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ABSTRACT
Land degradation is a significant environmental issue, exacerbated 
by climate change and land use pressures. Mountain grassland eco
systems, especially in arid regions, are particularly vulnerable to 
degradation, leading to reduced vegetation density, biomass and 
biodiversity, and contributing to soil erosion. While traditional mon
itoring methods are costly and time-consuming, remote sensing 
using multispectral data offers a more efficient way to assess large 
areas continuously. A key challenge in monitoring land degradation, 
however, is distinguishing between different vegetation cover frac
tions (fCover) of photoactive vegetation (PV), non-photoactive vege
tation (NPV) and bare soil (BS). Hyperspectral data provide better 
spectral resolution to address this challenge by identifying diagnostic 
absorption features, but their availability is limited. This study inves
tigates the potential of combining multispectral Landsat and hyper
spectral DLR Earth Sensing Imaging Spectrometer (DESIS) data for 
mapping land degradation risk in Azerbaijan at 30 m spatial resolu
tion. PV was derived for 18 DESIS scenes with a mean average error of 
7.1%. Regarding the multi-decadal NDVI time series, 3.8% and 4.9% of 
the herbaceous vegetated area showed significant negative trends in 
June and August, respectively. By scaling the BS fCover, negative 
NDVI trend coefficients and slope steepness maps to a risk score, 
a degradation risk map for the central-western part of Azerbaijan was 
generated. Areas prone to degradation were mapped mainly on 
south-exposed slopes. This approach has high potential for identify
ing areas recently prone to degradation, facilitating early interven
tions to prevent the loss of valuable topsoil.
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1. Introduction

Degradation is one of the most pressing global environmental issues and is projected to 
worsen due to climate change and land use pressure (Karlen et al. 2003; Olsson et al. 2019).
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Mountainous grassland ecosystems exposed to excessive grazing pressure, especially in arid 
regions, are particularly prone to degradation (Conant and Paustian 2002; Lewińska et al.  
2020; Milchunas and Lauenroth 1993; Zhao et al. 2024). Overgrazing caused by unadjusted 
stocking rates is mainly observed in grazed mountain areas in developing countries 
(Neudert et al. 2012; Wiesmair, Otte, and Waldhardt 2017). Land degradation is a process 
in which the first vegetation is degraded to a lower ecological level, reflected in the 
reduction of vegetation density, plant biomass and plant species (Liu et al. 2015). As 
a consequence, soil degradation follows, which leads to salinization and acidification of 
soils, as well as to an expansion of exposed soil areas, introducing the risk of soil erosion 
(Bengtsson et al. 2019; Zhongming et al. 2010). Studies (Conant and Paustian 2002; Conant 
et al. 2017) have shown that rehabilitation of grasslands can potentially lead to increased 
soil organic matter and carbon sequestration. The proper monitoring of grasslands and the 
identification, protection and restoration of degraded pastures are hence relevant not only 
for agriculture productivity and erosion risk but also for ecosystem services such as the 
functioning of soils as carbon sinks (Conant and Paustian 2002; Neudert et al. 2012).

Monitoring land degradation is usually at the stage of ground investigations, which are 
costly, time-consuming, and often subjective (White et al. 2000). This restricts the regular 
assessment of large areas, especially in remote and inaccessible regions (Pi et al. 2021). 
Conversely, spatially exhaustive and continuous monitoring of vegetation coverage and 
ecosystem conditions is possible using remote sensing observations (Akiyama and 
Kawamura 2007; Ali et al. 2016; Dubovyk 2017; M. Reeves et al. 2015; Symeonakis 2022).

Land degradation is mainly assessed in remote sensing by quantifying changes in 
vegetation indices (VIs) (see e.g. Bai et al. 2008; Le, Tamene, and Vlek 2012; Reeves and 
Baggett 2014; Wessels et al. 2004) or vegetation parameters such as primary productivity 
or biomass (see e.g. Fava et al. 2012; Hernández-Clemente et al. 2023; Prince, Becker- 
Reshef, and Rishmawi 2009; Vlek, Le, and Tamene 2010), which are related to the increase 
or decrease of vegetation health and/or coverage. Thereby, the multispectral Landsat 
series of satellites is the most commonly used for land degradation studies based on 
remote sensing data (D’Acunto, Marinello, and Pezzuolo 2024). Several land degradation 
indices have been developed that combine different vegetation and environmental 
indicators derived from remote sensing data (e.g Guo et al. 2023; Kang, Zhang, and 
Biswas 2021; Yue et al. 2016), each with specific strengths and limitations in assessing 
degradation status. Information from long time series is usually needed to detect changes 
and trends, and frequent observations are needed to distinguish degradation from 
phenological variability (Dubovyk 2017; Lewińska et al. 2020). For such long-term time 
series, only multispectral data are currently available. However, multispectral data have 
limitations in the monitoring of land degradation, as soil reflectance affects VIs, and only 
green, i.e. photoactive vegetation (PV) can be reliably detected (Abdolalizadeh et al. 2020; 
Asner 1998; Lyu et al. 2020; Wiesmair et al. 2016). Non-photoactive vegetation (NPV), 
however, is usually confounded with bare soil (BS) because both land covers have similar 
and featureless spectral reflectance curves in visible (VIS) and near-infrared (NIR) wave
length regions (Nagler, Daughtry, and Goward 2000, Li and Guo 2016). In the context of 
monitoring land degradation processes, this is problematic, as NPV is, on the one hand, an 
important component of vegetation productivity in certain grasslands (Asner 1998) and, 
on the other hand, can significantly reduce the potential for soil erosion compared to BS 
areas (Arsenault and Bonn 2005; Gyssels et al. 2005; Malec et al. 2015). Especially in regions 
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where vegetation is sparse and various natural gradients exist, information on the frac
tions of ground cover (fCover) of PV, NPV and BS is hence important to assess land 
degradation (Zhang et al. 2013).

Guerschman et al. (2015) provide an overview on studies mapping NPV, PV and BS 
fCover using multispectral data. A current state-of-the-art as well as an evaluation of the 
derivation of long-term trends in fCover based on Landsat data through a Multiple 
Endmember Spectral Mixture Analysis (MESMA) approach is given in Lewińska et al. 
(2025). Hyperspectral data, however, are particularly valuable in this regard as they have 
the spectral resolution required to distinguish soil, vital and dry/dormant vegetation 
(Cooper et al. 2020; Gamon, Peñuelas, and Field 1992; Li and Guo 2016; Obermeier et al.  
2019). Since the 1990’s, hyperspectral data have been the focus of research regarding this 
issue (see references in Bachmann 2007). The fundamental developments were made 
using airborne hyperspectral data covering the entire spectral range from VIS to short
wave infrared (SWIR) wavelength regions and included the development of various 
MESMA approaches such as in Roberts et al. (1998), Asner and Lobell (2000), García‐ 
Haro, Sommer, and Kemper (2005) or Bachmann (2007). The basis of these approaches is 
the concept that the spectral variation of surfaces is due to the contribution of various 
mixtures of materials which have their own spectral reflectance.

