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Abstract

This dissertation presents a detailed exploration of multi-sensor visual odom-
etry systems, with a focus on enhancing robustness in indoor environments.
The core contribution lies in the development of an advanced ego-state esti-
mation framework, wherein visual odometry is bolstered by multiple visual
sensors to overcome common challenges such as occlusions and textureless
surfaces. By addressing frequent loss-of-tracking (LoT) events, the system
ensures continuous, reliable localization in complex, cluttered indoor settings,
such as households and elderly care facilities.

To further augment situational awareness, sound source localization (SSL)
is integrated as a complementary modality. Its fusion with visual data sig-
ni�cantly enhances the robot’s perception of the environment, enabling the
detection and identi�cation of objects and events that may be visually oc-
cluded or otherwise undetectable. This multi-modal fusion provides a more
holistic understanding of the robot’s surroundings, contributing to improved
operational reliability in dynamic, human-centered environments.

A key feature of this research is the introduction of IndoorMCD, a novel multi-
sensor benchmark speci�cally designed to evaluate localization performance
in indoor environments. Additionally, this work introduces URSim, an online
real-time visual simulation framework that enables rigorous testing of multi-
sensor localization systems under various conditions. Extensive experimental
validation, using both real-world scenarios and simulated environments,
demonstrates the robustness and fault tolerance of the proposed system.

This research advances the state-of-the-art in robotic perception and indoor
localization by providing a multi-modal, fault-tolerant approach to localiza-
tion, o�ering valuable contributions to both theoretical understanding and
practical application in robotics.
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Zusammenfassung

Diese Dissertation präsentiert eine detaillierte Untersuchung von Multi-
Sensor-Visual-Odometrie-Systemen, mit einem Fokus auf die Erhöhung der
Robustheit in Innenräumen. Der zentrale Beitrag liegt in der Entwicklung ei-
nes Frameworks zur Ego-Zustandsschätzung, bei dem die visuelle Odometrie
durch mehrere visuelle Sensoren gestärkt wird, um häu�ge Herausforderun-
gen wie Verdeckungen und texturlose Ober�ächen zu überwinden. Durch
die Bewältigung häu�ger Loss-of-Tracking (LoT) Events gewährleistet das
System eine kontinuierliche und zuverlässige Lokalisierung in komplexen
Innenumgebungen, wie zum Beispiel Haushalten und P�egeeinrichtungen.

Zur weiteren Steigerung des Situationsbewusstseins wird die Schallquellenlo-
kalisierung (SSL) als komplementäre Modalität integriert. Die Fusion von SSL
mit visuellen Daten verbessert die Wahrnehmung des Roboters erheblich und
ermöglicht die Erkennung und Identi�kation von Objekten und Ereignissen,
die visuell verdeckt oder auf andere Weise nicht wahrnehmbar sind. Diese
multi-modale Fusion bietet ein ganzheitlicheres Verständnis der Umgebung
des Roboters und trägt zur verbesserten Betriebssicherheit in dynamischen,
menschenzentrierten Umgebungen bei.

Ein zentraler Bestandteil dieser Forschung ist die Einführung von IndoorMCD,
eines neuartigen Multi-Sensor-Benchmarks, der speziell zur Bewertung der
Lokalisierungsleistung in Innenräumen entwickelt wurde. Darüber hinaus
wird URSim, eine Online-Echtzeit-Visual-Simulation, vorgestellt, der eine
Entwiclung von Multi-Sensor-Lokalisierungssystemen unter verschiedenen
Bedingungen ermöglicht. Umfangreiche experimentelle Validierungen, so-
wohl in realen Szenarien als auch in simulierten Umgebungen, zeigen die
Robustheit und Fehlertoleranz des vorgeschlagenen Systems.

Diese Arbeit treibt den Stand der Technik in der Wahrnehmung und Innenlo-
kalisierung voran, indem sie einenmulti-modalen, fehlertoleranten Ansatz für
die Lokalisierung bietet und Beiträge sowohl zum theoretischen Verständnis
als auch zur praktischen Anwendung in der Robotik leistet.
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1. Introduction

1.1. A Brief History of Mobile Robotic Platforms

The development of mobile robotic platforms has been pivotal in advanc-
ing autonomous systems. Early designs focused on simple tasks such as
navigating prede�ned paths in controlled environments.

The 1960s saw the results of Shakey, developed by the Stanford Research
Institute. Shakey was capable of perceiving and interacting with its envi-
ronment using a combination of a television camera, laser range�nder, and
bump sensors. Shakey’s ability to navigate and perform tasks autonomously
marked a signi�cant milestone in robotics research [99].

In the 1980s, the Stanford Cart, developed at Stanford University, imple-
mented basic obstacle avoidance and path planning. The cart used a single
camera to build a three-dimensional model of its surroundings, allowing it to
navigate through simple environments. The Stanford Cart’s contribution to
robotics included early implementations of computer vision and autonomous
navigation [87].

The evolution continued with the development of more sophisticated sys-
tems, such as NASA’s Sojourner rover in the 1990s. Sojourner demonstrated
semi-autonomous navigation on the Martian surface using a combination of
stereoscopic cameras and hazard detection algorithms. This mission provided
valuable insights into the challenges of operating robots in extraterrestrial en-
vironments and highlighted the importance of reliable sensor data processing
and autonomous decision-making [80].

The 21st century has seen signi�cant advancements in sensor technology,
computational power, and control algorithms, leading to highly capable mo-
bile robots that can perform complex tasks in dynamic environments. For
instance, Boston Dynamics’ Spot robot integrates advanced perception sys-
tems, robust navigation algorithms, and dynamic balancing capabilities to
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1. Introduction

operate in diverse and challenging terrains. Similarly, the PackBot by iRobot
has been deployed in military applications, showcasing the robustness and
versatility of modern mobile robotic platforms [34, 55].

These developments have laid the foundation for the current generation of mo-
bile robotic platforms, which integrate advanced perception, navigation, and
control capabilities. Modern robots are equipped with a wide array of sensors
and utilize cutting-edge algorithms to achieve high levels of autonomy and
reliability in various applications. As these technologies continue to mature,
mobile robotic platforms are increasingly being utilized in robotic assistance
roles, supporting humans in tasks ranging from industrial automation to
healthcare.

1.2. Robotic Assistance

Robotic assistance includes a broad range of applications where robots aid
humans in various tasks. The history of robotic assistance can be traced back
to the early 20th century with the introduction of simple mechanical aids and
automated machines in industrial settings. In the 1960s and 1970s, industrial
robots such as Unimate were introduced into manufacturing environments.
Unimate, the �rst industrial robot, was deployed on a General Motors assem-
bly line in 1961 to handle tasks such as welding and material handling. This
marked the beginning of the automation revolution in manufacturing, leading
to increased e�ciency and safety by taking over repetitive and hazardous
tasks from human workers [31].

The 1980s and 1990s saw the emergence of service robots designed to assist
in non-industrial environments. Robots like HelpMate were developed for
use in hospitals to transport medical supplies and equipment, demonstrating
the potential for robots to improve e�ciency and reduce the workload on
hospital sta� [115]. During this period, domestic robots also began to appear,
with devices like the Electrolux Trilobite, an early robotic vacuum cleaner,
entering the market in the late 1990s [37].

The early 21st century witnessed the rise of collaborative robots, or cobots,
designed to work alongside humans in shared spaces. Cobots like lightweight
robot by the German Aerospace Center (DLR) [4] or the Baxter robot by

2



1.2. Robotic Assistance

Rethink Robotics [40] are equipped with advanced safety features and user-
friendly interfaces, making them suitable for a variety of tasks in manufac-
turing, logistics, and other industries. These robots enhance productivity by
assisting with tasks that require precision, strength, or endurance [106].

In recent years, there has been signi�cant interest in developing household
robots that can assist with everyday tasks. Robotic vacuum cleaners, such
as those from iRobot’s Roomba series, have gained widespread popularity
due to their ability to autonomously clean �oors. However, despite these
advancements, the adoption of household robots beyond cleaning remains
limited. Robots capable of performing complex household chores, such as
cooking, laundry, and organizing, are still in the experimental stage and face
numerous technical challenges.

One notable example of household robotic assistance is the Jibo robot, de-
signed as a social companion to interact with family members, provide re-
minders, and control smart home devices. Although Jibo showcased the
potential for social robots in domestic settings, it faced market challenges and
was discontinued in 2019 [54]. Another example is the Aido robot, which in-
tegrates smart home control, entertainment, and personal assistance features
but has struggled to achieve mainstream adoption [35].

The limited presence of advanced household robots can be attributed to
several factors, including the complexity of domestic environments, high
costs, and the need for robust perception algorithms. While industrial robots
have thrived in structured and predictable settings, household environments
present diverse and dynamic challenges that require sophisticated percep-
tion and decision-making capabilities. Moreover, the economic feasibility of
deploying such robots in homes remains a signi�cant barrier.

Despite these challenges, ongoing research and development e�orts continue
to explore the potential of household robots. Projects like the Smile2Gether [45]
or Toyota Human Support Robot [27] aim to assist elderly and disabled in-
dividuals with daily activities, such as fetching objects and opening doors,
demonstrating the potential for robots to improve quality of life in domestic
settings.

3



1. Introduction

1.3. The Importance of Perception in Robotic

Assistance

Perception is a critical component for the reliability and success of robotic
assistance, particularly in household environments. Robots must be able to
accurately sense and interpret their surroundings to perform tasks e�ectively.
This involves the integration of various sensors, such as cameras and ultra-
sonic sensors, to gather data about the environment. Advanced perception
algorithms process this sensory data to enable robots to recognize objects,
detect obstacles, and navigate through complex and dynamic spaces [136].

In industrial settings, robots operate in structured and robot-friendly envi-
ronments where tasks are repetitive and predictable. These environments are
speci�cally designed and prepared for robots, with controlled layouts and
minimal unexpected changes. However, household environments are solely
designed for humans, making them inherently unstructured and dynamic,
which presents unique challenges for robotic perception. For instance, a robot
in a home must be able to identify and interact with a wide range of objects,
from furniture to kitchen utensils, and adapt to changes in the environment,
such as people moving objects around [49].

Robust perception approaches are necessary to ensure that robots can handle
these challenges. This includes the development of algorithms that can fuse
data from multiple sensors to create a comprehensive understanding of the
environment. Techniques such as simultaneous localization and mapping
(SLAM) allow robots to build and update maps of their surroundings in
real-time while keeping track of their own location. Vision, using cameras,
and audio perception are particularly important modalities for household
robots. Vision enables detailed recognition and classi�cation of objects, while
audio helps in identifying and locating sound sources, which is fundamental
for tasks like responding to voice commands or detecting unknown sound
pro�les [19].

The reliability of robotic assistance in households depends on the ability to
perceive and respond to the environment accurately. For example, a cleaning
robot must detect and avoid obstacles like furniture and toys while e�ciently
navigating the space. Similarly, a social robot must recognize human emotions
and adapt its interactions accordingly. Ensuring robust perception capabilities
is crucial for the widespread adoption and success of household robots [13].
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1.4. Problem Statement

As research and development in perception technologies advance, the capa-
bilities of household robots are expected to improve signi�cantly. Enhanced
perception will enable robots to perform a broader range of tasks, from sim-
ple chores to complex caregiving activities, thereby increasing their utility
and value in domestic settings. The continuous re�nement of perception
algorithms and sensor technologies will play an important role in the future
of robotic assistance in homes.

1.4. Problem Statement

This work will focus on visual odometry techniques aimed at achieving robust
ego-motion estimation in indoor scenarios. The primary goal is to enhance
perception accuracy in environments with varying visual characteristics,
such as homes and elderly care facilities. Robust motion estimation is crucial
in these settings due to the presence of dynamic and cluttered elements like
furniture and people, as well as varying lighting conditions. Accurate motion
tracking ensures that the robot can navigate safely and e�ciently, reducing
the risk of collisions and ensuring smooth operation in complex, changing
environments.

Additionally, this thesis will explore how integrating multiple sensor modali-
ties, such as visual and audio data, can provide a comprehensive understand-
ing of the robot’s surroundings. By combining data from di�erent sensors,
the system can generate a more detailed environmental representation, ad-
dressing limitations posed by using a single modality. In human-centered
environments like elderly care, accurate motion estimation becomes even
more essential, as errors could lead to safety risks or decreased trust in robotic
systems. Ensuring robust performance helps the robot adapt e�ectively to its
surroundings and the movements of people within the space.

The research will also focus on the development of approaches to improve ro-
bustness, which is critical in human-centered environments. Failures in such
settings could lead to injuries or rejection of robotic systems, necessitating a
strong emphasis on fault tolerance and reliability. Robots operating in elderly
care facilities, for instance, must rely on accurate motion estimation to avoid
accidents, especially in environments that may contain moving objects or
individuals.
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1. Introduction

Lastly, the speci�c constraints of the thesis revolve around designing so-
lutions for indoor environments. The robotic system must be capable of
operating e�ectively within households and apartments, without the need to
signi�cantly modify the environment. This includes ensuring functionality
in con�ned, cluttered spaces and adapting to modern interior designs, such
as textureless or repetitive surfaces. The use of multiple sensors enhances
robustness by ensuring that the failure of a single sensor does not result in
the failure of the entire system. In indoor environments, tracking loss often
occurs due to view-dependent factors, such as occlusions or limited �elds
of view. A multi-sensor approach with multiple views e�ectively mitigates
this issue by providing complementary perspectives, reducing the likelihood
of tracking failures and ensuring continuous, reliable operation in complex
spaces.

The considered challenges of this thesis are as follows:

Indoor Environment

The target domain in this work is the indoor environment, particularly house-
holds and apartments. This poses unique challenges, as the robot must
seamlessly operate without requiring modi�cations to the existing space. The
system must be capable of functioning in con�ned, cluttered areas while
integrating the modern design elements typical of indoor environments, such
as minimalistic decor and textureless surfaces. These characteristics often
complicate perception tasks, as textureless or repetitive surfaces provide
fewer visual cues for reliable localization and mapping. Therefore, the percep-
tion architecture must be developed to handle these constraints e�ectively,
ensuring robust operation even in spaces where visual features are sparse or
ambiguous.

Audio-Visual Perception System

Visual perception provides rich and detailed information about the robot’s
surroundings, such as spatial structure, object recognition, and motion track-
ing. It forms the foundation for many key tasks in robotic navigation and
interaction. However, visual data alone may not capture all aspects of the
environment, especially in dynamic and multi-source settings, where comple-
mentary data from other modalities can greatly enhance overall perception.
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1.4. Problem Statement

Audio perception o�ers an important supplement to visual sensing, as it adds
an additional dimension to the robot’s understanding of its environment.
Unlike vision, audio can detect sound sources regardless of their visibility,
enabling the detection of events and objects that may be outside the robot’s
�eld of view or temporarily occluded. For instance, the ability to localize
sounds, such as a person speaking or a machine operating, provides spatial
and contextual cues that complement visual information. This multimodal
integration allows the robot to track and interact with multiple sources of
information, creating a more robust and adaptive perception system.

By combining audio and visual data, the system bene�ts from the strengths of
both modalities. Audio extends the operational range of perception by captur-
ing environmental cues that are not available through vision alone, especially
in cases where visual information might be ambiguous or incomplete. This
fusion results in a more holistic understanding of the environment, ensuring
that the robot can reliably perceive and respond to its surroundings in real
time.

Multi-Sensor Framework

The integration of multiple sensors and modalities plays a pivotal role in
enhancing system robustness and reliability. By using multiple sensors, both
within the same modality and across di�erent types, the system gains re-
dundancy that can safeguard against single sensor failures. For instance, if
one visual sensor fails or provides erroneous data, the remaining sensors can
continue to provide input, allowing the robot to maintain its tasks without
interruption.

However, implementing a multi-sensor framework introduces additional
complexity. It requires precise synchronization of sensor data and accurate
fusion of information from sensors positioned at di�erent locations on the
robot. This is especially critical in scenarios involving non-rigid transforma-
tions between sensors, where the current con�guration of the robot must
be estimated in real time. Ensuring that the data streams are synchronized
and correctly aligned allows the system to create a coherent and accurate
representation of the environment, supporting robust decision-making and
control.
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Robust Operation in Proximity of Obstacles

For a robotic system operating in indoor environments, especially in house-
holds or elderly care settings, robust operation near obstacles is crucial. The
perception system must reliably navigate close to furniture, walls, and other
objects without losing track of its surroundings or making dangerous mis-
calculations. Proximity to obstacles often limits the availability of visual
information, and re�ections from shiny surfaces can confuse the system,
leading to incorrect motion estimates.

In such challenging conditions, the system must maintain continuous opera-
tion, even in the presence of minor sensor failures or occlusions. This requires
the ability to detect and correct for errors dynamically, allowing the robot to
resume tasks without requiring human intervention. Additionally, the system
must remain resilient to environmental changes and capable of adapting to
unforeseen situations, ensuring reliable operation in real-world, dynamic
environments where obstacles and human interaction are frequent.

1.5. Contributions

This thesis makes several contributions to the �eld of multi-modal and multi-
sensor localization in indoor environments. First, a robust multi-sensor visual
localization system was developed, which integrates multiple sensors to en-
sure accurate and continuous localization in cluttered and con�ned indoor
spaces. This system mitigates frequent loss-of-tracking (LoT) events and
preserves localization accuracy, addressing the critical need for robust mo-
tion estimation. An overview of this system’s architecture is presented in
Figure 1.1, highlighting the components involved in the data acquisition
and ego-state estimation. This contribution directly supports safe and e�-
cient navigation in dynamic household and elderly care environments, as
highlighted in the problem statement in Section 1.4 on page 5.

Secondly, this work proposes the integration of audio and visual modalities
for localization. A real-time, motion-aware sound source localization (SSL)
system, using adaptive frequency selection, was developed to complement vi-
sual perception. This system operates e�ectively in reverberant and occluded
environments, enhancing the robot’s understanding of its surroundings. By
combining visual and auditory data, the system addresses the challenge of
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1.6. Outline

multi-modal perception, improving robustness and situational awareness in
complex indoor settings. Figure 1.1 illustrates how the audio and visual sensor
drivers feed into the landmark estimation module to support this multi-modal
localization.

A third key contribution is the creation of the �rst multi-sensor benchmark
for visual odometry (VO) and simultaneous localization and mapping (SLAM)
systems speci�cally designed for indoor environments. This benchmark en-
ables rigorous evaluation of multi-sensor localization systems, ensuring they
meet the unique challenges posed by indoor applications. It directly supports
the need to evaluate multi-sensor performance, particularly in environments
that are cluttered or lack distinct visual features.

Additionally, a multi-sensor simulation framework was developed and pub-
lished, providing tools for testing and evaluating perception systems in a
variety of indoor environments, using Unreal Engine 4. This framework
allows for robust system development in spaces with minimalistic decor or
textureless surfaces, addressing the challenge of operating in indoor environ-
ments with sparse or ambiguous visual cues. The framework is represented
in the measurement data abstraction layer shown in Figure 1.1, where the
system supports both live and pre-recorded datasets for evaluation.

Finally, extensive experimental evaluations of the proposed system were
conducted, demonstrating the robustness of audio-visual fusion for ego-state
estimation and sound source localization. These experiments showcase the
system’s ability to maintain continuous perception and operation in real-
world indoor environments, even when facing obstacles or sensor failures. As
seen in Figure 1.1, the architecture facilitates real-time processing of visual
and audio data for robust ego-state estimation and landmark localization.
The results demonstrate the system’s ability to overcome challenges related
to obstacle proximity and multi-sensor integration, ensuring reliable and
fault-tolerant operation in complex household environments.

1.6. Outline

Chapter 2 on page 13 reviews the related work in the �elds of visual percep-
tion, audio perception, robotic proprioception, and combined audio-visual
approaches. This chapter provides an overview of existing methodologies
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Figure 1.1.:Overview of the di�erent sub-components of the proposed audio-visual perception
system. On the left-hand side, the measurement data abstraction layer in yellow, the ego-state
estimation in blue, and landmark estimation in green.

and discusses their relevance to multi-sensor and multi-modal localization in
indoor environments.

Chapter 3 on page 25 focuses on the machine perception components of
the system. It covers the visual, audio, and proprioceptive perception mod-
ules, detailing their individual roles and how they contribute to the overall
perception architecture.

Chapter 4 on page 47 presents the audio-visual architecture developed in
this work. This includes the measurement data abstraction layer (MDAL),
the robot con�guration, and the hardware emulation components. The in-
tegration of these elements ensures the synchronization and processing of
multi-sensor data.

Chapter 5 on page 69 discusses the ego-state estimation process, with a focus
on the visual odometry and mapping techniques used to maintain accurate
localization in indoor environments. The fusion of multi-sensor data is also
covered, ensuring the system’s robustness in dynamic and cluttered spaces.
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Chapter 6 on page 89 addresses landmark estimation, explaining the methods
used for detecting and localizing visual and audio landmarks. The process
of fusing these data types to improve environmental modeling is also pre-
sented.

Chapter 7 on page 101 provides the evaluation of the proposed system. Var-
ious experiments are conducted to assess the performance of multi-sensor
approaches, including the system’s ability to handle loss-of-tracking events
and its robustness in audio-visual localization tasks.

Finally, Chapter 8 on page 117 concludes the thesis, summarizing the con-
tributions and presenting avenues for future work. This chapter re�ects on
the �ndings and discusses potential improvements and extensions for future
research.
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2. RelatedWork

Localization in indoor environments requires a detailed understanding of
various perception methods. In this chapter, the related work across multiple
modalities will be discussed, starting with visual perception, followed by
audio perception, proprioception, and �nally, multi-modal and multi-sensor
approaches. Each modality presents distinct advantages and limitations,
which have been addressed in various studies.

For visual perception, the focus will be on visual odometry (VO) techniques.
However, VO is often related to a full SLAM system, therefore a lot of related
work is part of more complex mapping approaches as well. These methods
rely on visual data to estimate the position and orientation of the robot, often
in environments where clear and consistent visual landmarks are essential.

Audio perception has gained attention for its ability to localize sound sources,
particularly in environments where visual data is insu�cient or unavailable.
By leveraging directional audio cues, robots can enhance their understand-
ing of the surroundings and improve interaction capabilities, especially in
dynamic and cluttered indoor settings.

Proprioception plays a critical role when fusing audio and visual data, par-
ticularly in scenarios where sensors are mounted at di�erent locations on
the robotic platform. The robot’s kinematic structure introduces dynamic
transformations between the sensor frames, making it necessary to have
accurate internal sensing. Information from joint encoders enable the system
to track these transformations in real-time, ensuring that data from di�erent
modalities can be correctly aligned.

Finally, multi-modal approaches combine data from visual, auditory, and pro-
prioceptive sensors, creating a more robust system for localization and map-
ping. These approaches aim to overcome the limitations of single-modality
systems, o�ering improved performance in complex and variable environ-
ments.
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The following sections will review the state-of-the-art methods and systems
that address the challenges of localization and perception across these modal-
ities, with a focus on their application to indoor robotic platforms.

2.1. Visual Odometry

Visual odometry is a foundational technique in robotic perception, aimed
at estimating a robot’s motion by analyzing visual input. VO systems infer
the camera’s trajectory by tracking changes in images over time, which
is particularly useful when a globally consistent map is not required, or
when mapping is handled by separate processes. Compared to simultaneous
localization andmapping, VO focuses exclusively on accuratemotion tracking,
making it a lighter-weight solution for real-time applications.

Feature-based methods have been central to VO development. These methods
track distinct points in the environment, such as corners or edges, to com-
pute the camera’s movement. One of the most widely adopted approaches
is ORB-SLAM, introduced by Mur-Artal et al. [91], which builds on ORB
features for robust, e�cient tracking. This algorithm achieves high accuracy
while maintaining computational e�ciency, a key requirement for real-time
systems. Feature-based VO methods remain popular due to their relatively
low computational complexity and adaptability in diverse environments, from
structured indoor spaces to outdoor settings.

To enhance the robustness and accuracy of VO, signi�cant research has fo-
cused on addressing visual ambiguities, such as repetitive patterns or dynamic
objects in the scene. For example, Klein et al. [63] introduced parallel pro-
cessing for separating the tasks of tracking and mapping. By assigning one
thread to track camera pose and another to build a 3D map, they improved
the real-time performance of VO, particularly for mobile applications. They
further proposed the Keyframe approach, where only selected frames are
used for optimization, reducing the computational load while maintaining
the accuracy of pose estimates. The concept of Keyframe has since become
integral to many VO and SLAM systems, as it balances real-time performance
with map optimization.

However, feature-based approaches encounter limitations in environments
with low texture or poor lighting, where distinctive visual features are scarce.
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This led to the development of dense VO methods, which utilize the entire
image rather than isolated features. Dense methods directly exploit pixel
intensities to estimate motion, providing more precise tracking in textureless
regions. For instance, Steinbrucker et al. [126] and Kerl et al. [61] were among
the �rst to demonstrate dense approaches for visual odometry. Their algo-
rithms minimize photometric error between frames, improving robustness
in environments where feature-based techniques struggle. Engel et al. [39]
advanced this further by introducing a fully direct VO method that tracks
every pixel, enabling highly accurate motion estimation even in scenes with
few identi�able features.

The computational demands of dense methods are a key challenge, especially
for mobile systems where processing power and battery life are limited. While
dense VO methods provide greater accuracy, they often require hardware
acceleration, such as GPUs, to run in real-time. This limitation was addressed
by Whelan et al. [146], who introduced a room-scale dense VO algorithm
that reduces reliance on GPUs while maintaining high performance in larger
environments. Despite these advancements, feature-based approaches like
ORB-SLAM continue to be favored for systems with constrained resources
due to their e�ciency and ability to operate without specialized hardware.

Another major area of research in VO involves multi-sensor fusion. By com-
bining visual data with other sensor modalities, such as inertial measurement
units (IMUs), it is possible to improve robustness and mitigate the weak-
nesses of purely visual approaches. For example, incorporating IMU data
helps counteract the e�ects of rapid motion or low-texture environments,
where visual tracking alone may fail. Forster et al. [42] introduced a method
that integrates IMU data with visual information into a manifold representa-
tion, signi�cantly improving the accuracy of motion estimation, especially in
challenging conditions.

In multi-sensor setups, VO systems can track motion across multiple cameras
or integrate data from cameras mounted at di�erent locations on a robotic
platform. Müller et al. [93] proposed a system that asynchronously samples
Keyframe from di�erent cameras, ensuring robust tracking even when the
viewpoints are signi�cantly di�erent or not synchronized. This approach
is particularly valuable in dynamic environments where di�erent sensors
may encounter varying visual conditions. Furthermore, Zhao et al. [153] and
Meng et al. [82] developed tightly coupled multi-sensor systems that fuse data
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from a central sensor with additional visual inputs, enhancing the system’s
ability to track motion reliably in cluttered or dynamic environments.

These advancements in visual perception have made VO a critical tool for
robotic systems, particularly for mobile platforms that need to operate in
real-time while conserving computational resources. Innovations such as
Keyframe-based optimization, dense photometric tracking, and multi-sensor
fusion have expanded the capabilities of VO, making it suitable for a wide
range of applications, from autonomous navigation to human-robot inter-
action in dynamic indoor environments. By focusing on e�cient motion
estimation, VO systems continue to play a central role in visual perception
for robots, especially in scenarios where lightweight, accurate, and robust
solutions are required.

Previous research in visual odometry has largely focused on single-camera
systems, with methods such as proposed by Mur-Artal et al. and Forster el
al., or dense approaches, as proposed by Steinbrucker et al. and Engel et al.,
aiming to improve robustness under challenging conditions. These systems
typically rely on feature-based methods or dense pixel tracking, optimized for
environments with su�cient texture and favorable lighting. However, they
often face signi�cant limitations in robustness when applied to cluttered, or
low-texture environments, especially in single-camera setups.

The approach presented in this work introduces a multi-sensor visual odome-
try system that integrates keyframe-based techniques with feature extraction
to optimize performance and enhance robustness. Unlike single-camera sys-
tems, which are more prone to loss of tracking in occluded or low-texture
scenarios, this system leverages sensor fusion, combining data from multiple
visual sensors to ensure reliable operation even in complex environments.

A key distinguishing feature is its ability to handle individual sensor fail-
ures without compromising overall motion estimation. Previous work in
single-camera visual odometry often experiences signi�cant performance
degradation or complete loss of tracking in the event of occlusions or sensor
malfunctions, requiring manual resets or intervention. In contrast, the sys-
tem presented here utilizes a loosely coupled architecture, where each sensor
operates semi-independently. If a sensor fails, the remaining sensors continue
to provide accurate data, allowing seamless reintegration of the failed sensor
once it recovers. This capability, demonstrated through testing with the In-
doorMCD dataset [118], ensures continuous localization and navigation even
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in the presence of sensor dropouts, o�ering greater fault tolerance compared
to prior single-camera approaches aimed at enhancing robustness.

2.2. Audio Localization

Early research in sound source localization focused on imitating binaural
audio perception in humans and animals. Je�ress [57] proposed a theory based
on the interaural phase di�erence (IPD) of sound waves reaching both ears.
Huang et al. [53] designed auditory systems for robots, emphasizing sound
localization and separation using interaural intensity di�erence (IID). Nakadai
et al. [96] developed methods for real-time tracking of multiple objects using
auditory and visual inputs in humanoid robots, and later discussed enhancing
sound source localization with scattering theory [95].

The inclusion of the head-related transfer function (HRTF) and environmen-
tal reverberation modeling further increased robustness. MacDonald [75]
introduced a localization algorithm utilizing HRTFs. Keyrouz and Naous [62]
proposed a method for three-dimensional sound localization using binaural
hearing and HRTFs. Kossyk et al. [66] discussed tracking stationary sound
sources in reverberant environments. These approaches require accurate
calibration, where deviations in environmental modeling signi�cantly impact
results.

Successive work focused on the direction of arrival (DoA) estimation. Valin
et al. [141] developed robust methods for sound source localization using
a microphone array on a mobile robot. Later, they presented a method for
localizing multiple moving sound sources using a frequency-domain steered
beamformer [140]. These approaches estimate direction using time delays
between sensor inputs but face challenges in low signal-to-noise ratio (SNR)
environments.

Deep learning approaches promise to overcome these issues but require spe-
ci�c training data or large datasets for generalization. Mumolo et al. [90]
presented algorithms for acoustic localization in service robotics. Roden et
al. [107] used deep neural networks for speech signal localization. Adavanne
et al. [1] proposed a convolutional recurrent neural network for DoA estima-
tion. Xiao et al. [147] introduced a learning-based approach to DoA estimation
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in noisy environments, and Takeda and Komatani [134] proposed discrimina-
tive multiple sound source localization using deep neural networks.

Recent research has shifted towards subspace-based approaches like multiple
signal classi�cation (MUSIC) and estimation of signal parameters via rota-
tional invariant techniques (ESPRIT). Schmidt [114] introduced the MUSIC
algorithm for emitter location and signal parameter estimation. Roy and
Kailath [109] developed the ESPRIT technique for signal parameter estima-
tion via rotational invariance. These methods o�er increased robustness
and angular resolution, overcoming sampling frequency limitations. Argen-
tieri and Danes [5] discussed broadband variations of the MUSIC method
for robotics. Asono et al. [6] addressed sound source localization and signal
separation for o�ce robots. Ishi et al. [56] evaluated the real-time application
of MUSIC in noisy environments.

Acoustic monitoring is well-established in ecological research, especially for
ornithology. Sugai et al. [131] provided a roadmap for terrestrial acoustic
monitoring. Later they [132] reviewed perspectives on terrestrial passive
acoustic monitoring. Semi-automated analysis is used for temporal and spa-
tial estimation of bird behavior, developed for detecting and monitoring audio
events. Llusia et al. [70] discussed terrestrial sound monitoring systems and
quantitative calibration. Kasten et al. [59] introduced the Remote Environ-
mental Assessment Laboratory’s acoustic library. Kojima et al. [65] proposed
semi-automatic bird song analysis integrating detection, localization, sepa-
ration, and identi�cation. Full-automation methods o�er an unsupervised
approach but require extensive training. Digby et al. [32] compared manual
and autonomous acoustic monitoring methods. Suzuki et al. [133] developed
HARKBird for exploring acoustic interactions in bird communities. Astaras et
al. [7] used passive acoustic monitoring for law enforcement in Afrotropical
rainforests. Ulloa et al. [139] applied unsupervised multiresolution analysis
for estimating animal acoustic diversity in tropical environments.

These methods have also been applied to factory and technical applications
for process monitoring in additive manufacturing. Koester et al. [64] re-
searched acoustic monitoring for damage and process condition determina-
tion in additive manufacturing. Hossain and Taheri [52] explored in situ
process monitoring using acoustic techniques. Additionally, convolutional
neural networks have been employed for detecting the degradation state of
robotic systems [18]. Bynum and Lattanzi [18] combined convolutional neu-
ral networks with unsupervised learning for acoustic monitoring in robotic
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manufacturing facilities. Unknown spectral pro�les or signals with high
variances remain problematic.

The literature on sound source localization and acoustic monitoring reveals
signi�cant advancements in reducing computational complexity for mobile
systems, increasing robustness in indoor scenarios, and applying these tech-
nologies to robotics and environmental monitoring. Early research established
foundational methods such as IPD and IID for binaural audio perception,
which were further enhanced by incorporating HRTFs and environmental
reverberation modeling. Methods like MUSIC and ESPRIT have provided
robust, high-resolution localization, while deep learning approaches have
shown promise in complex, low SNR environments despite their data re-
quirements. These developments have been crucial in implementing e�cient
sound localization on mobile robotic systems, ensuring reliable performance
in dynamic indoor environments. Additionally, the integration of acoustic
monitoring in ecological research and industrial applications highlights the
versatility and practical signi�cance of these technologies. The progress in
reducing computational demands has made real-time processing feasible,
broadening the scope of applications in both robotics and environmental
monitoring.

In contrast to previous methods, which primarily focused on traditional sound
localization techniques such as interaural phase di�erence (IPD), interaural
intensity di�erence (IID), and subspace-based approaches like MUSIC, the
approach developed here addresses several key limitations. Earlier works,
such as those by Nakadai et al. and Valin et al., concentrated on microphone
array setups and direction of arrival (DoA) estimation but often encountered
signi�cant challenges in highly reverberant indoor environments and low
signal-to-noise ratio (SNR) scenarios. While these methods have contributed
to advancements in sound source localization, their performance tends to
degrade in environments with complex acoustic properties, such as re�ective
surfaces.

The approach presented here introduces an improvement speci�cally tailored
for indoor environments. By focusing on real-time processing of reverberation
and echo e�ects, the system more accurately distinguishes between direct
and re�ected sound sources, mitigating one of the major challenges of prior
works. Additionally, rather than relying solely on static frequency selection,
this system dynamically adapts its processing to the current auditory scene,
allowing for more robust localization in complex acoustic environments.
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These advancements enhance its reliability in real-world indoor settings,
outperforming traditional methods in terms of robustness to environmental
variability.

2.3. Robotic Proprioception

Earlywork in formulating kinematic frameworks, such as those by Kennedy [60]
and Calvert [21], laid the groundwork. Denavit and Hartenberg’s methodol-
ogy [30] was pivotal, providing a structured approach to describing robotic
arm transformations. Subsequent advancements, like the use of Lie Algebra
for spatial transformations by Murray [105], and conformal geometric algebra
by Löw and Calinon [74], further enriched the �eld. Modern approaches,
including neural networks and deep reinforcement learning by Lu et al. [72]
and Malik et al. [79], have enhanced the precision and e�ciency of solving
inverse kinematics problems. Burkhard et al. [84] introduce a probabilis-
tic kinematic model accounting for joint position inaccuracies, mechanical
stress-induced deformations, and gravitational in�uences.

The interaction of robots with objects under uncertainty has been explored
by Su et al. [130]. Progress in modeling perception uncertainties includes
classical approaches by Stoiber et al. [128] and deep-learning-based methods
by Meyer et al. [83]. Recent e�orts focus on sparse iterative approaches [127]
to enhance robustness in uncertain environments. Hand-eye calibration
introduces additional transformation uncertainties, as discussed by Nguyen
et al. [98]. Recent studies propose methods to enhance calibration accuracy
and robustness [112, 38]. Addressing these inaccuracies is vital for vision-
guided robotic systems.

Various robotics sub-�elds deal with spatial transformations subject to errors
modeled as uncertainties. Systematic approaches, particularly in virtual
reality by Carlsson et al. [23] and Tramberend [138], and robotic simulators by
Browning et al. [17, 33], utilize scene graphs to represent spatial relationships.
The current state-of-the-art framework is tf in ROS [41]. However, little work
has interconnected di�erent robotics realms to account for spatial information
uncertainties. Initial e�orts like those by Coelho et al. [25] acknowledged
uncertainty within the scene graph but often failed tomodel error propagation
using Lie Algebra. Some approaches resort to sampling-based methods, such
as Ruehr’s [111], but with computational costs.
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Lie Algebra e�ectively acknowledges the manifold character of spatial re-
lationships and propagates uncertainty along transformation chains. An
introduction to this approach, particularly for robotic navigation, is provided
by Barfoot et al. [9]. Lie-Algebra-based concepts for error propagation within
robotic manipulators are also explored by Wang et al. [150, 84]. Despite its
widespread use in uncertainty estimation, no existing approach has integrated
Lie Algebra-based uncertainty propagation into a robotics scene graph.

