tonle Sap - the largest freshwater lake in Southeast Asia. Moreover, it is 
also noticeable that the pond aquaculture tended to expand towards 

Fig. 8. Stacked area plot of the summarized areas (km2) of active aquaculture ponds for each country during the investigated time period.
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inland areas in China, Thailand, Myanmar, and Cambodia, while this 
phenomenon was insignificant in Vietnam and India and barely 
perceptible in Malaysia (Fig. 10).

4.2. Spatio-temporal development patterns of pond aquaculture in 
selected Asian countries

During the methodical implementation, the data set on aquaculture 
dynamics was joined with other vector files (i.e. distance to coastline, 

administrative units, SRTM DEM derived height and slope information), 
so that each individual aquaculture object contains various meta- 
information. This comprehensive integration ensures that each indi
vidual aquaculture object contains various meta-information, enabling 
country-specific aggregations across different administrative areas. The 
aim is to identify country-specific development patterns and describe 
how these patterns differ from those in other countries. Fig. 11 provides 
insights into the temporal changes in active reference ponds from 1987 
to 2019. The left column presents the area of active reference ponds 

Fig. 9. Map with detailed zoom views on hotspot aquaculture regions showing the Landsat-derived active aquaculture status at pond polygon level from 1985 
to 2019.
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from 1987 to 2019 (blue bar charts), while the right column shows the 
percentage difference between the area or number of active reference 
ponds for each year and the area or number of all reference ponds in the 
base year 2019 (line chart). Analyzing the spatio-temporal variabilities 
of growth of active reference ponds among the Asian countries it is 
evident that the growth was not evenly distributed. In Japan, South 
Korea, and the Philippines the increases of active reference pond area 
within the 1990s, 2000s, and 2010s is very low. However, in China, 

India, Indonesia, Thailand and Vietnam, reference aquaculture pond 
area increased significantly in the 1990s, 2000s and 2010s. While both 
India and Indonesia have experienced significant growth at a steady 
rate, Indonesia has generally grown at a faster rate. In India and the 
Philippines, the growth of active reference pond area has been more 
uneven, with significant fluctuations during the 1990s (see Fig. 11).

In the following section, we present a more comprehensive analysis 
of the five leading aquaculture producers in Asia:

Fig. 10. Proportion of the reference ponds categorized by the distance from coastline for each year and country (plots in the top) and summarized for all coun
tries (bottom).
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China: The analysis of temporal changes of reference ponds for China 
reveals a relative steady increase, with the total number and total area of 
reference aquaculture ponds nearly doubling from the 1990s to 2019. 
The total area of active reference ponds increased from around 3800 

km2 in 1990 to 5000 km2 in 2000, 6300 km2 in 2010 to 7850 km2 in 
2019.

India: In 2019, around 2170 km2 of land surfaces were occupied by 
the reference ponds in India, with approximately half established in 

Fig. 11. First and third column: Yearly extent of active reference ponds by country; Second and fourth column: Percentage difference between each year’s area or 
count of the active reference ponds and the area or count of all reference ponds (100 %) by country.
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1990 (1290 km2). From late 1980s to 2000, the farmed area increased 
rapidly to 1800 km2, despite some fluctuations, reaching 68 % of the 
2019 size. Continuous growth occurred from 2000 to 2019, with ac
celeration in the last decade.

Indonesia: Approximately 2660 km2 of land surfaces were utilized 
for pond aquaculture in 2019, with less than 30 % of the reference ponds 
established in 1990 (750 km2). The cultivated area underwent rapid 
expansion from the early 1990s to mid-2000s. In terms of count, 
approximately 50 % of the reference ponds were already operational in 
1988. Notably, from 2002 to 2004 and in 2011, the cultivated area 
increased more rapidly than the count of ponds, suggesting that more 
large-area ponds were likely constructed during those years.

Vietnam: An estimated 1510 km2 of land surfaces were covered by 
the reference ponds in 2019, with approximately 65 % of this area 
existing in 1988. Pond area remained relatively stable in the early 
1990s, followed by a thriving phase of significant expansion until 1999, 
reaching 75 % of the size observed in 2019. In the 2000s, the pond area 
expanded by approximately 20 % of the 2019 size. Subsequently, 
continuous growth without significant fluctuations occurred from the 
2000s to 2019.