Still, the availability of hyperspectral data is a limitation for consistent, continuous and 
area-wide mapping of fCover. Ongoing research is mostly limited to experimental meth
ods based on simulated hyperspectral data (Liu et al. 2014) and on hyperspectral data 
collected using unmanned aerial vehicles (UAVs) over small regions. For example, Pi et al. 
(2021) used airborne hyperspectral UAV data to classify species groups for indicating 
grassland degradation. Only a few studies exist employing larger-scale hyperspectral data 
from sensors mounted on airplanes or satellites. Lyu et al. (2020) introduced an approach 
for grassland degradation monitoring, which is based on the spectral unmixing of 
Hyperion data for species composition monitoring in an area of Inner Mongolia, China. 
Wang et al. (2020) also mapped species by simulating hyperspectral reflectance based on 
multispectral HJ-1A images. Zhang et al. (2013) used hyperspectral HJ-1 data to map 
fCover over a study area in China using the dimidiate pixel decomposition model. In order 
to use vegetation cover information to further assess soil erosion, Malec et al. (2015) 
employed simulated EnMAP data to derive fCover estimates with the MESMA approach. 
The fractions for PV, NPV and BS were then integrated into a formula to calculate the 
C-factor (cover management parameter) for the Revised Universal Soil Loss Equation 
(RUSLE). Also, Bracken et al. (2019) tried to detect soil erosion directly from simulated 
EnMAP data in a Mediterranean area. They calculated fCover through the MESMA 
approach and used the fractions to mask out vegetated areas in the raw data.

This overview on studies assessing land degradation using hyperspectral data 
shows that while the techniques are already quite developed, the research com
munity is mainly limited to small scale and mono-temporal analysis. This also 
includes the scarce use of data from the hyperspectral DLR Earth Sensing 
Imaging Spectrometer (DESIS) sensor for vegetation monitoring. So far, only 
a handful of studies investigate the capability of DESIS data for mapping of 
biodiversity or species (Gholizadeh et al. 2022; Kamaraj et al. 2024; Mafanya et al.  
2022; Pacheco-Labrador et al. 2021, 2022), vegetation traits or productivity 
(Campbell et al. 2021; Huemmrich et al. 2021) or crop-type classification (Aneece 
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and Thenkabail 2021; Aneece et al. 2022). Area-covering mapping is rarely demon
strated using any hyperspectral sensor, and the temporal variability of vegetation 
in semi-arid areas has also not been considered.

As one aspect of this study, we therefore aim to investigate the potential of 
hyperspectral data for large-scale environmental monitoring in Azerbaijan. In the 
Caucasus region, livestock farming is an important part of the agricultural sector, 
and subsistence farming is commonplace; hence, threats to pastures can signifi
cantly impact livelihoods (Neudert et al. 2012). As in other post-Soviet transition 
countries (Akhmadov, Breckle, and Breckle 2006; Borchardt et al. 2011), overgrazing 
has become relevant in the Caucasus in recent decades. Furthermore, grazing 
impact increased in many places due to the replacement of sheep husbandry 
with localized cattle farming (Wiesmair et al. 2016). Accordingly, livestock numbers 
in Azerbaijan are growing (The State Statistical Committee of the Republic of 
Azerbaijan 2023a), and Azeri grassland areas are under heavy grazing pressure, 
leading to vegetation cover loss and erosion (de Leeuw et al. 2019; Neudert et al.  
2012). However, despite the relevance of grassland ecosystem functioning in this 
region and the need for timely, spatially exhaustive and cost-effective monitoring, 
remote sensing-based research on grassland conditions in the Caucasus region is 
still limited (see e.g. Buchner et al. 2020; de Leeuw et al. 2019; Lewińska et al.  
2020; Magiera et al. 2013; Wiesmair et al. 2016).

The aim of this study is therefore to fill this gap and to assess the potential of 
combining multispectral time series with mono-temporal hyperspectral data for large- 
scale grassland monitoring. Based on the combined use of fCover estimates derived from 
18 DESIS scenes and a country-wide multidecadal time-series analysis of Landsat-based 
Normalized Difference Vegetation Index (NDVI), we aim to answer the following questions 
in this study:

● Can DESIS data be used for the retrieval of cover fractions of PV, NPV and BS using 
linear spectral unmixing?

● Does the combined use of long-term NDVI trends and mono-temporal fCover 
estimates result in reasonable patterns of current land degradation risk?

The underlying hypothesis of this study is that NDVI and fCover represent different 
vegetation traits, and that combining long-term NDVI trends with recent fCover 
estimates can improve the identification of vegetated areas prone to degradation. 
In particular, NPV and BS information are critical for mapping degradation, as BS is at 
higher erosion risk than NPV-covered soils, yet multispectral data generally struggle 
to distinguish between these two cover fractions. Although the DESIS data used in 
this study – from which NPV and BS information can be derived – provide only 
mono-temporal information, the NDVI trend spans several decades. By using BS 
fractions, negative NDVI trends and slope steepness as factors in a risk score, we 
aim to enhance multi-decadal assessment of vegetation change by incorporating 
canopy structure information from hyperspectral DESIS data. To our knowledge, no 
previous study has combined multi-decadal NDVI trends with fCover estimates 
derived from hyperspectral data to assess land degradation risk (D’Acunto, 
Marinello, and Pezzuolo 2024).

4 S. ASAM ET AL.



2. Materials and methods

2.1. Study area

The study area is the Republic of Azerbaijan located in the South Caucasus region (see 
Figure 1). Azerbaijan has an extent of 86,600 km2 and a varied topography, characterized 
by the mountain regions of the Greater and Lesser Caucasus (covering 40% of the 
country) and extensive lowlands, the so-called Kura-Aras basin, in central-southern parts 
of the country. Annual precipitation varies between up to 1800 mm at the South-East 
Caspian Sea coast, above 600 mm in the mountain regions, lower values in the Kura-Aras 
basin and driest conditions in the Eastern lowlands of Absheron, with precipitation sums 
ranging from 200 to 350 mm. Temperatures could reach maximum values of up to 45°C 
and minimum values down to −33°C.

About one-third of the country is covered by grasslands, with an extent of approx. 
25000 km2 (The State Statistical Committee of the Republic of Azerbaijan 2023b), which is 
about half of the utilized agricultural area (The State Statistical Committee of the Republic 
of Azerbaijan 2023c). Transhumant livestock keeping is the major production system, 
which coexists with mostly small-scale sedentary livestock farms. Depending on altitude 
and condition, grasslands are used seasonally as winter and summer pastures. Every year, 
several million animals migrate between the summer pastures in the mountains and the 
winter pastures in the semi-arid lowlands. Summer pastures are covered by different kinds 

Figure 1. Extent of the study area of Azerbaijan with the DESIS tile footprints and the location of the 
in-situ sampling plots displayed in white (background map contains modified Copernicus Sentinel 
data 2022 (EOX IT Services GmbH 2022)).
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of grasslands, which are similar to central European such as Nardus-dominated grass
lands. The winter pastures are mainly used from November until March. Grasslands in 
direct periphery of villages and townships are used as common pastures during the 
whole year.