Building on Lie Algebra and previous work that represents robot kinematics as
a tree of transformations, this work proposes a novel approach that combines
these two concepts to model kinematics with uncertainties. By integrating
the mathematical framework of Lie Algebra into the transformation tree,
the proposed method allows for more accurate and robust representation
of the robot’s pose and motion, accounting for internal sensor inaccuracies
and environmental uncertainties. This approach provides a structured and
scalable way to handle kinematic errors, improving the overall precision and
reliability of robotic systems operating in dynamic environments.

2.4. Combined Audio-Visual Approaches

The �rst combination of audio and visual localization in robotics was con-
ducted by Nakadai et al. [94] to enable more accurate localization of sound
sources. Using vision systems to enhance auditory processing helps in resolv-
ing ambiguities in sound source direction. An active audition system was
introduced to optimize the capture of sound sources by moving the array
perpendicular to the source. Building on this, Nakamura et al. [97] proposed
a SSL system for dynamic environments. This system involves developing
robust and adaptable methods for identifying sound sources amid varying
noise conditions and movement, achieved by moving the robot’s head to
focus audio capture towards the source.

Viciana-Abad et al. [142] formulated a bio-inspired approach that combines
audio and visual inputs to localize and track speakers. This fusion leverages
Bayesian inference to process sensory data and improve detection accuracy.
An adaptive �lter with a short training phase was implemented at the begin-
ning to adjust for di�erent environments.
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Another common approach is to combine audio and visual data to enhance
speech recognition. Gabbay et al. [44] proposed an end-to-end neural network
that integrates audio and visual data. A shared representation improved the
model’s ability to distinguish between target speech and background noise.
Similarly, Chung et al. [24] utilized cross-modal biometric learning to link
facial appearance with voice characteristics, enabling e�ective speech sepa-
ration without prior speaker enrollment. Their robust fusion was achieved
by concatenating speech and visual features, allowing the network to utilize
speaker identity information for better separation.

Majumder et al. [78] proposed a reinforcement learning agent that learns mo-
tion policies to control its camera and microphone, optimizing its movement
to enhance audio separation. It utilizes egocentric audio-visual observations
to make decisions, allowing the agent to actively navigate and isolate the
target sound source in a dynamic environment. Focusing on lip reading and
combining it with auditory clues, Afouras et al. [2] presented two transformer
models, one using Connectionist Temporal Classi�cation (CTC) loss and one
using Sequence-to-Sequence (Seq2Seq) loss. Both models are built on the
transformer self-attention architecture, enabling a direct comparison of the
advantages and disadvantages of each loss type.

Expanding the focus beyond speech to understanding the whole acoustic
scene, Owens and Efros [101] introduced a self-supervised learning approach.
A neural network is trained to detect temporal misalignment between audio
and visual streams. This task forces the network to learn a fused representa-
tion that captures the correlation between visual motions and corresponding
sounds. They applied the learned features to classify actions in videos, achiev-
ing signi�cant performance improvements over existing self-supervised meth-
ods. Finally, Majumder et al. [77] proposed using egocentric audio-visual
observations to inform the agent’s locomotion and navigation system.

Acoustic monitoring is well established in ecological research, especially for
ornithology [131, 132]. Semi-automated analysis, as introduced by Llusia et
al. [70], is utilized for the temporal and spatial estimation of bird behavior,
which has been developed to detect and monitor audio events. However,
expert knowledge is necessary to label received audio fragments. Fully auto-
mated methods by Digby et al. [32] and Ulloa et al. [139] o�er an unsupervised
approach based on training in simulation and datasets. These methods have
been applied to factory and technical applications for process monitoring in
additive manufacturing [64, 52].
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The approach presented in this work di�ers from previous combined audio-
visual methods primarily in its integration of dynamic and multi-source
settings, particularly within complex and cluttered environments. Earlier
systems such as those by Nakadai et al. and Nakamura et al. focused on static
or controlled conditions with emphasis on speci�c sound source localization
through auditory processing supported by vision systems. These approaches,
while e�ective for resolving ambiguities in source direction, struggled in
environments with high levels of noise, movement, or reverberation.

In contrast, this work introduces a more adaptive audio-visual perception
system that not only localizes sound sources but also integrates real-time
visual tracking in dynamic and unpredictable environments. It improves upon
the robustness of sound detection by using an enhanced motion model and
active frequency �ltering to handle reverberation and occlusion challenges.
Furthermore, the system excels in multi-source environments by dynamically
adapting to changes in the auditory and visual scene, a limitation in earlier
frameworks that heavily relied on static frequency selection or microphone
array setups.

2.5. Literature Discussion

Most previous work focuses on a single modality, particularly visual data,
within perception frameworks. Attempts to integrate additional sensors
often lead to increased computational complexity, memory usage, or sys-
tem requirements, such as synchronization circuitry for acquisition triggers.
This work proposes an approach utilizing independent sensors, which are
fused using loosely-coupled methods and uncertainty-aware sensor position
models. Furthermore, the extension to audio information is designed specif-
ically for indoor environments, as opposed to outdoor or specialized cases
in ornithology. Finally, the methods in this thesis advocate for the use of
robust architectures to prevent system failure in the event of a single sensor
malfunction.
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3. Multi-Modal Perception of

Indoor Environment

Developing advanced machine perception systems presents signi�cant chal-
lenges. Visual perception in machines can be hindered by textureless or
re�ective surfaces, occlusions, and the need for real-time processing. Sim-
ilarly, auditory perception must overcome di�culties such as background
noise, sound source localization, and the integration of audio data with other
sensory inputs. Proprioception, which provides information about the robot’s
body position and movement, is crucial for tasks requiring precise interaction
and coordination. These challenges highlight the complexity of designing
sensory systems capable of reliable perception in diverse and dynamic envi-
ronments.

In robotics, it is often necessary to combine information from various sensory
sources to build a more robust perception of the environment. This section
will explore the speci�c di�culties associated with visual, auditory, and
proprioceptive perception in robots and how combining these modalities can
enhance overall system performance.

Definitions

To support the understanding of these systems, it is essential to de�ne two
important terms: multi-sensor and multi-modal.

A multi-sensor system refers to the use of multiple sensors, often of the
same type, to gather data from the environment. The core idea behind a
multi-sensor setup is redundancy: by relying on several sensors, the system
can compensate for the failure of any single sensor. This redundancy is partic-
ularly valuable in indoor environments, where sensor reliability can �uctuate
due to various factors like occlusions or the appearance of the environment.
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Since each sensor operates independently, the failure of one does not ren-
der the system blind. The remaining sensors continue to provide valuable
data, ensuring continuity of perception. While multi-sensor systems can
also involve di�erent types of sensors (e.g., visual and audio), their primary
strength lies in improving reliability and robustness by increasing the number
of independent data sources.

A multi-modal system, on the other hand, involves the integration of di�er-
ent types of sensory inputs, or modalities, into a uni�ed perception framework.
In this work, the primary modalities include vision, audio, and propriocep-
tion, though other possible modalities, such as tactile or thermal perception,
are used in other applications. The advantage of multi-modal systems lies
in their ability to combine fundamentally di�erent types of data, allowing
for a more comprehensive and nuanced understanding of the environment.
For example, while vision provides detailed spatial information, audio o�ers
insight into events outside the line of sight, and proprioception ensures the
system is aware of its own movement and con�guration. By combining these
heterogeneous data streams, multi-modal systems can overcome limitations
that arise from relying on a single type of input, enhancing both accuracy
and adaptability in complex environments.

3.1. Visual Perception

Visual perception in robotic systems is fundamental for enabling robots to
interpret and interact with their environment. Cameras are the primary sen-
sors used for this purpose, capturing images and videos that serve as the basis
for further processing. These visual inputs allow robots to perform critical
tasks such as navigation, localization, and mapping of their surroundings.
The capability to accurately perceive the environment using camera-based
systems is essential for various applications, from autonomous vehicles to
industrial automation and service robots.

The process of visual perception in robots involves several stages, starting
with the acquisition of raw images from cameras. These images undergo
preprocessing to enhance quality and remove noise, followed by feature
extraction to identify critical elements within the scene. The system then
interprets spatial relationships, estimates distances, and constructs detailed
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Figure 3.1.:Model of the camera obscura that �rst used the pinhole camera model to project 3D
objects onto a 2D image plane.

maps of the environment. Despite these advancements, visual perception sys-
tems still face signi�cant challenges in achieving the robustness and reliability
needed for complex tasks.

One of the main challenges in camera-based visual perception is dealing with
diverse and unpredictable environmental conditions. Textureless or re�ective
surfaces can hinder the ability of cameras to capture useful features, while
occlusions can obscure important parts of the scene. Additionally, real-time
processing of high-resolution visual data requires substantial computational
resources, necessitating e�cient algorithms and powerful hardware. Ad-
dressing these challenges is crucial for improving the e�ectiveness of visual
perception systems in robotics.

From theWorld into the Robot’s Memory

Visual perception in robotic systems relies heavily on the ability to capture
and interpret the three-dimensional (3D) world using two-dimensional (2D)
images. Understanding how this transformation occurs is essential for var-
ious applications, including navigation, localization, and mapping. One of
the fundamental principles that underpin this transformation is the pinhole
camera model, which provides a simpli�ed yet e�ective way to describe how
a camera projects the 3D world onto a 2D image plane. Figure 3.1 shows a
camera obscura, which illustrates this model.
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Figure 3.2.:Mathematical representation of the pinhole model.

The pinhole camera model is a foundational concept in computer vision and
robotics, used to describe the projection process. In this model, a camera is
simpli�ed to a single point, known as the pinhole, through which light rays
pass and project an image onto an image plane located behind the pinhole.
This setup forms an inverted image of the scene. The basic components of the
pinhole camera model include the camera’s optical center (the pinhole), the
image plane, and the focal length, which is the distance between the pinhole
and the image plane.

In the pinhole camera model, the projection of a 3D point onto the 2D image
plane involves geometric transformations. Consider a point in the 3D world
with coordinates (-,., / ). A light ray from this point passes through the
pinhole and intersects the image plane, forming an image at coordinates
(D, E) on the plane as seen in Figure 3.2. The relationship between the 3D
coordinates and the 2D coordinates can be described using similar triangles,
where the focal length 5 is the key parameter. Mathematically, the projection
can be expressed as:

D =

5 -

/
and E =

5 .

/
(3.1)
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Here, (D, E) are the coordinates on the image plane, and 5 is the focal length.
This simple yet powerful model allows us to understand how spatial informa-
tion is captured and represented in a 2D format.

Parameters of the Pinhole Model

In the pinhole camera model [48], the intrinsic parameters de�ne the internal
characteristics of the camera, including the focal length, the principal point,
and distortion coe�cients. These parameters can be encapsulated in a matrix
known as the intrinsic matrix, which transforms 3D world coordinates into
2D image coordinates.

The intrinsic matrix, often denoted as K, is a 3 × 3 matrix that includes the
focal lengths and the principal point coordinates. The focal lengths in the G
and ~ directions are denoted as 5G and 5~ , respectively. The principal point
coordinates are (2G , 2~). The intrinsic matrix is de�ned as:

K =


5G 0 2G
0 5~ 2~
0 0 1


(3.2)

All 3D points [-,., / ]) that are along the ray which is casted from the origin
of the camera (see Figure 3.2), are projected onto the same point on the image
plane. Therefore, all these points can be normalized by 1// to obtain a general
representation. The transformation from the 3D world coordinates to the 2D
image coordinates [D, E] using the intrinsic matrix K can be then expressed
as:


D

E

1


= K

1

/


-

.

/


=


5G 0 2G
0 5~ 2~
0 0 1



-
/
.
/

1


(3.3)

Simplifying this equation, we obtain a direct mapping:
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[
D

E

]
=

[
5G

-
/
+ 2G

5~
.
/
+ 2~

]
(3.4)

Thus, the intrinsic matrix K encapsulates the camera’s internal parameters,
allowing the transformation from 3D world coordinates to 2D image coor-
dinates. To fully describe the transformation from 3D world coordinates to
2D image coordinates, we must also consider the extrinsic parameters. The
extrinsic parameters de�ne the position and orientation of the camera in the
world and include the rotation matrix R and the translation vector t. The
rotation matrixR is a 3×3matrix that describes the orientation of the camera,
and the translation vector t is a 3 × 1 vector that describes the position of the
camera.

The extrinsic parameters can be combined into a single matrix [R|t], where R
is the rotation matrix and t is the translation vector. This matrix transforms
points from the world coordinate system to the camera coordinate system.

Given a 3D point [-F, .F, /F]
) in the world coordinate system, its coordi-

nates in the camera coordinate system [-2 , .2 , /2 ]
) can be obtained as:


-2

.2
/2


= R


-F

.F
/F


+ t (3.5)

In homogeneous coordinates, this transformation can be written as:


-2

.2
/2


= [R|t]



-F

.F
/F

1


=


A11 A12 A13 C1
A21 A22 A23 C2
A31 A32 A33 C3




-F

.F
/F

1


(3.6)

Combining the intrinsic and extrinsic parameters, we get the projection
matrix % , which maps 3D world coordinates directly to 2D image coordinates.
The projection c (·) is de�ned as:
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c := K
1

/
[R|t] (3.7)

Therefore, the complete transformation from 3Dworld coordinates (-F, .F, /F)

to 2D image coordinates (D, E) is given by:


D

E

1


= c

©­­­
«



-F

.F
/F

1


ª®®®
¬

(3.8)

This projection c (·) encapsulates both the intrinsic and extrinsic parameters,
providing a comprehensive model of the camera’s imaging process. This can
now be used to project points from 3D space to the image plane and vice
versa in Chapter 5 (pp. 69).

Depth Perception Using Stereo Vision

Depth perception in robotic systems can be achieved using stereo vision,
which involves two cameras capturing the same scene from slightly di�erent
viewpoints. This setup mimics human binocular vision and enables the robot
to perceive depth by comparing the images from both cameras. The two
cameras, typically positioned parallel to each other and separated by a �xed
baseline distance, form a stereo pair.

The key to depth perception using stereo vision lies in identifying corre-
sponding features in the images captured by the left and right cameras. These
corresponding features are points in the scene that appear in both images.
The di�erence in the positions of these corresponding points in the two im-
ages is known as the disparity. The disparity is inversely proportional to the
depth of the points in the scene: points that are closer to the cameras have a
larger disparity, while points that are farther away have a smaller disparity.

Before calculating the disparity, the images from both cameras must be recti-
�ed, especially if the focal lengths or other intrinsic parameters di�er. Image
recti�cation involves transforming the images so that corresponding points
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3. Multi-Modal Perception of Indoor Environment

lie on the same horizontal lines. This alignment simpli�es the process of
�nding correspondences and ensures accurate depth estimation. Recti�cation
can be achieved using a combination of camera calibration and homography
transformations. The calibration process estimates the intrinsic and extrinsic
parameters of both cameras, which are then used to compute recti�cation
transformations that warp the images into a common coordinate system.

To compute the depth of a point in the scene, we �rst identify its corre-
sponding points in the left and right recti�ed images. Let [G!, ~!]) be the
coordinates of a feature point in the left image, and [G', ~']

) be the coordi-
nates of the corresponding point in the right image. Since the images are
recti�ed, ~! = ~' , and the disparity 3 is given by: [50]

3 = G! − G' (3.9)

Using the disparity and the known baseline distance � between the two
cameras, we can calculate the depth / of a point based on Equation (3.7) as
follows:

/ =

5 �

3
(3.10)

The depth perception method described here is speci�c to stereo pairs of im-
ages, where the cameras are calibrated, and the images are recti�ed such that
the epipolar lines are horizontal. This simpli�cation allows for a straightfor-
ward calculation of depth using the disparity between corresponding points.
Depth estimation will become important when features merge together in the
VO process described in Section 5.1 on pages 70 or triangulation for feature
position estimations.

Challenges in the Indoor Domain

Visual perception in indoor environments presents numerous challenges that
impact the performance and reliability of robotic systems. One of the primary
issues is the variability of light conditions. Indoor spaces often su�er from
insu�cient lighting, which hinders the ability of visual sensors to capture
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detailed images. While adding arti�cial lighting could mitigate this problem,
solutions like �ashlights are not always practical or desirable, especially in
applications involving human-robot interaction, such as assistant robotics
(see Section 1.2, p. 2). Moreover, arti�cial lighting can introduce additional
shadows and re�ections, complicating the perception task further.

When light is insu�cient, one way to mitigate this issue is to increase the
exposure time of the cameras to detect more photons. However, this in-
creased time for measuring the environment means that movements during
the exposure period will result in blurred projections, known as motion blur.
Motion blur can signi�cantly degrade the quality of the captured images,
making it di�cult for the robot to perceive details and accurately interpret
the environment. This is particularly problematic in dynamic settings where
both the robot and objects within its surroundings are constantly moving.

Re�ective surfaces present a di�erent kind of problem for visual perception
systems. Mirrors, glossy furniture, and other re�ective materials can create
misleading visual cues. Light re�ected o� these surfaces originates from dif-
ferent parts of the room, making it di�cult for depth estimation algorithms to
function correctly. These re�ections can cause the robot to perceive false ob-
stacles or misjudge distances, which is particularly problematic in navigation
and object manipulation tasks.

Textureless and repetitive environments add another layer of complexity.
Modern interior designs often favor minimalist aesthetics with smooth, fea-
tureless surfaces and repetitive patterns. Such environments, as depicted
in Figure 3.3, provide few visual cues, making it challenging for robots to
distinguish between di�erent areas or objects. This lack of distinguishing
features complicates tasks like localization and mapping, where the robot
relies on visual landmarks to understand its position and navigate the space
e�ectively.

In indoor environments, robots operate near obstacles. The previously de-
scribed depth perception using stereo vision depends on detecting point
correspondences in both images. In such situations, both cameras may not
be able to view the point, causing depth perception to fail. Most of these
problems depend on the sensor’s view of the scene, such as lacking features
or close-to-obstacle blindness, and the position of the sensor on the robotic
platform. Finding an optimal position is always a trade-o� and may only
reduce the impact of a single source in speci�c scenarios. Therefore, using
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Figure 3.3.: Photos from real apartments illustrating the modern interior style

multiple sensors facing di�erent directions helps further reduce these im-
pacts, as individual factors can be better counteracted which will be the major
contribution of the upcoming Chapter 5 (pp. 69).

3.2. Audio Perception

While visual perception provides critical spatial and temporal information
about the environment, it is limited to the line of sight and a�ected by light-
ing conditions. Audio perception, on the other hand, complements visual
perception by o�ering a 360-degree sensory capability that is not constrained
by visual barriers. Sound waves can travel around obstacles and provide
important cues about objects and events that are not directly visible.

In the context of robotics, inspiration is drawn from human auditory per-
ception to develop systems capable of capturing and interpreting auditory
information. This involves sensors and processing techniques to accurately
measure and understand the auditory environment.
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Measuring a Vibrating Medium

Audio perception fundamentally di�ers from visual perception in that it
involves the detection of vibrating molecules rather than the travel of photons.
While light perception relies on the interaction of photons with receptors like
the human retina or photosensitive components of a camera, audio perception
depends on the detection of pressure waves traveling through a medium,
such as air, water, or solid materials. These pressure waves cause molecules
in the medium to vibrate, creating sound.

When an object vibrates, it disturbs the molecules in the surrounding medium,
creating compressions and rarefactions. These alternating high and low-
pressure regions travel outward from the source as sound waves. The fre-
quency of these vibrations determines the pitch of the sound, while the
amplitude of the vibrations determines the volume. Higher frequency vi-
brations result in higher-pitched sounds, and larger amplitude vibrations
produce louder sounds.

Acoustic waves are longitudinal waves, meaning the displacement of the
medium’s molecules occurs in the same direction as the wave travels. This
is di�erent from transverse waves, like those on a water surface, where the
displacement is perpendicular to the wave’s direction. In longitudinal waves,
such as sound, molecules move back and forth in the direction of the wave,
creating areas of compression and rarefaction [102, 149].

In auditory systems, these vibrations are captured by sensors designed to
measure the changes in pressure caused by sound waves. Microphones work
by converting the mechanical energy of sound waves into electrical signals.
This is typically achieved using a diaphragm that vibrates in response to
sound waves, causing changes in an electrical circuit that can be measured
and analyzed. For example, when a drum is struck, the drumhead vibrates,
creating sound waves that travel through the air and are detected by our ears
or microphones [102, 12].

The speed of light is approximately 299 792 km/s in a vacuum, but it slows
slightly to around 299 702 km/s when traveling through air due to the refrac-
tive index of air being about 1.0003 [36]. In contrast, the speed of sound is
much slower, approximately 343m/s in air at room temperature. This vast
di�erence in speed has several implications:
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• Speed Variability: The speed of sound is signi�cantly in�uenced
by environmental conditions such as temperature. As temperature
increases, the speed of sound also increases because warmer air causes
molecules to move faster, facilitating quicker transmission of sound
waves.

To speed of sound can be derived from the Newton-Laplace equation

E0 =

√
 B

d
=

√
W08A%

d
(3.11)

where:

– E0 is the speed of sound in m/s,

–  B is the isentropic bulk modulus of air in Pa,

– d is the density of air in kg/m3,

– W08A is the adiabatic index of air (≈ 1.4),

– % is the air pressure Pa.

Substituting the ideal gas law % = d') , the equation simpli�es to

E0 =
√
W08A'08A) (3.12)

where:

– '08A is the speci�c gas constant of dry air (≈ 287.05 Jkg−1K−1)

– ) is the temperature in K

Interestingly, the speed of sound is not directly dependent on air
pressure, as it is proportional to temperature. Humidity a�ects the
composition of air by adding water molecules, which decreases the
speci�c gas constant. However, previous research in our target domain
shows that humidity changes the speed of sound at ) = 20 ◦C by a
maximum of 0.075%. Therefore, this in�uence is negligible and will
not be considered in the rest of this work [103, 15].
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Figure 3.4.:Audio wave propagation in the frame of a 3D microphone array.

• Measurement Implications: Taking an image with light-based sys-
tems is almost instantaneous due to the high speed of light. In contrast,
sound measurements are inherently slower and are collected over time.
This temporal aspect of sound requires continuous sampling and pro-
cessing to capture the dynamics of auditory events accurately. For
instance, capturing an audio signal involves recording the changes in
air pressure over time, necessitating sophisticated time-based analysis
techniques.

Microphone Arrays

Microphone arrays are an essential component in modern audio perception
systems, playing an important role in a variety of applications ranging from
speech recognition to environmental sound analysis. These arrays consist of
multiple microphones arranged in a speci�c spatial con�guration. This setup
allows for the simultaneous capture and analysis of sound from di�erent
directions.. The fundamental advantage of using microphone arrays lies
in their ability to estimate the direction of arrival (DoA) of sound waves,
a process that is critical for localizing sound sources and enhancing audio
quality in complex environments.

One of the key principles behind microphone arrays is the concept of time
delay of arrival (TDOA), illustrated in Figure 3.4. As sound travels through
the air, it reaches each microphone at slightly di�erent times. By precisely
measuring these time di�erences, it is possible to infer the direction from
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which the sound originated. This capability is particularly useful in appli-
cations such as beamforming, where the array can focus on sounds coming
from a speci�c direction while attenuating noise from other directions. This
technique enhances the clarity and intelligibility of speech signals in noisy
environments, making it invaluable in �elds such as teleconferencing, hearing
aids [11], and as in the case of this work, robotic audition and the localization
of sound sources which will be described in Section 6.1.2 (pp. 91).1

Assume a microphone array with sensors arranged in 3D space. If the distance
to a given source is large enough, we can assume the wavefront is planar.
This condition is known as the far-�eld. The TDOA at each sensor position
can be calculated as follows. Let

– r8 be the position vector of the 8-th microphone,

– r9 be the position vector of the 9-th microphone,

– k be the unit vector in the direction of the incoming sound wave,

– E0 be the speed of sound in the medium,

– �C8 9 be the time di�erence of arrival between microphone 8 and
microphone 9 .

The separation vector d8 9 between the microphones which represents the
Euclidean distance ∥ · ∥2 is given by:

d8 9 = ∥r9 − r8 ∥2 (3.13)

The TDoA �C8 9 can be calculated as:

�C8 9 =
d8 9 · k

E0
(3.14)

Here, d8 9 · k represents the dot product of the separation vector and the direc-
tion vector, indicating the e�ective path di�erence that the wavefront travels
between the twomicrophones. This approach leverages the three-dimensional
positions of the microphones to accurately determine the direction of the
incoming sound wave assuming planar wavefronts.

1 Publication 9
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Figure 3.5.:Microphone placement on the forehead of the robot Rollin’ Justin.

The spatial arrangement of microphones in an array can vary signi�cantly
depending on the application and desired performance characteristics. Com-
mon con�gurations include linear, circular, and spherical arrays, each o�ering
unique advantages. For instance, linear arrays are simple to implement and
e�ective for applications requiring directional sensitivity in one dimension.
Circular and spherical arrays, on the other hand, provide more comprehensive
coverage and are capable of three-dimensional sound localization, making
them ideal for autonomous assistant platforms [81].

Figure 3.5 shows a custom microphone array designed for the humanoid
system Rollin’ Justin. The array’s shape is optimized for human speech
frequencies while being discreetly integrated to ensure the robot’s face does
not appear intimidating. This design consideration is crucial in the �eld of
assistant robotics, where human interaction with the system is common, and
the robot’s design often prioritizes aesthetics over function [100, 16, 116].

Challenges in the Indoor Domain

In indoor environments, the contained nature of spaces with walls, �oors, and
ceilings presents signi�cant challenges for audio perception systems. One of
the primary issues is the presence of echoes and reverberations. Echoes occur
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Figure 3.6.: Illustration of a shadow source introduced by echo.

when sound waves re�ect o� surfaces such as walls and return to the source,
creating distinct delayed repetitions of the original sound. This phenomenon
is easily observed when shouting in a hall and hearing the shout repeated
moments later. These echoes can create "shadow" sources (see Figure 3.6) that
confuse audio perception systems, making it di�cult to accurately identify
and localize the original sound source.

Reverberation, on the other hand, results from the accumulation of multiple
small re�ections of sound waves within an enclosed space. Unlike distinct
echoes, reverberation produces a continuous background noise that lacks a
speci�c direction. This can be likened to the lingering sound in a church after
an organ stops playing. The omnipresent nature of reverberation reduces the
SNR, signi�cantly impacting the clarity of audio signals and complicating the
process of distinguishing individual sound sources. This ambient noise can
mask important audio cues, making it challenging for systems to accurately
process and respond to sounds.

Another challenge is the variability of sound propagation due to the diverse
materials and objects found indoors. Di�erent materials such as carpets,
curtains, furniture, and walls have varying acoustic properties, absorbing
or re�ecting sound waves to di�erent extents depending on the wavelength.
This variability can distort audio signals, a�ecting the accuracy of sound
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localization and recognition. For instance, sound waves may be dampened
by soft furnishings, leading to weaker signals, while hard surfaces may cause
excessive re�ections, complicating the perception process.

Using an adaptive �lter approach that focuses on the dominant frequencies
of directed sound, rather than background noise or weakened frequencies,
e�ectively models the environmental situation. Additionally, modeling the
audio path and incorporating the Precedence E�ect [69], which prefers the
�rst detected direction of arrival over others, reduces distraction from shadow
sources or irritation due to low SNR environments, thereby improving es-
timation accuracy. This approach is integrated as a motion-model into the
methods described in Chapter 6 (pp. 89), particularly Section 6.1.2 (pp. 91).

3.3. Robotic Proprioception

In robotics, proprioception—the sense of the relative position of the robot’s
joints—enables precise interactions with the environment. This capability
allows robots to understand and react to their own con�guration and motion.
This is essential for tasks requiring accurate positioning and movement.
Additionally, it involves integrating measurements and observations from
di�erent sensors in a complex robotic system. This chapter looks into the
basics of robotic proprioception, emphasizing its importance in the broader
context of robotic sensory perception.

Understanding the robot’s con�guration begins with the kinematic analysis
of its joints and links. Each joint and link in a robotic system plays a speci�c
role in determining the overall movement and �exibility of the robot. Joints
can be categorized based on their movement characteristics: linear, rotary, or
a combination of both. Commonly used joints in robotics include prismatic,
revolute, spherical, cylindrical, and other specialized joints [124, 143, 123].

• Prismatic Joints: Prismatic joints allow sliding motion along a single
axis, similar to how a drawer operates. These joints are commonly
used in industrial robots to extend and retract robotic arms, allowing
for reach without requiring a larger base.

• Slider Joints: These joints allow two plates to slide over each other
in a plane, providing motion in two dimensions. They are often found
in X-Y tables used in 3D printers and CNC machines.
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• Revolute Joints: Also known as hinge joints, revolute joints allow
rotation around a single axis. They are fundamental in robotic arms
and hands, enabling tasks such as assembly, packaging, and machining.
These joints function similarly to human elbows and knees.

• Twisting Joints: Twisting joints, another type of rotary joint, allow
rotation around an axis perpendicular to the axis of the connected
links. These are often used in robotic wrists to provide additional
degrees of freedom for tasks requiring complex movements.

• Revolving Joints: These joints enable rotational motion where one
link is perpendicular to the axis of rotation, while the other link is
parallel. This con�guration is used in more complex robotic systems
to achieve intricate movements.

• Spherical Joints: Spherical joints allow for multi-axial movement,
providing rotation, swiveling, and pivoting in various directions. They
are highly versatile and are used in robotic arms for maneuvering
payloads in tight or complex space.

• Cylindrical Joints: These joints combine rotational and linear sliding
motions, making them suitable for applications like robotic �ngers or
legs that require both movements simultaneously.

Understanding the Robotic Configuration

To model the complex kinematics of modern robotic systems e�ciently, the
con�guration of links and joints is often represented as a tree of transforma-
tions, as illustrated in Figure 3.7. In this hierarchical structure, each joint and
link pair is de�ned by a transformation that relates the position and orien-
tation of one link to the preceding joint and link. This approach simpli�es
the calculation of the robot’s sensor position and orientation in space by
systematically applying transformations from the base to the sensor.2

These transformations are typically represented using homogeneous transfor-
mation matrices. Each matrix describes a rotation and translation from one
coordinate frame to another. If T8 represents the transformation from frame

2 Publications 7 and 2
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Figure 3.7.: The kinematic tree displayed for the robotic platform Rollin’ Justin.

8 − 1 to frame 8 , the overall transformation from the base frame to the sen-
sor frame, TB4=B>A , is obtained by chaining these individual transformations
together:

TB4=B>A = T1T2 · · ·T= (3.15)

where = is the total number of joints. Each transformation matrix )8 can be
expressed as:

T8 =

[
R8 t8
0 1

]
(3.16)
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Here, R8 is a 3×3 rotation matrix describing the orientation of frame 8 relative
to frame 8 − 1, and t8 is a 3 × 1 vector representing the position of the origin
of frame 8 relative to frame 8 − 1.

Accounting for Real-World Errors

However, this simpli�cation must consider real-world sources of error, such
as �exibility or bending in the links and sensor inaccuracies, which can
accumulate along the kinematic chain, leading to deviations in the robot’s
actual position and orientation compared to its calculated con�guration. For
accurate modeling and control, these errors need to be accounted for and
compensated in the kinematic equations.

The positions of joints in a robotic system are typically measured using
sensors such as encoders, potentiometers, and resolvers. Each of these sensors
has unique characteristics and methods of operation:

Encoders are widely used for measuring the position of joints. They convert
the angular position or motion of a shaft into an analog or digital signal.
There are two main types of encoders:

• Incremental Encoders: These provide information about position
changes (increments) rather than the absolute position. They generate
pulses as the shaft rotates, and the position is determined by counting
these pulses from a known reference point.

• Absolute Encoders: These provide a unique position value for every
angular position of the shaft. They can be optical or magnetic and are
capable of giving the precise position even if the system is powered
down and restarted.

Common sources of errors in encoders include:

• Quantization Error: Incremental encoders may su�er from quantiza-
tion error due to the discrete nature of pulse counting. This can lead
to inaccuracies in position measurement, especially in high-precision
applications.

• Environmental Interference: Optical encoders can be a�ected by
dust, dirt, or other contaminants that obscure the optical path, leading
to incorrect readings.
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• Signal Noise: Electrical noise can interfere with the encoder signals,
causing errors in the detected position.

Potentiometers are variable resistors used to measure angular position by
varying electrical resistance. As the joint moves, the position of a wiper on a
resistive element changes, altering the output voltage proportionally to the
angular position. Potentiometers are simple and cost-e�ective but can su�er
from certain inaccuracies:

• Wear and Tear: The physical contact between the wiper and the
resistive element can lead to wear over time, resulting in increased
resistance and reduced accuracy.

• Temperature Sensitivity: Changes in temperature can a�ect the
resistive material, altering the voltage output and leading to position
measurement errors.

• Mechanical Play: Any mechanical looseness in the potentiometer
can cause deviations in the position readings.

Resolvers are electromechanical devices that convert the angular position
of a shaft to analog signals. They work on the principle of electromagnetic
induction and are highly reliable, especially in harsh environments. Resolvers
are often used in applications requiring high precision and robustness, such
as aerospace and robotics.

Challenges on Robotic Platforms

It is important to note that sensor inaccuracies are not the only sources
of errors in robotic kinematics. Mechanical issues such as bending due to
acceleration forces, including gravity, can also introduce signi�cant errors.
When a robot accelerates or decelerates, the forces involved can cause its links
to �ex and bend. This bending alters the actual position and orientation of
the links, leading to discrepancies between the expected and real positions of
the robot’s components. These deformations are particularly problematic in
high-speed or heavy-load applications, where the forces exerted on the links
are substantial, or on lightweight systems that are designed for aerospace
applications like the robotic arm TINA displayed in Figure 3.8.

These mechanical deformations are not accounted for by the simple model of
rigid links and ideal joints typically used in kinematic analyses. Traditional
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Figure3.8.:TINA arm bending due to gravity. The computed position, designated asT′ , represents
the theoretical location without accounting for uncertainties.

kinematic models assume that links are perfectly rigid and joints are ideal,
with no backlash. However, in practical applications, these assumptions do
not hold true. Factors such as material properties, load distribution, and
the physical design of the robot can all contribute to bending and �exing of
the links. This discrepancy necessitates the inclusion of more sophisticated
modeling techniques that account for uncertainties in robotic systems that
will be presented in Section 4.2 on page 57.
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This chapter focuses on the overall architecture for an audio-visual approach
and introduces the measurement data abstraction layer (MDAL) within the
proposed audio-visual perception system. The measurement data abstraction
layer (MDAL) manages the acquisition, timestamping, and preprocessing
of diverse sensor data, including visual (RGB, depth), audio (microphones),
and joint encoders. The chapter also covers the robot’s con�guration and
hardware emulation, including dataset recordings and robot simulation. These

Robot Datasets

Robot Simulation

Abstraction Layer

Hardware

Physical Layer

Microphones Microphone Array
Drivers

RGB-D Cameras Visual
Sensor Drivers

Joint Encoders Robot
Configuration Server

Figure 4.1.:Overview of the measurement data abstraction layer. The physical layer represents
actual sensors mounted on the robotic platform and was previously described in Chapter 3 on
page 25. The abstraction layer processes sensor information and distributes the data across the
system. It may also distribute simulated or recorded data.
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components are important for testing and validating the system in controlled
environments, ensuring robustness and adaptability.

An overview of all components in this sub-module is given in Figure 4.1.

4.1. Measurement Data Abstraction Layer

4.1.1. Visual Sensor Drivers

Processes on a robotic platform can only gain exclusive access to connected
hardware. Therefore, a specialized driver must connect to each camera sensor
and provide the acquired data as network streams This interaction is facilitated
by dedicated drivers that manage the exchange of data from sensors such
as RGB-D cameras. The term RGB-D refers to the combination of RGB
(color) images and D (depth) information, both of which are critical for 3D
perception.

Depth estimation in robotic systems can be achieved through various methods.
One common technique is stereo vision, where two cameras capture images
from slightly di�erent perspectives. By identifying corresponding points
between the two images and measuring the disparity, the system can estimate
the depth of objects in the scene. Another widely used method involves
structured light, in which a known pattern is projected into the environment,
and the deformation of this pattern is analyzed in the captured image to
infer depth. Cameras like Intel RealSense rely on this approach for depth
estimation.

An alternative approach is time of �ight (ToF) technology, used in systems
like Microsoft’s Kinect Azure. ToF cameras emit modulated light and measure
the time it takes for the light to return after re�ecting o� objects. This time
delay is then converted into depth information. The depth map generated by
these methods is often post-processed to align with the RGB images, ensuring
spatial consistency between the color and depth data.

This sensor setup is foundational for tasks such as localization, mapping, and
interaction within the robot’s environment. However, to ensure the accuracy
and consistency of the data provided by these sensors, calibration must be
performed to �ne-tune both the intrinsic and extrinsic parameters of the
system.
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Calibration of Cameras

The calibration process plays a critical role in ensuring that sensor data,
particularly from cameras and other perception systems, is accurate and
well-aligned with the robot’s coordinate system. This process can be divided
into two primary categories: intrinsic calibration and extrinsic calibration.

Intrinsic calibration focuses on determining and correcting the internal pa-
rameters of a sensor, such as a camera. For cameras, these parameters include
focal length and optical center. The calibration process commonly uses a
well-known pattern, such as a checkerboard grid [152]. The corners of the
checkerboard provide precise points whose positions in the world are known.
By projecting these known 3D points into the image plane and identifying
where they appear on the camera’s 2D image, the calibration process can
estimate the intrinsic parameters that caused this projection.