Thailand: The reference ponds encompassed approximately 1400 
km2 of land surfaces in 2019, with around 40 % being active in 1988. 
Before 2000, the cultivated area exhibited frequent abrupt fluctuations 
but consistently experienced substantial increases at high rates. Both the 

area and the count of reference ponds expanded, averaging 20 % of the 
2019 size in a 5-year interval, reaching 80 % by the end of the 1990s. 
Post-2000, the expansion tended to slow down, taking an average of ten 
years to increase by 10 %, and the fluctuations appeared to become more 
subdued.

Among the observed regions, the coastal districts along the eastern 
coast of the Malay Peninsula in Thailand, the coastal area in Thailand 
close to Cambodia, and the Irrawaddy Delta in Myanmar appeared to be 
the arising hot spots of pond aquaculture production.

4.3. Aggregated pond aquaculture area growth rates

To explore spatio-temporal changes of pond area in administrative 
units, additional analyses was conducted using the density of the active 
reference pond area to evaluate land use intensity in pond aquaculture 
production. Concurrently, the growth rate of the area was employed as 
an indicator of the expansion pace in pond aquaculture. In our analysis 
of the 5-year average annual growth rates of the area of active reference 
ponds at the country level (Fig. 12), we find that growth rates tend to 
cluster within the range of 0 % to 10 %. Examining the annual growth 
rates at the district level (Fig. 13), we observe that growth rates gener
ally remain between 0 % and 10 %, indicating a trend towards gradual 
expansion of pond farming area across more districts, as opposed to 
extensive expansions or contractions. This analysis demonstrates a 

Fig. 12. Boxplots showing the 5-year average annual growth rates of the extent of active reference ponds at district level.
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diminishing of regional differences between districts in terms of growth 
rates with respect to the spatial expansion of aquaculture ponds. Fig. 12
presents the 5-year average annual growth rates at the country level, 
while Fig. 14 displays the annual growth rates at the district level. The 
densities (ρponds) and 10-year average annual growth rates (R10Y) of the 

active reference pond area are presented at the district level in Fig. 14. 
To categorize ρponds, we employed threshold values of 50 m2/ha and 200 
m2/ha. Similarly, R10Y was classified using threshold values of 0 % and 
20 %. The densities of ponds in 1989, 2000, and 2010 were taken as the 
baseline situation for each observed 10-year interval. We encapsulated 

Fig. 13. Annual average annual growth rates of the extent of active coastal reference ponds at district level for each Asian country. Dark blue dots stand for the mean, 
light blue dots stand for outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the spatio-temporal development of reference ponds in individual dis
tricts into nine distinct variables depending on pond area growth rate 
and pond area density (as illustrated in Fig. 14). It is important to note 
that, given the absence of a general guideline for ranking land use in
tensity or the growth of aquaculture production, the criteria utilized in 
this study are intuitive and relative. These criteria primarily were 
adopted for illustrating regional differences in pond aquaculture 
development between districts.

In South Asia (Fig. 14A), the districts exhibiting the highest pond 
area density and notable growth rates in all three 10-year intervals are 
located in the Andra Pradesh state, situated in the southern coastal re
gion at the Indian Ocean of India. Extensive aquaculture expansion for 
this region has been previously documented by Prasad et al. (2019). In 
addition, notable growth rates during the 1990s and 2000s are observ
able in the hinterland of the mangrove belt of the Sundarbans in 
Northeast India and Bangladesh. In Maritime Southeast Asia, pond 
aquaculture is primarily concentrated along the north coast of northwest 
and northeast Java, southeast of Sumatra, and southwest and southeast 
of Sulawesi (Fig. 14B). In Mainland Southeast Asia, pond aquaculture 
production is prominently concentrated in the fertile and flat regions of 
the major river deltas, including the Mekong River Delta and the Red 
River Delta in Vietnam, the Chao Phraya Delta region around the City of 
Bangkok, Thailand, and the Irrawaddy River Delta in Myanmar (see 
Fig. 14C).

5. Discussion

To highlight the novelty of our study, we outline the key findings that 
distinguish our work from previous research: 

- Pan-Asian pond-level dataset: This study presents the first dataset that 
tracks pond aquaculture development at the individual, object-based 
pond level across all of coastal Asia from the 1980s to 2019, offering 
insights into the evolution of aquaculture on a continental scale.