The grassland areas of Azerbaijan are under heavy anthropogenic pressure from 
unsustainable management practices, land use conversion and climate change. Due to 
missing responsibilities and inadequate management, the grazing intensity often exceeds 
the carrying capacity of grasslands (de Leeuw et al. 2019). The winter pastures, which are 
located in drier and hotter lowlands, are not productive but under high grazing pressure. 
In the Greater Caucasus, on the other hand, erosion is a common risk due to overgrazing, 
deforestation and specific soil conditions. The humus layer and A-Horizon are usually very 
thin, and through trampling by cattle, cracks and fissures can develop in the upper soil 
layer. In the case of heavy rainfall, water can inundate into these cracks and saturated soils 
at some point slide off. Therefore, large-scale landslides are quite common in this region, 
affecting mainly summer pastures (Köstl, Wuttej, and Kirchmeir 2018). However, the 
common pastures as well as the main migration routes between summer and winter 
pastures are under high pressure, too (Iniguez et al. 2005; Wiesmair et al. 2016). The most 
heavily eroded areas are often adjacent to human settlements. In contrast, more sustain
able land use including practices such as rotation system, mowing and bee keeping can 
be found on former kolkhozes (Köstl, Wuttej, and Kirchmeir 2018).

2.2. Data

2.2.1. DESIS
The DESIS instrument is an imaging spectrometer installed on the Multi-User-System for 
Earth Sensing (MUSES) platform on the International Space Station (ISS) since 
September 2018. It features 235 spectral channels ranging from 400 nm to 1000 nm, 
covering the VNIR region with a spectral sampling distance of 2.55 nm and a Full Width 
Half Maximum (FWHM) of about 3.5 nm (see Figure 2). The spatial resolution of the DESIS 
imagery is 30 m (Alonso et al. 2019; Carmona et al. 2022; Krutz et al. 2019).

Eighteen DESIS acquisition tiles recorded in June and August 2020 over Azerbaijan 
were selected, forming transects through the Kura-Aras basin and Lesser Caucasus in the 
western part of Azerbaijan and covering about one-fifth of the country area (see Figure 1). 
Imagery filtering criteria were a cloud coverage of <25% and a sun zenith angle of <40°. 
For the derivation of the fCover components, several pre-processing steps were carried 
out. The DESIS processing chain includes the radiometric and spectral calibration as well 
as the correction of further sensor effects like rolling shutter and spectral smile (Alonso 
et al. 2019). The L2A data were ortho-rectified as well as atmospherically corrected, 
providing additional cloud and haze masks. In this study, the first nine bands (wavelength 
402–442.5 nm) were excluded from further analysis, due to possible artefacts in these 
bands originating from the detector manufacturing (Carmona et al. 2022), as well as all 
bands above 883 nm influenced by etaloning (see Figure 2). The exclusion of these 
wavelength ranges does usually not affect the quality of the fCover analysis, as shown 
in previous studies (Bachmann 2007). For a trade-off between the required spectral 
resolution and the signal-to-noise, a 2x binning was applied, leading to a ~10 nm 
bandwidth per channel. The DESIS L2A data include quality masks, which were used to 
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further mask out pixels covered by cloud shadow, clouds and snow. Finally, a land cover 
mask (see section 2.2.4) was applied to limit the DESIS spectral data to herbaceously 
vegetated and bare soil areas, i.e. excluding forests, shrubland, water and artificial 
surfaces, which is an essential step for the further endmember (EM) identification and 
classification in the fCover processor (see section 2.3.1).

2.2.2. Landsat time series
In June and August, NDVI time series (1987–2021) were created to detect grassland 
condition trajectories in Azerbaijan based on multi-decadal vegetation condition 
observations from the NASA Landsat Missions (TM, ETM+, OLI) at 30 m spatial resolu
tion (Masek et al. 2006). Data processing was conducted on the Google Earth Engine 
(GEE) platform (Gorelick et al. 2017), where the acquisitions were filtered to 
a maximum cloud cover of 90%. All used Landsat data were scaled with the officially 
provided parameters (USGS 2021, 2022) to transform the pixel values from digital 
numbers to reflectance values. In a further step, TM & ETM+ sensor data were 
harmonized to the OLI data as suggested by Roy et al. (2016) and in the GEE guide
lines (Braaten 2024). Clouds and cloud shadows were masked out using the mask 
layers created with the fmask processor (Zhu, Wang, and Woodcock 2015). The images 
were then limited to grassland, cropland and barren/sparse vegetation pixels using 
a land cover mask (see Section 2.2.4). Pixelwise June and August NDVI of these areas 
for each year are generated through calculating the respective monthly median NDVI 
based on all available scenes. This procedure was chosen in order to generate con
sistent time series for which the influence of outliers, e.g. due to undetected clouds, is 
minimized (Asam et al. 2023). Median NDVI maps for June and August of all years are 
calculated to fit the phenological stages captured in the DESIS data (see Section 2.2.1). 

Figure 2. Typical DESIS L2A spectra at full spectral resolution (235 bands) for PV (green) and soil 
(black), and for NPV as processed for usage in this study (in red, triangles represent band centres; 
processing is 2x binning, spectral subset of 447 nm to 883 nm). Note that DESIS L2A processing can 
result in slightly negative reflectances, on purpose, ensuring a proper spectral shape even when 
Aerosol Optical Thickness (AOT) retrieval is slightly off.
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To avoid gaps in the monthly median NDVI composites, a tolerance timespan was 
defined to fill missing pixels, e.g. resulting from clouds, as follows: for the June time- 
series, the tolerance timespan is from beginning of May until mid of July. For the 
August time-series, the tolerance timespan ranges from mid-July until the end of 
September. For each missing pixel, the closest valid observation in time from the 
15th of the corresponding month was searched in the tolerance timespan. No further 
pre-processing such as filtering or smoothing was applied.

2.2.3. In-situ data
In-situ data have been collected in Azerbaijan in order to retrieve information on the 
fractional vegetation cover and erosion risk in the study area. The distribution of the plots 
was designed to cover all varieties of pastures and meadows that can be found in 
Azerbaijan with regard to exposition, elevation, species composition and management. 
In total, information was collected at 296 sample plots in the western, northern and 
southern parts of the country by the E.C.O. Institute of Ecology (E.C.O. Institut für Ökologie 
Jungmeier GmbH 2023) during two field campaigns in August and October 2018. The only 
region that had to be excluded was the politically unstable region of Yukhari-Garabakh in 
the southwest of the country. At each 30 × 30 m plot, general information such as 
elevation, inclination, exposition, management and predominant vegetation type was 
recorded. In addition, the overall vegetation ground coverage in percent regarding only 
living biomass, the potential maximum vegetation coverage and the erosion intensity in 
five categories (none – very high) were estimated. Besides these attributes, every plot was 
documented photographically. Five pictures have been taken from the centre of the site, 
covering all directions and one looking vertically downwards. The in-situ sampling was 
restricted to grassland areas as well as to some phenologically very similar classes for 
which a high confusion risk was anticipated (such as bushland, shrubland, semi-desert- 
vegetation and cropland) (Köstl, Wuttej, and Kirchmeir 2018). After intersection with the 
DESIS acquisition footprints, land cover masking, cloud masking and filtering for vegeta
tion type recorded in the field, 27 sampling points remained for validation (see Figure 1).

2.2.4. Land cover mask
The ESA WorldCover land cover classification v100 (Zanaga et al. 2021) at 10 m spatial 
resolution was used in this study. The classification is based on Copernicus Sentinel-1 
and Sentinel-2 data referring to the year 2020 and distinguishes 11 classes. It reaches 
an overall accuracy of 74.4% (Tsendbazar et al. 2021). The land cover classification was 
resampled to 30 metres in order to meet the spatial resolution of the DESIS and 
Landsat data and reprojected to UTM projection. The classes ‘grassland’, ‘cropland’ 
and ‘barren/sparse vegetation’ were aggregated as the mask area, and the resulting 
binary map was majority sieved using a threshold of 10 pixels in order to reduce noise 
in the land cover mask. The classes ‘cropland’ and ‘barren/sparse vegetation’ were 
included in order to catch also very densely as well as very sparsely vegetated areas for 
the EM generation.