In detail, the corners of the checkerboard serve as world points, which are
mathematically modeled as being positioned in a known coordinate system.
The projection of a 3D world point [-8 , .8 , /8 ]

¦ onto the 2D image plane is
governed by the pinhole camera model:

B


D8
E8
1


= K [R | t]



-8

.8
/8
1


(4.1)

where B is a scaling factor, and K (see Section 3.1 on page 29) is the intrinsic
camera matrix:

K =


5G 0 2G
0 5~ 2~
0 0 1


(4.2)

In this matrix, 5G and 5~ are the focal lengths in pixel units, and (2G , 2~) is the
optical center (principal point). The matrices R and t represent the rotation
matrix and translation vector that transform points from the world coordinate
system to the camera coordinate system.

By observing where these points appear within the image, the intrinsic param-
eters of the camera can be estimated. This calibration allows for corrections
that adjust the focal length and optical center tomatch the expected real-world
scale.
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Mathematically, this process minimizes the reprojection error �, which is
the sum of the squared di�erences between the observed positions of the
checkerboard corners in the image [D8 , E8 ]

¦ and the calculated projections p̂8
based on the estimated intrinsic parameters [129]:

� =

#∑
8=1






[
D8
E8

]
− p̂8






2

. (4.3)

This optimization is typically performed over both the intrinsic parameters
and the extrinsic parameters (R and t) for each calibration image, ensuring
that subsequent image data from the camera is geometrically accurate. This
is important for tasks like 3D reconstruction and mapping as later discussed
in Chapter 5.

Extrinsic calibration aligns the spatial relationships between multiple sensors
on the robot platform, such as cameras, IMUs or microphone arrays. Extrinsic
calibration involves determining the translation t and rotation R between
sensors relative to a common coordinate frame, which is typically de�ned by
a reference sensor (such as a primary camera or an IMU). This step is essential
when fusing data from multiple sensors to ensure that all measurements are
correctly positioned and oriented within the same spatial reference frame.

The methods used for extrinsic calibration di�er depending on whether the
calibration is static, remaining consistent over time, or dynamic, where the
calibration is only valid for a short period, such as during online registration.
For static calibration, high-�delity calibration targets like the checkerboard
are used. By identifying corresponding corners from both views, the extrinsic
parameters are calculated by minimizing the reprojection error, similar to
intrinsic calibration. In dynamic calibration, instead of using a calibration
target, arti�cial markers such as AprilTags [144] or visual features in the
environment are utilized (see Section 5.1, pp. 74). These methods allow for
real-time estimation of extrinsic parameters.

Synchronization of data streams from multiple sensors is essential, especially
in real-time systems where even slight temporal misalignment can result
in inaccurate sensor fusion. Timestamp acquisition plays a key role in this
synchronization, and it can occur at di�erent stages during the data capture
process.
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Timestamps can be acquired either at the beginning, middle, or end of an
acquisition process, depending on the system setup. The choice of when the
timestamp is recorded depends on the hardware and the precision require-
ments of the system. For cameras, it is common to timestamp the image
frame at the moment when the exposure begins. However, in some cases,
particularly when more precise synchronization is required, the timestamp
may be recorded at the middle of the sensor acquisition window to better
represent the timing of the measurement.

Accurate timestamping allows sensor data, such as camera frames, audio
captures, or other measurements, to be properly aligned in time. This is
especially important in dynamic environments where objects move, or the
robot itself is in motion. Time synchronization ensures that each sensor’s data
corresponds to the same moment in time, reducing errors in tasks like sensor
fusion and visual odometry. A suitable method for synchronizing timestamps
is through networked systems, such as using the industry standards Network
Time Protocol (NTP) and Precision Time Protocol (PTP), or hardware triggers
to ensure that all sensors begin acquiring data simultaneously.

4.1.2. Microphone Array Drivers

Contrary to light, audio propagation is relatively slow. Hence, the acquisition
of audio samples is not an instantaneous process but a measurement over
time. Speci�cally, it involves measuring the air pressure level over time. This
continuous measurement process captures the variations in air pressure that
constitute sound waves.

An array of microphones (typically 4 to 8 sensors) is placed on the outside of
the robot. Depending on the application, typical placements include 1D or
2D con�gurations, favoring one direction for audio acquisition. For instance,
a linear array (1D) may be used for directional sound capture, while a planar
array (2D) can provide more comprehensive spatial information. Sound
pressure levels are sampled simultaneously at all sensors.

To accurately capture audio signals, the sampling frequency must adhere to
Nyquist’s theorem. This theorem states that the sampling frequency should
be at least twice the frequency of the highest expected frequency in the
source signal. For speech and indoor applications, this typically means a
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sampling frequency of 44 kHz. This ensures that the audio signal is accurately
represented without aliasing.1

Continuous measurements are typically grouped together for better data
management. Only the �rst sample in each group needs to be timestamped,
as all consecutive samples can be de�ned by the sampling rate. These groups
of samples are called frames. For an =-sensor microphone array, this results
in an = ×< frame, where< represents the number of consecutive samples.
Common values for< are 1024 or 4096 [117], providing a balance between
data granularity and manageable frame sizes. Each frame provides a snapshot
of the audio environment over a brief period. The size of< determines the
temporal resolution of the frames, with larger< values encompassing longer
time spans. This framing process facilitates e�cient storage, transmission,
and processing of audio data, enabling real-time or near-real-time analysis.
By timestamping only the �rst sample, the system reduces the overhead
associated with timestamping every sample individually, thereby optimizing
data handling. The output can be used for DoA estimation as described in
Section 6.1.2 (pp. 91).2

Frequency Calibration of Microphone Arrays

In practical applications, microphone arrays must be calibrated to account
for frequency-dependent variations in each microphone’s response. The
frequency response �< (5 ) of microphone< is de�ned in the continuous-
time domain as the ratio of the Fourier Transform [43] of the microphone’s
recorded output ~< (C) to that of the known input signal G (C):

�< (5 ) =
.< (5 )

- (5 )
=

∫ ∞

−∞

~< (C) 4− 92c 5 C 3C∫ ∞

−∞

G (C) 4− 92c 5 C 3C

. (4.4)

This continuous formulation allows for precise characterization of the mi-
crophone’s behavior across all frequencies, capturing both amplitude and

1 Publication 10
2 Publication 3
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phase shifts introduced by the microphone. By measuring �< (5 ) using a
known input signal—such as white noise with a �at spectral density—we can
identify and compensate for frequency-dependent sensitivity variations in
each microphone, ensuring that the recorded signals accurately re�ect the
true acoustic environment.

In digital signal processing, signals are sampled at discrete time intervals
C = =CB , where CB = 1/5B is the sampling period and 5B is the sampling
frequency. The continuous-time signals G (C) and ~< (C) become discrete-time
signals G [=] = G (=CB ) and ~< [=] = ~< (=CB ). The Discrete Fourier Transform
(DFT) [26] is then used to compute their frequency-domain representations:

- [:] =

#−1∑
==0

G [=] 4− 92c ġĤ
Ċ , (4.5)

.< [:] =

#−1∑
==0

~< [=] 4− 92c ġĤ
Ċ , (4.6)

where # is the number of samples and : = 0, 1, . . . , # − 1 corresponds to
discrete frequency bins 5: =

:
#
5B .

The discrete frequency response �< [:] extends the continuous case to prac-
tical, implementable calculations. It is de�ned as:

�< [:] =
.< [:]

- [:]
. (4.7)

This discrete formulation accounts for sampling and allows for digital com-
pensation of the microphone’s frequency characteristics. By calibrating each
microphone using �< [:], we correct for frequency-dependent variations,
enhancing the accuracy of applications like sound source localization that
rely on precise acoustic measurements.

To improve the spectral analysis and mitigate artifacts such as spectral leak-
age, windowing functions are applied to the discrete-time signals before
computing the DFT. We use the Hamming window [47]F [=], de�ned as:
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F [=] = 0.54 − 0.46 cos

(
2c=

# − 1

)
, (4.8)

= ∈ {0, 1, . . . , # − 1} .

Multiplying the signals by the Hamming window smooths the discontinuities
at the boundaries of the sampled data, reducing leakage of spectral energy
into adjacent frequency bins. The windowed signals are then:

GF [=] = G [=] ·F [=], (4.9)

~<,F [=] = ~< [=] ·F [=] . (4.10)

Using the windowed signals GF [=] and ~<,F [=], we compute the DFTs and
subsequently the discrete frequency response �< [:] as before. The appli-
cation of the Hamming window enhances the frequency resolution and ac-
curacy of the calibration, leading to more precise compensation for each
microphone’s frequency response.

Ego-Noise Reduction

In robotic applications, ego-noise, generated by the robot itself (e.g., motor and
actuator noise), can interfere with audio signals captured by the microphone
array. This noise complicates the accurate processing and analysis of audio
data.

A common �rst step in ego-noise reduction is initial noise estimation. The
robot estimates its noise spectrum (== (5 ) by capturing audio when only the
robot’s operational sounds are present, with no external sound sources. These
periods can occur when the robot is stationary or performing routine tasks
without external audio inputs. During these times, the microphones record
noise from the robot’s components. The noise spectrum can also be captured
using calibrated audio devices, as shown in Figure 4.2.3.

3 Publication 6, 3 and 10
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Figure 4.2.: Ego-noise estimation using a calibrated audio probe. The generated sound from
motors, fans or other active parts of the systems are recorded and their frequency spectrum is
determined. This can be later used to separate ego-noise from actual sound in the environment.

The collected audio data is analyzed to understand the statistical properties
of the ego-noise, including calculating the power spectral density (PSD) of
the noise using a Fourier Transform, which represents how the power of
the noise signal is distributed across di�erent frequencies. The PSD provides
information about the frequency components of the ego-noise, helping dis-
tinguish it from potential external audio signals. This initial estimation phase
sets a baseline noise pro�le that the �ltering process uses to di�erentiate
between noise and desired signals.

Once the initial noise pro�le is established, the robot employs adaptive �lter-
ing techniques to reduce ego-noise during operation. An adaptive Wiener
�lter [68] is commonly used. The �lter dynamically adjusts its parameters
based on real-time audio input, continuously estimating the noise character-
istics and separating them from the desired signal.

The observation model considers the observed signal ~ (C) as a combination
of the desired signal B (C) and the noise =(C):

~ (C) = B (C) + =(C). (4.11)

55



4. Audio-Visual Architecture

This model forms the foundation of Wiener �ltering by de�ning the relation-
ship between the signals involved.

Next, the PSDs of the signals are determined. The power spectral density
of the observed signal (~~ (5 ) is estimated directly from the data, and the
known power spectral density of the noise (== (5 ) is utilized. These spectral
densities provide the statistical information needed for the �lter design.

TheWiener �lter’s transfer function in the frequency domain is derived based
on these power spectral densities. Ideally, the transfer function is:

� (5 ) =
(BB (5 )

(BB (5 ) + (== (5 )
, (4.12)

where (BB (5 ) represents the PSD of the desired signal. Since (BB (5 ) is not
directly known, it can be estimated using the relationship of source and noise
spectral pro�les (~~ (5 ) = (BB (5 ) + (== (5 ):

� (5 ) =
(~~ (5 ) − (== (5 )

(~~ (5 )
. (4.13)

This formulation allows the �lter to balance the contributions of the desired
signal and the noise.

The next step involves processing the signal in the frequency domain. The
Fourier Transform of the observed signal . (5 ) is computed, transforming
the signal from the time domain to the frequency domain, making it suitable
for applying the Wiener �lter. The �lter is then applied to the transformed
signal using the derived transfer function:

(̂ (5 ) = � (5 ) · . (5 ). (4.14)

This operation e�ectively attenuates the noise components while preserving
the desired signal components.

Finally, the �ltered signal (̂ (5 ) is transformed back to the time domain using
the inverse Fourier Transform. This step converts the frequency domain
representation of the �ltered signal back into a time domain signal, yielding
the estimated desired signal B̂ (C). This process provides a signal that is a
cleaner version of the original observation with reduced noise that can be
used for state estimation of the audio environment.
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4.2. Robot Configuration

As described in Section 3.3, understanding the current robotic con�guration,
or proprioception, is essential.

Accurate assessment of a robot’s con�guration is crucial for various appli-
cations, especially when non-static components with perception sensors
are involved. Precise positional data ensures e�ective operation. Register-
ing cameras on robotic manipulators to the robot’s origin integrates spatial
information within the correct coordinate framework.

Knowing the system’s distance to the environment is critical for collision
avoidance, especially in con�ned spaces. Observing and organizing joint
positions into a transformation tree helps illustrate the coordinate framework
from the root frame. This tree provides an accurate estimate of the robot’s
spatial volume and movement range.

Neglecting inherent measurement uncertainties and non-static characteristics
due to mechanical stress and gravitational forces can lead to erroneous state
estimations. These factors impact the reliability of the robot’s operation in
dynamic environments.

Transformation Tree

Deriving transformations between coordinate frames is a pivotal task in
robotics. A common approach models the system as a hierarchical tree of
frame transformations as shown in Figure 4.3. To get the transformation
between T20< and TC2? , the entire path involving multiple transformations
must be calculated.

Uncaptured deviations in kinematics from the real world can be observed
when the manipulator bends due to gravitational forces, causing TC2? to di�er
from the expected position. This discrepancy highlights the importance of
accounting for real-world factors in kinematic modeling.

Using a hierarchical tree structure has signi�cant advantages, including direct
derivation from computer-aided design (CAD) models, which inherently
use the same representation. CAD models are typically organized into a
hierarchy of parts and subassemblies, mirroring the transformation tree. This
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Ttcp

Tcam

Figure 4.3.: Illustration of di�erent coordinate frames in robot’s kinematic system. On the left
side, the camera frame)ęėģ and on the right side, the tool center point)ĪęĦ .

correlation allows for seamless integration and accurate transfer of geometric
data from design to implementation.

Retrieving the direct transformation between any two arbitrary frames in-
volves traversing the path within the structured tree. This systematic ap-
proach ensures a clear procedure for obtaining speci�c transformation infor-
mation.

Organizing transformations into a hierarchical tree simpli�es complex kine-
matic chains into manageable sub-problems. This reduces computational
burden, makes the system scalable and adaptable, aids in debugging, and
enhances the modularity of kinematic analysis.4

Transformations and Uncertainty

The treatment of uncertainties follows previous work by Burkhard et al. on
probabilistic robot kinematics [84], building on Barfoot [9] and Wang [151].

Lie Algebra provides a mathematical framework for describing Lie groups,
which are smooth manifolds. This framework is useful in robotics for repre-
senting rotations and rigid body transformations, forming the basis of many
kinematic and dynamic calculations.

4 Publications 7 and 2
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A pose Đ�� ∈ (� (3) describes the position and orientation of an object � with
respect to a reference frame �. The Special Euclidean group (� (3) includes
both rotations and translations in three-dimensional space. A pose can be
described locally by its linear tangent space representation ć = [Ā ā ]) ∈ R

6,
related by the exponential map [125]:

Đ = Exp(ć ). (4.15)

Here, Ā denotes the translational component and ā the rotational component
of the tangent space element. The exponential map converts between the
tangent space (Lie Algebra) and the manifold (Lie group).

In Lie Algebra, the tangent space at the identity element of a Lie group forms
a vector space called the Lie Algebra of the group. For (� (3), this tangent
space is a six-dimensional vector comprising three translational and three
rotational components. The adjoint representation maps local tangent space
quantities between di�erent coordinate frames.

Local tangent space quantities can be mapped between two local spaces using
the adjoint matrix Ad:

�b = Ad(T��)
�b, (4.16)

with

Ad =

[
R [t]×R

0 R

]
∈ R

6×6, (4.17)

where R is the rotation matrix of T and [t]× is the skew-symmetric matrix
formed by the translation vector. The term [t]×R illustrates how local rotation
errors create translation errors further down a chain of transformations,
depending on the distance from the original error’s location.

Any rotation in three-dimensional space can be represented as an element of
the ($ (3) group, dealing with rotation matrices. Similarly, (� (3) includes
translations. The Lie algebra of ($ (3) consists of skew-symmetric matrices
representing in�nitesimal rotations, while the Lie algebra of (� (3) includes
both in�nitesimal rotations and translations.

The error of a pose can be described as a local deviation bB,err of a nominal
pose T�� in the tangent space of the reference frame �. The corresponding
covariance matrix Σ�� = E

[
bB,errb

)
B,err

]
∈ R

6×6 is a locally de�ned tangent
space quantity. This covariance matrix encapsulates the uncertainty in both
the translational and rotational components of the pose.
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Two essential mathematical operations on poses needed for the scene graph
are concatenation and inversion. The concatenation operation combines two
transformations, such as T�� and T�� , to yield the transformation from
� to �:

T�� = T�� ∗ T�� , (4.18)

Σ�� = AdT−1
þÿ
Σ��Ad

)
T−1
þÿ

+ Σ�� . (4.19)

Here, the covariance matrices are transformed into the common reference
frame � using the adjoint matrix, allowing them to be added due to the
linearity of the tangent space.

The inverse operation calculates the transformation from � to � given the
transformation from � to �:

T�� = T−1
��, (4.20)

Σ�� = AdTýþ
Σ��Ad

)
Týþ

, (4.21)

This shifts the uncertainty from the tangent space of � to the tangent space
of �. This representation can implicitly consider exact transformations, as
zero-covariances simply vanish in Equations (4.19) and (4.21).

Using this uncertainty aware representation of the robot’s con�guration state
helps to fuse data from di�erent sources and di�erent times as discussed later
in Section 6.2 on page 96.

4.3. Benchmarks and Evaluation Data

Hardware emulation plays a signi�cant role in the development and valida-
tion of sensor-dependent systems. It allows for the replication of real-world
conditions within a controlled environment, enabling comprehensive test-
ing and re�nement of software. This section discusses the use of datasets
and simulation in hardware emulation to ensure robust and reliable system
performance.

The use of datasets in hardware emulation is essential for verifying and vali-
dating software changes. By employing pre-recorded data streams, developers
can test speci�c edge cases and scenarios repeatedly, which is important for
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identifying potential issues before deployment. Datasets allow for direct
comparisons between di�erent software versions, ensuring that modi�ca-
tions perform as expected under consistent conditions. The repeated use of
datasets helps in re�ning the system’s capabilities and enhancing its overall
resilience and performance.

Simulation, on the other hand, provides a dynamic and interactive platform
for testing. Real-time data streams can be incorporated into the testing frame-
work to simulate a wide range of environmental conditions and scenarios,
including events that would be challenging (e.g same environment at di�erent
times of the day) or unsafe (e.g. operation close to hazards) to replicate in
real life. This approach enables the observation of the system’s behavior in
real-time, allowing for immediate adjustments and improvements. Simula-
tion is particularly e�ective for testing the system’s adaptability to changing
conditions, ensuring that it can handle the complexities of dynamic envi-
ronments. The integration of both simulated and real data streams in the
testing process strengthens the system’s robustness, contributing to a more
reliable and e�cient solution for hardware emulation in sensor-dependent
applications.

4.3.1. Dataset

A dataset has been created for this research, comprising synchronized multi-
modal sensor data collected using a multi-camera setup mounted on a mobile
robotic platform. The primary sensors include the RealSense D435i, which
integrates an RGB camera, two infrared cameras for depth estimation, and an
inertial measurement unit. This dataset is designed to provide comprehensive
coverage of various indoor scenarios, capturing awide range of environmental
conditions and robot movements.5

A key feature of the dataset is the use of synchronized data streams. The
cameras operate at a resolution of 640x480 pixels and a frame rate of 15Hz,
while the IMU captures acceleration data at 250Hz and angular velocity
at 400Hz. This high-frequency data acquisition ensures precise temporal
alignment of visual and inertial data, crucial for accurate sensor fusion and
robot navigation tasks. The dataset includes both individual sensor streams
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Figure 4.4.:Capture devices in the dataset. Left: A robotic mockup system to mimic the motion
and the sensor con�guration of a real platform. Right: A handheld device for more complex 6D
motions and trajectories close to obstacles.

and a fused stream that interpolates the IMU data to match the timing of the
camera frames. Data has been recorded on a robotic mockup and a handheld
device, both shown in Figure 4.4.

This dataset is notable for being the �rst of its kind to focus on multi-sensor
setups in the indoor domain. This is important for conducting research
on multi-camera systems within indoor environments like the examples
in Figure 4.5. It includes typical indoor scenarios such as kitchens, living
rooms, and o�ce areas. These environments feature low-texture surfaces and
re�ective materials, which pose signi�cant challenges for visual perception
systems.

Additionally, the dataset captures dynamic changes within these environ-
ments. This includes furniture movement, such as chairs and tables being
relocated, as well as objects appearing and disappearing, like books and veg-
etables. It also accounts for changes in the appearance of objects, such as
doors being opened or closed and plants changing over time. These variations
provide a realistic and challenging setting for evaluating the robustness and
adaptability of SLAM and other localization algorithms.

Ground Truth Pose Information

Ground truth data plays a critical role in evaluating the performance of local-
ization systems by providing a benchmark for comparison. In this context,
the pose information must exhibit signi�cantly higher accuracy than the
system being tested. We utilize a Vicon MX T40 motion capture system,
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which provides pose updates at 100Hz with a positional accuracy of 1mm.
This precision is notably superior to the best-case anticipated performance
of 1cm for VO or SLAM systems in indoor scenarios, ensuring that any per-
formance limitations are correctly attributed to the localization system under
evaluation.

Moreover, it is essential that the ground truth data be synchronized with the
camera data used in the localization process. To achieve this, the system is
moved in front of a checkerboard, allowing us to use the camera frames and
the pattern on the board to estimate the camera’s trajectory. The estimated
trajectory from the vision-based approach is then compared to the output of
the Vicon tracking system. To ensure temporal alignment, the timestamps
from the tracking system are adjusted by applying a temporal o�set, denoted
as �C . This �C is optimized until the relative trajectory error between the
estimated trajectory and the externally recorded trajectory is minimized,
ensuring precise time synchronization.

Another critical consideration is the use of external markers to track the pose
of the device during testing. These markers must be carefully positioned and
measured to account for their o�set from the test device’s reference frame. For
instance, the tracking markers for both the wheeled mockup system Marvin
and the handheld camera setup, visible in Figure 4.4, are important for accurate
tracking. If this o�set is not accurately determined, the resulting ground
truth pose information may introduce errors into the analysis, reducing the
�delity of the performance evaluation. The high accuracy of the Vicon system
enhances con�dence in marker placement, but the calibration process remains
crucial.

For each benchmark test run, the cameras of the Vicon tracking system were
individually arranged to cover the speci�c test trajectory. This ensured full
coverage of the testing area without any breaks in tracking and allowed for
maximum accuracy throughout the run. The careful placement of the Vicon
cameras was crucial to capturing the full extent of the test device’s motion
while maintaining high precision across the entire trajectory.

Separately, the calibration of the test device’s camera to the external markers
is necessary for accurate localization. Similar to multi-sensor camera setups,
external calibration ensures consistency between the sensor’s measurements
and the ground truth pose. In localization tasks, precise calibration of both the
sensors and tracking markers, supported by the high accuracy of the Vicon
system, is fundamental for obtaining reliable ground truth data. This directly
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impacts the accuracy of the �nal performance assessment, as errors introduced
during calibration could obscure the true capabilities of the localization system
being tested.

Benchmark Environment

The benchmark environment was designed to provide a controlled yet real-
istic setting for evaluating the performance of localization systems. While
testing in an actual apartment would o�er realistic scenarios, such environ-
ments often lack the necessary interfaces for tracking systems and limit the
ability to rapidly modify conditions for multiple test setups. As a result, the
benchmark combines controlled lab environments with a real apartment
scenario, ensuring a comprehensive evaluation of localization methods under
diverse conditions.

Five distinct environments were created for the benchmark (some shown
in Figure 4.5), four of which were developed in laboratory settings. These
lab environments simulate modern interior designs, re�ecting minimalistic
aesthetics with textureless surfaces that present a signi�cant challenge for
visual localization systems as discussed before in Figure 4.5 on page 65. The lab
setups include speci�c functional areas such as a kitchen, an o�ce, and a living
room. Each area is enclosed by 360-degree walls, replicating typical room
layouts. Some of these environments feature separated spaces connected by
doors, while others adopt an open-plan design, where di�erent areas such as
the kitchen and living room merge into one another without clear boundaries.
This variability in layout introduces diverse visual and spatial challenges,
testing the robustness of the systems being evaluated.

In addition to the lab environments, the benchmark includes a real-world
scenario captured in an actual apartment. This setting represents a typical
living room and provides a more unmodi�ed, authentic evaluation scenario.
The inclusion of this real apartment allows for testing the systems in a space
that lacks the strict control of the lab, o�ering a more practical perspective
on the system’s performance in everyday environments.

To further challenge the localization systems, both the lab and real-world
environments were subjected to dynamic modi�cations. Objects such as
books, pens, toys, and chairs were deliberately placed, moved, or removed
during di�erent tests to simulate a dynamic, lived-in space. Additionally,
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Figure 4.5.: Panoramic views of the environments in the dataset. All sensor images are stiched
together. Top image shows an o�ce area in the foreground and a kitchen in the background.
The middle image shows a living room scene. The bottom image is taken from the real world
apartment scenario.

more signi�cant changes were made to the environment between test runs,
such as rearranging furniture like tables, chairs, and doors, or altering the
decor with di�erent plants, paintings, and other decorative elements. These
modi�cations introduced variability and complexity, forcing the tested sys-
tems to adapt to new or altered visual cues and requiring them to maintain
robustness despite the environmental changes.

4.3.2. Simulation

The URSim platform is a comprehensive Software-in-the-Loop (SiL) simulator
developed for testing robotic systems, particularly those designed for plane-
tary exploration. It facilitates the integration of various robotic systems and
sensors into photo-realistic environments, o�ering a robust framework for
evaluating high-level software components. URSim utilizes the Unreal Engine
4 developed by Epic Games for real-time rendering and physics simulation,
which is essential for replicating complex mission scenarios on extrater-
restrial surfaces. Its �exible interface and adaptable architecture allow for
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Figure 4.6.: Simulated robotic platforms on the Martian surface. Left: the DLR LRU rover in
an unstructured Martian landscape. Right: Rollin’ Justin in a scienti�c camp setup performing
maintenance tasks during a simulated mission.

diverse setups, supporting continuous testing without the need for physical
hardware.6

A key feature of URSim is its ability to simulate multiple robotic systems in
detailed mission environments. The platform supports various robots, includ-
ing the Lightweight Rover Unit (LRU), hexacopter ARDEA, and humanoid
robot Rollin’ Justin. Each robotic system is described using markup languages,
primarily the widely-used Uni�ed Robot Description Format (URDF), which
has been extended with sensor de�nitions. This textual description allows for
easy loading and creation of robotic systems at simulation startup, enabling
rapid testing of di�erent sensor con�gurations and setups. The use of URDF
also supports version control through systems like Git, ensuring that robotic
system de�nitions can be tracked and managed e�ectively. By emulating
sensor data and o�ering interfaces that closely match those of actual sys-
tems, URSim enables thorough testing of navigation, mapping, and mission
execution pipelines. For instance, the complete navigation and mapping
pipeline of the LRU can be integrated and tested in simulated Martian and
Lunar environments, ensuring reliable performance under mission-relevant
conditions. An example is shown in Figure 4.6.

The modular architecture (see Figure 4.7) of URSim is designed to accommo-
date various robotic systems, environments, and infrastructures. It includes
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Figure 4.7.:The software architecture of the simulator URSim. The modularity of this framework
assures that the software can be easily adapted for future use-cases and di�erent applications.
It also supports di�erent input like URDF and output formats like ROS or the DLR framework
links_and_nodes (LN).

management, world, and robot modules, each with distinct responsibilities.
The management module handles initialization, scenario customization, and
feature management. The world module manages the physical environment,
and the robot module simulates the robotic platforms. Users can specify
properties such as the map, robot type, and additional assets, which can be
loaded from an external asset store, facilitating e�cient collaboration and
development across teams.

URSim ensures the generation of high-quality, synchronized sensor data by
simulating various sensors such as visual sensors (RGB and depth cameras),
inertial measurement unit, and other physical sensors. These sensors are
simulated in real time, producing data streams that closely mimic those from
actual missions. This data �delity is critical for developing perception-action
control loops, which are essential for autonomous navigation and exploration
tasks on extraterrestrial surfaces.

Additionally, URSim provides dynamic and interactive testing environments.
The simulator can populate worlds with both static and dynamic objects,
which can move along prede�ned trajectories or respond to physics simula-
tions. This capability enables the evaluation of robotic systems in evolving
environments, ensuring comprehensive testing of autonomous systems. Al-
though primarily focused on space exploration, URSim can be adapted for
indoor scenarios, such as testing the humanoid robot Rollin’ Justin in house-
hold or o�ce environments, as shown in Figure 4.8.
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Figure 4.8.: Simulated indoor environments including the robotic system Rollin’ Justin. Left
image shows a modern apartment with many re�ecting surfaces. Right images shows a typical
western open-space living roomwith wooden furniture. All images are captured in the simulation
environment.

4.4. Summary

The introduced MDAL module provides several data streams that can be used
for further processing. Section 4.1.1 focused on the acquisition of visual data
and how 3D objects are projected onto a 2D plane and how depth estimations
can be calculated based on known feature correspondences in a given stereo
setup. Section 4.1.2 introduced the acquisition of acoustic signals and the state
formulation for a given constellation of microphones in 3D space. Section 4.2
discussed the importance of estimation the con�guration state of the system
itself to obtain information of the position and orientation of sensors. Finally,
Section 4.3 showed two alternatives to online data acquisition, a pre-recorded
dataset which is speci�cally designed for the indoor environment, and a
photo-realistic simulation.

Either data, online from real sensors or from an emulation method, can be
fed to the ego-state estimation (Chapter 5, pp 69) or landmark estimation
(Chapter 6, pp 69) module. ESE received a continuous stream of data for un-
interrupted localization of the robot itself. LE, triggered by events, estimates
the localization of external landmarks and fuses this information with the
ego-pose obtained in ESE.
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Ego-state estimation (ESE) is the heart of the robot’s localization system,
providing robust and fault-tolerant estimation of the robot’s movement. This
process involves integrating data from various sensors, including visual and
inertial, to accurately track the robot’s trajectory and create detailed maps.
Visual odometry, which uses image sequences to compute changes in posi-
tion and orientation, plays an essential role in this system. Fault detection
and correction mechanisms ensure the reliability of the estimates, allowing
the robot to adapt to changes and maintain accurate localization over time.
Additionally, ego-motion estimation supports mapping by providing accurate
pose information that is essential for building and updating environmental
maps. Overall, ego-state estimation (ESE) enables the robot to maintain a
continuous representation of its pose history, ensuring e�ective navigation
and interaction within its environment. An architectural drawing including
all components is given in Figure 5.1.

Visual Odometry
NodeVisual Odometry

NodeVisual Odometry
NodeVisual Odometry

Node
VO Fusion Mapping

Keypose
DB Graph

Time-Continuous
Trajectory Estimation

Ego-State
Estimation

Figure 5.1.:Overview of the ego-state estimation sub-module.
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5.1. Visual Odometry

The task of this node is to estimate the self-motion of the system.

Definitions

The ego-motion refers to the motion of a camera or other vision sensor
relative to its environment. In robotics and computer vision, it speci�cally
describes the process of estimating the sensor’s own movement through
the space it observes. It is de�ned as the trajectory and orientation of the
sensor between two frames. This involves analyzing changes in position and
perspective over time to determine how the sensor has moved.

Odometry is the accumulated motion since a de�ned reference frame, often
the starting frame of the system. It involves continuous measurements of the
ego-motion. Odometry is heavily a�ected by drift, which is the accumulation
of errors that occur during the estimation of the motion.

To estimate its ego-motion, a robot compares consecutive camera images,
extracting visual features to determine the displacement between them. Of-
ten this is supported by inertial measurements from an IMU to re�ne the
estimation result. In this work, a vision-only odometry system is discussed.

Further, a de�nition for the terms Keyframe, Keypose as well as a virtual pose
and clarify their distinction.

A Keyframe is a selected frame used by a VO module to estimate motion for
consecutive frames. It represents a unique viewpoint for motion estimation.

The Keypose is the associated platform pose at the time the Keyframe is
sampled. It re�ects the pose at that particular point in time estimated us-
ing all available data. Since Keyframes are selected independently by each
VO instance, a Keypose can have multiple Keyframes if they are sampled
simultaneously by chance.

In the case, the pose has been determined based on a interpolation than using
an actual Keyframe, we denote it as a virtual pose.
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Feature Extraction

The �rst step is keypoint detection, which identi�es distinctive points in an
image that can be reliably tracked across multiple frames. These points are
used for estimating the motion of the camera in visual odometry systems.
Keypoint detection algorithms vary, but they generally aim to �nd points
with strong local image gradients that are stable under transformations.

The Harris Corner Detector [46] identi�es corners by analyzing the eigen-
values of the second-moment matrix (structure tensor) of image gradients.
The algorithm computes image gradients using operators like Sobel. For each
pixel, a second-moment matrix is formed from these gradients. The response
for each pixel is calculated based on the determinant and trace of this matrix,
highlighting areas with signi�cant gradient variation. A threshold is applied
to the response values to identify corners. This method is useful for detecting
corners in structured environments.

The Shi-Tomasi Corner Detector [121] extends the Harris Corner Detector
by using the minimum eigenvalue of the second-moment matrix for corner
detection. Instead of a combined response function, it directly uses the
smaller eigenvalue to determine the presence of a corner. This results in more
stable and reliable corner detection, making it a preferred choice in many
applications.

Features from Accelerated Segment Test (FAST) [108] is a highly e�cient
algorithm for real-time applications. It uses a circle of 16 pixels around a
candidate pixel to determine if it is a corner. The intensity of the candidate
pixel is compared with the intensities of the surrounding circle. If there are
= contiguous pixels in the circle that are all either signi�cantly brighter or
darker than the candidate pixel, it is classi�ed as a corner. This method is
known for its speed and is well-suited for applications requiring fast keypoint
detection.

The Adaptive and Generic Accelerated Segment Test (AGAST) [76]improves
on FAST by introducing a decision tree that adapts to di�erent image regions.
This adaptation allows AGAST to maintain high detection speeds while in-
creasing the robustness of the keypoint detection across various scales and
rotations. The decision tree approach of AGAST ensures that the detection
process can e�ciently handle changes in image characteristics, providing
more reliable keypoint detection under varying conditions.
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Most state-of-the-art (SotA) approaches for VO use one of the aforementioned
methods to �nd keypoints. However, these detectors often �nd features in
local clusters, as shown in Figure 5.2. In a motion estimation system, this
clustering can be problematic. Features may be too close together, and a
single movement might remove the majority of them from the image. This
reduces the estimation quality and can even prevent it. To overcome these
limitations, a common approach is bucketing. This method splits the image
into several smaller cells, often arranged as a grid. The keypoint detector
is run for each cell, and the best scoring features are kept. This approach
distributes the features across the image but may include low-scoring features
in areas that do not o�er reliable keypoints.

A di�erent and globally-optimal distribution is achieved using range trees.
The range tree adaptive non-maximal suppression (RT AMNS) [8] approach
e�ciently manages and distributes keypoints in an image by leveraging a
range tree data structure. This data structure is a binary search tree where
each node contains a nested data structure to facilitate multidimensional
range queries. Initially, keypoints detected in the image are sorted based
on their strength or cornerness score. These sorted keypoints are stored
in the range tree, allowing for quick and e�cient querying. During the
suppression process, the algorithm iterates through the keypoints, starting
with the strongest. For each keypoint, it uses the range tree to identify
neighboring keypoints within a prede�ned search range. These neighboring
keypoints, if found to be less signi�cant, are suppressed to ensure that only
the most relevant and well-distributed keypoints are retained.

The e�ciency of RT AMNS comes from its ability to perform these range
queries quickly, signi�cantly reducing the computational complexity com-
pared to brute-force methods. The search range is dynamically adjusted
through a binary search process, optimizing the balance between the number
of keypoints and their spatial distribution. This method ensures a more ho-
mogeneous spread of keypoints across the image. The number of keypoints
varies from application and image size, in the case of indoor robotics using
RealSense with 640 × 480 pixel, a good value is around 800 features after
suppression.

The next step is feature description. This the process of computing a repre-
sentation for each detected keypoint, which can be used to match keypoints
across di�erent images. The goal is to create descriptors that are invariant to
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Figure 5.2.:Di�erent distributions of features across a single image. Top left: The direct output of
the ORB detector. Top right: Keeping the best= features. Bottom left: A 5×3-bucketing approach
for detecting keypoints. Bottom right: Result of the global suppression method RT AMNS.

image transformations such as scale, rotation, and illumination changes. Com-
mon feature descriptors include SIFT, SURF, and ORB, each with di�erent
approaches to achieving robustness and e�ciency.

The The Scale-Invariant Feature Transform (SIFT) [71] creates descriptors
by extracting local image gradients around each keypoint and forming a
histogram of gradient directions. These histograms are normalized to achieve
invariance to illumination changes. The descriptors are then concatenated
to form a high-dimensional vector, which can be used for matching. SIFT is
known for its robustness to various transformations but is computationally
intensive [135].

Speeded-Up Robust Features (SURF) [10] is designed to improve the speed
of feature description while maintaining robustness. SURF uses a box �lter
approximation of the second-order Gaussian derivatives to compute image
gradients e�ciently. Similar to SIFT, it forms histograms of gradient directions
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but reduces the computational complexity by using integral images. This
makes SURF faster than SIFT while still providing reliable descriptors [85].