- Cross-country comparisons: By employing a consistent EO-based 
methodology, this research enables reliable comparisons of aqua
culture development across 22 Asian countries, overcoming limita
tions over previous studies that focused on regional or national 
scales.

- Advanced use of Earth Observation time series data: Combining high- 
resolution Sentinel-1, Sentinel-2, and Landsat time series data, this 
study implements a robust and scalable method to monitor pond 
dynamics from a detailed 2019 reference dataset backward through 
decades.

- Insights into spatio-temporal dynamics: Detailed analysis of the pond 
status dataset reveal trends, growth patterns, and expansion hot
spots, providing critical insights into the spatial and temporal 
development of aquaculture.

- Scalable and transferable methodology: The approach developed is 
scalable and transferable, making it suitable for monitoring aqua
culture in regions beyond Asia.

5.1. Rapid expansion of aquaculture and its implications

Examining the period from the 1980s to 2019, it is evident that Asia 
has experienced substantial expansion in pond aquaculture areas across 
its coastal regions. The expansion patterns illustrate the dynamic evo
lution of pond aquaculture industry along the coasts of Asia, whose rapid 
growth can be attributed mainly to increasing demand for fish products 
(Bostock et al., 2010; Ottinger et al., 2016) and economic incentives. In 
1988, the total area covered by reference ponds accounted for about 
6500 km2, while by 2019, the reference ponds covered over 19,000 km2 

of land surfaces. This represents a more than three-fold increase in the 
total area dedicated to pond aquaculture over the observed three de
cades. Among the examined countries, China utilizes by far the largest 

land area for pond aquaculture, followed by Indonesia, India, Vietnam 
and Thailand. In 1990, from the reference ponds identified as active, 
42.4 % (3803 km2) were located in China, 14.4 % in India (1290 km2), 
8.5 % in Indonesia (757 km2), 7.5 % in Vietnam (676 km2), 7.0 % in 
Thailand (630 km2), and the remaining 20.1 % distributed across the 
other 17 countries. From the reference ponds identified as active in 
2019, 40.6 % (7856 km2) were located in China, 13 % in Indonesia 
(2661 km2), 11.2 % in India (2176 km2), 7.7 % in Vietnam (1492 km2), 
7.2 % in Thailand (1387 km2), and the remaining 19.6 % distributed 
across Philippines, Myanmar, Bangladesh, Pakistan, Taiwan, Malaysia, 
South Korea, Sri Lanka, Japan, Cambodia, Iran, North Korea, Hong 
Kong, Brunei, Macao, and Timor-Leste.

Over the past few decades, China has emerged as a production hub in 
the aquaculture sector, accounting for more than 40 % of the total share 
of active pond area. Indonesia and India follow with 13 % and 11.2 % 
shares of the total active aquaculture ponds detected in our analyses. It is 
noteworthy that India’s share of active ponds was higher in 1990 (14.4 
%) than Indonesia’s (8.5 %), but Indonesia has since surpassed India in 
active reference pond area. All three top producer countries demonstrate 
high growth rates of aquaculture pond area in their coastal regions, with 
an overall growth rate from 1990 to 2019 of 69.8 % for China, 40.7 % for 
India, and 71.5 % for Indonesia. In contrast, Malaysia demonstrated 
slight and steady growth in pond aquaculture throughout the entire 
observation period. According to Duan et al. (2021), China’s aquacul
ture industry has undergone distinct phases, including rapid expansion 
before 2011, a period of stability spanning 2011 to 2017, and a decline 
in post-2017. According to analysis by Ying and Ying (2023), China’s 
contribution to world’s aquaculture production is forecasted to decrease 
marginally by the year 2030 which is attributed to the sustained 
implementation of the 13th Five-Year Plan’s initiatives aimed at 
reducing fishing and aquaculture activities.