2.2.5. Topography
Void filled topographic data from the Shuttle Radar Topography Mission (SRTM) at 
a resolution of 1 arc-second (SRTMGL1 version 3 by NASA JPL; Farr et al. 2007) were 
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derived via the GEE platform (Gorelick et al. 2017) and projected to match the UTM 
coordinate system of the above mentioned data. The topographic dataset is used to 
conduct analyses of the NDVI trend and the fCover related to topographic variables, such 
as elevation and slope, and for the land degradation risk analysis.

2.3. Methods

The concept followed in this approach is to derive a degradation risk map based on 
a degradation risk score, which is calculated by scaling the BS fCover, negative NDVI trend 
coefficients and slope steepness. After describing the generation of the required datasets, 
i.e. fCover based on DESIS data (Chapter 2.3.1) and NDVI trends (Chapter 2.3.2), the 
calculation of the degradation risk map is detailed in Chapter 2.3.3.

2.3.1. fCover derivation
fCover derivation is based on the spectral unmixing of hyperspectral DESIS data. 
Especially in dryland areas with a heterogeneous and patchy distribution of vegetation 
and soils, the sensed signal within a pixel almost always consists of a mixture of different 
cover types. The inversion process of spectral unmixing allows for the retrieval of different 
material fractions within a pixel and thus an approximate subpixel quantification of 
vegetation and soil cover fractions.

For each DESIS scene, fCover was calculated using the ‘fCover’ processor developed at 
DLR (see Figure 3) (Marshall et al. 2021). In order to account for the spectral variability of the 
different materials in a scene, MESMA approaches were developed (Asner and Lobell 2000; 
Bachmann 2007; García‐Haro, Sommer, and Kemper 2005; Roberts et al. 1998) where the 
material spectra are grouped into thematic classes such as PV, NPV and BS. The combination 

Figure 3. Workflow of the fCover estimation approach.
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of one spectrum of each class is simultaneously used for unmixing a pixel, calculating all 
existing combinations. One prerequisite for MESMA is that the spectra of the pure materials 
(denoted as EMs) are derived beforehand, which is commonly conducted by an estimation 
of the extremes in a transformed feature space, followed by a labelling process. We 
conducted the estimation of spectrally extreme pixels, i.e. pure material signatures, by the 
Spatial-Spectral Endmember Extraction (SSEE) (Rogge et al. 2012; Rogge et al. 2007) using 
the original implementation. The labelling of the classes PV, NPV and BS is achieved by 
a random forest classifier (n_estimators = 1865, min_samples_split = 6, min_samples_leaf =  
3 and max_features = square root) trained on an extensive library of field spectra (see Paulik  
2018 and Ziel et al. 2019 for details). For the reduction of the EM libraries, thresholds for the 
metrics proposed by Dennison and Roberts (2003) were used (i.e. Class-Average RMSE (CAR) 
and EM average RMSE (EAR)), resulting in a set of pure and representative EM spectra for 
each labelled class. Additionally, an EM for ‘shade’ is included in the unmixing, accounting 
for illumination and overall brightness effects. In the unmixing process, the fraction of this 
shade class can indicate brightness effects, missing EMs in the spectral library or an 
inadequate masking of the input files, respectively. The linear mixture model can therefore 
be written as 

with ρSensed being the ground reflectance of an image pixel, ρ denoting the EM signature 
for PV/NPV/BS/Shade, f the fractional cover of the respective EM and ε the residual error. 
The ground cover fractions for each pixel can then be estimated by inversion of the linear 
mixing model. fCovers are hence calculated using µMESMA (Bachmann, Muller, and Dech  
2009) with each pixel treated as a linear combination of each spectral class, where the 
residual error term is minimized given the constraints that individual fractions are within 
[0 - 100%] and that the sum of fractions is equal to 100%. Within most MESMA 
approaches, the final EM and related unmixing model are selected by the lowest residual 
represented by the modelling RMSE (ε). For µMESMA used in this study, the final model 
selection criteria are a combined unmixing model score with a band weighting of the 
modelling RMSE and a penalty score for unrealistic abundances (e.g. negative or above 
100%) as well as penalty for violation of the sum-to-one criterion as an unconstrained 
solver (pseudo-inverse) (see Bachmann 2007 for details). Following the approach of Garcia 
and Ustin (2001), the influence of the shade component is removed in a final step through 
rescaling the abundances for PV, NPV and BS. In order to avoid numerical issues, negative 
abundances are set to a small positive value of 0.001 for this procedure. More information 
on the workflow and its application is given in Malec et al. (2015) for soil erosion in Costa 
Rica, Bayer et al. (2016) in the context of the retrieval of soil parameters in South Africa, 
and Bachmann (2007) for land degradation in Spain and providing the full unmixing 
methodology.

The available in-situ data include information on living vegetation coverage in percent 
at the time of the data sampling as well as estimates on the yearly maximum vegetation 
coverage (see section 2.2.2). The current living vegetation coverage from the field was 
used to create evaluation metrics for the PV fraction. At each in-situ point, the abundance 
fraction of PV was extracted from the unmixing results and subtracted from the field 
information. The mean of all absolute abundance difference values was calculated and is 
presented as the mean absolute error (MAE). Additionally, the standard deviation (SD) 
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between all absolute difference values is provided. Scatter plots are created to assess 
variance and bias in the PV estimation. A vertical error bar shows the Root Mean Square 
Error (RSME) of the unmixing for the corresponding pixel. Additionally, the seasonal shift 
between the in-situ sampling and the DESIS acquisition is displayed in a number of days 
next to each scatter point. The plot also includes colour coded information on the 
landscape heterogeneity of the sampling site, which is roughly estimated by interpreting 
the available photos from the corresponding sites.

2.3.2. Time series analysis
From the monthly median NDVI maps for June and August 1987–2021 (section 2.2.2), 
trends of the NDVI were derived. Only positive NDVI values were included in the trend 
analysis, as negative NDVI is assumed to represent neither vegetation nor soil (such values 
e.g. occur sporadically at the shores of reservoirs with varying water levels) and can 
severely affect the trend detection. The Sen’s slope (Sen 1968) and the Mann-Kendall 
test (Kendall 1975; Mann 1945) were used for trend detection. The Sen’s slope was 
calculated by using a temporal interval of ‘1’ for each time stamp (year). Trends are 
considered significant if they have p-values lower than 0.05, which is a common threshold 
representing a statistical significance at the 95% level where non-significant trends are 
masked out. Additional outputs of the processing are the monthly sums of valid pixels 
that were included in the calculation of the median, as well as the sum of available 
monthly NDVI pixels over the whole time series, both for the monthly and the extended 
compositing periods.

2.3.3. Vegetation pattern and degradation risk assessment
To assess vegetation patterns and gradients in Azerbaijan from field- to landscape scale, 
as well as to detect artefacts and assess the plausibility of the resulting maps, fCover 
estimates are first analysed for each season by visualizing their spatial patterns. 
Accordingly, the June and August NDVI trend datasets are examined for significant 
positive and negative trends both on a country-wide scale and within the areas covered 
by DESIS acquisitions. A rough classification based on elevation (>1600 m a.s.l. for sub
alpine, <800 m a.s.l. for lowland) allows for a comparison of processes in the summer and 
winter pastures (de Leeuw et al. 2019; Neudert et al. 2012). The effect of the exposition is 
analysed by correlating NDVI trends with slope and aspect using Spearman’s rank correla
tion (Neudert et al. 2012). For consistency analysis, the DESIS fCover fractions and the 
long-term NDVI trends for June and August are correlated using Spearman’s rank correla
tion, overlaying both datasets within the DESIS footprints for each season.