Oriented FAST and Rotated BRIEF (ORB) [110] integrates the FAST [108]
keypoint detector with the Binary Robust Independent Elementary Features
(BRIEF) [20] descriptor, achieving both speed and rotation invariance. ORB
determines the orientation of each keypoint using the intensity centroid
method, and computes the BRIEF descriptor relative to this orientation. This
method balances computational e�ciency and descriptor robustness, making
it suitable for real-time applications [86]. The binary descriptor used by ORB
enhances matching speed. For BRIEF, the Hamming distance between the
two 265 bit descriptors is calculated using a simple AND operation. In contrast,
SIFT and SURF perform matching based on �oat comparisons.

Feature Tracking

For estimating motion based on images, the detected features must be tracked
across a series of frames. A naive approach involves rerunning the detection
pipeline and attempting to match the features with those from the previous
frame. This method is resource-intensive and signi�cantly impacts execution
time. Without prior knowledge, a brute-force method must be employed,
matching each feature from one image with all features from the other. If
prior information is available, such as through a motion model based on
previous estimations, the search radius for corresponding features can be
reduced, improving execution time.

To further enhance performance, the Fast Library for Approximate Nearest
Neighbors (FLANN) [89] can be employed. FLANN is an optimized algorithm
for large datasets that accelerates the process of �nding approximate near-
est neighbors. By using a hierarchical clustering method, FLANN reduces
the computational complexity of feature matching. This results in faster
execution times and allows real-time processing even on standard hardware.
Utilizing FLANN for feature matching can signi�cantly increase the e�ciency
of motion estimation systems, providing a practical solution for applications
requiring high frame rates and real-time processing. Typical average frame
rates range from 10Hz to 15Hz on modern hardware, such as an Intel i7 10th
generation processor.

74



5.1. Visual Odometry

Further improvements can be achieved by utilizing the fact that, with higher
frame rates, the change in pixel positions of observed features is limited, and
the similarity between the current frame and a previous one is signi�cant.
Instead of sampling, describing, and matching new features, already known
features are searched for in the new image. The Lucas-Kanade method [73]
assumes that the �ow is essentially constant within a small window of pixels.
This allows it to compute the �ow vectors by solving a set of linear equations
derived from the image intensity gradients. The method uses a least-squares
approach to minimize the error in the image brightness constancy equation,
resulting in a robust estimate of the optical �ow.

Given the image intensity partial derivatives �G (q) and �~ (q) and the temporal
gradient �C (q) for a pixel q, the optical �ow v = (D, E)) can be computed
by minimizing the sum of squared errors in the image brightness constancy
equation:

min
v

∑
8

(
�G (q8 )D + �~ (q8 )E + �C (q8 )

)2
(5.1)

for all pixels q8 that are part of the evaluation window. Applying the optical
�ow to the given features coordinates, we receive the estimated position for
each in the new frame.

While this approach is faster than the naive method, it may introduce out-
liers and inaccuracies that negatively a�ect ego-motion estimation. Feature
tracking based on optical �ow is a directed operation between two frames. A
straightforward method to check the correctness of the result is to apply the
approach in the reverse direction. This process, known as backward tracking,
reverses the order of the images and attempts to track the features back to
the source image. Afterward, the distance between the original position of
the feature and the position obtained from backward tracking is calculated.
If the distance exceeds a threshold, such as 2 pixels, the feature is rejected.

Finally, due to occlusion as seen in Figure 5.3, features can merge into a single
one. This occurs when two features are detected at di�erent depths and the
motion of the camera causes the object in front to hide the object behind it.
To address this, the distance to the nearest features is calculated after each
tracking step. If the distance is below a given threshold, the feature with
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Figure 5.3.: Feature merging due to occlusion. An object in the front is hiding the feature in the
back.

the higher distance is rejected as it either has the potential to merge or has
already merged with another.

Feature Resampling

As features are rejected over time, resampling new features becomes necessary.
This decision is based on two factors: the number of current features and
their distribution. The feature count condition is determined by the original
number of features from the initial sampling. If the ratio falls below 0.25,
new features are sampled. The distribution condition is based on a statistical
analysis of feature positions. The span of all features must cover at least 0.60
of the image dimensions. Additionally, the span of 50% of all features must
be at least 0.20 of the image dimensions. This ensures that the features are
not clustered, allowing for accurate tracking during fast movements, which
prevents a loss of tracking (LOT) situation.

If resampling is necessary, features are detected as previously described. If
new features are sampled close to existing ones, a matching step identi�es if
the same features have been sampled again. In this case, only the positions
of the old features are updated. Otherwise, the old features are replaced by
the new ones.
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Keyframe Sampling

To reduce the amount of data inserted into the graph-structure for mapping,
keyframes are used. Keyframes are selected based on their robustness and
support for tracking the system’smotion. During feature tracking, the number
of stable features in each frame is recorded. A stable feature is de�ned as
one that has been tracked continuously for at least =BC01;4 = 5 frames. Every
=B4;42C = 7 frames, the frame with the most stable features is selected and
added to a list of candidates for future keyframes. Finally, when 60% of
features have been lost since the last keyframe, a new keyframe is picked
from the set of candidates. For this selection, similar to Müller et al. [93], the
pose for each candidate is calculated, and the one with the lowest normalized
re-projection error is chosen. All candidates prior to the selected one are
discarded. A maximum of #20=3830C4B = 5 is kept for history.

Pose Estimation

To estimate the pose of the current frame, all feature correspondences with
the last keyframe are selected. This is critical for maintaining consistency and
accuracy in the pose estimation process. A point cloud is then constructed
based on the 2D feature observations and the corresponding depth estimations.
For each feature (D, E)) , the 3D position P is calculated using the following
formula:

P =
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Here, 3 represents the depth value at the feature point, as previous mentioned
in Section 3.1 (p 29) K is the intrinsic camera matrix, and (2G , 2~)

) are the
coordinates of the camera’s principal point. The intrinsic matrix  is de�ned
as:
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K =
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where 5G and 5~ are the focal lengths in the x and y directions, respectively.

To determine the relative pose o�set of the current frame with respect to
the second image, the 3D points are projected into the second frame. This
projection involves applying a transformation de�ned by a rotation matrix
R and a translation vector t. The goal is to minimize the reprojection error,
which is the di�erence between the observed 2D points p8 and the projected
3D points c (RP8 + t). This is formulated as an optimization problem: [67]

min
R,t

=∑
8=1

∥p8 − c (RP8 + t)∥2 (5.4)

In this equation:

• p8 represents the observed 2D points in the second image.

• P8 denotes the 3D points reconstructed from the �rst image.

• R is the rotation matrix that aligns the coordinate system of the �rst
image with the second image.

• t is the translation vector that represents the position shift from the
�rst image to the second image.

• c (·) is the projection function de�ned in Section 3.1 on page 29.

The optimization aims to �nd the optimal R and t that minimize the reprojec-
tion error across all feature correspondences. This involves iterating through
possible values of R and t and evaluating the sum of squared di�erences
between the observed and projected points. The method is implemented
using the dense Cholesky factorization [28] from the ceres solver [3].

Finally, the resulting pose, which is relative to the keyframe, must be trans-
formed into the global frame. This transformation is achieved by concatenat-
ing the computed relative pose with the keyframe’s pose.
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5.2. Visual Odometry Fusion

The approach described in Section 5.1 is initially for a single sensor. One
key contribution of this work is extending this single-sensor estimation to
a multi-sensor context. A graph fusion method is used to register and fuse
multiple visual odometry (VO) modules. This multi-sensor approach aims
to improve the reliability of motion estimation. Additionally, it enables a
distributed architecture, supporting modern robotic systems with multiple
computational nodes.1

Each VO module independently estimates a trajectory, represented initially
as a series of discrete poses. By running independent VO modules, the local-
optimal selection of keyframes is supported, which is important for robustness
as discussed in Chapter 2 on page 13. These poses are then linearized, sim-
plifying the trajectory. This linearized trajectory is then converted into a
time-continuous representation using B-spline interpolation. This step main-
tains the temporal coherence of the estimated trajectory, ensuring accurate
motion estimation.

After obtaining the time-continuous trajectory, it is registered and trans-
formed into a common coordinate system. This step ensures that all tra-
jectories, despite being from di�erent sensors, are aligned and comparable.
Accurate registration is essential for meaningful integration of data from
multiple sensors.

Finally, the registered trajectories from the di�erent VO modules are fused
into a single, coherent motion model. This fused trajectory leverages the
strengths and unique perspectives of each sensor, enhancing the system’s
overall accuracy and robustness, even in challenging environments. The
fusion process helps to mitigate individual sensor weaknesses by combining
their complementary data.

Trajectory Approximation

The ego-motion estimates provided by the VO system are structured as pose
estimations connected by delta poses. These estimates are transformed into
a time-continuous approximation, evaluable at any point between sensor
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measurements. This enables independent VO modules to operate optimally
based on their observable �eld-of-view.2

Agenerally accepted approach in the automotive sector is using B-splines [148]
for converting a discrete set of poses into a continuous representation. B-
splines e�ciently calculate the �rst and second-order derivatives at an evalu-
ation point, making them useful for motion-model approximation. However,
applying this to indoor service robotics, the system faces higher acceleration
changes and spontaneous direction changes. While B-splines smooth the mo-
tion in automotive cases, this leads to missing trajectory coverage in corners
for indoor cases.

To overcome this, a linear-motion constraint for the keyframe-sampling is
required. The trajectory is linearized by reducing graph nodes that can be
represented by linear motion. A set of consecutive poses {T0,T1, ...,T=},
where T ∈ SE(3), is de�ned as linearizable if any T ∈ {T1, ...,T=−1} can be
explained by linear motion from T0 to T1. An acceptable positional error 4lin,t
and angular error 4lin,R enhance robustness against small estimation errors.

The result is a sparse set of discrete pose estimations whose density depends
on the change of the �rst derivative of the initial trajectory. To achieve a
continuous time representation, as proposed by Yang et al. [148], cumulative
Spline-Fusion is applied. This ensures a twice continuously di�erentiable
representation essential for motion models.

The initial set of discrete poses serves as control points for the B-spline, which
�ts a smooth curve through the data points. The B-spline method allows for
e�cient calculation of derivatives for modeling motion dynamics. By using
cumulative Spline-Fusion, the resulting trajectory maintains a smooth and
continuous pro�le, accommodating sudden changes in motion while ensuring
accuracy in pose estimations.

The process is illustrated in Figure 5.4.

Combined Trajectory

To obtain a uni�edmotion estimate, it is necessary to fuse the trajectories from
all sensors into a common reference frame. Each sensor provides independent
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Figure 5.4.: Step-by-step illustration of acquiring a time-continuous interpolated motion-model
from a sensor’s trajectory.

trajectory estimates, which must be transformed into the robot’s coordinate
system due to their di�erent positions on the platform.3

T$ = T$= T=, (5.5)

where T$= denotes the transformation from sensor = to the robot’s origin $ ,
and T= and T$ are the respective poses in their local frames.

For each new inserted Keyframe, the system queries the local motion estimates
from all trajectories. These estimates are referred to as virtual poses, which
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5. Ego-State Estimation

are approximated based on earlier computations. The �nal fused pose is
computed using a weighted combination of all virtual poses, with translation
and rotation handled separately.

The translational component is de�ned as:

t%;0C 5 >A< (C) =

=∑
F=t= (C) =

=∑ 
F=C1,= (C)

F=C2,= (C)

F=C3,= (C)


, (5.6)

where t= (C) ∈ R
3 is the virtual position of sensor = at time C , andF= ∈ [0, 1]

is its corresponding weight (see Equation (5.10)).

For the rotational component, the Spherical Linear Interpolation (Slerp) [122]
algorithm is employed, which interpolates between two quaternions q0 and
q1 along the shortest path on the unit quaternion sphere. This method is
extended to multiple quaternions by concatenating individual Slerp opera-
tions:

Slerp(q0, q1, C) =
sin((1 − C)\ )

sin(\ )
q0 +

sin(C\ )

sin(\ )
q1 , (5.7)

where \ is the angle between q0 and q1, and C ∈ [0, 1] is the interpolation
factor.

When applying this to multiple quaternions, the weights F0,F1, . . . ,F= ∈

[0, 1], where
∑=
8=0F8 = 1, are corrected using:

D 9 =

∑9
8=0F8∑9+1
8=0 F8

. (5.8)

Using these corrected weights, the concatenated Slerp operations are as
follows:
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Figure 5.5.: Illustration showing the fusion of several independent estimation tracks into a single
trajectory. The blue trajectory uses a directly computed pose based on a received Keyframe, the
others use an interpolated virtual pose. The result is a combined estimated denoted as Keypose.

q̃1 = Slerp(q0, q1, D0) ,

q̃2 = Slerp(q̃1, q2, D1) ,

. . .

q̃= = Slerp(q̃=−1, q=, D=−1) , (5.9)

resulting in the �nal quaternion.

The weighting of each track depends on the temporal distance from the
nearest measurement. The weight for each track = at time C is de�ned as:

F=,C = [max

(
1 −

2�C

C2 − C1
, F̂<8=

)
, (5.10)

where F̂<8= is a lower weight limit, and [ normalizes the sum of weights to
1.

The �nal pose is applied for two purposes: registering new tracks to the
platform and updating the fused pose for keyframe insertion into the global
graph.
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5.3. Mapping

In simultaneous localization and mapping (SLAM), representing a map using
a factor graph involves key components that encapsulate the relationships
between di�erent variables. A factor graph is a bipartite graph consisting
of variable nodes and factor nodes, where edges represent probabilistic de-
pendencies among these nodes. The primary variable nodes in SLAM are
pose variables, representing the robot’s positions and orientations over time,
and feature variables, denoting the positions of features in the environment.
Factor nodes represent constraints or measurements that relate the variable
nodes. In SLAM, these typically include odometry factors connecting consec-
utive robot poses, observation factors linking robot poses to landmarks, and
loop closure factors connecting non-consecutive poses to correct drift in the
map. The construction of a factor graph involves initializing with an initial
guess of the robot’s pose and landmarks’ positions, incorporating odometry
factors as the robot moves, adding observation factors when landmarks are ob-
served, and handling loop closures to ensure global consistency. The mapping
system in this work is based on the ORBSlam2 framework [92], which utilizes
keyframes to build a map incrementally. ORBSlam2 allows for both track-
ing and mapping through the extraction and matching of keypoints across
consecutive frames, ensuring robustness in various indoor environments.

Optimization in factor graphs is important for �nding the most likely con-
�guration of the robot’s poses and landmark positions given the measure-
ments. This is achieved through graph-based optimization techniques like
Gauss-Newton [14] or Levenberg-Marquardt [88], which minimize the error
represented by the factor nodes. The error function quanti�es the di�erence
between the predicted measurements, based on the current estimate of the
variables, and the actual measurements. Incremental methods such as iSAM
(incremental Smoothing and Mapping) [58] allow for real-time updates and
re-optimization of the factor graph as new measurements are obtained.

Factor graphs o�er several advantages in SLAM. They provide scalability,
handling large-scale SLAM problems e�ciently. The modularity of factor
graphs, with a clear separation between variables and factors, makes it easy
to integrate various types of sensors and motion models. Additionally, the
�exibility of factor graphs allows for the incorporation of di�erent types of
measurements and constraints, providing a versatile framework for SLAM.
This �exibility supports a modular approach, enabling the system to adapt to
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various scenarios and con�gurations. Overall, this structured and e�cient
representation facilitates robust and scalable solutions to the SLAM problem,
and enables serialization of the underlying data structure.

In this work, the mapping capabilities of ORBSlam2 were extended to al-
low for the serialization of map data, enabling the system to save and load
maps, improving reusability and adaptability in dynamic environments. Fur-
thermore, a mapping system was introduced that allows for fast, reliable,
and adaptable mapping of changing environments, making it suitable for
real-world applications where environments are frequently altered.

Map Serialization

The map comprises several data classes:

1. Keyframe poses

2. Odometry estimations between Keyframes

3. Loop closures between Keyframes

4. Feature positions

5. Observations of features at di�erent Keyframe poses

Figure 5.6 illustrates this relationship. The feature positions are explicitly
included in the map, even though they can be derived from the keyframe
poses and observations. This explicit inclusion has advantages. First, it
accelerates the process of loading the map into memory by eliminating the
need for re-triangulating feature positions. Second, once the positions have
converged, parts of the map can be separated, creating independent maps.
This is useful when maps become large or when only speci�c parts need to
be serialized and saved.4

Furthermore, map serialization enables post-creation map editing. Using
detected feature points, transformations between the map and the world or
individual objects can be estimated. Additionally, features can be disabled
for use in localization. This technique is used to remove objects from the
scene that typically cause errors due to their appearance, such as screens,
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Keyframe Pose

Feature Position

Odometry Estimation

Feature Observation

Loop Closure

Figure 5.6.:A typical pose graph representing the data structure behind the mapping process.
(Structure is simpli�ed for better visualization)

plants, and curtains. By disabling these features, they are excluded from pose
estimation.

Long-TermMap Creation

Creating a map for long-term use in indoor scenarios is a multi-step task
performed by an expert. The process begins with the creation of a minimal
map for re-localization. This map should be a small but distinguishable
representation of the environment that remains constant over time. Examples
include static furniture components like a kitchen counter, artistic objects
like a sculpture, or electrical outlets in the wall. The key is that their location
is �xed and their appearance is static.

Evolving from this minimal map, an extensive and detailed map is created.
The purpose of this map is to cover the entire area of operation and achieve
a converged representation. First, the system maps the circumference of
the area. Second, it triggers loop-closures by linking diagonal points on
this outline. The loop-closures between distant poses compensate for sig-
ni�cant drift accumulated over time, ensuring fast map convergence. This
detailed representation can be used to align the obtained map with other
world representations, such as CAD representations of the environment or
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Figure 5.7.: Estimation process using arti�cial markers placed on the �oor and captured by the
robotic system.

prede�ned and known arti�cial markers (see Figure 5.7). Typically, several
known landmarks are observed, and their positions are compared to the
observations based on the detailed and converged map. An optimizer is then
used to estimate a transformation that minimizes the spatial error between
the observed and actual poses of the landmarks.

Finally, the minimal map and the obtained transformation can be used to
create an application-speci�c map. This application map includes only the
typical poses of the robot during its operation. The transformation from the
detailed map is applied to the origin of the minimal map, ensuring accurate
positioning since the origin is always the �rst Keyframe and has no drift. This
makes the transformation applicable to any map derived from the minimal
map. If the environment changes, a newmap can be quickly created using this
method, allowing the robot to adapt to di�erent applications e�ciently. Exem-
plary maps for DLR’s Robotic and Mechatronic Center in Oberpfa�enhofen
are shown in Figure 5.8.
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Minimal Application

Full

Figure 5.8.: Exemplary illustration of the di�erent maps for the Robotic and Mechatronic Center
at the German Aerospace Center in Oberpfa�enhofen. Top-left shows the minimal map for
obtaining the world transformation information. Top-right is the application map used to start a
mission. Bottom is the full map after a single mission.
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6. Landmark Estimation

The sub-module described in Chapter 5 focuses on the localization of the
robotic system itself in a quasi-static environment. This chapter explores the
localization of external, possible dynamic landmarks. The primary focus will
be on multi-modal detection for audio sources. However, the concepts can
also be applied to the visual domain. An overview is given in Figure 6.1.

6.1. Landmarks

A key di�erence between detecting features for ego-state estimation and exter-
nal landmarks is that the latter may not be continuously observable. Speakers
emit sound only when actively speaking, and are undetectable during breaks
or periods of silence. Objects produce di�erent spectral pro�les based on
their internal state, and noise sources can disrupt the estimation. Smaller
objects may be removed from the scene. Additionally, external landmarks
may change location over time, a property not modeled in the proposed ego-
state estimation approach. For example, a person may walk while speaking,
causing the source’s position to be dynamic during the estimation process.

Landmark
Localization

Sound Source
Localization

Detection
DB

Full-Batch
Pose Estimation

Landmark Estimation

Figure 6.1.:Overview of the sub-module architecture
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Figure 6.2.:AprilTag [145] �ducials used as visual aids for localization of objects in the environ-
ment.

6.1.1. Visual Landmarks

Detecting landmarks using visual sensor systems is a well-researched topic.
There are di�erent approaches to obtain pose information for an object. A
common and simple approach is using arti�cial markers, called �ducials,
mounted at de�ned positions. By detecting these markers in the image and
estimating their 6D pose, the overall pose of the object can be determined.
AprilTags [145], a �ducial family developed by the April Labs at the Univer-
sity of Michigan, are often used for this purpose. An example is given in
Figure 6.2.

A more complex but less intrusive approach involves using neural networks
to estimate the 6D pose directly from the object’s visual appearance. This
method does not require adding markers to the environment, making it
suitable for indoor use, especially in environments shared with humans.

An in-depth discussion of methods for visual detection of objects and estima-
tion of their pose is beyond the scope of this work.
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6.1. Landmarks

6.1.2. Sound Sources

Before diving into the localization of sound sources, the signal space for a
microphone array as described in Section 3.2 is de�ned. The sound source
is modeled as a point emitting a sinusoidal wave with center frequency 5:
and corresponding time-dependent amplitude _: (C), where : is the index of
one out of  frequency bands. Using the complex frequency notation, this is
expressed as

B (C) = _: (C)4
92c 5:C

= _: (C)4
9l:C . (6.1)

Consider a sensor array consisting of # microphones, leading to the system
equation



1

4− 9F:�1

...

4− 9F:�# −1


B (C) =: a:B (C) , (6.2)

where �= is the relative propagation delay with respect to the =-th reference
microphone. For a one-dimensional linear microphone array and under the
assumption of planar waves, the delay is calculated as

�= =

3= sin(\ )

20
, (6.3)

where 3= is the sensor’s distance to the reference, \ the direction of arrival,
and 20 the speed of sound (see Equation (3.11)), approximately 334</B at
room temperature. The vector a: ∈ C

N in Equation (6.2) is denoted as the
steering vector for the frequency 5: . To obtain the complete signal vector,
the system equation is extended to

x(C) = a:B (C) + n(C) , (6.4)

where n(C) represents additional uncorrelated system noise.
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Subspace Approach

When a new signal is received, it is split into smaller frames of �xed length and
transformed into the frequency domain. The correlation matrix R ∈ C

#×# is
computed using

R = X(:)XH (:) , (6.5)

where X(:) ∈ C
#×� contains the transformed Fourier coe�cients of band :

for all � frames and # microphones. Here, XH denotes the Hermitian of X.
Applying singular value decomposition (SVD) on R to separate the contained
subspaces results in

SVD (R) = UDVT (6.6)

U = [u0 u1 · · · u#−1]

= [US UΣ] , (6.7)

where US represents the signal space and UΣ the noise space. As the system
noise is uncorrelated, it is present in all subspaces. The previously de�ned
steering vector a: is a property of a receiving signal and thus de�ned in the
signal space. This implies

ė: ∈ đ S , (6.8)

⇒ ė: § đ Σ . (6.9)

Hence, the inner product (denoted as ï·, ·ð) of the steering vector and the
noise space is zero.

Natural sound events, especially human speech, are composed of several fre-
quencies. To account for this, the complete frequency spectrum is considered
and combined into a single representation. A common approach for this is
the broadband pseudospectrum, which is de�ned over all frequency bands  
as

% (\ ) =

 ∑
:=1

1

ïa: (\ ),UΣð2
. (6.10)
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Figure 6.3.: Typical response for the MUSIC pseudospectrum. Shown is the median as well as
the 25-th and the 75-th quantille for a series of estimations.

The DoA is found as the maximum of the estimator’s response, i.e.

\̃ = argmax % (\ ) . (6.11)

A typical response is exemplary depicted in Figure 6.3.

Adaptive Frequency Selection

Estimating the DoA is computationally intensive. Incorporating all frequency
bands may prevent real-time applications. Most sound sources emit sound
with base frequencies and their harmonics. Selecting these frequencies for
estimating the DoA increases robustness against noise and reduces computa-
tion time. Naively selecting the strongest frequency and de�ning a bandpass
�lter around it does not exclude noise bands. A better approach compares the
frequency bands against a known noise spectrum obtained in Section 4.1.2
on page 54. The bands with the highest divergence are then selected. The
Long-Term Spectral Divergence (LTSD) approach by Ramirez et al. [104] can
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be applied to any sound source, even though it was initially designed for
speech.1.

The Long-Term Spectral Envelope (LTSE) is calculated to analyze the spectral
characteristics of speech over a long period. Given a noisy speech signal
G (=), it is �rst decomposed into 25ms frames with a 10ms window shift. Let
- (:, ;) denote the spectrum magnitude for the :-th frequency band at frame
; . The LTSE is calculated using a (2# +1)-frame window centered around the
current frame ; . It is de�ned as the maximum value of the spectral magnitude
. (:, ; + 9) within this window:

LTSE(:) =
#

max
9=−#

{. (:, ; + 9)} (6.12)

Here, : represents the frequency band and ; the current frame. This ap-
proach captures the spectral peaks over the window, providing a more stable
representation of the spectral envelope in noisy conditions.

The LTSD is a metric used to determine the presence of speech. It measures
the deviation of the LTSE from the estimated noise spectrum. The noise
spectrum # (:) is estimated and updated continuously during non-speech
periods. The LTSD is de�ned as the logarithmic ratio of the LTSE to the noise
spectrum averaged over all frequency bands:

LTSD = 10 log10

(
1

#FFT

#FFT−1∑
:=0

LTSE2 (:)

# 2(:)

)
(6.13)

Here, #FFT is the number of frequency bands. The LTSD measures how much
the current spectral envelope deviates from the noise estimate. However,
only the information based on each band is needed for selection, simplifying
eq. (6.13) to:
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Figure 6.4.: Selected frequency bins for di�erent approaches. Left: All estimated frequency
bins used by GSVD. Center: Bandpass �lter applied around the center frequency according
Active Frequency Range Filtering [51]. Right: Adaptive approach based on Long-Term Spectral
Divergence.

LTSD′ (:) =
LTSE2 (:)

# 2 (:)
(6.14)

This is used to �nd the frequency bands with the highest divergence. The
best =�0=3B = 50 are then selected for estimating the DoA based on the pseu-
dospectrum in Equation (6.10). An exemplary comparison for the selection is
shown in Figure 6.4.

Motion-Model

The plausibility of the received angle is checked by evaluating it with a motion
model. For the time span C<< , it is assumed that the source moves with mean
angular velocity l̄ , i.e.,

l̄ (C<<) =

(
�\

�C

)
≈

1

"

∑
=∈N(C<< )

\̃= − \̃=−1

C= − C=−1
, (6.15)

where N(C<<) is the index set of all" angular measurements \̃= within the
time span C<< . A subsequent measurement \̃<+1 is considered valid if���\̃<+1 − l̄ (C<<)

��� < \C>; , (6.16)
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with the constant motion tolerance \C>; = 5◦ which is the typical estimation
accuracy of a microphone array.

When receiving a new DoA from the previous steps, all estimations within the
time span C<< are gathered. If at least two valid points are found, the motion
model is used to verify the new one. Otherwise, all DoAs are used for the
motion vector, requiring at least three estimations. The �rst estimations are
used to calculate l̄ (C<<), and the last one to verify the model. If the motion
can be explained by the model, all DoAs are marked as valid estimations.

This motion model helps �lter out echoes, as measurements stemming from
echoes have a direction inconsistent with the source and occur shortly after
the arrival of the original signal.

6.2. Landmark Pose Batch Optimization

The previous sections discuss the estimation of a landmark at a single point
in time. However, this estimation is a�ected by measurement noise, leading
to inaccuracies in the landmark’s pose estimate. For example, as mentioned
in Section 6.1.2, sound source localization is optimized for an accuracy of
5◦. Integrating multiple measurements can reduce the uncertainty in these
estimates.

Another source of uncertainty arises from the localization of the robot’s
ego pose, as previously described in Chapter 5 (pp. 69). Evaluations on the
IndoorMCD dataset (Section 4.3.1, pp. 61) indicate a worst-case error of
10 cm and 4◦. Additionally, as discussed in Section 4.2 (pp. 57), the robot’s
kinematics may be a�ected by con�guration-dependent bending.

In scenarios involving multiple transformations with uncertainties, manag-
ing these uncertainties e�ciently is essential for maintaining computational
tractability. A common approach is to utilize Lie Algebra for representing
and concatenating these transformations. The Lie group represents the trans-
formations themselves, while the associated Lie algebra represents small
perturbations around these transformations. The framework described in
Section 4.2 (pp. 57) is particularly useful for systematically handling the non-
linearities and non-commutative properties inherent in robot kinematics.2

2 Publications 6, 7 and 2
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Localization Estimation

Robot Config Marginalization

Landmark Observation

World
Origin

Figure 6.5.: Batch optimization of the pose estimation of an external landmark (here based on
visual information). Left: The kinematic model of Rollin’ Justin that is marginalized to a single
transformation. Right: The optimization graph for the landmark pose estimation.

Marginalization is an important technique for reducing the complexity of the
kinematic system. It involves integrating out certain variables to focus on
a lower-dimensional subset, thereby simplifying the overall representation.
For example, consider two transformations T�� and T�� with associated
uncertainties represented by covariance matrices Σ�� and Σ�� . When com-
bining these transformations, the overall uncertainty can be approximated
by Equation (4.18) and Equation (4.19) on page 60

T�� = T�� ∗ T�� ,

Σ�� = AdT−1
��
Σ��Ad

)
T−1
��

+ Σ�� .

Marginalization can then be applied to remove intermediate transformations
or landmarks, updating the covariance of the remaining variables accord-
ingly.

This entire process can be represented as a pose graph that incorporates
these uncertain measurements. Figure 6.5 illustrates this graph for optimizing
a landmark pose observed by the robotic system Rollin’ Justin. Initially,
the landmark is observed from multiple viewpoints. For each viewpoint,
the observation in the sensor frame is recorded and included in the graph,
alongside the ego-pose estimate and the estimated transformation from the
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Knowledge
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Geometry
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Figure6.6.:An object’s pose has been previously estimated using the batch optimization described
in Section 6.2. Then, using the a-priori knwon geometry information in the knowledge database,
the system is able project the visibility of the object in the environment with respect to the
current robot pose.

robot’s localization origin to the sensor origin. The entire robotic kinematic
tree is marginalized to a single transformation.

The graph is constructed using all localization poses, connecting the corre-
sponding sensor o�sets and landmark observations. The �nal step in the
optimization process involves the use of a smoothing andmapping (SAM) [58]
approach. The optimization seeks to minimize the error between observed
and predicted measurements, incorporating all localization, robot con�gura-
tion, and landmark observations. This is achieved through non-linear least
squares optimization leveraging Levenberg-Marquardt. Here the implemen-
tation of GTSAM [29] is used. The result is a globally consistent estimate of
the landmark position with respect to all uncertainties in the system.

6.3. Audio-Visual Information Fusion

Audio and visual data from both modalities must be combined to achieve a
fully multi-modal system3. Visual landmarks can directly estimate the pose
of an object, whereas the SSL approach provides only a bearing. Since sound
sources may emit audio signals for limited durations, a triangulation approach
based on robot movement is not feasible. Instead, it is assumed that audio
sources are contained within known objects.

3 Publication 6.
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First, objects are detected andmapped using a visual approach, and their poses
are re�ned using the method outlined in Section 6.2 on page 96. The robot
stores all information in a knowledge database [113], which includes not only
world position and orientation but also geometric information such as 3D
outlines, semantic properties, and other attributes. By querying this database,
the robot can calculate the object’s visible cross-section (VCS) relative to its
current ego-pose, as shown in Figure 6.6. A received SSL bearing, including its
estimation tolerance, is compared against the VCS of an object to determine
whether the object is the source of the sound event. Since the plausibility is
already checked and �ltered by the motion model (Section 6.1.2, pp. 95), no
further �ltering is necessary.

Audio-visual data fusion occurs at a high level, after both modalities have
been individually processed. The object’s pose, re�ned using batch optimiza-
tion, is the basis for comparison with the SSL-estimated audio bearing. The
pose estimation from visual data is immediate, given the static nature of the
visual observations. In contrast, audio source localization, a longer process,
estimates the bearing based on the middle of the audio frame. It is assumed
that during a single audio frame, the sound source remains static.

Uncertainty in the visual object’s pose is derived from the batch optimization
approach, which uses graph optimization implemented with the GTSAM
library. This method provides a probabilistic measure of the pose accuracy.
The uncertainty in the SSL bearing is obtained from empirical data, collected
during experiments conducted in controlled environments such as anechoic
chambers. These uncertainties from both modalities are then used to assess
the plausibility of the object being the sound source.

Audio-Visual Information Fusion Challenges

One of the key challenges in audio-visual information fusion is ensuring that
objects in the environment are distinguishable at any point in time during the
fusion process. For successful fusion, a direct line of sight, or ray, must exist
between the robot’s sensors and the object in question. This ensures that
both audio and visual data correspond to the same object, allowing accurate
comparison of the SSL bearing and the object’s pose.

However, the current system does not include a mechanism to handle cases
where multiple objects are aligned along the same line of sight. Speci�cally, if
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one object is located directly behind another, the system may not di�erentiate
between them. In such cases, the fusion process could mistakenly associate
the SSL bearing with the wrong object. This limitation is particularly relevant
in cluttered or dynamic environments where occlusions are common.

To address this, future work could involve incorporating methods to detect
and handle occlusions, such as using depth data from cameras or introducing
a more sophisticated environmental model that predicts object positions and
handles visual occlusion. Additionally, �ltering techniques could be applied
to prioritize data from modalities that are less a�ected by occlusion in speci�c
scenarios.
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7. Evaluation

In the course of this work several publications (see Appendix A, pp. 137) have
been prepared and presented. These publications evaluated the performance,
accuracy, and applicability of the respective approaches. This chapter will
highlight important results and put them into context for the whole system.

7.1. Multi-Sensor Approaches

As mentioned in Chapter 5 (pp. 69), adding more sensors to the perception
system enhances two major aspects: robustness against LoT and an increase
in the system’s �eld-of-view (FoV).

While the increase in FoV is a direct consequence of using additional sensors
with di�erent viewpoints, the improvement in robustness stems from the
system’s ability to capture more features. With multiple sensors pointing in
di�erent directions, the likelihood of encountering views with insu�cient or
poor-quality visual features is signi�cantly reduced. In a single-sensor system,
certain scenes may lack enough distinctive features for accurate tracking,
especially in scenarios with textureless surfaces or occlusions. However, with
multiple cameras, the risk of this happening is minimized, as the system
has access to complementary perspectives. This redundancy ensures that
even if one camera’s view lacks su�cient visual cues, others can continue to
provide reliable feature data, preventing LoT events and ensuring continuous
operation.

The positioning of the sensors plays a crucial role in determining the increase
of the FoV. Parallel sensors with signi�cant overlap in their views do not
contribute to increasing the FoV, while sensors with completely di�erent
viewpoints can signi�cantly expand it. However, depending on the speci�c
application and scenario, overlapping views may be desirable, as they en-
hance redundancy and improve robustness. Therefore, a trade-o� between
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expanding the FoV and maintaining overlapping views must be carefully
considered.

Figure 7.1 provides a clear comparison of both con�gurations through the
results of the same trajectory. The left image shows the map generated by a
single-camera system, while the right image illustrates the map produced by
a multi-camera system consisting of �ve cameras with four of them having
non-overlapping views.

In the single-camera case, the system experienced a loss-of-tracking (LoT)
partway through the trajectory. This is evidenced by the incomplete and
fragmented map in the left image, where certain sections of the environment
were missed entirely. The system was unable to recover from this tracking
failure, leading to a substantial degradation in both map density and coverage.
This highlights the vulnerability of single-camera systems, particularly in
scenarios where the view becomes occluded or key feature points are lost
due to sudden motion or environmental changes.

On the other hand, the multi-camera system (shown on the right) successfully
tracked the entire trajectory without any LoT events. This is largely due
to the increased FoV, where the additional cameras provided complemen-
tary viewpoints that compensated for occlusions or temporary loss of visual
features. The result is a signi�cantly denser map that covers a wider area,
with more feature points accurately captured and aligned across the scene.
The robustness against LoT is clearly visible in the right-side map, where
the system’s ability to consistently detect and track features throughout the
entire path results in a more complete and reliable reconstruction of the
environment.

The bene�ts of the multi-sensor con�guration become particularly evident
in complex or dynamic environments where a single camera might struggle
with occlusions or fast movements. By integrating multiple cameras with
varying viewpoints, the system can maintain continuous tracking and gen-
erate more reliable and detailed maps. Additionally, the redundancy o�ered
by the overlapping views in certain con�gurations ensures that even if one
sensor loses tracking temporarily, the other sensors can compensate, further
enhancing the system’s robustness.

Examining the individual improvements, we start with robustness. Typical
reasons for losing tracking during ego-motion estimation in indoor environ-
ments include obstructed views due to proximity to obstacles, low-textured

102



7.1. Multi-Sensor Approaches

Figure 7.1.:Comparison of the same trajectory. Left side with a single camera, right side with
�ve cameras. The single camera captures a limited view, while the multi-camera setup captures
more feature points.