The rapid expansion of pond aquaculture in Asia since the 1980s is 
attributed to three main causes: (i) increasing demand for fish products 
(Belton and Thilsted, 2014; Béné et al., 2016; Béné et al., 2015; Boyd 
et al., 2022; Naylor, 2016), (ii) economic incentives (Anderson et al., 
2019; Kumar et al., 2018; Naylor et al., 2023), and (iii) governmental 
policies promoting the industry. This growth has led to large-scale land- 
use changes, resulting in the conversion of natural habitats, such as 
mangroves, to aquaculture ponds (Heimann and Delzeit, 2024; Ottinger 
et al., 2016). This conversion has severe consequences, including loss of 
biodiversity and coastal protection, as well as increased greenhouse gas 
emissions (Ahmed and Glaser, 2016; Ballut-Dajud et al., 2022). The 
expansion has also raised concerns about environmental sustainability, 
including water pollution (Ahmed and Thompson, 2019), habitat 
degradation (Sampantamit et al., 2020), and disease spread (Maulu 
et al., 2021). Furthermore, it has led to increased competition for land 
and freshwater resources uses (Henriksson et al., 2021; Pueppke et al., 
2020), potentially exacerbating conflicts over natural resources. The 
implications of these changes are far-reaching, and understanding the 
causes and consequences of aquaculture expansion is crucial for 
informing policy and promoting sustainable development in the sector. 
Studies highlight the need to expand aquaculture to meet growing de
mand, while cautioning about the social, economic, and environmental 
costs of this growth (Boyd et al., 2022; Garlock et al., 2024). To mitigate 
the negative effects of aquaculture, new policies and regulations may be 
required. A balanced approach that considers the economic, social, and 
environmental aspects of aquaculture development is necessary to 
ensure the long-term sustainability of the industry.

5.2. Comparison of pond aquaculture area and official aquaculture 
production statistics

Our study provides a novel methodological approach, offering the 
first pan-Asian, pond-level analysis of aquaculture development using 
Earth Observation data. Additionally, it enables consistent comparisons 
across countries, enabling comprehensive regional assessments and 
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policy implications. To further validate our results, we compared our 
results on pond aquaculture area with official reported statistical data 
provided by the FAO (FAO, 2023) on aquaculture production, and 

created a graph (see Fig. 15) illustrating the annual aquaculture pro
duction in tonnes alongside the area of active reference ponds for each 
country from the late 1980s to 2019. This comparison is intended as an 

Fig. 14. Bivariate map of density and 10-year average annual growth of active reference ponds in detailed submaps for (A) South Asia covering India, Sri Lanka, and 
Bangladesh, (B) Southeast Asia Maritime covering Indonesia and Malaysia (C) Southeast Asia Mainland covering Myanmar, Thailand, Cambodia and Vietnam and (D) 
East Asia covering China, Taiwan, South and North Korea and Japan. For each submap the growth rates are shown for the 1990s (left), the 2000s (center) and the 
2010s (right).
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illustrative visualization rather than verification, as historical pond area 
data is likely underestimated due to study design limitations. Since 
FAO’s aquaculture databases do not provide system-specific production, 
it is not possible to isolate pond aquaculture production from other 
forms of aquaculture at the national level. These production statistics 
cover all land-based aquaculture systems, not just ponds (Ottinger et al., 
2016), but ponds dominate coastal aquaculture in Asia.

We observed that the expansion of pond areas generally relates with 
increasing production in countries like China, India, Vietnam, and 
Myanmar. However, the relationship between the expansion of refer
ence ponds and production is not always aligned, suggesting other fac
tors influence production, such as farming practices, technology 
adoption, market dynamics, delayed reporting, or external events like 
environmental conditions, animal diseases, pandemic triggered eco
nomic crisis, or policy interventions. For example, Thailand’s notable 
decline in production since 2010, specifically shrimp farming, is not 
reflected in the time series of reference pond areas, likely due to infec
tious disease outbreaks (Sampantamit et al. (2020)). Similarly, the 
Philippines saw a 10 % decline in shrimp production over the last 
decade, due to bacterial diseases and viral infections (e.g. white spot 
syndrome) (Mialhe et al., 2016). Conversely, Indonesia’s production 
growth since 2005 onwards does not clearly reflect the growth rates of 
active ponds primarily between 1990 and 2005, suggesting that the later 
increase in production may be attributed to a delayed intensification of 
aquaculture practices. Overall, aquaculture yields are influenced by 
various factors, including climate and meteorological conditions, water 
quality, and disease outbreaks. For instance, Cambodia’s rapid pro
duction growth from 26,000 t in 2005 to more than 305,000 t in 2019 
does not correspond with reference pond area growth. These discrep
ancies highlight the complexity of aquaculture dynamics beyond just 
pond area expansion.