The primary objective of this analysis is to assess land degradation risk by combining 
long-term vegetation changes with detailed estimates of current canopy properties from 
fCover. Degradation risk is assessed by identifying areas undergoing a decline in vegeta
tion abundance, mapped through NDVI changes over time. Additionally, PV, NPV and BS 
fCover are mapped to identify areas with sparse or no vegetation cover, and information 
on NPV coverage, which is not captured by the NDVI signal, is separated from BS shares to 
refine this analysis. Areas with low NDVI but still significant NPV coverage are assumed to 
have a lower degradation risk, as the topsoil is better protected than in areas dominated 
by high BS shares. Hence, the primary focus is on BS estimates, as PV and NPV both act as 
protective ground coverage against soil erosion. Areas with higher proportions of BS 
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cover are generally more prone to degradation (Malec et al. 2015; Wiesmair et al. 2016; 
Wiesmair, Otte, and Waldhardt 2017; Zhongming et al. 2010), particularly when located on 
steep slopes (Neudert et al. 2012).

Only areas which exhibit all three features – low fractional vegetation cover, a reduced 
NDVI compared to earlier stages and a location on a slope – are mapped as having an 
increased risk of degradation. Given that all these factors contribute gradually to degra
dation risk, we take advantage of the continuous nature of the datasets by scaling them 
relative to one another, avoiding the introduction of artificial thresholds or categories. The 
fCover of BS (fBS, scaled from 0 to 1) is hence multiplied with a significantly negative NDVI 
trend coefficient (SNDVI, scaled from 0 to 1) and topographic data on slope steepness (s, 
also scaled to 0–1): 

This creates a risk score sr, indicating locations of increasing degradation risk, which is 
then analysed in terms of topography and land cover classes.

3. Results

3.1. fCover

Continuous and seamlessly mergeable fCover estimates could be derived for all 18 DESIS 
tiles. Before scaling, the abundance fractions for PV, NPV and BS show mean values of 
12%, 19% and 30%, respectively, in the June scenes, and 15%, 22% and 21%, respectively, 
in the August scenes. As expected, the scaled cover fractions are consistently higher, with 
mean PV, NPV and BS coverage values of 20%, 32% and 49%, respectively, in June, and 
24%, 39% and 37%, respectively, in August. In the June acquisitions, about 17% of the 
covered areas are dominated by PV, 23% by NPV, and in 60% of the area, BS has the 
highest share (both for the unscaled and the scaled cover fractions). This distribution is 
different in the August scenes covering more lowlands, when about 23% of the areas have 
the highest shares of PV, 37% are mainly covered by NPV and the remaining 40% are 
predominantly covered by BS.

For the ecological interpretation of the results, the main landscape patterns are 
depicted in the DESIS transects (see Figure 4), spatially from rather dry and mountainous 
conditions in the West, to agriculturally more intensively used pastures and cropland 
areas in the East along the river Kura, and at the foothills and foreland of the Karabakh 
Range. The upper figure shows the scaled fCover as mapped at the end of June 2020, 
while the lower figure shows the situation a bit further to the south, mapped at the end of 
August 2020. More spatial details are given in the subsets of Figure 4. The white subset in 
the June image depicts a cold-arid steppe region at the border with Georgia. The ridge in 
the centre of the subset has vast areas of BS, especially on South exposed slopes, while the 
North exposed slopes in the South-Western part of the subset show relatively high shares 
of NPV vegetation. A few patches of high PV shares are scattered in the centre and the 
lower right corner of the subset, which are presumably agricultural fields irrigated 
through ditches and circular sprinkler systems, as well as along the river Gabirri in the 
upper part of the scene. The black subset in the June transect is located at the river Kura 
around the Rayon capital of Zərdab, which is part of the Arran economic region. The 
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Figure 4. RGB representation of the mosaics of the fCover maps derived for the June (top) and the 
August acquisitions (bottom). The scaled PV, NPV and BS fractions are displayed in shades of green, 
blue and red, respectively. The subsets show examples of typical landscape features (see text for 
further descriptions).
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landscape is dominated by its agrarian use in a multitude of small-scale fields, traversed 
by a network of channels. Most fields, especially those close to rivers, have a high share of 
PV, while smaller and more remote fields have high shares of BS. These could either be 
recently mown or harvested parcels, which are being prepared for a second crop. With 
large parts of the region located around or below the sea level, non-vegetated areas 
depicted in bright red could also be permanently bare land affected by salinization 
(Ismayilov et al. 2021). Blue NPV pixels are found predominantly in fields remote from 
the rivers, which might be fallow or less intensively used, and at the border of parcels. 
These probably indicate dry or shrub vegetation along field edges and canals.

The August transect differs from the June transect in an overall smaller share of BS 
fractions, with at the same time a higher fraction of NPV. The north-western subset covers 
the area between the foothills of the Lesser Caucasus and the Kura river around the town 
of Ağstafa, at the Armenian border. High fractions of PV intermixed with NPV are located 
on the agricultural fields, while high NPV fractions can be found on the grassland covered 
north-facing mountain slopes in the south and centre of the subset. Only on the south- 
exposed slopes on the opposite shore of the Kura river, larger areas of high BS fractions 
can be found. Spot-like small areas of BS at the southern edge of the subset can be 
associated with mining activities. The south-eastern subset close to Tərtər is also char
acterized by higher shares of NPV, on sloping grasslands as well as on flat agricultural 
fields. This is in accordance with the growing season and cropping patterns of the region. 
During the autumn, senescent plant parts such as cotton bushes or cereal litter are often 
left on the fields to be grazed by livestock.

When comparing the fCover derived from DESIS with the field measurements (Table 1), 
the MAE for the green vegetation (PV) is 6.70% (SD ± 5.81%) for the original and 7.05% (SD ±  
5.51%) for the scaled PV estimates (shadow component removed). These MAEs for green 
vegetation are in the expected range of the method. The Spearman correlation coefficient 
between the estimated and measured PV is 0.52 (p-value <0.01), and RMSE = 8.8%.

From the scatterplots displayed in Figure 5, it can be seen that the PV estimates from 
both in-situ and DESIS are generally low, mostly below 20% abundance. The agreement 
between both estimates is mostly within ±10%, but with the tendency that PV is overall 
slightly underestimated. The scaled PV data cover a more realistic data range and through 
this have a wider spread, but mostly follow the 1:1 line apart from some outliers. These 
outliers might be associated with either a large seasonal offset between the day of 
acquisition and the day of reference data sampling (e.g. 59 days for the sample to the 
right of Figure 5(a)) or the high spatial heterogeneity of the landscape (e.g. a grassland site 
with considerable shrub coverage indicated in red towards the top of Figure 5(b)). Taking 
this time difference and the unmixing RMSE (error bars in Figure 5) into account, the 
scaling results in a better representation of the data range for PV, despite having a slightly 
higher overall MAE.

Table 1. Evaluation metrics of PV estimation based 
on in situ observations.