Figure 7.2.: Typical loss-of-tracking scenarios. These situation illustrate operation in close
proximity to an obstacle, obstructed camera view, low-textured environment and motion-blur.

environments that lack su�cient features, and motion blur a�ecting feature
detection and matching. These situations are displayed in Figure 7.2. The �rst
two issues are examples where multi-sensor approaches can overcome the
limitations of a single failing sensor. To address this, an extensive study using
the IndoorMCD dataset was conducted. This study evaluated �ve di�erent
approaches for estimating a trajectory, along with two former single-sensor
approaches using the fusion approach discussed in Section 5.2 (pp 79). The
dataset is organized into six di�erent scenarios, �ve of which o�er high-
accuracy ground truth information. In these scenarios including ground truth
information, each estimation method is run on either a single sensor or all
sensors, depending on the approach. A binary classi�cation success-rate is
de�ned to determine a successful and robust estimation. If the system re-
ported valid tracking for at least 90 % of the time, it was considered successful.
This threshold accounts for possible initialization issues at the beginning or
short losses of tracking that could be immediately recovered.

The results are shown in Table 7.1. At �rst glance, it is clear that approaches
using multi-sensors for estimation show superior performance in terms of
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robustness. Several single-sensor approaches, especially ORB-Slam2 and ORB-
Slam3, struggle to estimate the trajectories reliably in challenging scenarios.

However, the approaches developed in the course of this work — namely
MROSLAM, as well as the Multi- versions of ORB-Slam3 and VINS-Fusion —
demonstrate signi�cantly improved performance. The MROSLAM system
uses fully independent, concurrently running VO and SLAM modules, with a
�nal fusion of the pose estimate across the sensors. This design choice, while
promoting robustness through independent operation, requires each indi-
vidual module to regain tracking after a loss-of-tracking (LoT) event before
continuing. In contrast, the Multi- variants of ORB-Slam3 and VINS-Fusion
employ the graph fusion approach discussed in Section 5.2, where sensor
data is shared between modules, allowing for online trajectory registration
and enabling a more e�cient recovery from LoT events.

Notably, the Multi-VINS-Fusion approach successfully estimates all trajec-
tories in every scenario, highlighting the e�ectiveness of this multi-sensor
extension. The fusion approach signi�cantly impacts performance by allow-
ing fast resets of individual modules after LoT, preventing prolonged loss of
estimation and contributing to a more continuous ego-motion estimation.
This is illustrated by the recovery behavior in Figure 7.3, where MROSLAM
and the extended ORB-Slam3 are compared. The trajectory not only high-
lights the frequency of LoT events but also demonstrates the rapid recovery
made possible by the fusion architecture in the extended ORB-Slam3, re-
sulting in a more stable and reliable ego-motion estimation throughout the
evaluation.

Overall, the evaluation con�rms that the multi-sensor approaches, partic-
ularly the ones developed in this work, provide substantial robustness im-
provements in terms of handling LoT events and maintaining continuous
motion tracking across a variety of challenging indoor scenarios.

Considering the system’s FoV and the increased mapping area, a reliable
indicator of system performance is the number of inserted observations into
the �nal optimization graph. Figure 7.4 presents the number of features
detected by single-, two-, three-, four-, and �ve-sensor systems. Each system
was evaluated on three distinct trajectories: a linear path without any rotation,
a spot rotation, and a loop that combines both translation and rotation.

As expected, the number of detected features increases with the number of
sensors. This trend is a direct result of the expanded FoV provided by each ad-
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Table 7.1.: Evaluation of the robustness of di�erent approaches on the IndoorMCD dataset.
Shown is the success-rate which indicates if the system was able to maintain valid tracking on
all trajectories. MROSlam is a fully independent running Multi-VO system that fuses the �nal
poses to a single estimate, Multi-ORB-Slam3 and Multi-VINS-Fusion use the fusion extension for
handling multiple inputs. All three have been developed during the course of this work.

S0 S1 S2 S3 S4

VINS-Mono [137] 0.82 0.93 0.88 0.92 0.93

VINS-Fusion [137] 0.81 0.86 0.96 1.00 0.93

ORB-SLAM2 [92] 0.00 0.24 0.00 0.63 0.73

ORB-SLAM3 [22] 0.05 0.00 0.05 0.75 0.53

MROSlam [119] 0.68 0.79 0.92 1.00 1.00

Multi ORB-Slam3 0.77 0.90 0.96 1.00 1.00

Multi VINS-Fusion 1.00 1.00 1.00 1.00 1.00

Figure 7.3.:Valid tracks for a three-sensor systems over time. Orange showing ORB-Slam3 with
the Graph Fusion extension, blue the operation of MROSLAM on the same trajectory. The online
registration of Graph Fusion enables the re-integration of lost estimation tracks and can faster
recover a loss compared to completely independent running VO-modules.

ditional sensor. With each sensor pointing in a di�erent direction or covering
di�erent parts of the environment, the system can capture signi�cantly more
visual features from multiple viewpoints. This broader coverage reduces the
risk of missing landmarks, particularly in complex environments where parts
of the scene might be occluded or out of view of a single sensor.
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Figure 7.4.:Number of observed features for di�erent amount of sensors. Each con�guration is
evaluated on three trajectories, a translation-only, a rotation-only and a combination of both.

For example, in the �ve-sensor con�guration, the sensors collectively cover
a much wider area than a single-sensor system. This not only allows the
system to detect more features in total but also ensures that it can continue
tracking even if some sensors temporarily lose sight of key landmarks due to
occlusions or changes in the environment. The ability to capturemore features
contributes to the creation of a denser, more comprehensive map, which is
crucial for accurate ego-motion estimation, especially in scenarios involving
complex trajectories with both rotational and translational motion.

The increase in observed features, as shown in Figure 7.4, directly correlates
with improvements in the accuracy and reliability of the overall mapping
process. In the single-sensor system, feature detection is often limited by the
constrained FoV, leading to less robust tracking and a sparser map. In contrast,
the multi-sensor setups, especially with four and �ve sensors, signi�cantly
enhance the system’s capacity to observe a greater number of points across the
environment, ensuring more reliable localization and mapping even during
fast rotations or in environments with varying levels of visual detail.

This improvement in FoV is particularly advantageous in real-world scenarios,
where environments are often dynamic and contain objects that can occlude
certain views. By distributing the sensors in such a way that they capture
complementary views, the system becomes less vulnerable to localized visual
de�ciencies, ensuring a more consistent and reliable performance.
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Figure 7.5.: Experimental audio setup. A linear microphone array with logarithmic spacing
between the microphones (marked in red).

7.2. Indoor Robot Audition

As mentioned in Section 3.2 on page 39, the localization of audio sources in
indoor environments is greatly a�ected by echo and reverberation. These
environmental factors can distort the sound signals and challenge accurate
source detection. To address these issues, the approach described in Sec-
tion 6.1.2 (pp. 91) incorporates several countermeasures, including frequency
pre-selection and the use of a motion model. These strategies help maintain
reliable operation under reverberant conditions by focusing on dominant
frequency bands and predicting source movement.

The system’s performance has been evaluated in realistic indoor environments
using a linear microphone array with four microphones, spaced logarithmi-
cally, as shown in Figure 7.5. This array con�guration allows the system to
capture sound waves e�ectively, even in complex acoustic environments.

The approach is compared with state-of-the-art implementations of the mul-
tiple signal classi�cation (MUSIC) algorithm, including the Generalized Sin-
gular Value Decomposition (GSVD) method by Nakadai et al. [95] and the
Active Frequency Range Filtering method by Hoshiba et al. [51]. A human
speaker serves as the audio source, and the direction of arrival (DoA) of the
sound is estimated by each approach. The methods are tested in six di�erent
locations with varying sizes and reverberation properties, as detailed in Ta-
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Table 7.2.: Evaluation Data Set: Measured reverberation time T60 and room size for six di�erent
room types.

Room T60 [s] Area [m2]
Lab (large) 1.158 291.3
Lab (small) 1.646 101.8

Entrance Hall 3.149 211.9
Common Room 1.971 80.3
Lecture Hall 1.077 142.0

O�ce 0.345 24.1

Table 7.3.: Experimental results. The �rst columns present the total number of estimated DoA
for each room, the last ones the rate of successful estimations.

=Total success rate
Room GSVD AFRF MME GSVD AFRF MME

Lecture Hall 263 263 229 0.91 0.79 0.95

Common Room 77 77 69 0.82 0.78 0.91

Entrance 78 78 39 0.72 0.46 0.95

O�ce 98 98 57 0.55 0.46 0.74

Lab (large) 73 73 49 0.78 0.64 0.82

Lab (small) 52 52 24 0.58 0.48 0.88

ble 7.2. Room sizes range from 24 to 291m2, with reverberation times up to
3.15 s, providing diverse acoustic conditions for evaluation.

The experimental results, shown in Table 7.3, summarize the number of
estimated DoA and the success rate for each method in these environments.
A success is de�ned as an estimation with less than 5◦ deviation from the
ground truth. While Motion-Model Enhanced MUSIC (MME) detects fewer
sources overall, it achieves a higher success rate due to its active frequency
selection and source tracking using the motion model. This enables it to �lter
out reverberation e�ects more e�ectively than GSVD and AFRF, which do
not utilize a motion-based prediction model.

Two challenging scenarios are highlighted for a deeper evaluation. First, in
the lecture hall, where reverberation is minimal given the size of the room, a
speaker moves across three positions while talking. As shown in Figure 7.6,
AFRF shows frequent miss-estimations, particularly when sound �rst arrives,
as it tends to focus on reverberation-induced shadow sources. GSVD, which
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Figure 7.6.: Results of the direction of arrival estimations for the selected approaches in the
lecture hall.

processes all frequency bins, performs better but still struggles with similar
e�ects at certain points. In contrast, MME successfully mitigates this issue by
�ltering for dominant frequencies and applying a motion model to track the
true sound source, thus preventing false detections from re�ected sounds.

Second, in the entrance hall, the evaluation focuses on a scenario with high
reverberation (3.149 s). Here, a speaker talks from two positions and moves
across the room. As seen in Figure 7.7, GSVD and AFRF both struggle with
this challenging acoustic environment, achieving success rates of only 72%

and 46 %, respectively. Many outliers in their estimations are caused by rever-
beration e�ects. However, MME �lters out these outliers, yielding fewer total
detections but a signi�cantly higher success rate of 95 %. This demonstrates
the e�ectiveness of combining frequency selection with a motion model in
reducing the impact of reverberations.

A common challenge in audio-based localization is detecting a speaking
person, especially when the speaker is not facing the vision system. While
a vision-based system may fail under such conditions, an audio-based SSL
system can detect sound sources without requiring line-of-sight. As demon-
strated in Figure 7.8, the system successfully detects the speaker even when
she is not facing the camera. This highlights the advantages of incorporating
audio localization into the perception system for robust detection in dynamic
environments.
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Figure 7.7.: Results of the direction of arrival estimations for the selected approaches in the
entrance hall.

Figure 7.8.:Detection of speakers. Segmentation works even when the speakers do not face the
system.

Only the real-time-capable methods (AFRF and MME) are included in this
evaluation, as they need to detect speakers during speech. The results, shown
in Figure 7.9, compare the true-positive (TP) and false-positive (FP) rates
with a manually segmented ground truth. Visually, AFRF exhibits a frequent
switching behavior between the left and right speakers, resulting in a TP rate
of 79.5 % and an FP rate of 20.5 %. In contrast, MME demonstrates more stable
performance, with sound events predominantly segmented to the correct
speaker. This method achieves a higher TP rate of 93.1 % and a lower FP rate
of 6.9 %.
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Figure 7.9.: Segmentation results for Active Frequency Range Filtering (left) and Motion-Model
Enhanced MUSIC (right) for the �rst and second speaker. At the bottom, the manually labeled
ground truth.

7.3. Audio-Visual Localization

As mentioned in Section 1.6 (pp. 9), combining audio and visual informa-
tion enhances the system’s understanding of the environment, providing
multi-modal insight into the state and behavior of objects. This section
demonstrates how integrating these two modalities allows the system to link
sound sources to physical objects in its surroundings. The approach was
previously described in Section 6.3 on page 98.

The experiment was conducted in the context of astronaut assistance, though
the methodology is applicable to terrestrial scenarios as well. In space mis-
sions, an essential task is instrument maintenance as shown in Figure 7.10,
which may be done proactively or after a failure occurs. Instrument failures
often emit distinct sound patterns, which, if detected early, could prevent
total system breakdown. This highlights the importance of audio perception
as a complement to vision-based systems.

In this experimental setup, the vision system is enhanced with audio percep-
tion. The cameras detect and map objects in the environment (see Section 6.2
on page 96), while the robot’s ego-state estimation system continuously tracks
its position within the area (see Chapter 5 on page 69). Simultaneously, the
audio system monitors the environment for sound events (see Section 6.1.2
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Figure 7.10.: Rollin’ Justin maintaining a failed instrument box in a simulated Martian environ-
ment.

on page 91). When a sound is detected, the system estimates the DoA of
the sound. Using the robot’s current pose at the time of the sound event,
ray-casting is applied to associate the sound source with one of the visually
detected objects in the environment.

This process is illustrated in Figure 7.11, where the robot overlays the DoA
with its own position and selects the object most likely responsible for the
sound. The combination of audio and visual data enables the system to identify
which object in the scene emitted the sound, providing more comprehensive
situational awareness.

An additional experiment1 was conducted to further utilize this audio-visual
fusion for system diagnostics. Multiple distinct operational states of the
system were pre-recorded and stored in the knowledge base, each associated
with speci�c audio spectral pro�les. By comparing the received sound spec-
trum with these known pro�les, the system can estimate the current state of
the instrument.

The received audio is compared in the frequency domain with pre-obtained
spectral pro�les. For each pro�le, an audio sample with a duration of at least 5s

1 Publication 6
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Figure 7.11.: Results of the fusion of visual and audio information. Object poses and robot ego-
pose have been estimated using the vision system. DoA estimation of a received sound event is
overlaid and used for source localization.

is recorded. These audio samples are transformed using a Short-Time Fourier
Transform (SFTF) with small overlapping subframes and a hop-parameter
of 32 samples. To reduce noise and capture the variability of the event, the
median spectrum %50 is calculated across all received spectra, providing a
representative frequency pro�le for each system state.

The highest value of the median spectrum is used to normalize the spectrum
and constrain it to the range [0, 1]. To de�ne an acceptance band for classi�-
cation, the 20th percentile %20 and the 80th percentile %80 for each frequency
bin are taken as the lower and upper bounds, respectively. When receiving a
new, unclassi�ed spectrum, the background noise components are subtracted
from the input signal. The system then estimates and normalizes the median
spectrum of the incoming signal.

The classi�cation process involves calculating the sum of squared di�erences
between the received spectrum and the stored pro�le spectra within the
acceptance band of each frequency bin : :
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The score ĩ quanti�es the similarity of two frequency spectra within the accep-
tance band, with a higher score indicating a closer match to a known pro�le.
If less than 10 % of the individual frequency scores exceeds the threshold, the
system assumes the spectrum originates from an unknown or unrecorded
state. This approach enables the robot to classify and identify the current
operational state of the instrument based on its acoustic signature, preventing
false classi�cations when unknown spectral pro�les are encountered.

This approach is shown in Figure 7.12, depicting a known and an unknown
sound event. In the evaluation, the system’s ability to estimate the state of
the instrument using both known and unknown audio pro�les is demon-
strated. Using the method based on the median pro�le and the scoring system
described by Equation (7.1), the system successfully distinguishes between
known pro�les and identi�es when a sound event does not match any of the
previously recorded states. This allows for accurate classi�cation of known
operational states while �agging unrecognized events as potentially new or
anomalous states.

In contrast, a naive approach based solely on the sum of squared di�erences
(SSD) without incorporating the median-based acceptance band fails to iden-
tify unknown pro�les. This method tends to force a match with the closest
pro�le in the knowledge base, even when the sound event does not corre-
spond to any known state. As a result, the naive SSD approach leads to
false classi�cations in scenarios where the sound does not match any of the
pre-recorded pro�les, highlighting the limitations of such an approach. This
comparison emphasizes the importance of using the median-based scoring
system for distinguishing both known and unknown audio pro�les.

Upon detecting a sound, the system retrieves the spectral pro�le from its
database and matches it against the incoming sound signal. This comparison
allows the robot to distinguish between normal operation and a potential
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Figure 7.12.: Spectral analysis of a received audio event. On the left side, the reference audio
pro�le measured a-priori for a given internal state. In the middle, a comparison of a sound event
that corresponds to a known audio pro�le using the sum of squared di�erences (SSD) and an
approach based on the median spectral pro�le. On the right, a comparison with a sound event
that is not known.

failure condition. In the failure case, speci�c deviations in the audio spectrum
trigger a warning, enabling the robot to �ag the instrument for maintenance
before a complete system breakdown occurs.

115





8. Conclusion

The conclusion of this work summarizes the key contributions made toward
advancing multi-modal and multi-sensor fusion for robotic perception in
indoor environments. The developed framework addresses critical aspects
such as visual and auditory data fusion, landmark localization, and real-time
navigation, showcasing robustness in handling the complexities of indoor
spaces. The proposed methods have demonstrated their potential in improv-
ing the accuracy and reliability of robotic assistance systems operating in
dynamic and cluttered environments.

Future work may focus on re�ning sensor models to enhance performance
in con�ned spaces and exploring the adaptability of the system to broader
application domains. Additionally, addressing the challenges of scaling and
improving real-time processing remains a promising area for further re-
search.

8.1. Summary

This work focused on developing a robust perception system for robots oper-
ating in indoor environments. These environments, such as homes or elderly
care facilities, pose signi�cant challenges due to con�ned spaces, clutter, and
variable lighting conditions. To address these issues, the system integrated vi-
sual odometry frommultiple sensor inputs, enabling accurate localization and
ego-motion estimation even in visually ambiguous areas. The architecture
allowed the robot to navigate and interact with its surroundings e�ciently,
reducing tracking failures commonly encountered in indoor spaces with
textureless or repetitive surfaces. This was validated by testing in realis-
tic apartment settings, where the robot maintained consistent performance
without requiring environmental modi�cations.

117



8. Conclusion

A key part of the system is the audio-visual perception framework. While
visual data is vital for understanding spatial structure and detecting objects, it
can be unreliable in low-light conditions or when visual cues are obscured. To
mitigate these limitations, audio data was incorporated to complement visual
inputs. For example, in cases where a speaking person was occluded from
the camera’s view, sound localization provided additional context, improving
the overall perception. The real-time integration of audio with visual data
enabled robust tracking in dynamic environments, such as locating a speaker
in cluttered indoor spaces, thereby enhancing situational awareness and
interaction capabilities.

The system also implemented a multi-sensor framework to ensure robustness
and reliability. Multiple cameras were used to provide redundancy, which
helped in scenarios where one sensor might fail or encounter occlusions. For
example, in environments where data for a single camera was temporarily un-
available due to an obstacle, the remaining sensors continued to supply data,
allowing the system to recover from loss-of-tracking (LoT) events. This multi-
sensor approach increased resilience, reducing the frequency of tracking
failures and ensuring continuous operation in real-time. The approach was
tested extensively using the IndoorMCD [118] dataset, where it showed supe-
rior performance compared to single-sensor setups, particularly in cluttered
or low-texture environments.

Robust operation in proximity to obstacles was ensured by dynamically
excluding sensors that were occluded or failed to provide accurate visual
odometry (VO) estimates. In scenarios where the robot operated near obsta-
cles, such as furniture or walls, sensors that lost sight of the environment
were temporarily excluded from the pose estimation process. The multi-
sensor framework took over, relying on the remaining sensors for accurate
ego-motion estimation. When the occluded sensors regained visibility, their
trajectory estimates were re-registered and seamlessly reintegrated into the
overall pose estimation. This approach allowed the robot to maintain robust
operation without sacri�cing accuracy, even in highly cluttered or con�ned
spaces.

Additionally, this work provides a simulation environment, URSim [120],
which supports the development of multi-sensor systems by allowing for
comprehensive testing in simulated indoor settings. URSim o�ers a realis-
tic platform for evaluating system performance across various sensor con-
�gurations, without requiring physical deployments. Furthermore, the In-
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doorMCD [118] dataset, a �rst of its kind, enables rigorous evaluation of
multi-sensor frameworks in complex indoor environments. This dataset was
designed speci�cally to simulate real-world scenarios, such as cluttered apart-
ments or o�ces, o�ering unique benchmarks for testing how multi-sensor
systems perform under conditions involving dynamic obstacles, occlusions,
and varying lighting. These tools signi�cantly contribute to system develop-
ment and validation, o�ering valuable resources for future research in this
domain.

In summary, this work introduces several key technical contributions to
the �eld of multi-sensor perception in robotics. First, the development of
a robust multi-sensor visual odometry framework signi�cantly improved
the reliability of ego-motion estimation in cluttered and dynamic indoor
environments. The integration of audio-visual perception added a novel
layer of redundancy, enhancing performance in scenarios involving multiple
modalities or hidden events. The real-time fusion of audio and visual data
provided a more holistic understanding of the environment, particularly
in human-centered spaces where interaction is crucial. Furthermore, the
implementation of a dynamic sensor exclusion and reintegration mechanism
ensured continuous operation near obstacles, an important advancement in
maintaining pose estimation when sensors are occluded. Lastly, the creation
of URSim and the IndoorMCD dataset provides valuable tools for simulating
and evaluating multi-sensor systems, o�ering �rst-of-its-kind resources for
testing in complex indoor scenarios. Together, these contributions advance
the state-of-the-art in perception systems for indoor robotics, providing a
robust foundation for future research and development.

8.2. Outlook

While the proposed system has shown signi�cant improvements in multi-
sensor perception and ego-motion estimation, there remain limitations that
require further research. One key area for improvement is the ego-state
estimation process, which currently relies solely on visual information for
localization. While visual odometry has proven e�ective in many scenar-
ios, it does not fully utilize other sensors that are commonly available in
robotic systems. Future research should explore incorporating inertial data,
typically available via inertial measurement units (IMUs) on most platforms.
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The integration of IMU data could improve motion estimation, particularly
during fast movements or when visual features are insu�cient. Using other
spectral information form the light’s spectrum may further enhance the
robot’s perception. By incorporating data from a broader range of sensors,
the system could achieve greater robustness and reliability in a wider range
of operational environments.

Another key area for improvement is the mapping process, which currently
assumes a static world during ego-state estimation. This assumption simpli�es
the process but becomes a limitation in dynamic indoor environments where
objects can frequently change pose or appearance. The current system can
handle dynamic objects for landmark estimation, but the fusion of dynamic
object detection with the mapping framework has not yet been fully realized.
Future research should focus on developing a dynamic mapping approach
that not only updates the map when changes in the environment occur but
also removes outdated parts of the map when objects move or change. This
dynamic map updating would signi�cantly improve system performance in
real-world indoor environments, where such changes are common. A solution
must be found that can e�ectively integrate dynamic objects into the ego-state
estimation and mapping process, allowing the system to continuously update
its understanding of the environment without requiring a full remapping.
This would make the system more adaptable to environments like homes and
o�ces, where both furniture and people are in constant motion.

Additionally, the current system requires manual intervention to con�gure
minimal maps, ensuring that only the most essential features are included.
This dependency on expert knowledge limits the usability of the system in
broader applications. Future research should investigate how the system can
autonomously generate these minimal maps online, without needing manual
con�guration. An automated approach would allow the robot to identify and
select the most relevant features during mapping, enabling more scalable and
accessible deployment across a wider range of environments. By reducing
the need for expert input, this enhancement could signi�cantly increase the
system’s versatility in real-world applications.

Another area that requires further research is the audio system, particularly in
how it handles echoes during sound event localization. Currently, the system
assumes that the received direction-of-arrival (DoA) of a sound directly points
to its source. However, in environments where the sound source is occluded
by an obstacle, the system may instead receive an echo that has re�ected
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o� a surface. This echo creates the illusion that the sound source is located
at the point of re�ection rather than at the true origin. To address this,
future work should focus on incorporating echo detection and compensation
mechanisms into the audio-visual fusion system. By understanding and
modeling how sound re�ects o� surfaces, the system could more accurately
attribute sound events to their correct sources, even when these sources are
hidden. This would improve the reliability of the audio-visual perception
system, particularly in complex indoor environments with many re�ective
surfaces.

Finally, the fusion of audio and visual data presents opportunities for further
improvement. The system currently integrates these modalities for speci�c
tasks, but future work could focus on tighter integration, particularly when
handling dynamic environments. By further re�ning the fusion process, it
may become possible to enhance object detection and tracking even when
eithermodality alonewould fail due to occlusion or environmental complexity.
For example, developing algorithms capable of distinguishing between direct
and re�ected sound waves could enable more accurate association of sound
events with objects in the environment. These enhancements would allow the
system to better navigate environments with complex acoustics and ensure
that sound source localization remains accurate even in cases of occlusion.
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IndoorMCD: A Benchmark for Low-Cost

Multi-Camera SLAM in Indoor Environments
Marco Sewtz1, Yunis Fanger1, Xiaozhou Luo1, Tim Bodenmüller1 and Rudolph Triebel1,2

Abstract—Navigating mobile robots within home environments
is essential for future applications, e.g. in household or within
the field of elderly care. Therefore, these systems, equipped with
multiple sensors, have to deal with changing environments.

This work presents the IndoorMCD dataset that allows for
benchmarking SLAM algorithms within static and changing
indoor environments of various difficulties. The dataset provides
synchronized and calibrated RGB-D images from a low-cost
multi-camera setup, as well as additional IMU data. Further,
highly accurate ground truth movement data is provided. It is the
first dataset that provides static and changing environments for
a multi-camera setup. Evaluations with state-of-the-art SLAM
algorithms show the dataset’s applicability and also present
limitations of current approaches. The dataset is made available
in a structured format and a utility library with example scripts
is provided.

Index Terms—Data Sets for SLAM, Visual-Inertial SLAM,
Localization, Mapping, RGB-D, Multi-Camera

I. INTRODUCTION

ROBOTIC assistance in home environments is an emerg-

ing field of research, opening up new opportunities and

applications for autonomous systems. Symbiotic human-robot

collaboration and interaction are essential for the success of

those ambitions. Thus, robotic systems need to operate, espe-

cially navigate, in changing environments reliably. A central

element for global navigation is Simultaneous Localization

and Mapping (SLAM), as it continuously updates the envi-

ronmental knowledge of the robot. Although the robustness

of state-of-the-art applications is progressively enhanced with

each subsequent generation, most of them still rely on a single

sensor. A failure of the system likely results in the total

loss of localization. However, modern commercial off-the-

shelf (COTS) sensors, like RGB-D cameras, are cheap, small

and only require little energy. Thus, adding multiple sensors

becomes feasible and increases robustness by redundancy.

By using COTS hardware, redundancy can be added while

limiting the increase in cost. However, this often results in
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Fig. 1: Multi-camera view of a living room environment

captured by commercial off-the-shelf RGB-D sensors.

degraded sensor measurements that integrated software has to

consider. For the future development of frameworks to solve

the problems mentioned above, a common dataset that includes

representative scenarios is crucial. While several datasets have

been released as benchmarks for SLAM or other navigation

systems, most of them concentrate on the single-sensor case,

the use of expensive sensors like LIDAR, or are meant for

evaluation in autonomous outdoor-vehicle development.

In this work, we present a dataset that aims to enable

research on SLAM systems that address both robustness and

redundancy using COTS sensors. It contains five different

scenarios, each consisting of several runs of increasing com-

plexity. The recordings include highly accurate ground truth

estimation measured by a high-speed motion capture system

(MCS). Furthermore, we show the applicability of our data by

evaluating the trajectories with state-of-the-art Visual-Inertial

Navigation System (VINS) and SLAM systems, as well as an

in-house development for multi-camera SLAM [1]. Finally, we

also provide a utility library for easy access to the data.

https://rmc.dlr.de/rm/en/staff/marco.sewtz/benchmark

We summarize our contribution as following:

• The IndoorMCD dataset containing 105 individual se-

quences recorded in indoor environments using multiple

COTS sensors, consisting of RGB-D and Inertial Mea-

surement Unit (IMU) modules.

• An additional high accuracy ground truth reference.

• Various scenarios with increasing complexity in their

trajectories including loops, motion blur and changes in

the environment.

• An extensive evaluation of renowned approaches includ-

ing performance benchmarks to demonstrate our data’s

applicability.
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The proposed dataset is, to our knowledge, the first dataset

combining multiple sensors and high accurate ground truth

for static and changing indoor environments.

II. RELATED WORK

Along with the rising potential of vision-based algorithms,

datasets containing realistic environmental conditions have

been proposed to provide a reference for new approaches and

a baseline for performance benchmarks of existing develop-

ments. While the number of available datasets is growing

continuously, we provide an overview of the most relevant

datasets including visual and inertial data in Table I.

The TUM RGB-D dataset [2] provides a collection of syn-

chronized color and depth data in an indoor scenario recorded

in an office environment and an industrial hall. Supplemented

by a ground truth reference recorded by a highly accurate

MCS, it is one of the most extensively used and established

benchmarks for RGB-D Visual Odometry (VO) and SLAM

algorithms. Furthermore, the 7-Scenes dataset [3] focuses on

realistic indoor-scenes captured by a RGB-D camera and

generated ground-truth pose information. Around the same

period, the KITTI benchmark suite [4] was proposed for

research on vision-based navigation in autonomous driving.

In addition to gray-scale mono and RGB stereo sequences, it

also includes IMU information. However, the low-frequency

inertial data is not synchronized with the visual information,

which is mandatory for a well-designed visual-inertial (VI)

benchmark. Nevertheless, KITTI has established itself well

in the research community and serves as a foundation for

further modifications and developments, e.g., object scene flow

research [5].

Over time, the focus in the research community has shifted

towards the fusion of information provided by different kinds

of sensors. Most prominently, many recent datasets are de-

signed to evaluate VO and SLAM applications by includ-

ing time-synchronized high-frequency IMU measurements.

The EuRoC MAV [6] and the more challenging UZH-FPV

dataset [7] were recorded with a Micro Aerial Vehicle (MAV).

In contrast, one can rely on benchmarks such as TUM VI [8]

and OpenLORIS [9] in the case of ground-based carriers.

These last four datasets are also equipped with sophisticated

ground truth references, which are provided, at least partially,

by MCS with an accuracy of approximately 1mm.

While the previously presented datasets only include one

main viewing direction, the Field-of-View (FoV) size can be

significantly expanded by deploying multiple sensing devices

with differing orientations. However, most representatives of

datasets that employ this approach, such as the NCLT [10] and

PennCOSYVIO dataset [11], do neither include high-precision

ground truth information nor a hardwired time-synchronization

between IMU and the relevant sensors. Therefore, they cannot

be considered as an evaluation reference for performance

benchmarks between individual VO and SLAM approaches.

Currently, the only dataset in the VI domain containing

multiple viewing directions that fulfills the requirements for a

benchmark is, besides our proposal, the M2DGR dataset [12].

Although the latter benchmark contains a sizable collection

of information from different sensor types, data containing

multiple viewing orientations are only available in RGB

format. This is due to the original design purpose of those

sensors, which has the target of achieving an omnidirectional

coverage of the related sceneries. Lastly, we also want to

mention RIO10 [13], an indoor visual dataset dedicated to

changes in the environment – in specific different lightning

conditions, object pose changes and appearance. To the best

of our knowledge, there is no dataset available that contains

multiple visual sensing modalities exceeding the information

provided by RGB cameras and operating in dynamic indoor

scenes. By supplementing multiple RGB sources with the re-

spectively associated depth information on top of acceleration

and angular data, our target is to foster research of multi-

camera VO and SLAM approaches in the VI domain.

During the research process, we discovered a significant

deficit of datasets for benchmarking the behavior of localiza-

tion and mapping algorithms in the case of world-model al-

ternation between static and dynamic changing objects within

comparable environmental settings. While many conventional

VINS and SLAM applications are based on the assumption of

a static world, robust approaches must be able to deal with

dynamic elements within this world. With the exception of

OpenLORIS, all other datasets in Table I are recorded either

in a static environment or a dynamic setting with moving

objects. Although the benchmark includes static sequences

and ones with dynamic moving objects by design, the world-

model assumption does not change within individual scenes.

Therefore, the performance differences between static and

dynamic world assumptions cannot be evaluated in particular

since no performance baseline can be provided for the world

model within a specific scene.

Hence, we intended to establish our dataset as a benchmark

for applications in home environments by providing realistic

environmental conditions considering an urban housing sce-

nario based on COTS hardware. In contrast to other established

datasets, which are primarily recorded on industrial-grade and

customer furnished hardware, the utilization of state-of-the-

art COTS sensors allows for a rare peek into the ordinary

application-related domain instead of the predominant, more

or less idealized, scientific domain. Hence, algorithms have to

demonstrate their practicability in real-world situations with

imperfect data (e.g. motion blur) and changing environments

(e.g. moved chair). However, we neglected temporary dynamic

elements in our datasets, e.g. a human walking through the

room, as they are more focused on permanent changes and

not temporal disturbances.

In terms of emulating the kinematic behavior of typical

applications, our dataset is recorded by two different car-

rier platforms representing either a ground-based robot or a

handheld device. The latter assembly provides a total of six

unlimited degrees of freedom (DoF) in contrast to the ground-

based platforms utilized in benchmarks of similar quality, from

which at least 3 DoF are fairly restricted in their magnitude

of variability.

III. HARDWARE SETUP

Our hardware setup for recording the dataset consists of

three RGB-D Intel RealSense D435i (denoted as left, front,
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TABLE I: Overview of most common datasets for visual and inertial SLAM in changing indoor environments.

Dataset Environ. Platform Cameras IMU Scene mode Ground truth Accuracy

NCLT [10] In-
/outdoors

Segway 6 RGB
1600×1200 @ 5Hz

1 3DM-GX3-45
3-axis acc./gyro
@ 100Hz

Dynamic Fused GNSS/
IMU/Laser pose
@ 150Hz

≤ 10cm

EuRoC
MAV [6]

Indoors MAV 1 stereo gray-scale
2 × 752×480 @ 20Hz

1 ADIS16488
3-axis acc./gyro
@ 200Hz

Static Laser tracker
pose @ 20Hz,
MCS @ 100Hz

≤ 1mm

(MCS)

PennCOSYVIO
[11]

In-
/outdoors

Handheld 4 RGB (rolling shutter)
1920×1080 @ 30Hz,

1 stereo gray-scale
2 × 752×480 @ 20Hz,

1 fisheye gray-scale
640×480 @ 30Hz

1 ADIS16488
3-axis acc./gyro
@ 200Hz,

2 Tango
3-axis acc. @ 128Hz

3-axis gyro @ 100Hz

Dynamic Fiducial markers
pose @ 30Hz

≤ 15cm

TUM VI [8] In-
/outdoors

Handheld 1 stereo gray-scale
2 × 1024×1024 @ 20Hz

1 BMI160
3-axis acc./gyro
@ 200Hz

Static Partial MCS
pose @ 120Hz

≤ 1mm

UZH-FPV [7] In/-
outdoors

MAV 1 stereo gray-scale
2 × 640×480 @ 30Hz

1 event camera
346×260 @ 50Hz

+ events

1 MPU-9250
3-axis acc./gyro/
magn. @ 500Hz,

1 3-axis acc./gyro
@ 1000Hz

Static Laser tracker
pose @ 20Hz

≤ 1mm

OpenLORIS [9] Indoors Ground
robot

1 RGB-D (rolling shutter)
848×480 @ 30Hz,

1 stereo fisheye RGB
2 × 848×480 @ 30Hz

2 BMI055
3-axis acc. @ 250Hz

3-axis gyro @ 400Hz

Static or
Dynamic

Laser tracker
pose @ 40Hz,
MCS pose
@ 240Hz

≤ 3cm

(Laser),
≤ 1mm

(MCS)

M2DGR [12] In-
/outdoors

Ground
robot

6 fish-eye RGB
1280×1024 @ 15Hz,

1 infrared camera
640×512 @ 25Hz,

1 event camera
640×480 @ 15Hz

+ events,
1 RGB-D (rolling shutter)

640×480 @ 15Hz

1 Handsfree A9
3-axis acc./gyro/
magn. @ 150Hz,

1 BMI055
3-axis acc./gyro
@ 200Hz

Dynamic GNSS pose
@ 100Hz,
Laser tracker
pose @ 100Hz,
MCS pose
@ 50Hz

≤ 2cm

(GNSS),
≤ 1mm

(Laser,
MCS)

7-Scenes [3] Indoors Handheld 1 RGB-D
640×480 @ 30Hz

None Static Visual Pose

Tracking2
≤ 2cm

RIO10 [13] Indoors Handheld,
synthetic

1 RGB

540×9601,
1 synthetic depth

540×9601

None Dynamic Visual Pose

Tracking2
≤ 10cm

IndoorMCD
(Ours)

Indoors Handheld,
ground
robot

3 RGB-D (rolling shutter)
640×480 @ 15Hz

3 BMI055
3-axis acc. @ 250Hz

3-axis gyro @ 400Hz

Static and
Dynamic

MCS pose
@ 100Hz

≤ 1mm

1Frame-rate unknown for this dataset. 2Ground-truth accuracy is unknown and information is based on error metric.

right) in two different configurations.

The first one is a handheld camera device (HCD) which

offers 6 DoF and can be easily moved around in the scene.

The second one is a robotic platform mock-up called Marvin,

which simulates the movement of wheel-based systems. Both

are displayed in Figure 2.