5.3. Data availaibility, data quality and accuracy

The accuracy and reliability of the data sources and methodologies 
used to generate the time series for both reference pond areas and 
aquaculture yields are crucial. Discrepancies between the trends 
observed in the reference pond data and the actual aquaculture pro
duction may require a more detailed analysis of influencing factors and 
methods. Our study found no evidence that larger pond areas correlate 
with higher accuracies in the water status determination. Instead, ac
curacy depends on factors such as quality of the reference data, satellite 
data resolution and coverage, and the data processing methods used. 
The quality of the pond reference data is critical for the accurate water 
status determination. Higher spatial and temporal reference data can 
improve the accuracy, provide more accurate water masks, and enhance 
the overall performance of the water status determination. However, 
continuous and free accessible space-borne SAR missions with higher 
resolution do not yet exist. Such data would enhance capabilities for 
object detection of small surface features like aquaculture ponds. Sat
ellite data coverage is also important - areas with poor data coverage 
may result in less accurate water status determination. In our study, 
most land areas had more than 250 images for the investigated study 
period, which were sufficient for generating annual water masks, 
although areas with poor data coverage showed lower accuracy.

Fig. 16 illustrates that the accuracy of water status determination 
varies with pond size, showing better performance for larger ponds. The 
analysis of false negative (FN) and true positive (TP) classified ponds 
highlights this difference (Fig. 16), as FN ponds tend to be smaller, with 
an average size of 340 square meter, while TP ponds are larger, aver
aging 1040 square meter. Given that a single Landsat pixel (30 m x 30 m) 
covers 900 square meters, which is larger than most reference ponds, 
this suggests that ponds larger than one Landsat pixel are more likely to 
be classified accurately. Smaller ponds, however, show more variable 
classification results. The box plots further illustrate the size distribution 
of ponds across different countries, emphasizing this relationship 

between pond size and classification accuracy. A summary of pond 
metrics across the countries in the study region is provided in Table 4, 
detailing the number of reference ponds, share of active ponds, average 
pond size, mean pond compactness, and mean pond convex hull area. 
These metrics provide critical context for understanding the variability 
in pond characteristics and their influence on classification accuracy.

Landscape-specific conditions can also pose challenges in accurately 
capturing pond data using EO methods. For example, in Bangladesh, 
discrepancies between official production statistics and active pond area 
are evident, particularly given its ranking as the 5th largest global 
producer according to FAO statistics, compared to 10th in our analysis. 
The prevalence of small-scale fish farms (Rahman et al., 2022) can in
fluence the detection with EO data of 10 m spatial resolution. Addi
tionally, the high proportion of mangroves complicates the radar-based 
segmentation of individual ponds due to increased scattering and double 
bounce effects (Ottinger and Kuenzer, 2020). Furthermore, significant 
data gaps exist in Landsat-4 and Landsat-5 imagery during the late 1980s 
and early 1990s limit the quality of water masks from that period, 
compared to the more robust data volume available with the Landsat-7, 
Landsat-8 and Landsat-9 satellites.

5.4. Limitations of the study approach

The monitoring approach developed in this study, focusing on 
aquaculture development based on reference ponds, has certain limita
tions. One key limitation is that pond objects were not separately 
detected and extracted for all observed years. This decision stems from 
the methodology used to prepare the reference dataset (Ottinger et al. 
(2022)), which relies on high spatial and temporal satellite time series to 
extract pond shapes based on backscatter signals, enhanced with optical 
features to separate aquaculture from non-aquaculture objects. Sentinel- 
1 SAR data, providing global 10 m resolution and free accessibility, was 
used for pond mapping due to its ability to provide dense time series for 
the entire coastal zone of Asia. This enabled the detection of small pond 
objects by identifying smooth surfaces and separating stable, water- 
covered aquaculture ponds from other water bodies. However, the 
lack of continuous, high-resolution, weather-independent satellite data 
before 2016 (corresponds to the start of Sentinel-1 twin operation mode) 
limits the ability to detect pond boundary information for earlier years 
and accurately track pond boundary changes over time at the single- 
pond level. While commercial very high resolution satellite data could 
be applied to smaller study sites, using such data for the vast coastal 
zone of Asia with an area of over 6 million square kilometers analyzed in 
this study is impractical due to limited swath width and mapping 
capabilities.