MAE SD of absolute errors

PV 6.70 5.81
PV scaled 7.05 5.51
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The other cover fractions of NPV and BS could not be validated based on the available 
in situ observations. However, a correlation analysis between the combined NPV and BS 
shares and the monthly 2020 median NDVI indicates plausible negative relationships 
(Spearman r = −0.64 and r = −0.65 for June and August, respectively). We hence assume 
also the NPV and BS to be plausible fCover estimates.

3.2. Vegetation condition trend detection

Based on the monthly median NDVI composites for the years 1987–2021, significant NDVI 
trends for June and August could be derived. The underlying data basis for these 
calculations was improved through the integration of data from the extended tolerance 
timespan, resulting in almost one June and August composite each year, when filling the 
gaps with data from previous/following weeks.

Figures 6 and 7 visualize the significant (p < 0.05) NDVI trends in Azerbaijan for 
1987–2021 in June and August. In Table 2, the area percentages of positive and negative 
NDVI trends are summarized for the entire analysed vegetated area (differenced for 
grassland, cropland and sparsely vegetated areas), only for the area covered by the 
DESIS acquisitions, as well as for summer and winter pastures. Overall, more areas under
went positive than negative NDVI trends in both seasons. In June, 11.1% of the analysed 
areas have significant positive NDVI trends, while 3.8% have negative trends. Similarly, in 
the August NDVI time series, 10.4% of the pixels have positive and 4.9% have negative 
NDVI trends. Partitioned according to the land cover classes, the analysis shows that 3.0% 
(3.6%) of Azerbaijan’s grasslands, 4.3% (5.6%) of cropland and 5.5% (7.6%) of sparsely 
vegetated areas show negative trends in June (August). Hence, overall only small shares of 
the herbaceously vegetated areas undergo a decrease in vegetation conditions. Sparsely 
vegetated areas are affected the most, followed by cropland, and negative NDVI trends in 
August are slightly higher compared to June.

Figure 5. Validation scatter plot of PV (a) and scaled PV (b). The vertical error bars show the RMS score of 
the spectral unmixing for the respective pixel (scaled by factor 0.01). The number annotations indicate 
the seasonal shift between DESIS acquisition and reference data in days, and the colours indicate the 
uniformity of landscape of the respective in-situ plot. Dashed lines indicate a derivation by ± 10%.
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When looking at the area covered by the DESIS footprint only, the patterns are overall 
similar (Table 2), indicating that it represents a large part of landscape types in Azerbaijan. 
However, in the DESIS focus area, the cropland area stands out, with distinctively higher area 
shares of positive NDVI trends (16.8% in June and 14.7% in August). This might be caused by 
the dominance of intensively used agricultural areas in the Kura-Aras basin, on which 

Figure 6. Significant NDVI trends for the years 1987–2021 in June. The colour scale depicts the trend 
slope value. The coloured boxes refer to the subsets shown in Figure 9.

Figure 7. Significant NDVI trends for the years 1987–2021 in August. The colour scale depicts the trend 
slope value. The coloured boxes refer to the subsets shown in Figure 9.
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cultivation assumedly increased over the last decades. In contrast, on the grassland areas fewer 
pixels with both positive or negative trends were detected compared to the national scale.

On the grasslands in the subalpine areas of Azerbaijan (above 1600 m), the share of 
positive trend pixels is a bit smaller compared to the entire country in June and especially 
in August. Negative trends could only be detected on 1.3% (3.1%) of the summer pastures 
in June (August). Positive NDVI trends on winter pastures located in the lowlands occur on 
11.8% and 12.5% of the areas in June and August, respectively, which is similar to the 
country-wide average. Negative tendencies on summer pastures were detected on 4.1% 
(3.8%) of the area in June (August), which is a bit above the countrywide average. 
Regarding the dependency on topographic features, correlation analyses revealed that 
the NDVI trends do not correlate strongly with slope and aspect.

In Figure 8, some examples of landscapes undergoing significant positive or negative 
NDVI trends are depicted. Positive trends in vegetation cover and/or vitality occur mostly in 
agricultural areas (pink signature in land cover map) which are developed using centre-pivot 
irrigation (upper row, pink frame) or irrigation through canals (second and third rows, grey 
and purple frame). The purple frame, however, also includes vast agricultural areas under
going a negative NDVI trend (centre part of the image), which seem to be less intensively 
used or abandoned. Another example for areas of negative NDVI trends (fourth row, green 
frame) shows rather small-scale vegetation loss on the grassland and sparse vegetation 
areas of a talus cone in the Greater Caucasus. The dark red frame (bottom row), on the other 
hand, covers a dry grassland area near the Mingachevir Reservoir used as winter pasture, for 
which large percentages of the grassland area have negative NDVI trends.

3.3. Detection of land degradation risk hotspots

Spearman correlations between PV shares and monthly median NDVI values for 2020 are 
moderately high, with r = 0.64 for June and r = 0.65 August. In contrast, correlations 
between PV shares and the NDVI trend are lower, at r = 0.39 and r = 0.34 for June and 
August, respectively. As expected, correlations for NPV and BS shares are negative but very 
weak: NPV shows r = −0.09 and r = −0.06, and BS shows r = −0.29 for both months. This 
underpins the need to separate between open soil and dry vegetation, which is not feasible 
using multitemporal NDVI alone.

Table 2. Area percentage of positive and negative NDVI trends for Azerbaijan on a country-wide scale, 
for the DESIS footprint, for winter and summer pastures, and for June and August, respectively.

June August

NDVI trend 
Area

Positive 
trend [%]

Negative 
trend [%]

Positive 
trend [%]

Negative 
trend [%]

Azerbaijan 11.1 3.8 10.4 4.9
Grassland 11.2 3.0 9.7 3.6
Cropland 11.1 4.3 10.8 5.6
Sparsely vegetated 9.2 5.5 11.3 7.6

DESIS footprint 12.8 3.1 10.5 4.5
Grassland 9.7 2.3 6.2 3.0
Cropland 16.8 3.4 14.7 5.1
Sparsely vegetated 7.6 3.8 7.9 6.0

Summer pastures (grassland > 1600 m a.s.l.) 9.3 1.3 3.0 3.1
Winter pastures (grassland < 800 m a.s.l.) 11.8 4.1 12.5 3.8
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Figure 8. Landscape examples of NDVI trends. Depicted are the significant June (left) and August NDVI 
trends (second to left), the land cover classification (second to right) and an RGB map (right (EOX IT 
Services GmbH 2022) contains modified Copernicus Sentinel data 2022). Frame colours refer to the 
boxes shown in Figures 67 and 78.
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To identify hotspots of degradation risk, the results from the mono-temporal hyper
spectral DESIS unmixing and the multispectral Landsat NDVI time-series trend analysis 
were intersected with information on slope steepness. Figure 9 displays the degradation 
risk map resulting from the multiplication of the scaled BS fCover, the normalized 
negative NDVI trend and the steepness of slope maps. The zoom windows highlight 
areas of high degradation risk: in orthophoto view (top) and as hotspot detection 
(bottom). The degradation risk score scales between 0 and 0.01, since three factors smaller 
than 1 are included in the calculation.