A. Sensor Carriers

1) HCD: This device, as depicted in Figure 2a, integrates

all sensors in a compact configuration. The small form-factor

allows simple and uncomplicated use by the operator and

enables mobile manipulation. While the center camera has

an overlapping FoV with both outward-facing cameras, the

sensors left and right do not share a common view. Hence

the configuration can be used in algorithms that require visual

overlap as well as systems that merely need a known rigid

transform. Further, this platform offers a hardware synchro-

nization of all camera modules.

(a) The handheld camera device
used for capturing motion with six
degrees of freedom.

(b) The robotic mock-up platform
Marvin used for simulating mo-
tion of wheel-based systems.

Fig. 2: The used hardware devices for this dataset.

2) Marvin: The used mock-up, as seen in Figure 2b,

simulates the movement of a wheel-based robotic system. This

reduces the motion to only 3 DoF, in particular x, y and ¹. The

design is intended to mimic the view of sensors equipped on

real assistant systems like Rollin’ Justin [14] or the motorized

wheelchair EDAN [15]. Due to this fact, the sensors may be

blocked by obstacles when closely approaching objects. Fur-
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thermore, the configuration of the outer cameras is comparable

to the integration in the HCD. However, the center camera is

tilted down and raised to offer an improved view of desktops

or tables.

B. Sensors

The Intel RealSense D435i consists of a RGB camera,

two infrared cameras for depth estimation and an Inertial

Measurement Unit.

The image processing of the two infrared cameras is per-

formed internally, and the resulting depth image is pixel-

aligned to the color image. Furthermore, a pattern projector

operating in the infrared range is integrated to enhance the

depth estimation even in textureless environments. The cam-

eras are operated 15Hz with a resolution of 640×480 pixels.

The Inertial Measurement Unit has a triaxial 12-bit linear

acceleration and a triaxial 16-bit angular velocity module.

The accelerometer is operated at 250Hz and the gyroscope

at 400Hz. In our dataset, we provide the single data streams

and a fused stream that interpolates the acceleration readings

between the gyroscope measurements.

The carriers are equipped with a trigger synchronization

circuit. The front camera is used as trigger commander and the

left and right cameras are configured as receivers. Although

this introduces a slight delay on the trigger for the receiving

devices, our results with existing algorithms showed that this

offset is negligible in practice.

C. Ground Truth

For all except the real indoor scenario we obtained a

highly accurate ground truth estimation using a Vicon MX

T40 motion capture tracking system. The recording devices

are equipped with several reflective markers, which can be

monitored by six infrared cameras hanging from the ceiling.

The alignment configuration of the tracking system is individ-

ually adapted for each scene to obtain the best and at-all-time

continuous estimation of the current pose. The system operates

at 100Hz.

The Vicon cameras emit infrared light at the same wave-

length as the RealSense pattern projector. However, as the

pattern is projected statically and only small dots are visible,

we did not measure any interference of the pattern with the

tracking system.

IV. CALIBRATION

A. Cameras

The pinhole camera model is used to calibrate the intrin-

sic parameters of the sensors, which can be obtained using

different views of a checkerboard target for each sensor [16].

These parameters consist of the focal-lengths fx and fy , the

principal point (cx, cy) and the skew kskew. The depth image

is aligned to the color image on the hardware side of the

RealSense devices result in a pixel-to-pixel correspondence in

the images. In addition, the Brown-Conrady [17] model can

be applied to remove distortion from the color image.

We provide the parameters of the pinhole as well as the

Brown-Conrady model in our dataset.

left front right

origin

marker vicon

calib_marker

calib_grid

Mobil System

Calibration
Targetdevice_origin

colorIMU depth

Device

Fig. 3: Illustration of different frames in the dataset including

markers and calibration utilities. All individual device origins

are calibrated to the overall system’s origin.

B. IMUs

The calibration procedure for IMU model estimation is de-

fined by Intel for the RealSense devices [18]. Therefore, each

device is orientated in six directions. Several thousand samples

are acquired for each, and the parameters are finally optimized

over the available set of data. The accelerometer parameters

consist of the scale factor s⃗ = [sx, sy, sz]
T , the bias b⃗ =

[bx, by, bz]
T and the axis alignment cxy, cyx, cxz, czx, cyz, czy .

The intrinsics for the gyroscope include the bias values

É⃗ = [Éx, Éy, Éz]
T .

C. Extrinsics

The handling of extrinsic calibrations is organized on two

levels. At first, all sensors of one RealSense device are handled

on the device level, where the color sensor is set as the origin

of each device. Therefore, the IMU is calibrated with respect

to this sensor. As the depth stream provides a pixel-to-pixel

alignment, the resulting displacement is zero.

On the system level, each device is also calibrated using the

color sensor. Here, we make use of the fact that the front cam-

era overlaps with both the left and the right camera. Multiple

images of a checkerboard calibration target with distinctive

origin are captured for estimating the relative pose transform

from the front camera to the respective target camera. For each

image, the correspondences between the checkerboard corners

on the calibration target and the projected pixel coordinates are

mapped and the transform is estimated by minimizing the re-

projection error using Levenberg-Marquardt optimization [19].

For calibrating the Vicon system to the origin of the overall

system, the same calibration target as before is used. In addi-

tion, several reflective markers are placed on the checkerboard

and registered manually to its origin. Afterward, the transform

of the front camera to the checkerboard and the transform of

the markers in the tracking system is estimated and used for

aligning the tracking markers to the system origin.

All frames and transforms are illustrated in Figure 3.

D. Time Domains

Within the dataset, different time domains are present as

depicted in Figure 4. Each device has its own clock source,

which is used for timestamps on the sensor measurements of

each device. The timestamping of IMU readings is ±50µs,
which leads to tolerance of roughly 2% when operating the



SEWTZ et al.: INDOORMCD 5

Vicon Motion Capture

- ground truth

SW sync
HW sync

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Fig. 4: Overview of the time domains in this dataset. Each

RealSense has its own clock and the sensors are triggered

device-central. In case the hardware synchronization is present,

the trigger signals of the images are synced. The Vicon system

is software synchronized.

gyroscope at 400Hz. Therefore, the temporal offset of IMU

readings and image capturing on a specific RealSense device

can be neglected. Image acquisition is hardware triggered, and

the color and depth streams are temporal synced.

In scenarios where the hardware synchronization between

the devices is available, the trigger of the image sensors is

derived from the commanding camera. In all cases, this is the

front camera. However, the clocks will not be synced, leading

to different timestamps on the images. Exploiting the fact that

the images are triggered simultaneously and that the offset

between the trigger points is negligible, the clock offset can

be estimated by the offset of the color images.

In the non-synced scenarios, the synchronization of the time

domains between the devices is not possible without evaluating

the trajectory.

The remaining time domain is the Vicon tracking system

for ground truth estimation. Thereby, a calibration target is

positioned in the view of the front camera and tracked by

the Vicon system. The target is then slowly moved in the

view of the camera. Afterward, the motion is estimated, and

the temporal offset is determined by minimizing the absolute

pose error (APE). This approach is based on the proposed

calibration of Sturm et al. and we refer to their publication [2]

for in-depth explanation.

E. Ground Truth

Accurate and continuous information of the actual pose

is crucial for investigating the performance of navigation

algorithms. Therefore close attention is paid to calibrating the

Vicon system before every scenario recording.

The procedure is provided by the manufacturer. It involves

operating a calibration stick which is moved in the area of

operation and extensively observed by the cameras to create

correspondences between individual views. Once enough sam-

ples are received, the system calibrates itself by performing

optimization for low reprojection error.

V. DATASET

A. Calibration Sequences

These sequences contain the calibration runs used in Sec-

tion IV. They contain the raw data without any further

processing.

TABLE II: Overview of each scenario’s (S) specific properties

and number of runs (R), as well as if hardware sync has been

enabled and if ground truth is available. Scenarios 0-4 have

been captured in created environments in our lab, the last one

is recorded in an actual apartment.

S #R Environment Device Sync GT

0 19 kitchen, office, living-room HCD

1 28 kitchen, office, living-room HCD

2 20 2 rooms: kitchen, living-room HCD

3 15 2 office desktops HCD

4 15 kitchen, office, living-room Marvin

5 10 actual apartment HCD

B. Recorded Scenarios

Several scenarios have been recorded in varying setups.

Three different environments are created in our labs, including

a kitchen, an office area and a living room, which provide a

broad set of visual inputs for algorithms. Temporary walls and

a door are used to create different room layouts between the

scenarios with a total available area of 6.50m × 4.50m. An

exemplary subset of views is shown in Figure 5.

The kitchen consists of a counter including an oven, a

fridge, several electronic appliances and commonplace items

like apples, cucumbers, or a scale. Most of the structures

are static and do not offer a lot of textures. The office area

contains depending on the scenario either one or two desktops,

including computer monitors, keyboards and a office chair.

Further commodities like pens, scissors, or markers are added,

which frequently change their position. The living room offers

a sofa, including a coffee table, multiple plants and a television

shelf. Furniture, as well as the appearance of objects, change

over time to simulate human presence. Finally, we also provide

a scenario captured in an actual apartment’s living room. This

room offers a sofa, a television, a fish tank, multiple book-

shelves, plants and other common furniture objects. While

this scenario does not offer a ground truth, we included it

as a proof-of-concept whether proposed systems perform in

real environments. An overview is provided in Table II. For

measuring the impact of synchronization, scenario 0 and 1 are

recorded with and without hardware synchronization in the

same environment.

We took care that each run within a specific scenario

increments the complexity of the trajectory. At first, they only

contain a small number of rotations and single translations.

The static-world assumption, meaning no dynamics in the per-

ceived data, is held true. With progressing runs, the trajectories

increase in length and amount of movement and ultimately

include loops and revisits of previously explored areas. Final

runs add changes in the environment that can be observed

when places are viewed multiple times. The changes can be

seen in Figure 6.

C. Utilities

Additionally to the datasets, we also provide a library for

reading the data. It is able to parse the dataset and load the

sensor measurements on-demand into the computer memory

with a low footprint. Meta-information like extrinsic and
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Fig. 5: Stitched panoramic images of views in the dataset. The image on the left-hand side shows the living room as seen in

scenarios 0, 1 and 4, in the middle scenario 3 in the office, and on the right-hand side the actual apartment.

Fig. 6: The dataset captured several changes in the environ-

ment during each run. Objects like chairs, the table or the

coffee machine are moved around in the scene, smaller objects

like books are moved or completely removed, plants have a

different appearance over the course of time.

TABLE III: Properties of SLAM systems used for evaluation.

SLAM-system Type RGB IMU Depth

VINS-Mono feature-based

ORBSLAM2 feature-based

ORBSLAM3 feature-based

MROSLAM feature-based

DSO direct

intrinsic calibration and online interpolation of data points are

also available. This shall ease access to our data. Furthermore,

we provide sample scripts to generate bag files to be used

within the Robot Operating System (ROS).

VI. EVALUATION

To assess the suitability of this dataset for benchmarking,

we evaluate it with state-of-the-art SLAM systems. As exam-

ples for feature-based methods, we deploy VINS-Mono [20],

ORBSLAM2 [21], ORBSLAM3 [22] and our in-house de-

veloped multi-camera approach MROSLAM [1]. Hereby,

VINS-Mono processes both IMU and camera data while

ORBSLAM2 and MROSLAM purely rely on RGB-D infor-

mation. ORBSLAM3 incorporates color, depth and inertial

data. As a representative of direct visual SLAM methods, we

also deploy DSO [23] on the dataset. In this case, it requires

only monocular RGB camera images as input. The general

properties of the deployed SLAM algorithms are summarized

in Table III.

All SLAM applications are configured using the calibration

information provided within the dataset (see Section IV) but

use the respective systems default parameters otherwise. For

each run, three separate instances of these applications are

deployed simultaneously to process the data provided by each

of the devices. In order to evaluate the dataset’s applicability,

we assessed our selection of renowned algorithms both in

a quantitative and qualitative scope. For the first one, we

recorded how many of the devices reach the end of a run

without losing tracking at any point or outright failing. The

results are presented in Table IV, where scenarios 1-3 were

recorded using the HCD and scenario 4 using Marvin. Since

scenario 5 does not include ground truth trajectories, we do

not consider it here. Therein, only devices where the respective

SLAM instance ran for at least 90% of the ground truth

trajectory’s duration without losing tracking are declared as

successful.

At a closer look, it is noteworthy that the multi-camera

approach achieved the best results among the purely vision-

based approaches. By utilizing information from all devices

with different orientations at the same time, a robust construct

with multiple redundancies is established, which results in the

reduction of potential loss-of-tracking. Especially in compari-

son to ORBSLAM2, on which MROSLAM is primarily based,

the rate of total failure is reduced by a factor of 2.5 in scenario

0 or 2.0 in total. Nevertheless, VINS-Mono already provides a

very robust approach which only failed in situations where the

sensor’s view was blocked and the LoT was not resolvable.

Lastly mentioning ORBSLAM3, the performance on tracking

seems to be less stable compared to ORBSLAM2. We assume

that the extensions focus primarily on the accuracy of the

trajectory estimation (as shown later) accepting small deficits

in the robustness.

Furthermore, a qualitative assessment is performed using

the evo evaluation package [24]. It allows to align the pose

estimates of the SLAM systems with ground truth information

and the computation of performance measuring metrics from

them.

To illustrate the usefulness of having multiple cameras on

a single system, we determine the worst-performing device

from each scenario. To compare the performance of each

instance, we choose the relative pose error (RPE) as our metric.

We assume that the utilization of multiple sensors has an

measurable impact on local tracking as more data is available.

In contrast, global estimation accuracy, in case of continuous

tracking, is depending on the selected backend optimization

strategy. Therefore we expect the improvements by the used

sensor configuration to be observable in short-term domain and

neglect APE evaluation. The respective mean and maximum

RPE scores for each scenario are presented in Table V.

It is noteworthy that even though the SLAM algorithms

occasionally have a high peak error, the mean errors are

often reasonably small. This suggests that there were only

temporary losses in tracking, which could be recognized and

avoided by taking the output of other SLAM instances into

account. The utilization of multiple devices has a beneficial
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TABLE IV: Quantitative tracking evaluation for each algorithm. The table illustrates how many instances per run did not loose

tracking. A value of 18% for 2 devices reads In 18% of all runs in this scenario, two instances did not loose tracking.

SLAM-system scenario 0 scenario 1 scenario 2

successful devices 0 1 2 3 0 1 2 3 0 1 2 3

VINS-Mono 0% 0% 18% 82% 0% 0% 7% 93% 0% 6% 6% 88%

ORBSLAM2 81% 5% 14% 0% 28% 14% 34% 24% 25% 60% 15% 0%

ORBSLAM3 77% 9% 9% 5% 90% 7% 3% 0% 95% 0% 0% 5%

MROSLAM(*) 32% 68% 21% 79% 8% 92%

DSO 58% 18% 18% 6% 79% 18% 0% 3% 75% 5% 10% 10%

SLAM-system scenario 3 scenario 4 Total

successful devices 0 1 2 3 0 1 2 3 0 1 2 3

VINS-Mono 0% 0% 8% 92% 0% 0% 7% 93% 0% 1% 12 87%

ORBSLAM2 0% 6% 31% 63% 0% 0% 27% 73% 30% 18% 25% 27%

ORBSLAM3 0% 0% 25% 75% 0% 0% 47% 53% 61% 4% 14% 21%

MROSLAM(*) 0% 100% 0% 100% 14% 86%

DSO 86% 7% 0% 7% 72% 14% 14% 0% 75% 12% 9% 4%

(*) MROSLAM is a multi-camera approach. There is not differentiation between single instances.

Fig. 7: ORBSLAM2 detected keypoints for two views in a

low-texture environment at the same time. The left image

shows significant less landmarks (n=397) which could lead to

degraded estimation performance or loss of tracking compared

to an adjacent camera view (n=1007). Utilizing both views at

the same time would further increase the number of available

landmarks for tracking and improve accuracy and robustness.

effect on the mean error since the results for MROSLAM

rank as one of the lowest in our evaluation. Figure 7 shows

the detected keypoints of ORBSLAM2 of two adjacent views.

While relying only on a single input, the left image may not

provide enough suitable landmarks and tracking will be lost.

MROSLAM can use both and is more robust in low-texture

cases. However, its maximum error measures are relatively

high, indicating even more significant outliers produced in the

fusion process which adds constant drift to the estimation

as later seen in Figure 8. The more recent ORBSLAM3

occasionally outperforms the multi-camera approach, showing

the progress since the introduction of ORBSLAM2 and the

derived MROSLAM.

In addition, we also provide representative examples of the

pose estimates for the employed SLAM systems compared to

the ground truth trajectories in Figure 8. These results show

that the visual-inertial system performs better than the purely

visual systems in general. Especially during fast rotational

movements, the additional information from the IMU leads to

significantly better tracking result. Moreover, feature detecting

systems perform better than the DSO algorithm, which uses

a direct approach. However, the multi-camera MROSLAM

suffers a constant drift as it does not implement loop-closure

functionality on multiple sensors.

Finally, we evaluate the occurred loss of tracking. We

manually examined the frame series in which tracking failure

occurred. A significant amount of frames show motion blur

or offer only few visual features which can be used for

the estimation process. Figure 9 illustrates four individual

selected events. They include motion blur and low-textured

views offering only limited visual clues for the algorithms.

Noteworthy, these defects are frequently observable at the

same time. Regardless of the either using a direct approach or

relying on features, all algorithms have reduced performance

in these situations. However, due to it’s multi-sensor nature,

MROSLAM is able to recover tracking most of the times.

In summary, this evaluation demonstrates the validity of

our dataset as a benchmark for evaluating SLAM systems

but also shows the problems of state-of-the-art approaches

with motion blur and low-texture environments. Particularly

the feature-based visual-inertial system performed well. It

also highlights the advantages which multi-camera SLAM

approaches could provide. Even though a single device may

have poor performance or lose tracking temporarily, others

may be more accurate and therefore able to keep the entire

system from losing localization.

VII. CONCLUSION

This paper presents a novel dataset for the benchmark of

SLAM systems in home environments. It mainly focuses on

COTS hardware to decrease the costs for sensor setups while

providing multiple similar devices to promote robustness.

The environments shown represent common areas for service

robotics as office, kitchen and living room settings, where

static scenarios as well as ones with changes of objects can

be observed. High accurate ground truth information obtained

through a motion capture system accompanies the recorded

data for evaluation of novel systems.

Finally, we analyzed the proposed data using diverse selec-

tions of state-of-the-art SLAM systems to prove its applica-

bility. Furthermore, the outcome showed that these algorithms

have difficulty tracking under the influence of motion blur,

obstructed view, or in an environment of textureless sur-

roundings. Multi-sensor approaches like MROSLAM however

promise less loss of tracking and a better performance regard-

ing local pose estimation. Nevertheless, it still has high outliers
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TABLE V: Mean and maximum RPE of the worst performing SLAM instance in a scenario.

SLAM-system scenario 0 scenario 1 scenario 2 scenario 3 scenario 4

RPE mean max mean max mean max mean max mean max

VINS-Mono 0.112672 1.586197 0.126820 1.451341 0.0492078 0.470913 0.074746 0.619127 0.029876 0.617029

ORBSLAM2 0.245182 5.421701 0.153198 4.642067 0.181427 5.828487 0.159613 2.434654 0.120661 1.731525

ORBSLAM3 0.087262 5.432609 0.087736 3.990802 0.035891 4.908698 0.023212 3.492762 0.010758 4.931409

MROSLAM 0.031168 3.673559 0.017651 6.055320 0.042194 6.195327 0.058612 6.435569 0.010456 1.028161

DSO 0.118443 0.573500 0.072375 0.359914 0.064864 0.704010 0.069510 0.354366 0.081397 0.277259

(a) Scenario 0 run 5. (b) Scenario 1 run 22. (c) Scenario 3 run 11. (d) Scenario 4 run 10.

Fig. 8: Ground truth reference and estimated trajectories. The four runs have been manually selected out of the total 105 as

they show the rare case of all methods not loosing tracking. The trajectories show the front instance for single-camera after

final optimization or the fused pose for MROSLAM which does not have a final processing step or a loop-closure detection.

Fig. 9: Examples for views when a loss of tracking occurred.

The majority of images is affected by motion blur (upper) or

include few visual features (lower) for landmark detection.

which show the necessity of more research on adequate fusion

strategies in the multi-sensor scenario.

We, therefore, hope that this dataset contributes to robust

yet low-cost robots in home environments.
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I. INTRODUCTION

In the dynamic landscape of robotics, accurately repre-

senting spatial transformations is pivotal for reliable system

performance. Conventional methods, which treat provided

transformations as precise and deterministic, face difficulties

with inherent inaccuracies within the system and environmen-

tal complexities. This work underscores the critical need for

inaccuracies-aware spatial representations in robotics, often

denoted as scene graphs. These representations allow mod-

eling not only the spatial relationships in a robot-environment

system but also the gaps in our knowledge about it.

An illustrative instance can be found in the distinction

between a robotic arm’s repetition accuracy, which signifies its

capability to consistently reach the same point in a workspace,

and the robot’s absolute accuracy. For conventional robotic

systems, the first can be assumed to be ”exact”. However, the

error of the latter can be higher by several orders of magnitude,

motivating the modeling of this error. Position measurements,

constrained by both physical limitations and environmental

influences, frequently fall short of the requisite precision. This

constraint becomes especially critical in applications requiring

high accuracy, such as surgical robotics [1].

An additional example is the process of registering a robot

with respect to its environment, a task achieved through either

an inaugural calibration procedure [2] or by means of the

navigation implemented in mobile robotic systems [3].

Interestingly, various scholarly works [4], [5] have consid-

ered robot uncertainty within specific domains, such as the

kinematic structure or autonomous navigation components.

However, there is limited progress in combining these several

domains into one single representation like a scene graph to

achieve a unified consideration of inaccuracy-aware spatial

relations. Conventional approaches that disregard uncertainty

in scene graphs fall short in capturing the intricacies of real-

world scenarios.

This paper advocates for a paradigm shift by introducing

a framework that incorporates uncertainty into scene graphs,

offering a more realistic and robust representation of transfor-

mations. By addressing challenges posed by both robot internal

inaccuracies and the uncertainty of the robot’s interaction with

the environment, our approach aims to enhance the reliability

and performance of robotic systems in practical applications.

We use the following terminology in this paper: Robotic

systems can be subject to errors that cause inaccurate pose

calculations, either within the system or with respect to its

environment. A common simplification is to model such

inaccuracies in a probabilistic way, thus subjecting nominal

relative poses to an additional uncertainty. For a multitude of

robotic applications, such uncertainty is modeled as a zero-

mean normal distribution, thus an uncertain pose consists

of a nominal pose and a covariance matrix. Generally, this

simplification trades the exact representation of robotic errors

for the availability of powerful mathematical tools and is thus

well established in the robotic community. We adopt this error

modeling as well, which allows us to immediately integrate the

probabilistic pose information from other software components

into our scene graph.



II. RELATED WORK

Accurately describing the spatial relationships of a robot

and its environment is a key aspect of robotics specifically

and mechanical mechanisms generally. This involves not only

understanding the robot’s position and orientation within its

workspace but also how it interacts with various objects

and obstacles around it. The ability to model and predict

these interactions is crucial for tasks such as navigation,

manipulation, and automated decision-making. Furthermore,

a precise understanding of spatial relationships enhances the

robot’s efficiency, safety, and adaptability in complex and

dynamic environments. Consequently, advancements in this

area have significant implications for the development of more

sophisticated and capable robotic systems.

Commencing with the early explorations in formulating

a framework for kinematics in mechanical structures [6],

[7], the field witnessed significant strides with one of the

pivotal works by Denavit and Hartenberg [8]. In this ground-

breaking contribution, the authors devised a structured yet

elegant methodology to comprehensively describe the chain

of transformations associated with robotic arms. Subsequent

endeavors augmented the toolbox of robot kinematics rep-

resentation, for example by considering the underlying Lie-

Algebra of spatial transformations [9]. Advancements in the

use of conformal geometric algebra have provided a unified

approach to geometric reasoning, simplifying the computation

of kinematics and dynamics of serial manipulators [10]. More-

over, neural network-based approaches and deep reinforcement

learning have enhanced the precision and efficiency of solving

inverse kinematics problems for high degrees of freedom

manipulators [11], [12]. Our recent work [13]1 provides a kine-

matic robot description that allows considering inaccuracies

from joint position measurements, mechanical stress-induced

deformations, and gravitational influences in a probabilistic

manner.

In the field of robotic navigation, numerous approaches

account for the uncertainty of relative transformations, par-

ticularly in the domain of Simultaneous Localization and

Mapping (SLAM). For instance, methods such as those pro-

posed by Kaess et al. in iSAM2 [14] and Kümmerle et al.

in g2o [15] utilize the covariance or information matrix to

appropriately weigh different spatial transformations within a

graph optimization framework. Recent advancements include

the development of distributed pose graph optimization, which

enhances collaborative SLAM by efficiently managing local

and global uncertainties [16], and the integration of multi-level

graph partitioning to improve scalability and accuracy [17].

These techniques enhance the accuracy and reliability of

mapping and localization by effectively managing the inher-

ent uncertainties in sensor measurements and environmental

interactions.

The interaction of a robot with objects in its environment,

specifically the uncertainties inherent in the workspace, has

been investigated in [18]. Additionally, significant progress

1Now known as L. Burkhard et al.

has been made in modeling the uncertainty in the perception

process itself, including both classical [4] and deep-learning-

based methods [5]1. Recent research efforts have focused on

sparse iterative approaches [19] to further enhance robustness

in uncertain environments.

Finally, the hand-eye calibration of a robot is nothing else

but an additional transformation between the real and the

nominal robot geometry and can thus also be subject to

inaccuracies, as discussed by [2]. Recent studies have further

explored these uncertainties, proposing methods to enhance

the accuracy and robustness of hand-eye calibration [20], [21].

These advancements highlight the ongoing need to address

and mitigate calibration inaccuracies in vision-guided robotic

systems.

In the end, all these sub-fields of robotics provide a mul-

titude of different types of spatial transformations, where

potentially all of them are subjected to errors which are being

modeled as uncertainties.

Systematic approaches to order a multitude of intercon-

nected transformations, particularly within the realm of virtual

reality (VR) [22], [23], and robotic simulators [24], [25],

considered the utilization of a scene graph to represent rel-

ative spatial relationships. This scene graph, akin to a tree

structure, comprises multiple nodes arranged in a parent-child

manner. This innovative approach enhanced the representation

and simulation capabilities in both virtual reality and robotic

simulation domains. The current state of the art is tf [26], the

scene graph framework of ROS (robot operating system).

Interestingly, very little work has been published that con-

siders the uncertainty of spatial information by interconnecting

the different realms of robotics. Initial efforts have been

directed towards acknowledging uncertainty within the scene

graph, for example [27]. However, these early attempts typ-

ically fall short in correctly modeling the error propagation

using Lie Algebra. Alternatively, some implementations resort

to sampling-based approaches to represent the overall uncer-

tainty within the system, such as [28], which however comes

with computational costs.

The Lie-Algebra allows to acknowledge the manifold char-

acter of spatial relationships and is a powerful tool to compute

and propagate uncertainty along chains of spatial transforma-

tions. An introduction to it together with the application to

robotic navigation is provided by [29]. Similarly, Lie-Algebra-

based concepts are provided for the error propagation within

robotic manipulators, either for single errors [30] or as our

comprehensive kinematic model [13].

Despite the widespread use of Lie Algebra in uncertainty

estimation, to the best of our knowledge, no existing approach

formulating a scene graph for robotics has integrated Lie

Algebra-based uncertainty propagation. In our ongoing work,

we aim to address this gap and demonstrate the efficacy of

incorporating Lie Algebra into a scene graph framework for

a more nuanced and accurate representation of uncertainty in

kinematic systems.



III. ROBOTIC AND ENVIRONMENTAL CONFIGURATION

STATE

Accurate assessment of the current configuration state in

robotic systems holds significant importance across various

applications. This is particularly pronounced in scenarios

involving non-static components equipped with perception

sensors, where precise positional data is crucial for effective

operation. Registering cameras affixed to robotic manipulators

to the robot’s origin is imperative for seamlessly integrating

spatial information within the correct coordinate framework.

Knowledge of the system’s distance to the environment is

indispensable for collision avoidance, especially when nav-

igating confined spaces. To achieve this, it is crucial to

carefully observe and organize the positions of joints into a

transformation tree. This tree not only helps illustrate how the

coordinate framework depends on a specified starting point

known as the root frame, but also aids in obtaining an accurate

estimate of the robot’s spatial volume and movement range.

However, overlooking the inherent uncertainty in these

measurements and the subtle non-static characteristics of cer-

tain links—attributable to mechanical stress and gravitational

forces—can lead to erroneous state estimations. These factors

can significantly impact the reliability of the robot’s operation,

particularly in dynamic or unpredictable environments.

In the ensuing discussion, we elaborate on representing

the robotic and environmental configuration state (RECS)

as a transformation tree. We discuss the methodology for

constructing this tree, highlighting the importance of each

node and its relationship to the overall framework. Subse-

quently, we introduce Lie Algebra as a robust solution for

modeling uncertainty in this process. Lie Algebra provides

a mathematical structure that allows for the representation

and manipulation of spatial transformations, which is essential

for accurately modeling the uncertainties and variances in the

robot’s configuration.

Finally, we detail our implementation of a managed and

centralized approach for addressing the RECS problem within

an inter-process communication (IPC) framework. This ap-

proach not only centralizes the data processing but also ensures

that all components of the robotic system are synchronized

and updated in real-time, enhancing the overall accuracy and

efficiency of the system.

Throughout this work, we intend to conceptualize the

inaccuracies within the system as a form of uncertainty.

This approach is motivated by the computational convenience

afforded through the utilization of a probabilistic model, as

opposed to employing distinct models tailored to individual

system errors. By treating all potential errors as probabilistic

uncertainties, we can simplify the computational processes and

improve the robustness of the system’s state estimation.

We believe that this comprehensive approach to modeling

and managing uncertainties will significantly enhance the

performance and reliability of robotic systems, particularly in

complex and dynamic operational environments.

Ttcp

Tcam

Fig. 1: An illustrated exampled of a robotic manipulator and

an external camera.

A. Transformation Tree

Deriving the transformation between two coordinate frames

is a pivotal task in robotics. A widely employed approach

involves modeling the system as a hierarchical tree of frame

transformations. Figure 1 illustrates a typical example involv-

ing a robotic manipulator and an external camera. To get the

transformation between the coordinate frames Tcam and Ttcp,

the entire path involving multiple individual transformations

must be calculated. In this example, the impact of uncaptured

deviations in kinematics from the real world can be observed.

The manipulator bends due to gravitational forces, causing the

actual position of Ttcp to differ from the expected position

derived from a naive approach based on exact measurements.

This discrepancy highlights the importance of accounting for

real-world factors such as mechanical flexibilities and external

forces in kinematic modeling to ensure accurate predictions

and reliable performance in practical applications.

A key optimization involves consolidating static displace-

ments into a singular transformation, effectively pruning the

tree for computational efficiency. This means that static trans-

formations, which do not change over time, are combined

into a single transformation matrix. Movable connections are

represented as rotations or translations centered around joints,

contributing to a chain of static links and dynamic joints.

This approach not only streamlines computational complexity

but also provides a comprehensive understanding of a robotic

system’s kinematic properties, enhancing both efficiency and

reliability.

One significant advantage of using a hierarchical tree

structure is that it can be directly derived from a CAD

(computer-aided design) model, which inherently uses the

same representation. computer-aided design (CAD) models are

typically organized into a hierarchy of parts and subassem-

blies, mirroring the structure of the transformation tree. This

direct correlation allows for seamless integration and accurate

transfer of geometric data from design to implementation.

Following the comprehensive description of robot kine-

matics within the previously mentioned tree structure, the

process of retrieving the direct transformation between any

two arbitrary frames unfolds by traversing the path articulated

within this structured tree. This systematic approach ensures



a clear and methodical procedure for obtaining the specific

transformation information required for precise spatial rela-

tionships between frames within the robotic system.

By organizing transformations into a hierarchical tree struc-

ture, we can simplify complex kinematic chains into more

manageable sub-problems. This not only reduces the compu-

tational burden but also makes the system more scalable and

adaptable to changes. Furthermore, the hierarchical model aids

in debugging and enhances the modularity of the kinematic

analysis, facilitating easier updates and maintenance. An il-

lustration of this is provided in Figure 2.

B. Transformations and Uncertainty

Our treatment of uncertainties follows our previous work on

probabilistic robot kinematics [13], which in turn builds upon

the mathematical foundations provided by [29] and [31].

We briefly introduce the applied methods here, but refer

the interested reader to the related works for more thorough

insights. For a general introduction to Lie Algebra in the scope

of robotics, we recommend the excellent [32], whose notation

we mostly follow.

Lie Algebra provides a mathematical framework for de-

scribing the properties and behaviors of Lie groups, which are

groups that also have the structure of a smooth manifold. This

framework is particularly useful in robotics for representing

rotations and rigid body transformations, as these operations

form the basis of many kinematic and dynamic calculations.

A pose TAB ∈ SE(3) describes the position and orientation

of an object B with respect to a reference frame A. The

Special Euclidean group SE(3) includes both rotations and

translations in three-dimensional space. While a pose quantity

is generally an element of the manifold SE(3), it can be

described locally by its linear tangent space representation

ξ = [ρθ]T ∈ R
6, related by the exponential map [32]:

T = Exp(ξ). (1)

Here, ρ denotes the translational component and θ the rota-

tional component of the tangent space element. The exponen-

tial map allows for the conversion between the tangent space

(Lie algebra) and the manifold (Lie group).

In Lie Algebra, the tangent space at the identity element of

a Lie group forms a vector space called the Lie algebra of the

group. For SE(3), this tangent space can be represented as a

six-dimensional vector comprising three translational and three

rotational components. The adjoint representation provides a

way to map local tangent space quantities between different

coordinate frames.

Local tangent space quantities can be mapped between two

different local spaces using the adjoint matrix Ad as:

Aξ = Ad(TAB)
Bξ, (2)

with

Ad =

[

R [t]×R
0 R

]

∈ R
6×6, (3)

where R is the rotation matrix of T and [t]× is the skew-

symmetric matrix formed by the translation vector. The term

[t]×R illustrates how local rotation errors can create transla-

tion errors further down a chain of transformations, with the

magnitude depending on the distance from the original error’s

location.

To understand this, consider that any rotation in three-

dimensional space can be represented as an element of the

SO(3) group, the special orthogonal group, which deals with

rotation matrices. Similarly, SE(3) extends this concept to

include translations. The Lie algebra of SO(3) consists of

skew-symmetric matrices that represent infinitesimal rotations,

while the Lie algebra of SE(3) includes both infinitesimal

rotations and translations.

We describe the error of a pose as a local deviation ξB,err of

a nominal pose TAB , i.e., in the tangent space of the pose’s

reference frame B. The corresponding covariance matrix

ΣAB = E
[

ξB,err ξ
T
B,err

]

∈ R
6×6 is therefore a locally defined

tangent space quantity. This covariance matrix encapsulates the

uncertainty in both the translational and rotational components

of the pose.

The two essential mathematical operations on poses needed

for the scene graph are concatenation and inversion. The

concatenation operation combines two transformations, such

as TAB and TBC , to yield the transformation from A to C:

TAC = TAB ∗ TBC , (4)

ΣAC = Ad
T

−1

BC

ΣABAd
T

T
−1

BC

+ΣBC . (5)

Here, the two covariance matrices are transformed into the

common reference frame C using the adjoint matrix, where

they can be added due to the linearity of the tangent space. The

covariance composition in eq. (5) is a first-order approximation

(referred to as second order in some publications) and is

discussed in detail in [29].

Analogously, the inverse operation calculates the transfor-

mation from B to A given the transformation from A to B:

TBA = T−1

AB , (6)

ΣBA = AdTAB
ΣABAd

T
TAB

, (7)

This shifts the uncertainty from the tangent space of B to the

tangent space of A. This representation can implicitly consider

exact transformations, as zero-covariances simply vanish in

eq. (5) and eq. (7).

For a more detailed introduction to Lie Algebra and its

application in robotics, readers may refer to [32] and other

comprehensive resources like [33] and [34].

C. Implementation

The presented methodology has been implemented within a

C++ library, and the corresponding source code is accessible

online2. Additionally, a wrapper for the scripting language

Python is provided, facilitating ease of use and integration into

various applications. Each coordinate frame is characterized

by a node element. A frame is precisely defined by its pose

matrix T and an accompanying covariance matrix Σ, which

2https://github.com/DLR-RM/tf-dude
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holding all transformation information.

may be set to zero for precisely known transformations.

Distinctive identification of each frame is facilitated through

the application of a unique character string.

Furthermore, the mathematical operations of concatenation

and inverse for each frame are executed leveraging the compu-

tational capabilities provided by the manif library [32], which

is augmented by the uncertainty propagation framework. This

ensures that transformations account for any uncertainties in

the positional data, thereby enhancing the robustness of the

system.

The hierarchical structure is implemented using the

Boost.Graph data structure [35]. Each vertex encapsulates

a frame as its payload, and the edges define the direction

of transformations. To determine a path between two nodes

within the tree, a breadth-first search (BFS) routing algorithm

is employed. The cumulative transformation along the identi-

fied path is computed based on the direction specified by the

graph’s edges, facilitating a comprehensive understanding of

the transformations between the starting and ending points of

the path.

The system allows for the addition of multiple root nodes,

thereby declaring new trees that remain disconnected from

preceding ones. It is imperative to underscore that the estab-

lishment of a path between nodes situated on distinct trees

within the forest is not feasible. Each root node initiates

an independent tree structure, and inter-tree connectivity is

explicitly precluded within the system’s framework.