The performance of this method also dependents on the quality of the 
reference dataset. Ponds not included in the reference dataset could not 
be observed in historical Landsat time series. Additionally, identifying 
pond status in earlier years (prior to the 2019) may lead to false posi
tives, as reference ponds might be misclassified as active ponds if 
covered by non-aquaculture water bodies. Furthermore, the method 
cannot account for ponds abandoned before the reference year (2019), 
which restricts the ability to observe historical ponds. As a result, the 
spatiotemporal patterns presented in this study should be interpreted 
with caution due to potential biases.

5.5. The role of remote sensing in supporting sustainable planning and 
management

This paper advances the role of remote sensing in aquaculture 
planning and management by demonstrating its application at a conti
nental scale to address challenges in sustainable aquaculture. While 
planning and management often occur at localized levels, our work 
provides a macro-level perspective essential for strategic planning and 
decision-making for regional and national policymakers, international 
organizations, environmental agencies, among others. By providing a 
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broad overview of aquaculture dynamics, our study significantly ex
pands the application of remote sensing in sustainable aquaculture by 
offering unique contributions. For example, the large-scale pond status 
dataset enables the identification of land-use conflicts and the assess
ment of aquaculture-related impacts on conservation areas, such as 

mangrove loss. It also facilitates monitoring of climate change impacts, 
including water temperature changes, trends and their effects on pro
duction and disease outbreaks, thereby contributing to more sustainable 
aquaculture practices. The reference pond objects with their spatio- 
temporal water status information derived from this study have the 

Fig. 15. First and third column: Yearly extent of active reference ponds by country; Second and fourth column: Blue line - Percentage difference between each year’s 
active pond area and the area of all reference ponds in 2019 (100 %) by country; Orange line - Percentage difference between each year’s production and the 
production in 2019 (100 %) by country. FAO-reported aquaculture production: aquaculture products excluding aquatic photosynthetic organism. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Analysis of 2019 reference pond status accuracy. Comparison of accurately identified reference ponds (right) vs. unidentified reference ponds which were 
not identified for the year 2019 (left) based on the annual 2019 Landsat water masks. Box plots show the distribution of pond sizes by country.

Table 4 
Summary of pond metrics across countries of the study region. Pond metrics include: number of reference ponds, share of active ponds, average pond size, mean pond 
compactness, mean pond convex hull area.

Country Number of reference 
ponds in 2019

Active reference ponds 
in 20191

Share of active ponds in 
2019 (%)2

Average pond size 
(sqm)3

Mean compact- 
ness4

Mean convex hull area to 
pond area ratio5

Bangladesh 167,346 121,205 72.4 868 0.58 0.75
Brunei Darussalam 829 531 64.1 6169 0.56 0.86
Cambodia 24,007 19,930 83.0 1175 0.56 0.83
China1 1,432,575 1,102,166 76.9 1626 0.53 0.66
Dem. People’s Rep. 

Korea
9037 6823 75.5 784 0.58 0.54

Hong Kong SAR, 
China

1024 927 90.5 2617 0.51 0.73

India 345,116 281,293 81.5 1666 0.54 0.78
Indonesia 383,805 339,957 88.6 1474 0.55 0.86
Iran 19,209 18,330 95.4 1252 0.58 0.66
Japan 48,594 29,528 60.7 562 0.59 0.59
Macao SAR, China 30 28 93.3 16,677 0.54 0.77
Malaysia 30,543 23,942 78.4 1393 0.55 0.86
Myanmar 90,476 78,185 86.4 1975 0.55 0.79
Pakistan 29,326 27,813 94.8 1683 0.55 0.72
Philippines 86,991 82,413 94.7 3199 0.51 0.81
Republic of Korea 13,434 8804 65.5 1937 0.54 0.58
Sri Lanka 11,089 7960 71.8 1787 0.55 0.88
Taiwan, Province of 

China
47,085 42,210 89.6 1419 0.54 0.73

Thailand 260,713 232,587 89.2 2013 0.52 0.82
Timor-Leste 224 205 91.5 427 0.61 0.87
Vietnam 662,390 625,358 94.4 867 0.57 0.83
Asia total (22 

countries) 3,663,843 3,050,195 82.7 1426 0.55 0.76

1 Reference Ponds with active water status in 2019 (determined using Landsat water masks).
2 Share of classified active ponds compared to the total number of reference ponds in 2019 (in percent).
3 Average pond size in square meters (sqm) calculated by the 90th percentile mean.
4 Mean pond compactness per country for reference ponds in 2019. For details see: Ottinger et al. (2022).
5 Mean convex hull area to pond area ratio per country for reference ponds in 2019. For details see: Ottinger et al. (2022).