In the area of the DESIS footprint, the generated map depicts distinct patterns of 
degradation risk. The highest values are derived for the north-western border region of 
Georgia, mainly in the districts of Agstafa, and to a lesser degree in the districts of Tovuz 
and Samukh. An example of these sparsely vegetated steppe regions is given in the 
subset with the blue frame, showing a south exposed ridge near the Kura river, exten
sively threatened by degradation. Furthermore, the areas south of the Mingachevir 
Reservoir in the Yevlakh district, dominated by halophytic vegetation, show increased 
values. Thirdly, some areas in the northern ranges of the Lesser Caucasus exhibit increased 
values, mainly in the districts of Tərtər and Goygol, as shown exemplary in the subset with 
the black frame. It zooms into a hillside area near the city of Tərtər, north exposed, and 

Figure 9. Land degradation risk score for the area covered by the DESIS acquisitions. The score is 
calculated by combining DESIS BS fCover, negative NDVI trends, and slope steepness. In the subsets, 
two example areas are shown in orthophotos (top), and overlaid with the risk score (bottom). Note 
that the value range is stretched using the standard deviation in the overview map, but as percent clip 
in the subsets to increase readability.
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with rather smaller patches prone to degradation that stand out to some more intensively 
used, terraced grasslands in the western part of the subset.

By its nature, the degradation risk hotspot map is spatially discontinuous, since areas 
with no slope or positive NDVI trends are blank. In addition, there are gaps in the dataset 
which result mainly from missing data in the monotemporal DESIS acquisitions. For 
example, in the black frame subset, it can be seen that there are artificial round gaps in 
the risk score map, which most probably result from masked clouds and cloud shadows in 
the DESIS scenes. In addition, the DESIS data do not cover representatively all altitude and 
aspect ranges, as well as biogeographical regions of Azerbaijan. Hence, a spatial statistical 
analysis e.g. according to landcover or exposition cannot be exhaustive. Nevertheless, the 
distributions of degradation risk scores are shown in Figure 10 according to aspect classes 
(left) and land cover classes (right). The statistical analysis shows that areas prone to 
degradation – in the DESIS footprint area – have a tendency to be located in grassland 
areas with the highest class-wise mean and median risk score values. For the aspect 
classes, the class-wise mean and median values are more similar, but the highest risk score 
values can be found on the south and east-exposed slopes.

4. Discussion

4.1. fCover mapping based on DESIS data

Seamless fCover maps could be derived for a transect over Western Azerbaijan. The 
mapped spatial patterns are overall reasonable, as the maps depict coherently the 
different landscape types and land uses in the regions of Azerbaijan, such as arid 
mountain ranges in the South and intensively used agricultural areas to the East. As 
expected for such heterogeneous environments, there are rarely pure pixels covered 
solely by one of the three cover types. This indicates the suitability of a subpixel approach 
for the highly diverse landscapes in the Caucasus region, and the added value of fCover 
estimates for characterizing vegetation structures in complex landscapes.

PV fractions could be derived with a MAE of 7.1%. This level of agreement between the 
unmixing results and in-situ data is in the range of comparable studies (Asner and Lobell  
2000; Bachmann 2007; Roberts et al. 1998). General validation results for DESIS unmixing 
during the development of the processor gave an expected RSME of ~8% for PV based on 
synthetic scenes (Marshall et al. 2021). This demonstrates the general applicability of the 

Figure 10. Distribution of degradation risk scores according to aspect (left) and land cover (right).
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DESIS data for PV fCover estimation. Regarding the per-pixel abundance values, it is, 
however, worth pointing out that the unmixing sum-to-one criterion is often not strictly 
fulfilled. This indicates that to the extent of multiple DESIS tiles, the detected EMs do not 
fully represent the high spectral variability of such a large dataset. When no perfect knowl
edge of all EMs exists, the unmixing results are not always distinct or precise, and – 
depending on the solver – the constraints cannot be strictly fulfilled. Additional noise or 
multiple scattering effects measured by the sensor add to this problem. Furthermore, the 
spectral similarity of different EMs or the spectral variability within one EM class are 
expected to have an impact on the unmixing results (Bachmann 2007). All this adds to 
uncertainty in the estimated fCover. Nevertheless, the introduction of a shade component 
mitigates parts of this effect, as for the resulting abundance maps, this component is used 
for re-scaling (Garcia and Ustin 2001). To further improve the results, additionally, the usage 
of EM bundles is currently being investigated (Kühl et al. 2024).

The fCover method used in this study was successfully applied to DESIS data before 
(Marshall et al. 2021), and the results for PV fCover in this study are promising. However, 
the used fCover method was originally developed for hyperspectral sensors covering the 
full VNIR-SWIR range. In the case of DESIS, the spectral range is limited to 1000 nm. It is 
therefore important to mention that the identification of NPV is challenging, as the 
separation of NPV and BS can be best achieved using the absorption features of clay 
(~2200 nm) for BS and ligno-cellulose (~2090 nm) for NPV, which are both not covered by 
DESIS. Below 1000 nm, the distinction of these two classes relies on less diagnostic 
features. Consequently, DESIS data are expected to lead to higher confusion between 
EMs and to less accurate estimations of the BS and NPV fCover.

Hence, although the evaluation metrics are in a range that could be expected, 
some uncertainties remain when interpreting the result. In particular, the validation 
of the DESIS unmixing result using in-situ field data needs to be seen critically. 
Overall, only a small share of the collected field data could be used to assess the 
unmixing result, and on the remaining plots, the in-situ PV fCover data do not 
cover a wide range (mostly below 25%). This is caused by the circumstance, that 
plots of grassland with higher density could only be sampled in other regions of 
Azerbaijan, for which no DESIS data are available. This hampers the evidence of 
reliable PV estimates for more productive grasslands. Furthermore, field data were 
not collected during the sensor flyover but in different years and different seasons. 
Thereby, the seasonal mismatch might introduce higher errors, since strong 
changes in fCover within 2 years are not expected, but the seasonal variation of 
vegetation coverage can be significant. Most importantly, however, NPV and BS 
could not be directly validated, which is a significant limitation of the current study 
design. A correlation analysis between the NPV and BS shares and median NDVI 
indicates that the patterns of NPV and BS fCovers are reliable estimates; however, 
further reference data would be useful to properly quantify any errors.

Another aspect of quality is artefacts in the fCover map. As shown in Figure 11, 
most of the subset can be adequately modelled, with relatively low model error scores 
of 200–400 units and some variations on agricultural fields, likely originating from 
crops not perfectly represented as EMs. However, there are erroneous circular regions 
with high abundances in all bands. These can be related to small clouds, thin clouds 
and cloud shadows, which were not included in the DESIS L2A masks. As the spectra 
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of clouds are not included in the EM libraries, the pixels cannot be properly modelled, 
as shown by high unmixing model errors (red mask in Figure 11). These high model 
errors show up as artefacts in the abundance maps. Using the error score as 
a reliability measure, such areas can be excluded from further thematic analysis. The 
model error value range of the remaining areas shows that those areas can be 
modelled reasonably well, and no major missing EM exists which would cause high 
modelling errors for some local areas.

4.2. Combined use of NDVI trends and fCover for land degradation risk estimation

The presented approach aims at identifying vegetated areas prone to degradation, with 
a special focus on areas with decreasing vegetation vitality or abundance. To date, we are 
not aware of any other published study that combines NDVI trends with fCover data 
derived from hyperspectral data to estimate degradation risk.