The communication backend is implemented in an IPC-

agnostic way, meaning that it can support various implemen-

tations of IPC such as ROS [36], ROS2 [37], native DDS [38],

links and nodes [39] or other systems. This flexibility is

achieved through the use of generic adapters that must be

overloaded by the implementation using a plugin functionality.

These adapters abstract the communication details, allowing

the core library to remain independent of the specific IPC

mechanism employed. This design ensures that the system can

Server

Client Client Client

create node
update node

read nodes update node
read nodes

IPC specific
implementation

Fig. 3: Illustration of an exemplary server-client architecture

with different API implementations.

be easily integrated into different robotic frameworks without

requiring significant modifications to the underlying codebase.

The default operational paradigm involves centralized con-

trol over all trees, nodes, and computations via a central

server. A connected client has the capability to perform

various operations such as creating, retrieving, updating, or

deleting (CRUD) nodes. Additionally, the client can request

the cumulative transformation of a specific path. Other clients

can also access this information, but their requests must be

routed through the server. This centralized architecture ensures

efficient management and coordination of resources.

This implementation offers significant advantages in terms

of flexibility and scalability. By leveraging well-established

libraries and algorithms, the system ensures high performance

and reliability. Furthermore, the clear separation of respon-

sibilities between the server and clients facilitates efficient

resource management and provides a robust framework for

complex robotic applications. The IPC-agnostic design further

enhances the system’s adaptability, making it suitable for a

wide range of robotic platforms and use cases. This architec-

ture is illustrated in Figure 3.

IV. APPLICATION

To demonstrate the practical utility and broad applicability

of the proposed framework, two application examples will be

illustrated in the following sections. An in-depth analysis of

applying Lie Algebra to the configuration modeling problem

has been presented in [13]. Therefore, we will focus on the

scene-graph implementation in this discussion.

The first application showcases the integration of the frame-

work on a robotic arm, which is affected by bending induced

by the gravitational pull of the Earth. This example highlights

how the system compensates for real-world physical effects

that deviate from ideal models. By applying the proposed

methodology, we can accurately model and correct for these



Fig. 4: TINA arm bending due to gravitation.

deviations, ensuring the robotic arm operates with high preci-

sion despite the bending.

The second application illustrates a mapping task on a

system with an uncertain RECS, formulated as a graph

optimization problem. This example demonstrates how the

framework handles uncertainties in the robotic configuration

space, ensuring accurate and reliable mapping. By using a

robust scene-graph implementation, the system can dynami-

cally adjust to changes and uncertainties in the environment,

maintaining the integrity of the mapping process.

These examples are chosen to underscore the versatility

and robustness of the proposed framework in handling var-

ious practical challenges in robotics. They provide concrete

evidence of how the framework can be applied to real-world

scenarios, demonstrating its effectiveness in improving the

accuracy and reliability of robotic systems. Through these

applications, we aim to showcase the framework’s potential

for widespread use in diverse robotic applications, highlighting

its capability to address complex problems with innovative

solutions.

A. Uncertain Robotic and Environmental Configuration State

As an integral component of the European Space Agency

(ESA) project for a Sample Transfer Arm breadboard study,

the German Aerospace Center (DLR) developed the TINA

manipulator [40] as a compact, modular, and torque-controlled

robotic system designed to meet the requirements of the Mars

Sample Return mission. Figure 4 illustrates the robotic arm in

its initial position mounted on a lander.

Upon closer inspection, it becomes evident that the manip-

ulator, even in its initial configuration, experiences moderate

deformations attributable to its own weight and joint play, par-

ticularly in the axial direction. These deformations introduce

uncertainties in the pose of the end effector, which can be

effectively modeled using the proposed framework.

By incorporating the expected variance parameters into the

transformation tree, the state of the robot configuration can be

predicted probabilistically. This allows the position of the end

effector to be constrained within an anticipated uncertainty

region. Consequently, considering these uncertainties provides

a more realistic depiction of the arm’s pose, acknowledging the

(a) (b)

Fig. 5: Rollin’ Justin mapping a SPU in a Martian environment

(a) and the associated optimization graph is represented in (b).

impact of various factors, including gravitational forces, and

enhances the accuracy of the positional assessment, enabling

more precise manipulations.

The selection of appropriate probabilistic parameters heavily

depends on the specific characteristics of the associated system

and requires specialized technical knowledge. If necessary,

experimental evaluations must be conducted to validate and

fine-tune these parameters. This approach ensures that the

manipulator’s performance remains robust and reliable, even

in the presence of inherent uncertainties.

B. Environmental Mapping

To enable more intricate manipulations and interactions

between the robot and its environment, a significant challenge

lies in achieving precise registration of the robot relative to its

surroundings. This entails aligning various world representa-

tions generated for different types of tasks to ensure coherence

and accuracy in the robot’s perception of its environment.

As depicted in Figure 5a, Rollin’ Justin [41] is mapping a

Smart Payload Unit (SPU) in Martian surroundings. In addi-

tion to the unknown state of the environmental configuration,

further challenges arise from within the robot itself. Although

the upper body assembly is rigidly connected to the base

platform, the wire rope construction in different parts of the

torso is inherently less precise than the rigid joints of the arms,

introducing uncertainties into the robot’s configuration state.

Effectively managing and mitigating this uncertainty is

crucial since information for navigation purposes is collected

from sensors in the base, while other higher-level tasks, such as

object recognition and manipulation, rely on information from

the camera mounted in Justin’s head. Therefore, modeling the

spatial relations of the robot’s configuration state, including

uncertainties, is essential and can be addressed by the proposed

framework. This framework simplifies the handling of trans-

formations and their associated uncertainties by summarizing

them into a single step.

In the context of environmental mapping, the transformation

from the robot base to the head camera becomes particularly



critical as it serves as the foundation for registering fiducials

linked to the SPU. Combined with the spatial relationship to

the registered fiducials and information regarding the global

reference provided by MROSLAM [3], an optimization graph

can be constructed, as illustrated in Figure 5b. The optimiza-

tion problem can be effectively addressed using GTSAM [42]

or comparable algorithms, leading to an optimized estimation

of the SPU’s pose.

This comprehensive approach significantly improves the

reliability and quality of environmental mapping outcomes

in the robot’s operational context. By integrating precise

registration techniques and robust uncertainty modeling, the

framework enhances the robot’s ability to interact accurately

and efficiently with its environment, ensuring higher levels of

performance in complex tasks.

V. CONCLUSION

This paper introduces a robust framework for representing

uncertain spatial transformations in robotic systems, leveraging

Lie Algebra for a structured and probabilistic approach. Tradi-

tional deterministic methods often fall short in accounting for

the inherent inaccuracies and environmental factors that affect

robotic operations. Our proposed framework addresses these

limitations by incorporating uncertainty into transformation

trees, providing a more realistic and reliable computation of

spatial transformations.

The framework models inaccuracies arising from sensor

decalibration, joint position errors, mechanical stress, and

gravitational influences, as well as environmental uncertainties

from perception limitations. By integrating probabilistic mod-

els into the transformation calculations, we offer a robust and

adaptable solution for various robotic applications, enhancing

the system’s ability to handle real-world complexities.

We demonstrate the practical utility of the proposed frame-

work through two application examples. The first example

involves a robotic arm affected by gravitational bending, show-

casing how the system compensates for real-world physical

effects that deviate from ideal models. The second example il-

lustrates a mapping task on a system with an uncertain robotic

and environmental configuration state (RECS), formulated as

a graph optimization problem. These applications highlight

the framework’s effectiveness in improving positional accuracy

and enabling precise manipulations.

The hierarchical transformation tree structure not only sim-

plifies complex kinematic chains but also provides a compre-

hensive understanding of the robot’s spatial relationships. This

approach reduces computational complexity and enhances the

scalability and adaptability of the system. Additionally, the

IPC-agnostic design allows for easy integration into different

robotic frameworks, further enhancing the system’s versatility.

Future work includes extending the framework to model

temporal deviations, enabling configuration retrieval from pre-

vious time steps. We also aim to align the interface with ROS’s

tf implementation for seamless integration.

In summary, this contribution significantly advances the

management of spatial transformation uncertainties in robotics,

providing a versatile and robust tool that enhances the reliabil-

ity and performance of robotic systems in diverse applications.

The source code for this framework is accessible online

https://github.com/DLR-RM/tf-dude.
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Abstract— Intuitive human robot interfaces like speech or
gesture recognition are essential for gaining acceptance for
robots in daily life. However, such interaction requires that
the robot detects the human’s intention to interact, tracks his
position and keeps its sensor systems in an optimal configura-
tion. Audio is a suitable modality for such task as it allows for
detecting a speaker in arbitrary positions around the robot. In
this paper, we present a novel approach for localization of sound
sources by analyzing the frequency spectrum of the received
signal and applying a motion model to the estimation process.
We use an improved version of the Generalized Singular Value
Decomposition (GSVD) based MUltiple SIgnal Classification
(MUSIC) algorithm as a direction of arrival (DoA) estimator.
Further, we introduce a motion model to enable robust local-
ization in reverberant and echoic environments.

We evaluate the system under real conditions in an ex-
perimental setup. Our experiments show that our approach
outperforms current state-of-the-art algorithm and demonstrate
the robustness against the previously mentioned disruptive
factors.

I. INTRODUCTION

The ability of mobile robots to interact with people in

an intuitive and maybe anthropomorphic manner is a key to

the acceptance of robots in human-dominated environments.

Human-robot-interaction (HRI) can be visual (e.g. gestures),

tactile (e.g. guiding) as well as auditive (e.g. instructing).

However, all modalities require that the robot recognizes the

intention of a human to interact. Visual systems can only

recognize intention in the sensor’s field of view, which is

usually limited. Tactile systems require that the human is

nearby. Robot audition, however, allows for detecting and

tracking a speaker from arbitrary positions around the robot

and also from distant places. Figure 1 illustrates a typical

situation. The human on the sofa wants to interact with the

robot, but the latter is currently performing another task,

thus, positioning its visual sensor in the opposite direction.

Moreover, audio also allows for gaining information about

the environment or to separate between different speakers.

The information about the speaker’s position can also be used

to enhance the audio input signal, e.g. to improve speech

processing as well as getting more information about the

position of humans in the scenario.

In this work we present a novel approach for localization

of speakers by use of a microphone array. First we detect
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Fig. 1: Illustration of the interaction recognition problem:

The robot is turned away from the operator. While the vision

system might not recognize him, the audio input will do so.

speech phases in the audio stream using a voice activity

detector. During the detection we calculate a score for

analyzing the frequency spectrum. We introduce a frequency

selection based on this score to enhance the MUSIC esti-

mation and reduce the processing time. For estimation we

use the established SEVD-MUSIC [1] algorithm. Further

on we propose a motion model to check the calculated

Direction of Arrival (DoA) of the received signal. We can

show that this enhances robustness against reverberation and

echo. Therefore, we present result of realistic experiments

that verify our claims.

II. RELATED WORK

In recent years, research has been done to imitate the

binaural audio localization of animals and humans [2]–[5].

Using both the interaural phase difference (IPD) and the

interaural intensity difference (IID). These techniques take

into account the head-related transfer function [6], [7] as well

as the reverberant properties of the environment to achieve

accurate results. Incorporation of a particle filter approach to

be used on binaural measurements improves the estimation

of sound sources as well [8]. Nonetheless these systems need

a demanding hardware setup and calibration.

Other approaches use an array of microphones to over-

come the hardware requirements and to estimate the direction

of arrival (DoA) of a signal [9], [10]. It is possible to

calculate the most probable DoA by estimating the time

delay between the signals received by each microphone.



Combining these methods with delay and sum beam forming

(DSBF) as well as random sample consensus (RANSAC),

more than one sound source can be localized [11]. However,

these approaches have problems with low signal-to-noise-

ratios (SNR) input signals, changing acoustic conditions and

varying speakers. Different approaches using neural networks

have been studied to tackle these problems. Nevertheless,

they need training dedicated to the specific speaker or

require very large amounts of data for generalizing [12]–[16].

Furthermore, Sasaki et al. present an approach incorporating

a hypothesis tracking system which exploits the physical

constraints of a dynamic moving object [17].

More recently, subspace approaches like Multiple Sig-

nal Classification (MUSIC) [18] and Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT)

[19] have received more interest. They overcome the reso-

lution limit constrained by the sampling rate and are more

robust to signal noise but they are computational costly [20]–

[23].

There have been several extensions for MUSIC, e.g. using

singular value decomposition [24] to reduce the computa-

tional complexity while enhancing robustness against noise.

Incremental versions are introduced to reach real-time perfor-

mance while enhancing robustness against noise [25], [26].

Enhancements to further reduce the computational costs in

the representation space is done in [27], [28].

However, even recent sound source localization systems

face problems when detecting humans in indoor scenarios

under non-optimal acoustic conditions.

First, the estimation of speech is challenging. The receiv-

ing sound event consists of several words, each composed

of vowels and consonants with different frequencies and

durations. It is therefore hard to implement a filter a-priori.

Active filter system which adapts to the current information

in real-time as proposed by Hoshiba et al. [29] tackle this

problem. However, human speech consists of frequencies

distributed on a wide spectrum. Using only a bandpass which

narrows the calculations to small portions of the complete

spectrum neglects additional information encoded in the

signal or may even led to falsely estimations when the filter

adapts to a noise source.

Secondly, indoor scenes often face the problem of having

a high reverberation time and shadow sources created by

echo. The first phenomena is the superposition of several

reflections of the same signal which results in a ”fading-out”

effect and lower the SNR. The latter one is the reflection

of the full signal at a surface and the system perceives an

additional source at the location of the reflecting obstacle.

In this work we propose a novel framework based on

the generalized singular value decomposition approach to

reduce the complexity for estimating the DoA for localizing

speakers. In addition we focus on raising the robustness in

reverberant and echoic environments by exploiting interme-

diate steps of a noise evaluation process and validation based

on a motion model. We aim to enable proven state-of-the-art

methods for indoor scenarios under real-time constraints.
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Fig. 2: System overview: 1© Voice capture and transform

into frequency domain. 2© Classification of input as speech

or noise phase. 3© Selection of appropriate frequencies. 4©
DoA estiamtion with MUSIC. 5© Verification of DoA by a

motion model.

III. SOUND SOURCE LOCALIZATION

In order to tackle the challenges of indoor environments,

as discussed in the previous section, we propose a sound

source localization framework called Motion Model En-

hanced MUSIC (MME-MUSIC). Our system is based on

the SEVD-MUSIC [1] approach. We enhance the estimation

process by active selection of significant frequencies during

Voice Activity Detection (VAD), as well as post-filtering the

estimates by application of a motion model. A flow chart of

our processing pipeline is given in Figure 2.

A. Voice Activity Detection and Frequency Selection

We split the incoming audio recordings into smaller and

overlapping frames and transform them into the frequency

domain using the fast fourier transform (FFT). Afterwards,

the frames are classified into the categories “speech” or

“noise”. We implement the Longterm Speech Divergence

(LTSD) approach of Ramı́rez et al. [30], which assumes

that the spectrum of noise differs significantly from frames

containing speech. Yet, short time sound events like clapping

or door closing are suppressed. For classification, the diver-

gence of each frequency bin compared to a noise spectrum

is computed, which we denote the noise score ν(k)

ν(k) =
LTSEτ (k)

2

XΣ(k)2
, (1)

where LTSEτ (k) is the average maximal amplitude of

frequency band k in a frame neighborhood τ , and XΣ a

reference noise spectrum. The complete derivation can be

found in [30]. Intuitively, a higher noise score means that

the frequency bin differs more from the noise reference. If a

frame is classified as “speech”, then the noise score is used

to analyze the frequency spectrum.

As mentioned above, considering the complete signal

spectrum is not practical. However, a simple bandpass filter

approach as in Hoshiba et al. [29] omits a lot of useful



information in the case of human speech. Therefore, we use

the noise score ν to extract the m bands with the highest

score. This removes frequencies from the computation that

do not contribute to the source signal. We show the selected

bins from each algorithm in Figure 4. These bins are then

fed into the SEVD-MUSIC estimator.

B. SEVD-MUSIC

First, we derive the details to estimate the Direction of

Arrival (DoA) for acoustic signals. We model our sound

source as a point that emits a sinusoidal wave with center

frequency fk and corresponding time-dependent amplitude

λk(t), where k is the index of one out of K frequency bands.

Using the complex frequency notation we have

s(t) = λk(t)e
j2πfkt = λk(t)e

jωkt . (2)

We consider a sensor array that consists of N micro-

phones, thus we obtain the system equation










1
e−jwk∆1

...

e−jwk∆N−1











s(t) =: aks(t) , (3)

where ∆n is the relative propagation delay with respect to

the nth reference microphone. For a one-dimensional linear

microphone array and under the assumption of planar waves,

the delay is calculated as

∆n =
dn sin(θ)

c0
, (4)

where dn is the sensor’s distance to the reference, θ the

direction of arrival and c0 the speed of sound, i.e. approxi-

mately 334m/s at room temperature. The vector ak ∈ C
N in

Equation (3) is denoted the steering vector for the frequency

fk. To obtain the complete signal vector we extend the

system equation to

x(t) = aks(t) + n(t) , (5)

where n(t) is additional uncorrelated system noise.

When a new signal is received, we split it into smaller

frames of fixed length and transform them into the frequency

domain. Then, we compute the correlation matrix R ∈
C

N×N using

R = X(k)XH(k) , (6)

where X(k) ∈ C
N×F contains the transformed Fourier

coefficients of band k for all F frames and N microphones.

Here, X
H is the Hermitian of X . Using Singular Value

Decomposition (SVD) on R to separate the contained sub-

spaces, we get

SVD (R) = UDV
T (7)

U = [u0 u1 · · ·uN−1]

= [US UΣ] , (8)

where US is the signal space and UΣ the noise space. As

the system noise is uncorrelated it is present in all subspaces.

The previously defined Steering Vector ak is a property of

a receiving signal and therefore defined in the signal space.

This implies

ak ∈ US , (9)

⇒ ak ⊥ UΣ . (10)

Hence, the inner product (denoted as 〈·, ·〉) of the steering

vector and the noise space is zero.

Natural sound events, especially the human speech, are

composed of several frequencies. To take this into account

we consider the complete frequency spectrum and combine

it into a single representation. A common approach for that

is the broadband pseudospectrum, which is defined over all

frequency bands K as

P (θ) =

K
∑

k=1

1

〈ak(θ),UΣ〉2
. (11)

The DoA is found as the maximum of the estimator’s

response, i.e.

θ̃ = argmax P (θ) . (12)

C. Motion Model

We check the plausibility of the received angle by evalu-

ating it with a motion model. To do this, we assume for time

span tm that the source moves with mean angular velocity

ω̄, i.e.

ω̄(tm) =

(

∆θ

∆t

)

≈
1

M

∑

n∈N (tm)

θ̃n − θ̃n−1

tn − tn−1
, (13)

where N (tm) is the index set of all M angular measurements

θ̃n within the time span tm. A subsequent measurement

θ̃m+1 is considered as valid, if
∣

∣

∣
θ̃m+1 − ω̄(tm)

∣

∣

∣
< θtol, (14)

with the constant motion tolerance θtol.
When receiving a new DoA from the previous steps we

gather all estimations within the time span tm. If at least two

valid points are found we use our motion model to verify the

new one. Otherwise we use all DoAs for the motion vector,

at least three estimations are necessary. The first estimations

are used to calculate ω̄(tm) and the last one to verify the

model. If the motion can be explained by our model we

mark all DoAs as valid estimations.

This motion model allows for filter out echo, because

measurements that stem from echoes have a direction that

is not consistent with the source, and they are timed shortly

after the arrival of the original signal.

IV. EXPERIMENTS

A. Evaluation Data Set

To evaluate the performance of our system in different

and challenging conditions, we recorded static and moving

speakers in an office building. We selected six representative

rooms of different type and measured the reverberation time



TABLE I: Evaluation Data Set: Measured reverberation time

T60 and room size for six different room types.

Room T60 [s] Area [m2]

Lab (large) 1.158 291.3
Lab (small) 1.646 101.8

Entrance Hall 3.149 211.9
Common Room 1.971 80.28

Lecture Hall 1.077 141.97
Office 0.345 24.1

Fig. 3: The printed circuit board (PCB) with the 4 micro-

phones (red circles). The microphones are spaced 1.5cm,

6cm and 9cm from the reference microphone on the right.

T60 for each. Table I lists the measured T60 time as well as

the room sizes.

The data was recorded with a sensor array consisting of

four microphones placed on a printed circuit board (PCB). A

picture is shown in Figure 3. The microphones are arranged

non-equally spaced over a distance of 9 cm, the positions of

the microphones are marked by circles. The recording was

done with a sampling rate of 16 kHz.

We created an evaluation data set with the aim to analyze

different conditions where echo, reverberation and other

effects degrade the localization performance. Hence, we

placed the microphone array at different positions, to reflect

a variety of scenarios for a robotic systems, and distances

ranging from 3 m to 15 m. We took into account positions

next to structures like walls or furniture, as well as placing

the system in the center of the room. For example for the

office room we placed the array into a corner next to two

reflecting surfaces, centered in the room next to a desktop

including screens and next to an open door.

B. Experiment Procedure

The recorded data sets were fed to the different sound

source localization algorithms. For our experiments we

compared our method (MME-MUSIC) with the well es-

tablished Generalized Singular Value Decomposition based

MUSIC (GSVD-MUSIC) [24], and the recently published

MUSIC with Active Frequency Range Filtering (AFRF-

MUSIC) [29]. We do not consider any cross-correlation-

based algorithms as they use a different approach than the

previous mentioned subspace-based algorithms. In addition,

most methods need a significant larger amount of sensor

input for enabling the same theoretical accuracy [31]. The

TABLE II: Parameter constraints for experimental evaluation.

If a parameter is applicable is indicated by a X.

Parameter Value GSVD AFRF MME

ωL [Hz] 1000 X X X

ωH [Hz] 8000 X X X

nFFT 1024 X X X

nStep 64 X X X

nTotal 4 · nFFT X X X

nBins 100 X X

tmotion [s] 0.5 X

θtol [Deg] 4.5 X

used parameter set is given in Table II. We constrained

all methods to a frequency band between 1 kHz and 8 kHz

to remove low frequent system noise and focus on human

speech. For each estimation a total frame of length nTotal

was sliced into smaller frames of nFFT points which are

shifted by nStep. For the number of bins nBins the improved

MUSIC methods shall process we took 100 as it showed to be

a good trade-off for accuracy, processing time and estimation

miss-matches. For our motion model we used a motion time

tmotion of 0.5 s and a tolerated motion deviations θtol of

4.5◦. Both have been determined empirically for static and

dynamic sources.

We examine only true speech phase of each recording.

Miss-classification of the VAD are not considered. For all

positions we define a tolerated corridor of ±2.5◦ around

the ground truth to classify an estimation as successful or

miss. Ground truth was obtained by measuring the angles

of placed markers and positioning the speakers on them.

2.5◦ correspond to a deviation of approx. 20cm at a distance

of 5m. This is a sufficient accuracy to recognize a speaker

within a group of people standing next to each other.

In addition we evaluated the performance of our frequency

band selection based on the noise score. Our goal was to

reduce the computational cost which are introduced by each

estimation step of the MUSIC response for each frequency

band. Furthermore we wanted to use the wide spectrum of the

human voice to be represented in our selection. In Figure 4

we show the selection of each algorithm for a received frame,

from left to right GSVD, AFRF and MME. As previously

described the selection is limited to the range from 1 kHz to

8 kHz for all methods.

As GSVD does not use a filtering technique to reduce

the amount of frequency bands, it uses every received bin

and feeds it to the estimator. AFRF focuses on the bin with

the highest fourier coefficient corresponding to the primary

frequency contributing the signal. The bandpass tremen-

dously reduces the amount of calculations in subsequent

steps, however as seen in the figure it is only using a small

and limited portion of the signal. In contrast, the selection

of MME is as wide as in the GSVD approach, but the

amount of used bins is the same as in AFRF. The figure

illustrates how the selection is gathering bins around the main

frequencies in the signal while omitting frequencies which

do not contribute.



Fig. 4: Selected frequency bins for each algorithm. Each blue mark represents a selected frequency bin based on the

algorithm’s selection strategy. Left-hand side shows the GSVD approach, center the bandpass of AFRF and right-hand side

the selected frequencies based on the noise score for MME.

TABLE III: Experimental results. The first columns present

the total number of estimated DoA for each room, the last

ones the rate of successful estimations.

nTotal success rate

Room G
S

V
D

A
F

R
F

M
M

E

G
S

V
D

A
F

R
F

M
M

E

Lecture Hall 263 263 229 0.91 0.79 0.95

Common Room 77 77 69 0.82 0.78 0.91
Entrance 78 78 39 0.72 0.46 0.95

Office 98 98 57 0.55 0.46 0.74
Lab (large) 73 73 49 0.78 0.64 0.82

Lab (small) 52 52 24 0.58 0.48 0.88

C. Experimental Results

The comparison of GSVD-MUSIC, AFRF-MUSIC and

MME-MUSIC for all rooms is summarized in Table III. It

shows that our MME-MUSIC approach outperforms GSVD-

MUSIC and AFRF-MUSIC in all experiment.

We want to discuss the results of the experimental eval-

uation exemplary on the lecture and entrance hall. The

first one represents an environment with average acoustics,

the latter one illustrates the worst case scenario with huge

reverberation time T60 and numerous reflecting surfaces. The

DoA estimation over time of each algorithm is displayed in

Figure 5 and 6. A corresponding image of the environment

is shown on the left-hand side of each. In Figure 7 we

show exemplary one estimation result with corresponding

ground truth and tolerated corridor. For better readability of

the figures we skipped them for the rest of the evaluation.

In the lecture hall the GSVD-MUSIC algorithm has a

good performance with overall 91% successful estimations.

However it has some outliers which are created by echo of

dominate sounds which can be seen at t = 10s, t = 15s and

t = 22s.
The AFRF-MUSIC algorithm is actively filtering for the

main frequency in the current frame. This makes it faster

than the standard GSVD approach and robust against other

sources of noise, nevertheless it fails if the main frequency

in the frame is not part of the source. Again at the endings

of words, when the echo is dominant, AFRF-MUSIC solely

focus on the frequencies which are created by the shadow

source and neglects the frequencies of the original source.

This yields to only 79% successful estimations.

MME-MUSIC introduces a motion model which checks

if the estimated DoA is coherent to previous estimations. By

that the algorithm removes outliers which were created from

echo during the speech phases. The model not only considers

static sources but also dynamic ones as the moving speaker

at t = 55s. However the total amount of estimations is less

compared to the other approaches. Despite that the rate of

successful estimations is 95%.

The entrance hall is a more challenging environment for

the algorithms as it has a high reverberation time and consists

of a lot of reflecting surfaces. This is seen in the success

rate of GSVD-MUSIC and AFRF-MUSIC with 72% and

46% respectively. In contrast MME-MUSIC has with 39

successful measurements a rate of 95%.

The results of these examples are consistent over the

complete dataset.

Comparing execution times GSVD-MUSIC takes on av-

erage 1.049 s, AFRF-MUSIC 0.158 s and MME-MUSIC

0.208 s. This is a speed up of 5.1x of MME-MUSIC com-

pared to GSVD-MUSIC. We think that the slower execution

compared to AFRF is caused by cache-misses and we expect

to remove this gap by optimizing the code for that.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed our new MME-MUSIC ap-

proach for sound source localization in reverberant environ-

ments and under echoic conditions. We presented an intelli-

gent way to select frequencies for the DoA estimation based

on SEVD-MUSIC. We exploit the frequency evaluation of

our VAD system and use the information to tighten the

estimation process to the source bands. The results of the

estimator are evaluated by our novel motion model. This

takes into account the current motion of the speaker and is

able to deal with static and dynamic sources.



Fig. 5: Results of a recording in the lecture hall. We marked falsely estimations caused by echo with A and by reverberation

with B. It can be clearly seen that MME is working better in this challenging scenario. Especially AFRF has miss-estimations

at the silent endings of words.

Fig. 6: Results of a recording in the entrance hall. We marked falsely estimations caused by echo with A and by reverberation

with B. Because of the long reverberation time of more than 3.149s all methods have problems locating the source. At

approx. t = 13s a loud sound event first creates inaccurate estimations caused by reverberation, afterwards the receiving

echo introduces a shadow source which confuses GSVD and AFRF.

We evaluated our approach using a four channel micro-

phone array. We showed that our system performs well in

realistic scenarios with reverberations and echo. Our MME-

MUSIC approach outperforms established and state-of-the-

art algorithms in these scenarios while preserving real-time

execution times.

In total we expect to enable robot audition as a usable and

useful technology for robotic systems by our enhancements.

We plan to investigate further aspects of our work. First the

use of the motion model directly in the estimation process.

We believe constraining the estimator towards valid positions

enhances accuracy while further reducing processing time.

Second we want to extend our system to handle multiple

sources at the same time. This makes it possible to use robot

audition for mapping tasks or in highly complex scenarios

like crowds.

For future work, we will integrate the sound source

localization on our humanoid robot system Rollin’ Justin. We

designed a microphone array which is integrated in the head

of the system [32]. Here we will have to tackle further chal-

lenges, like compensating robot intrinsic noise and extend

our system to a more complex array geometry due to design

limitations of the robot system. We will use our technique

to robustly detect speakers in a conversation.This can be

used to enhance the acceptance of a robot as the system

acknowledges the speaker by turning the head towards him

or to annotate received speech to a specific speaker.
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Abstract—Localization of humanoid robots in real-life scenar-
ios has to robustly tackle dynamic environments and provide
coherent data and tight integration for follow-up tasks. However
state-of-the-art solutions, like ORBSlam2 [1], lack this ability.

In this work we present two adaptations of ORBSlam2 for
a multi-camera setup on the DLR Rollin’ Justin System, one
distributed multi-slam and one combined single-process system.
Further, we introduce the usage of pre-recorded maps with
ORBSlam2 and the alignment with semantic maps for planning.

We compare performance of the adaptations against and the
original approach in realistic experiments and discuss advantages
and disadvantages of all methods.

Index Terms—SLAM, multi-camera SLAM, localization, map-
ping, ORBSlam, dynamic environments

I. INTRODUCTION

The use of humanoid robots as smart assistant in real-

life scenarios like elderly care or housekeeping is still a

challenging task. It not only requires robust methods for

planning, perception, navigation and manipulation, but also

the interaction between modules, hardware limitations and

environmental issues have to be taken into account. Whole-

robot and multi-task planning of robot actions requires a

map with semantic object knowledge of larger environmental

parts, e.g. the kitchen unit, as shown in Figure 1. However,

localization and mapping (SLAM) systems usually create their

own geometrical maps, not matching the planning system.

Further, they usually do not re-use created maps but start over

on a system restart. Complex scenarios also involve changing

environments and dynamics, including humans, aggravating

the localization.

Typical used perception sensors are RGB-D cameras witch

usually have a finite working range. Manipulation tasks require

proximity to objects or other structures that is often beyond the

This work is partly funded by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy project ”SMiLE2gether” (LABAY102).

Fig. 1: DLR Rollin’ Justin in kitchen scenario: real scene (left)

and rendered planning map (right).

minimum range. Navigation tasks often move into open space,

e.g. a floor, pointing the sensor into areas beyond maximum

range. Both likely causes localization loss or wrong localiza-

tion estimates. Multiple cameras, facing different directions,

increase the visible environment, as shown in Figure 2, and

thus are more robust to sensor limitations and scene dynamics.

In this work we present two different adaptations of the

well-known ORBSlam2 [1] for a multi-camera setup on the

DLR Rollin’ Justin System, tackling sensor limitations and

scene dynamics. The first is a multi-ORBSlam solution which

estimates the pose per camera and finally fuse them into a

single pose. The second one modifies the ORBSlam by com-

bining the feature-maps of the cameras before the tracking step

and estimating a combined pose. Additionally we modified

ORBSlam to use a pre-acquired map. We present details on

obtaining the static map and alignment with the planning map.

Summarizing, our work has the following contributions:

• Two adaptations of ORBSlam2 for multiple cameras:

Multi-ORBSlam fusion and multi-camera ORBSlam

• Initial map integration

• Comparison of adaptations and original ORBSlam2



(a) Single camera (b) Multiple cameras

Fig. 2: Comparison of the same trajectory, left-hand side

captured with a single camera, right-hand side with five

cameras. The observed area is limited to one direction form

the system. On the other side, the multi-camera setup is able

to capture more feature points. In (a) the tracking is lost after

half of the trajectory, which was prevented by the multi-camera

setup in (b) as a previously visited area is visible in another

camera view.

II. RELATED WORK

In recent times, graph-based simultaneous localization and

mapping systems got a lot of interest in the robotics commu-

nity. One major approach is mono-cam ORBSlam [2] proposed

by Mur-Artal et al. It uses ORB features [3] for tracking and

mapping and optimizes them in the g2o framework [4]. They

extended their approach in ORBSlam2 [1] to also incorporate

stereo and RGB-D images. And more recently ORBSlam3 [5]

which features IMU integration.

Approaches for exploiting more than one visual sensor for

localization were proposed by Zou et al. [6] and Heng et al.

[7]. An arbitrary number of cameras and no necessary overlap

is introduced by Urban et al. with MultiColSLAM [8].

To tackle the problem which is induced by the static-

world assumption, typically outlier rejection is applied by

statistically methods like RANSAC. In addition, Tan et al.

propose a change detection comparing obtained maps to

identify changes in the world and respond on it [9]. To avoid

direct comparisons, approaches using detection of movement

in the scene were heavily studied. These include 3D object

tracker as proposed by Wangsiripitak et al. [10] or neural-

network based semantics detection [11]. Movement detection

has been extended already to the multi-camera setup by Zou

et al..

To use the a-priori information of the environment, Wahl et

al. propose using static maps [12]. To extend this to ORBSlam,

Nobis et al. implement a saving and loading mechanism to

ORBSlam to reuse previously obtained maps [13]. However,

they loose the ability to edit the map.

In this work, we propose a system capable of recording,

editing and reusing static maps of the environment and uti-

lizing them in typical applications. We extend ORBSlam2 to

multi-camera setups and integrate modules to avoid typical

problems of modern SLAM systems in indoor scenarios and

human-robot-collaboration. With this, we are able to easily

localize our systems in given environments and use the in-

formation of the estimation process for high-level tasks as

RGBD 
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Fig. 3: Architecture of the multi-camera SLAM system. The

image streams as well as a pre-recorded static map are fed

to the SLAM approaches. Afterwards, they are fused with the

wheel odometry and the final pose is obtained.

navigation, task planing or object manipulation.

III. MULTI-CAMERA ORBSLAM

We use ORBSlam2 [1] as our core mapping and localization

framework. It offers a robust solution for SLAM in static

environments.

We propose two different approaches for estimating the pose

of the robot in multi-camera setups which can be integrated

into our localization framework. An overview of the architec-

ture is given in Figure 3

A. Multi Node Approach

In this approach, we separately run a dedicated ORBSlam

node on each camera. Each node uses the previously obtained

map and estimates the robot’s pose within the given static map.

All estimates are fused together with the wheel odometry in

single node by using a standard Discrete Kalman Filter on the

state vector x̂ =

(

P, Ṗ, P̈
)

where P is the 6 DoF pose. As

we lack the ability to calculate the covariance of the current

SLAM estimate, we use a worst case assumption of 10cm for

the position and 2◦ for the orientation. Finally we obtain a

pose based on all available SLAM nodes and odometry.

One major advantage of this approach is that we do not need

synchronized sensors. The images may be captured at different

points in time while still be able to be fused into the final

pose. This reduced engineering overhead on the sensor setup

as synchronization and jitter compensation normally induce a

lot of effort.

Additionally, the system can deal with varying number

of nodes. While running, nodes may be connected or dis-

connected on-demand, whether for performance reasons or

because one sensor is blocked in his view.

Exploiting the fact that this system runs with different

processes, we can outsource the estimation process to other

processing nodes within the system to reduce CPU load on

the main computer. This optimally utilizes the processing

architecture and resources.

B. Integrated Approach

Furthermore, we developed an integrated solution fusing

all camera information before the local mapping step of

the SLAM system. Our main contributions are a new frame



Fig. 4: Multi-frame tracking system of the integrated SLAM

approach. We detect feature points in each camera frame (blue)

in parallel, estimate the pose and register them to the local

robot frame (red) for tracking of the local map.

system for holding the geometric information and multi-view

adaptations of the pose estimation modules.

We extended the original ORBSlam tracking system to

support a multi-camera setup. We estimate suitable feature

points in each camera frame and track them separately. De-

tected features are used for pose estimation. Afterwards, we

select keypoints for mapping and register them to the robot

frame. We introduced a new frame system which consists of

the robots ego-pose and the relative transformations of each

camera to the robot’s origin. The size of this structure is

dynamical, it can may integrate one camera or multiple per

frame. The process is depicted in Figure 4. However, this

approach induces a new assumption on the recording: All

images have to be captured synchronously. Especially in the

case of non-overlapping camera views, a small time difference

between the acquisition can led to deviation in the tracking and

mapping of keyframes and reduce map quality.

For keyframe selection we additionally track if the seen

area is already mapped. A previously visited scene which was

mapped by another camera is not generating an additional

keyframe. Nevertheless, it is still checked if the frame at hand

has significant new keypoints which were not observed before.