M. Ottinger et al.                                                                                                                                                                                                                                Aquaculture 610 (2026) 742940 

20 



potential to be combined with other environmental datasets – such as 
information on land use, water quality and temperature, pollutants, and 
conservation areas – to create a comprehensive and holistic view of 
aquaculture production. Key applications include: 

- Mapping land-use changes to and from aquaculture, including 
abandoned pond detection and classification.

- Integrating multi- and hyperspectral data, alongside climate simu
lations, to monitor pond-level water quality and detect pollution.

- Identifying pollution hotspots from intensive aquaculture regions to 
mitigate environmental impacts.

- Quantifying mangrove loss due to pond expansion as well as 
considering climate change impacts on mangroves and aquaculture.

While EO data offers large-scale insights, detailed fieldwork remains 
essential for thorough site-specific analysis, particularly for accurately 
identifying pollution hotspots and conducting precise water and sedi
ment assessments (Braun et al., 2019). Enhancements in continuous 
high-resolution satellite data availability, coupled with advancements in 
processing and object and feature detection capabilities, will enhance 
the analysis of environmental impacts. This will support the monitoring 
of environmental compliance of the aquaculture food supply chains and 
significantly improve the sustainability and transparency of aquaculture 
practices.

6. Conclusion

This paper presents an EO-based approach for high-resolution 
monitoring of land-based aquaculture in coastal Asia, focusing on indi
vidual ponds. It offers a comprehensive spatio-temporal analysis pond 
aquaculture development across the region. By processing multi-decadal 
Landsat archive data, a framework was developed for annual pond status 
assessment from 2019 (pond reference dataset) back to the 1980s. The 
reference dataset for 2019 was created using time series data from the 
European EO missions Sentinel-1 and Sentinel-2. The object-based, 
pond-level analysis of annual aquaculture status, derived from satellite 
time series, provides novel, detailed insights into the spatio-temporal 
development of pond aquaculture across the continent, revealing 
trends over time.

The study found significant expansion in pond aquaculture over the 
past three decades. From 1980 to 2019, the active pond area more than 
doubled, reaching 19,000 km2 in 2019. This growth can be attributed to 
increasing demand for fish products and economic incentives. China, the 
largest pond aquaculture producer, maintained its dominant position, 
accounting for over 40 % of the total active pond area in 2019, followed 
by Indonesia, India, Vietnam, and Thailand. However, the expansion of 
pond aquaculture has been accompanied by challenges, including dis
ease outbreaks and environmental pollution, leading to production de
clines in recent years. Additionally, the rapid growth has resulted in 
disturbances to natural coastal ecosystems and protective coastal vege
tation barriers, including mangroves and wetlands. China’s pond 
aquaculture industry has experienced significant growth, while 
Indonesia surpassed India in active pond area over the last three de
cades. The analysis of mean annual growth rates for 5- and 10-year in
tervals in this study highlights regional differences in development 
patterns across the studied countries.

Further research is needed to assess the long-term sustainability of 
the pond aquaculture industry in Asia. The performance of the method 
applied depends on the quality of the reference dataset, which can result 
in false positives if reference ponds are later replaced by non- 
aquaculture water-bodies. Abandoned ponds that existed in earlier 
years but were abandoned prior to the reference pond sampling cannot 
be observed. Furthermore, long-term time series derived from Earth 
Observation with higher temporal (<14d) and higher spatial (<30 m) 
resolution than Landsat could enhance our understanding of the 
aquaculture-ecosystem nexus.

This study provides a pond-level analysis for the entire pan-Asian 
coast, a level of detail that has not been available before. By con
ducting geostatistical analysis of pond development and comparing 
these findings with FAO production statistics, our study offers a 
comprehensive, large-scale assessment of pond dynamics across 22 
countries. This kind of analysis has not been conducted previously at this 
scale. The ability to process large volumes of EO data allows for reliable, 
consistent analysis, with scalability for application to other regions or 
scales. In conclusion, continuous EO-based monitoring of aquaculture 
areas enhances our understanding of pond aquaculture dynamics, sup
porting informed decision-making regarding sustainability and resource 
management. The comprehensive, continental-wide pond dataset 
developed in this study provides an essential foundation for future 
research and decision-making, helping to ensure economic and envi
ronmental sustainability of pond aquaculture.
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