High shares of BS-dominated pixels were found on the vegetated areas in the DESIS 
scenes, with 49% of all pixels being dominated by BS in June and 37% in August, 
respectively. In contrast, when looking at the NDVI trends alone, we found that only 
3.8% and 4.9% of all herbaceously vegetated areas are affected by negative trends in June 
and August, respectively, while even smaller shares (3.0% and 3.6%) of grasslands are 
affected. These proportions are a bit lower than those published, for example, by 

Figure 11. Unmixing model error of an example region, with a linear stretch applied and pixels with 
a model error above 1000 (score value) are masked in red; black areas were masked and set to 
background value.
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Lewińska et al. (2020), who found that 4.8% of grasslands experience decadal degrada
tion. In contrast, our findings for summer pastures indicate negative vegetation trends for 
1.3% and 3.1% of June and August areas, which is in accordance with other studies (de 
Leeuw et al. 2019; Shatberashvili et al. 2015), while Lewińska et al. (2020) barely detected 
degradation in summer pastures. It has to be mentioned, however, that they were looking 
at a different time span (2001–2018) and a larger region (the entire Caucasus ecoregion), 
which hampers a direct comparison. Nevertheless, they identified similar regions in 
Azerbaijan. The areas shown to be prone to degradation in our mapfor example, in the 
surroundings of the Mingachevir Reservoir and in the Aghstafa District at the border to 
Georgia have also been identified by Lewińska et al. (2020) to be affected by a decrease in 
green vegetation on decadal scales, attributing the vegetation loss of these winter 
pastures to overgrazing (Lewińska et al. 2020; Neudert et al. 2012; Shatberashvili et al.  
2015). Furthermore, the spatial distribution of high-risk pixels in our map analysed for land 
cover and aspect is plausible, with grasslands in the south and east-exposed slopes, i.e. 
often drier slopes, are affected the most.

The suggested combination of different data sources hence leads to realistic results. In 
fact, PV correlates only moderately with the June median NDVI (Spearman r = 0.64), and 
with the August median NDVI (r = 0.65). This implies that general patterns are similar, but 
that a certain part of the PV fCover variance cannot be explained by NDVI. Hence, there is 
complementary information in fCover and vegetation indices, which depend on different 
vegetation parameters (i.e. woody and NPV parts, leaf area and total biomass). This further 
strengthens the assumption that not every sparsely vegetated area is subject to vegeta
tion cover reduction. At the same time, a negative NDVI signal does not necessarily imply 
that vegetation degradation has occurred. The negative trend, especially in the end of 
August acquisition, could, for example, be a consequence of shifted phenology (e.g. 
earlier plant senescence) due to climate change. This highlights the need for such 
complementary datasets including information on temporal vegetation development 
and detailed canopy characteristics. Furthermore, correlation analyses revealed that in 
Azerbaijan the NDVI trends do not correlate strongly with topographic features. 
Therefore, it can be assumed not only that including slope and NDVI trend information 
does convey redundant information but also that spatial patterns beyond topography, 
including information on vegetation development, could be generated. Nonetheless, we 
recognize the value of more systematic sensitivity analyses and plan to investigate the 
individual and combined influences of each variable in the future work.

Based on the resulting map, it is now possible to identify hotspots prone to degrada
tion to take up early measures and prevent loss of valuable top soil. For example, 
agricultural planning tools such as the proper use factor that is needed for the estimation 
of the livestock carrying capacity, especially in the Caucasus region, but often lack the 
information of vegetation ground cover (de Leeuw et al. 2019). It would be interesting to 
test the approach at different biogeographical regions. Since no threshold or categories 
have been introduced, the concept is easily transferable.

However, some limitations of the approach have to be considered. First, we did not 
consider any land cover changes due to the lack of appropriate datasets from the 1990s. 
This most probably introduces errors, since land cover changes e.g. from cropland/grass
land abandonment, might result in a negative NDVI trend simply from changing species 
composition. While this issue cannot be solved for the investigated study area, it could be 
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accounted for when transferring the approach to areas with more consistent information 
on land cover changes, e.g. from the Copernicus Land Monitoring Service. Furthermore, 
the issue of spatial resolution should be mentioned. 30 m spatial resolution might be too 
coarse in some small-scaled landscapes in the Caucasus region with its rugged relief and 
small fields. While subpixel mapping is generally a good approach for heterogeneous 
landscapes, the spectral unmixing process and therewith the fCover estimation could still 
be hampered, e.g. if small landscape elements such as bushes, hedges, roads or canals are 
not sufficiently differentiated and captured in EMs, or properly masked. Furthermore, 
variations in vegetation cover relevant for degradation processes especially in mountai
nous terrain (for example, through trampling trails or gullies (Neudert et al. 2012)) occur 
within a few metres, which might be too small-scaled to be represented prominently in 
the BS fCover component. Last but not least, the map generated through the combined 
use of DESIS data and Landsat time series looks plausible but could not be validated 
through the available in situ data.

While the suggested approach of this study generates realistic results and proves the 
added value of fCover estimates for the assessment of land degradation, its intersection of 
independent datasets is both practicable and easily transferable, and a few options could 
be considered to further improve the degradation hotspot identification. For example, 
fCover at several time steps, for several years and also at several stages throughout the 
phenological growing cycle, would be useful for a detailed degradation risk estimate, as 
well as to avoid gaps, and would be a logical extension of the current study (see e.g. Soto 
et al. 2024). Time series from DESIS and other hyperspectral sensors (e.g. EnMAP 
(Chabrillat et al. 2024; Storch et al. 2023) and PRISMA (Cogliati et al. 2021)) are now and 
in the future (e.g. through missions like CHMIE (Buschkamp et al. 2023)) becoming more 
and more available and provide a valuable data source for informed degradation risk 
monitoring. Furthermore, the analysis of multispectral time series could be further 
enriched by assessing phenological parameters (Chen et al. 2018) or enriching the 
fCover time series (Kowalski et al. 2022; Lewińska et al. 2021).

5. Conclusions

Land degradation, driven by climate change and land use pressures, significantly 
impacts mountain ecosystems, particularly in arid regions, leading to reduced vegeta
tion cover and increased soil erosion. Effective monitoring is essential for identifying 
degradation and managing risks through sustainable land management. In this study, 
we combined hyperspectral DESIS data with long-term NDVI time series from Landsat 
(1987–2021) to assess vegetation degradation in Azerbaijan. We derived PV fractions 
with a MAE of 7.1%, demonstrating that DESIS is effective for estimating vegetation 
cover, even without the SWIR range. By intersecting BS fCover with negative NDVI 
trends and slope steepness, we generated a degradation risk map, highlighting 
degradation hotspots on grassland areas mainly on south-facing slopes. Integrating 
NDVI trends with fCover estimates hence provided an improved assessment of land 
degradation, offering insights into vegetation dynamics beyond what either dataset 
could provide alone. However, limitations include the lack of ground data for validat
ing NPV and BS fCovers, which restricts the assessment of how well these fractions are 
differentiated and limits the evaluation of degradation risks. Despite these challenges, 
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our study demonstrates the potential of combining hyperspectral and multispectral 
data to enhance land management, such as by improving livestock carrying capacity 
estimates in mountainous grasslands. With the increasing availability of time series 
data from sensors like DESIS and EnMAP, this approach can be refined to deliver more 
accurate and dynamic assessments of vegetation health and degradation risk. In 
conclusion, integrating long-term vegetation trends with detailed cover fraction map
ping is a valuable tool for detecting land degradation and supporting sustainable land 
management strategies.
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