If this is the case, the above mentioned criteria is overruled.

Another extension had to be implemented in the optimiza-

tion backend of ORBSlam. While for single-camera SLAM

the robot’s and the camera’s origin are identical, in the case

of arbitrary cameras the transformation from robot pose to

camera pose has to be included in the graph as well. Otherwise

a projection from 3D world coordinates to 2D camera coor-

dinates would not be possible and global bundle adjustment

will fail.

Relocalization and pose estimation have to be extended

to a general multi-view reconstruction, also known as the

generalized-camera exterior orientation problem. We adapt the

minimal solution gP3P algorithm proposed by Kneip et al.

[14]. In this approach we exploit the fact that the same feature

might be seen from multiple cameras at once.

While this approach offers optimization of the mapping over

all cameras and poses, it is no longer separable into smaller

processes for a distributed processing architecture.

IV. APPLICATION INTEGRATION

Standard SLAM approaches described in the literature ne-

glect registration of the map to application domain. However,

manipulation in complex scenarios often require to tightly

couple action planing and navigation, e.g. when opening a

cabinet, the system might have to dodge the swinging door.

As a first step, we prepare the environment for recording

of the static map. We remove all objects which often change

their position in the world. This includes cups, pens, chairs

and other objects. Afterwards we start an ORBSlam node for

mapping. We use a handhold Intel Realsense D435 connected

to a laptop for this task. By this we are able to easily handle

the system and generate a dense map which highly covers the

area of operation.

To have the ability to reuse previously recorded maps, we

had to contribute saving and loading functionality to the core

algorithm. This includes serialization of

• all keyframes

• all keypoints

• the essential graph

• the covisibility graph

Additionally, we save all keypoints to a pointcloud with a

valid/not-valid flag. This way we are able to edit the generated

map in an external software like Blender [15]. We are now

able to remove objects from the map, which may change

during the time of operation, but are hard to disassemble, e.g.

computer screens or consumer electronics, or miss-interpreted

map points which were caused by reflections, e.g. on mirrors.

Disabled keypoints will stay in the map as they may give a

hint for global relocalization, however they are not considered

for local pose estimation anymore.

As by definition, the first pose of ORBSlam will be posi-

tioned at the origin of the map and has an orientation of zero.

However, this normally does not coincide with the origin and

orientation of the map used for mission planing. To transform

the coordinates of the SLAM system into application coordi-

nates, we have to find out the Map2World transformation.

We place several AprilTags [16] in the environment and

measure their position in world coordinates. AprilTags offer

a comfortable way of measuring highly-accurate position and

orientation in 3D space. Nevertheless, we are only using the

position as it is more easy to measure than the orientation of

an object. Afterwards, we traverse multiple trajectories through

the environment and estimate all detected tags in SLAM coor-

dinates. Subsequently, we use the known world coordinates of

the tags to optimize the Map2World transformation until the

error between SLAM and world coordinates is minimized.

V. EXPERIMENTS

We conducted several experiments on different robotic plat-

forms to evaluate the results of our approaches.

For our applications we use the mobile platform Rollin’

Justin (Figure 5a). It is a wheel-based humanoid robot used in

assisting tasks for human space exploration as well as elderly

care. It is equipped with four Intel Realsense D435 RGB-D



(a) Rollin’ Justin (b) Mock-up

Fig. 5: Systems used for evaluation. Left-hand side depicts

Rollin’ Justin, the system used for missions, right-hand side

the mock-up.

cameras on its base and an additional auxiliary camera of the

same type in its head. All sensors are connected to Nvidia

Jetson TX2 boards for preprocessing and then send to the

main computer.

Further we use a smaller mock-up (Figure 5b) of the

platform for evaluation in environments which are inaccessible

for the previously described system. The system is equipped

with five rigid mounted Intel Realsense D435 RGB-D cameras

and has to be moved manually.

A. Mapping Capability

One major advantage of using multiple cameras over a

single camera on one system is that the number of observable

map points in one frame drastically increases. To show the

impact on the generated map by the SLAM system we

executed three different trajectories on Rollin’ Justin and

compared the number of inserted map points. The trajectories

consist of a translation along one axis, a single rotation and a

more complex one combining both and also featuring a loop-

closure. The results can be seen in Figure 6. The number of

points in the original and the adapted approach for a single

camera are comparable. Small deviations are due to different

implementation of the integrated modules. Whereas the multi-

camera approaches show significantly more tracked map points

per trajectory.

This also reflects in the number of mapped area and is

visualized in Figure 2. It can be seen that the approach with

multiple cameras generates a more dense and wider feature

map than the single camera approach on a normal trajectory.

This is explained by the increased Field of View (FoV). For

the Rollin’ Justin system we can reach an observable area of

276◦ or 76% of the surroundings, for the mock-up 249◦ or

69%.

B. Loss of Tracking

A typical problem when dealing with SLAM systems is

Loss of Tracking. This can happen during fast movements,

particularly rotations, where the view changes significantly

between two consecutive frames. Additionally, fast movements

are accompanied with motion blur which hamper detection of

Fig. 6: Comparison of trackable map points over the number

of included camera views. We included 3 different trajectories

for comparison: One sole-translational, sole-rotational and one

combined with loop-closure. As it can be seen, the number of

used features for tracking increases with the number of views

available for each scenario. The vanilla version is depicted on

the left side.

(a) Motion Blur
(b) Tracking

Fig. 7: Loss of Tracking during fast movements. The original

ORBSlam approach looses track (?) and is not able to recover

while our approach still keeps track of the robots motion. On

the left-hand side, the image containing the motion blur. We

highlighted one part of the image to illustrate the impact of

motion blur.

features for tracking. With increasing velocity, the number of

trackable points per frame reduces. Falling below the threshold

of valid point matches between, the tracking is lost. However,

having more camera views available for feature matching

increases the total number of trackable points and prevents

the Loss of Tracking event.

In Figure 7a we show an example of motion blur effecting

the tracking. The robot is moving at 1.1m/s. While the original

approach loses track of the movement and is not able to

recover during the remaining trajectory, our approach is able

to keep track.

Further, RGB-D cameras have the problem of requiring a

minimum distance and enough texture for detecting depth.

This interferes especially in scenarios where the robot has to

move close to a rigid object, e.g. a kitchen counter (Figure 8a).

We tested our approaches with a single-camera as well as

full setup and were able to maintain tracking in the latter

configuration.

Another common cause for Loss of Tracking is a person

interacting with the system and obscuring the vision system.



(a) (b)

Fig. 8: Typical scenarios where single-camera systems fail. On

the left-hand side a close approach to an object. Features can

not be detected because of the short distance. On the right-

hand side a person approaching the system and concealing the

scene.

TABLE I: Comparison of the accuracy evaluation of each ap-

proach. We show the absolute pose error RMSE per trajectory.

Positional Error Angular Error
Trans Rot Loop Trans Rot Loop

ORBSlam 0.15 9.11 13.18 0.20 33.41 3.68

Multi-Node 2.01 4.90 5.25 0.90 29.01 3.62

Combined 1.93 4.47 5.15 0.88 24.52 3.48

In Figure 8b we show an exemplary situation where a person

is approaching the robot and stopping in front of it. The

close proximity is usually around some tens of centimeters. If

enough feature points are still detected, the system can localize

on the static map points and is not confused by the dynamic

parts of the image. However, if the number of valid map points

drops below a certain threshold, the tracking will be lost. With

more cameras, it is more unlikely to reach this threshold.

C. Trajectory Accuracy

As a last step, we want to show the accuracy of the pose

estimation of each approach. We have equipped the system

with apriltags [16] for obtaining the ground truth. For each

trajectory we calculate the absolute pose error which illustrates

the difference between estimated pose and ground truth. To

compare it across the complete trajectory, we take the root-

mean-square (RMSE) of all deviations. The results are shown

in table I.

It can be seen that on a sole translational trajectory our

approaches are outperformed by the original ORBSlam ap-

proach. However, in more complex scenarios the multi-camera

approaches show better estimations.

VI. CONCLUSION

In this work, we presented two approaches for robustly

localizing a robotic system equipped with multiple cameras

in realistic scenarios. We were able keep track of the robot’s

motion in even complex scenarios with occlusion, motion-blur

and human interaction. In addition, the overall accuracy of the

pose estimation increased for complex scenarios. While the

simplicity of the node-based approach simplifies the integra-

tion, the integrated approach promises an improved mapping

and localization process.

In addition, we also shared our efforts on how to integrate

visual SLAM systems into applications. In particular on how to

obtain a map of the environment, register it to the application

domain and enable use of the system on the robot.

VII. FUTURE WORK

Our goal is to integrate a navigation system which is able to

robustly work in dynamic environments. We introduced multi-

camera setups as they add more redundancy and therefore

more robustness in many situations. However, we identified

that a key-functionality is the estimation of map confidence.

For our future work we plan to find a solution for multi-camera

systems in human environments that are able to detect changes

in map and incorporate updates for semantic planing.
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Abstract—We present URSim, a complete Software-in-the-Loop
simulation of robotic systems, specially designed to meet the
needs of testing platforms for planetary exploration. By sim-
ulating the sensors of a robotic system and providing similar
interfaces to the real system, URSim enables developing and
continuous testing of high-level software components in various
scenarios. URSim is based on the Unreal Engine 4, which
offers photo-realistic visual and physics support in real-time.
A generic robot interface allows the integration of different
robotic systems with various sensors that are simulated in real-
time. Its modern and adaptable system architectures make it
possible to customize URSim for different setups, frameworks,
and modules. To demonstrate URSim and its advances, we
simulate different robotic systems, including the Lightweight
Rover Unit (LRU), the hexacopter ARDEA and the humanoid
robot Rollin’ Justin. We integrate the complete navigation and
mapping pipeline of the LRU in URSim and conduct an explo-
ration mission in a simulated Martian and Lunar environment.
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1. INTRODUCTION

Robotic systems can withstand the prevailing harsh condi-
tions on extra-terrestrial surfaces and accomplish challeng-
ing missions. As the communication between Earth and
extra-terrestrial bodies is delayed, a robotic system has to
autonomously navigate through unstructured environment,
reliably localize itself and build an accurate map of the en-
vironment. To guarantee mission success it is essential to in-
tensively test the single components, as well as the complete
system during the development phase to implement reliable
methods. However, testing high-level software components
during the development of a robotic space exploration system

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

Figure 1: The Lightweight Rover Unit (LRU) setting out to
explore a simulated Mars environment in URSim.

is often limited. The prevailing conditions on the planetary
surface cannot be reproduced on earth and field tests in
analogue environments on earth are expensive and usually
done at the end of the development phase. Often, limited
access to the space rover hardware prevents a continuous
test cycle during the development of the high-level software
components, such as mapping and exploration.

Simulation tools offer a low-cost and easy possibility to
extensively test a robotic system during the development
phase. A simulator allows for a short integration time, a con-
tinuous test-cycle, and testing in various environments under
conditions close to the real mission. We present a complete
Software-in-the-Loop (SiL) simulator, called URSim, which
is specially designed to meet the needs of testing robotic
systems for planetary exploration. To test high-level software
components for extra-terrestrial missions, it is important to
simulate the robot in a photo-realistic environment with sim-
ilar lightning, gravity and physics as expected on the target
planetary body. URSim is based on the Unreal Engine 4
(UE4), which offers state-of-the-art photo-realistic rendering
(see Figure 1) and physics support, which is required to create
realistic missions scenarios. Our generic interface allows
to integrate different robotic systems with various sensors.
Robots and sensors are described with a descriptive language,
which simplifies the integration and allows to create different
setups within seconds. URSim is based on a modern and
adaptable system architecture to customize the simulator
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for different setups, frameworks, and modules required for
a specific exploration mission. We implemented several
sensors, including visual sensors and physical sensors. For
the Interprocess Communication (IPC) we provide a generic
interface that allows to integrate different middle wares such
as the Robot Operating System (ROS).

To demonstrate the simulation and its advances when de-
veloping software components for robotic space exploration
systems, we use URSim to simulate different robotic systems
in realistic mission scenarios. Figure 1 shows the Lightweight
Rover Unit (LRU) [1] in a simulated Martian environment in
URSim. By simulating the sensors of LRU and providing
interfaces similar to the real robotic system, we can apply
our complete navigation and mapping pipeline and evaluate
its localization, mapping, and exploration performance with
URSim. In addition, we show how to simulate our hexacopter
ARDEA [2], a terrestrial prototype to develop algorithms
for future space drones, as well as the humanoid robot
Rollin’ Justin [3], which assists astronauts in space missions.

This paper is structured in seven main sections. Section 2
provides a short overview of existing robotic simulators. Sec-
tion 3 describes in detail the system architecture of URSim,
as well as the generic robot generation, sensor, and IPC
integration. In Section 4, we provide an overview on the cur-
rently implemented sensors and integrated robots in URSim.
Finally, we show in Section 5 the results of the evaluation
of our navigation and mapping pipeline with URSim. In
Section 6, we give a summary of our work and in Section 7,
we discuss the planned future work.

2. RELATED WORK

Access to robotic hardware operating in mission-relevant
environments is typically limited and expensive. Thus, simu-
lation as well as pre-recorded datasets play an important role
for component and system evaluation and validation testing of
robots for extra-terrestrial exploration. Datasets are valuable
to test and evaluate specific software modules. For example,
navigation sensor recordings from analogue test sites (such as
the LRNT [4] Moon-analogue and the MADMAX [5] Mars-
analogue datasets) can be used to evaluate robotic navigation
pipelines, while annotated real images from other planets
(such as the Deep Mars [6] dataset) are suitable for image
classification tasks. However, in order to test and evaluate full
robotic systems, simulations have become an invaluable tool
as they allow perception-action control loops. Furthermore,
they allow to test robotic systems in a resource-efficient
manner in large varieties of different environments.

While there is a multitude of existing tools that allow
Software-in-the-Loop simulations (e.g., [7], [8], [9], [8], [10],
[11], [12], [13]), the focus of our extraterrestrial exploration
use case are robots with vision-based navigation pipelines.
Thus the quality and photo-realism of the rendering of the
robots’ environment with its simulated cameras is of critical
importance. For this, modern game engines such as the Un-
real Engine 4 [14] (used by our URSim and, e.g., by [10], [8])
or Unity Engine [15] (used, e.g., by [11]) are a suitable choice
to base real-time robotics simulators on. Simulators such as
OAISYS [16] or BlenderProc [17], which are based on 3D
computer graphics software such as Blender [18], can deliver
even more photo-realistic results. However, achieving that
level of photo-realism typically is infeasible when running
SiL simulations in realtime on standard hardware.

There are many simulators dealing with semi or fully struc-
tured human-made environments, such as urban scenes for
autonomous driving [8], [10] or indoor scenes for factory
automation and household-robotics [9], [17]. Most similar
to URSim is AirSim [10], which is designed as a plugin for
the UE4. However, AirSim is designed for simulating drones
and for testing autonomous driving. Complex robotic systems
with several movable joints cannot easily be integrated. In
contrast, URSim offers an easy way to dynamically load com-
plex robot systems specified via XML-based configuration
files.

There are just a few simulators featuring fully unstructured
environments, which are needed for the planetary exploration
use case [19], [20], [16]. While [19], [20] focus on far-
range spaceflight scenarios, [16] targets close-range surface
exploration, but for passive data generation. To prepare and
support recent and ongoing real surface exploration missions
to, e.g., Mars, NASA/JPL employs their Multibody Model-
ing, Simulation and Analysis Software (DARTS) [13], which
includes ROAMS, a physics-based simulator. In contrast
to URSim, its primary focus is on simulating physics, e.g.,
wheel soil contact, and not on simulating visual sensors for
testing visual navigation in photo-realistic environments.

With URSim, we can close the perception-action loop for a
variety of full robot systems, targeting photo-realistic plane-
tary environments with real-time rendering and game physics.
The sensors are properly synchronized and provide the data
in a sufficient frequency. This allows us to integrate and
test all software components of our robots above the control
level, including our entire vision-based navigation pipeline
as well as higher-level modules for autonomous exploration
and mission execution. The modularity of URSim enables
the simulation of different types of complex robots, aerial
and ground-based ones, with different sensor setups that can
easily be specified via configuration files.

3. URSIM

In this section, we cover the general design and architectural
philosophy of URSim. We will present the considerations for
our simulation structure, project environment, and implemen-
tation decisions.

Simulation Architecture

The Unreal Robot Simulation (URSim) is a development
to support the research and development on many different
platforms at the Institute of Robotics and Mechatronics of the
German Aerospace Center (DLR). Hence, it has to handle
different robotic systems, environments and infrastructures.
Differences between robots include specific controllers, in-
dividual communication and networking frameworks, design
descriptions of the abstracted hardware, and much more. To
support the large variety in system characteristics, we heavily
work with abstraction layers within the simulation to convert
between interfaces and the simulation backend. We visualize
the overall architecture of the simulator in Figure 2.

URSim is split into a management, a world, and a robot
module. While the management module covers start-up,
scenario customization, and feature management, the world
module is responsible for the environment, and the robot
module for the simulation of the robotic target platform.

For each simulation run, the user is able to specify certain
properties of the simulation. The user is able to specify
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Figure 2: Architecture of the simulation framework.

the simulation environment. This includes the map and the
robotic system. Additional visualization options like the
screen resolution can also be selected.

Furthermore, the user is able to load additional assets like
maps or robots from an external asset store on the fly. This
offers a flexible way of distributing the application data across
teams and organizations.

On startup of a simulation run, the simulation environment is
loaded and the world and robot instances are generated.

Interprocess Communication—As mentioned before, the dif-
ferent robots implemented in URSim use different infras-
tructures for communication between process, commanding,
and house-keeping. Therefore, URSim must support these
same IPC frameworks in order to be used in a Software-in-
the-Loop simulation. Our primarily used middlewares are
the Robot Operating System (ROS) [21] and links and nodes
(LN) [22]. However, due to its modular architecture, further
IPC frameworks, such as for example the Data Distribution
System (DDS) [23], can be easily integrated into URSim.

Most IPC frameworks heavily rely on specific environment
setups or they may not be available on the target com-
puter. Taking this into account, we decided to outsource
the implementations of specific frameworks. To achieve
this separation, we use dependency injection in combination
with dynamic loading of the implementation libraries. The
simulation framework offers a generic messaging service,
which can be called and used by the simulation objects. This
service is implemented by virtual interfaces. When a system
requests access to a specific IPC framework, the messaging
service will load during execution time the corresponding im-
plementation and link the interfaces to it. Furthermore, using
the injection technique, we can access multiple frameworks
at the same time. We use this possibility, for example, to
offer a logging and debugging interface, which outputs every
message to the console. For more detailed information on the
specific implementations of each IPC, we refer to Section 4.

The configuration of message streams is performed in two
different ways, depending on their type. Incoming streams
to URSim used for commanding the robots’ movements are
hardware-dependent and defined in the initial setup process
of the simulation. Outgoing streams on the other hand, which

transmit data gathered by virtual sensors in URSim, are able
to be individually configured using a description file. This
allows for fast development and testing with the simulation
by changing the configuration between runs.

URSim Plugins—The philosophy of URSim is to create a
generic simulation which can be easily adapted to new mis-
sions and scenarios. However at the same time, teams may
want to only distribute robot models and data within a limited
group. Therefore, URSim needs to be extendable and new
maps or robots shall not be hardcoded directly into the soft-
ware. Instead, we designed an asset manager, which is able
to load and unload additional packages into the simulation.

By doing this, we are able to separate the maps and most
of the robots specific implementations from the simulation’s
source code. Solely the controller implementation of each
robot has to be compiled with the simulation code as it
interacts directly with the engine’s API.

We exploit the public asset manager API to support different
asset stores. For our work at the institute, we have an
implementation interfacing with a JFrog Artifactory instance,
which is part of our internal CI/CD process. However, using
the public interface, any other distribution system is possi-
ble, e.g., git, subversion or even file-based implementations.
Using the asset manager, the management of URSim is able
to list possible assets, download, delete, or update them.
Depending on the external implementation, users and groups
can restrict access and adapt the interface to their particular
development and distribution processes.

User Interface—The User Interface (UI) has only a support-
ive role within the simulation. It is not part of the data
streamed to external software The design is kept simple,
however it offers configuration possibilities needed to run the
simulation and alter the environment, like changing the speed
of the simulation or spawning objects.

Robot Integration

One of the core components of URSim is the generic robot
class, which abstracts the interfaces of the simulated hard-
ware and generates the physical representation in the engine.

A robot within URSim is defined as a tree of components,
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each of which may have an arbitrary number of child compo-
nents attached. There are different types of components that
can be added to a robot. Physical Components are used to
represent parts of the robot that have a physical body. They
offer features like mechanical and visual models, the ability
to detect collisions and physical properties such as mass and
scale. Sensors, such as cameras or Inertial Measurement
Units (IMU), are special components which offer access
to the perception of the environment or the state of other
components. In addition, invisible components can be created
to add virtual attachment points for sensors.

Joints are connections between Physical Components that
can add physical constraints on the attachments. By de-
fault, each joint allows translation and rotation around all
six degrees of freedom (DoF). However, each DoF may be
limited to a given range or disabled completely. Using these
configuration options, a joint can represent all attachment
methods of real robots such as hinges and couplings, but
also complex connections like pulleys. Furthermore, we are
able to add damping and friction components to mimic the
physical behavior of real robots as closely as possible.

Once a robot has been spawned into a map, it is able to
transmit received data from its sensors and react on external
commands. Before this is able to happen, however, the robot
needs to be created. Therefore again, we use an abstraction
layer to support multiple ways of defining and creating robots
in the simulation.

Robot Builder—The Robot Builder is an abstract module that
is able to create an arbitrary robot system based on a given
design description. One commonly known way of defining
a robot is by means of an Unified Robot Description File
(URDF). It is an XML formatted document which defines
single components of the robot and their corresponding joint
type to connect them. However, other types of design
descriptions already exist and are being developed. These
can be easily used to build robots by creating a specialized
Robot Builder implementation within URSim, exploiting the
abstraction layer.

Once requested, the Robot Builder will parse the given design
description file and translate it into the URSim representation
of the robot component structure. It will further bind sensors
to their message service stream and setup noise models, if
defined in the design description file.

Sensors—Sensors are one of the most complex and versatile
components in URSim. They may represent access to the
physical states of components like acceleration or orienta-
tion, or more complex renderings of the environment using
cameras.

Sensors are a specialized form of components with no phys-
ical representation. They only provide external access to the
simulated environment and can therefore be placed anywhere
on the system. The Robot Builder is able to dynamically
create sensor interfaces on demand and initialize them with
the correct messaging stream. Furthermore, the sensor is
able to generate noise according to a given noise model, e.g.
Gaussian white noise, to artificially decrease the quality of
the measurement. If enabled, the altered data will be sent
over the stream instead of the original reading, which can be
also be sent and used as additional ground truth information.

We focused on implementing a descriptive process for defin-
ing and configuring sensors that is easy to use and can be

rapidly modified. This helps testing new sensor concepts,
explore the characteristics of different setups, and offer a way
of prototyping perception systems. To achieve this, the sensor
infrastructure of the robot can be purely defined by the design
description file.

Robot Design Description File—As mentioned before, the
robots available in URSim are all described by a Robot De-
sign Description File. In the current implementation, we use
a customized version of the URDF [24], a well known format
for the mechanical description of robotic system, which we
extended to support sensor interfaces.

The file format describes the mechanical structure of the
system using links and joints. Thereby, a link is the repre-
sentation of a single, physical component of the mechanical
structure and a joint is the representation of the kinematic
interconnection of two components. An example of a simple
link and joint structure is shown here

<r o b o t name=” J u s t i n ”>

<!−− mechan ics −−>

<!−− l i n k d e s c r i b i n g a p h y s i c a l component −−>
< l i n k name=” P l a t f o r m ”>

<!−− v i s u a l a p p e r e n c e o f t h e l i n k −−>
<v i s u a l>

<o r i g i n rpy =” 0 0 0 ” xyz=” 0 0 0 ” />
<geomet ry>

<mesh f i l e n a m e =” [ . . . ] / Meshes / p l a t f o r m ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

< l i n k name=” Torso ”>
<v i s u a l>

<o r i g i n rpy =” 0 0 0 ” xyz=” 0 0 0 ” />
<geomet ry>

<mesh f i l e n a m e =” [ . . . ] / Meshes / t o r s o ” />
< / geomet ry>

< / v i s u a l>
< / l i n k>

<!−− c o n n e c t i o n s −−>

<!−− d e s c r i b i n g t h e c o n n e c t i o n p r o p e r t y
o f two l i n k s −−>

< j o i n t name=” t o r s o b o d y c o n n e c t i o n ”
t y p e =” c o n t i n u o u s ”>

<!−− l i n k s c o n n e c t e d t o each o t h e r −−>
<p a r e n t l i n k =” P l a t f o r m ” />
<c h i l d l i n k =” Torso ” />
<!−− p h y s i c a l p r o p e r t i e s o f t h e j o i n t −−>
<o r i g i n rpy =” 0 0 1 .5708 ” xyz=” 0 0 . 2 0 . 7 5 ” />
<a x i s xyz=” 0 0 1 ” />
<dynamics damping=” 0 . 7 ” />

< / j o i n t>

< / r o b o t>

Furthermore, the inertial properties of the links can be defined
as well. It allows for more realistic modeling of the physical
behavior of robotic systems. This additional information is
encoded as follows

< l i n k name=” arm ”>
<v i s u a l>

. . .
< / v i s u a l>
< i n e r t i a l>

<mass v a l u e = 3 . 4>
< i n e r t i a i x x =” 1 ” i x y =” 0 . 0 ” i x z =” 0 . 0 ”

i y y =” 1 ” i y z =” 0 . 0 ” i z z =” 1 ” />
< / i n e r t i a l>

< / l i n k>
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To allow the attachment of sensors to a link, we extended
the original file format to support sensor interfaces. For
our use case, we created an additional sensor tag. Within
it, further attributes such as sampling frequency, resolution,
sensor and noise model parameters, and the IPC to use for
message streams can be defined. An exemplary listing for a
RGB camera sensor is given here

<s e n s o r t y p e =” rgbcamera ”>
<!−− G e n e r a l s e n s o r a t t r i b u t e s −−>

<!−− O p t i o n a l : f r e q u e n c y ( d e f a u l t =1Hz ) −−>
<a t t r i b u t e name=” f r e q u e n c y ” v a l u e =” 14 ” />
<!−− O p t i o n a l : e n a b l e d ( d e f a u l t = t r u e ) −−>
<a t t r i b u t e name=” e n a b l e d ” v a l u e =” t r u e ” />
<!−− O p t i o n a l : r e l a t i v e pose
( d e f a u l t : z e r o r e l a t i v e t r a n s f o r m
from p a r e n t l i n k ) −−>
<pose rpy =” 0 0 0 ” xyz=” 0 −0.1 0 ” />
<!−− O p t i o n a l : IPC d e f i n i t i o n
( m u l t i p l e p o s s i b l e ) −−>
<i p c p r o v i d e r =”ROS”

t o p i c =” s e n s o r s / image ”
s e c o n d a r y t o p i c =” s e n s o r s / c a m e r a i n f o ” />

<!−− Image s e n s o r s p e c i f i c a t t r i b u t e s −−>

<!−− O p t i o n a l : r e s o l u t i o n
( d e f a u l t : 100 x 100 p i x e l ) −−>
< r e s o l u t i o n wid th =” 640 ” h e i g h t =” 480 ” />
<!−− O p t i o n a l : F i e l d o f view a n g l e
( d e f a u l t : 90 d e g r e e s ) −−>
<a t t r i b u t e name=” f o v a n g l e ” v a l u e =” 90 ” />
<!−− O p t i o n a l : White n o i s e s t r e n g t h
( d e f a u l t : 0 ) −−>
<a t t r i b u t e name=” w h i t e n o i s e s t r e n g t h ”

v a l u e =” 0 ” />
< / s e n s o r>

Controller—The task of the controller is to translate the input
from a user device such as a keyboard into actions on the
system. Typically this involves motion commands like move-
forward or state changes like toggle-movement-mode if the
systems supports multiple modes of motion. The controller
is highly dependent on the robotic system and is therefore
a custom module for each robot. However, the underlying
engine UE4 needs the controller to be accessible at compile
time. This means that every controller must be available
in the source code and cannot be represented in the design
description file.

The controller is able to listen to the input commands of the
user devices and triggers the appropriate actions on the robot.
It has access to all components and their corresponding states
and is able to command actions like rotations and translations,
continuous momentum drive or sequences of actions. It may
trigger different actions depending on the current state or
environment.

Out of the box, the engine supports input via mouse and
keyboard and can be extended to use a game controller. Addi-
tionally, the controller can make use of incoming commands
that are received via one or more of its supported IPCs.
This offers a SiL behavior in already existing systems with
autonomy or external remote control. A diagram illustrating
the usage of URSim as a SiL simulator is shown in Figure 3.

Worlds

A world in URSim represents the physical environment in
which the robot is working. The worlds, represented as
levels in the engine, consist of both static and non-static
components. The former group includes the terrain and
several physical obstacles like walls, floors, or rocks within
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Figure 3: URSim and its usage as a Software-in-the-Loop
(SiL) simulation by replacing real robots sensory measure-
ments with virtual ones.

Figure 4: Simulated environment of the MARC-II and
Meteron Supvis Justin mission. A solar farm on Mars is
supervised and maintained by the robot Rollin’ Justin.

the environment. The latter includes objects, that are able
able to move either kinematically along a trajectory or are
completely dynamically by having their physics simulated
using the game engine.

Furthermore, we are able to spawn more objects on demand
to populate the world. This offers the possibility to simulate
dynamic worlds in which objects appear and disappear or
change their position, similar environments with different
objects.Moreover, the robot’s knowledge can be used to dy-
namically create the estimated environment of the perception
pipeline and display it in the virtual world which is useful
for visualization and further exploration of the real world
in simulation. An example of a mission scenario can be
seen in Section 3, where the robot Rollin’ Justin is illustrated
performing a maintenance task on Mars.

One especially noteworthy aspect of the game engine used
is its cutting edge graphical rendering pipeline. The Unreal
Engine 4 is able to compute photo-realistic views of the
environment in real-time. The output can be seen in Figure 5.
Light is reflected on shiny surface like the floor. The irreg-
ularity of the tiles are easily identifiable. Reflections of the
environment are distorted on the cabinet doors. Furthermore,
lens-flares and other miss-readings in the capturing event can
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be modeled.

The environmental conditions of extra-terrestrial bodies like
moons and planets are part of the world description. Gravity,
being the main property of a environment that interacts with
the locomotion and perception of robotic system, is a constant
across the level. Due to the limited extent of most missions,
we assume that this approximation is sufficient for most
robotic developments. Atmospheric influence, especially on
lighting, can be simulated using ambient lights. In the Mars
environment, global lighting with no direction casting and
no shadow is used in addition to the directional light of the
sun. On the Lunar map, this feature is disabled to correctly
simulate the missing atmosphere.

4. IMPLEMENTATIONS

In the following, we describe the robots that are implemented
in URSim, the types of simulated sensors available, as well
as the maps that we use for our experiments.

Robots

We simulate several of the robotic systems available in the
labs at DLR in URSim. Table 1 presents a selection of
our simulated robotic systems and their capabilities. In the
following, we describe in detail the real robotic systems and
their simulated counterparts.

LRU—The LRU is a rover prototype designed for planetary
exploration. With a weight of approximately 40 kg, a length
of 109 cm, and a width of 73 cm it is comparably light
and compact, which is a big advantage for deployment in
space. Its locomotion system consists of four wheels that are
individually controlled. This allows the rover to maneuver
autonomously through rough terrain in Moon- or Mars-like
environments. The LRU is equipped with an IMU and a
stereo camera system with a baseline of 9 cm for navigation.
From the stereo camera system, dense depth images [25]
are calculated and visual odometry is computed from the
consecutive images. A key-frame based local reference
filter [26] fuses the visual-odometry measurements with the
IMU measurements for local pose estimation. Obstacles are
detected in the depth images and a local costmap for path
planning is generated [27]. Finally, a 6D global localization
and mapping system based on supmaps [28], [29], [30] is
used to generate a global 3D map. Thereby, the underlying
Simultaneous Localization and Mapping (SLAM) graph is
optimized by loop closures generated by matching pairs of
submaps [31], [29]. The rover maps an area of interest
autonomously or is directed to a point of interest. This
is achieved by applying an autonomous exploration algo-
rithm [32], [33] based on a Multi-Criteria Decision Making
(MCDM) approach. The complete software stack was tested
in an environment that resembles the moon on Mt. Etna,
Sicily, in the ROBEX project [34]. Currently, we prepare for
demonstrating a scientific exploration and sampling mission
on Mt. Etna with a heterogeneous robotic team as part of the
ARCHES project [35], [36].

We simulate the kinematic system of the LRU as well as
its sensor setup. A local reference filter is used to fuse the
simulated IMU measurements with the visual odometry, de-
rived from the simulated depth sensor. Furthermore, the local
mapping, obstacle detection, path planning, global mapping
and exploration modules are the same as the ones deployed
on the real robot.

ARDEA—ARDEA is a Micro Aerial Vehicle (MAV) that has
been developed from the ground up at DLR [37]. The MAV
was mainly developed for the autonomous exploration of
unknown environments and part of our heterogeneous robotic
team. ARDEA has four ultra-wide angle lens cameras which
enable a 240

◦ view in the vertical direction. Thus the system
has simultaneous coverage of the ground and directly above,
facilitating navigation and mapping in narrow spaces such as
caves.

This also allows the MAV to have a robust Visual-Inertial
Navigation system [2], fusing multiple visual odometry es-
timates. It uses the same navigation filter and 6D mapping
components as LRU, allowing both robots to operate and
exchange data as part of a heterogeneous team – so far with
the real systems [36] and planned as future work with the
simulated ones as well. Besides the robust navigation system,
ARDEA has many more autonomy skills [38], which are
important for future planetary exploration missions.

Rollin’ Justin— Rollin’ Justin is a wheel-based humanoid
robot. The base platform is equipped with four wheels, each
can be controlled and rotated individually, enabling three
degrees-of-freedom in motion. Four RGB-D camera devices
are mounted on the platform to perceive the environment
with nearly 270

◦ coverage of the surroundings. The visual
input is accompanied by an IMU for inertial measurements
and wheel encoders for odometry readings. The upper part
of Rollin’ Justin consists of a torso with two robotic arms
attached and a head. The torso can extend and contract as well
as rotate by ±90

◦ to alter the manipulation space area of the
arms. Each arm has five DoF and has a four-fingered human-
like hand attached for manipulation. The head is mounted on
a pan-tilt device and has a stereo-camera for perception of the
manipulation space. The complete system is capable of tele-
operation or might be commanded via shared-control where
the operator only issues high-level commands. Furthermore,
the system is able to operate fully autonomously. This has
been demonstrated in several experiments with astronauts
on board the International Space Station (ISS) in the frame
of the Meteron Supvis Justin [39], [40], [41] mission, and
in the terrestrial scenario of SMiLE [42] in the domain of
elderly care. To support this, the robot makes use of a multi-
camera SLAM system [43]. Based on the streams of the
base cameras, a trajectory is estimated for localization of the
robot. Furthermore, the system offers the possibility to load
persistent maps of the environment to navigate in already
explored areas and localize the robot in already given world
coordinates. Semantic annotations provide the possibility to
extract static elements in the area to find stable landmarks.
Additionally, the camera streams are used to obtain an obsta-
cle map to avoid collisions with the environment and humans
in the vicinity.

Sensors

URSim provides the user with a suite of virtual sensors.
These senors are able to measure current states of the robot
and the environment at a given frequency. While every
sensor has its own type of information that it measures,
they all include timestamps, which reference the simulation
time of triggering. Each sensor can be enabled or disabled
during runtime. Sensor may trigger other sensors, creating
a cascading sequence of measurements. All sensors can
be attached to a robot component with additional offsets in
rotation and translation. The configuration of sensors and the
addition of new sensors to a robot can be easily accomplished
using the RDDF introduced in Section 3. All sensor readings
are relative to the component’s current position. Most sensor
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Figure 5: Indoor scene showing the graphical capabilities of the Unreal Engine 4 (UE4). Light is reflected on shiny surfaces,
reflections are scattered according to surface roughness, and lights can be blinding.

Table 1: Integrated robots with their capabilities and sensor setup.

System Features and Capabilities

LRU [1]
• Simulated sensors: IMU, depth sensor, RGB sensor.
• Capabilities: Autonomous exploration, mapping and navigation in rough terrain.
• Features: four individually controlled wheels, pan/tilt camera head with stereo
camera system.

ARDEA [2]
• Simulated sensors: IMU, depth sensor, RGB sensor.
• Capabilities: Fast autonomous exploration and mapping.
• Features: High maneuverability, ultra wide-angle stereo camera setup (240◦

vertical/80◦ horizontal FoV).

Rollin’ Justin [3]
• Simulated sensors: IMU, depth sensors, RGB sensors
• Capabilities: Robotic assistance and collaboration in human exploration
• Features: Multi-camera perception, motion maneuvers in 3 DoF, humanoid inter-
action and tele-operation

types allow for configuration of a suitable noise model that
is then used to generate simulated noise on the respective
sensor measurements. In the following, we describe each of
the currently implemented sensors in more detail.

RGB-Camera—As the first of our image sensors, we intro-
duce the RGB-camera sensor. When triggered, it renders a
colored image of the scene that is currently visible from the
point of view of the robot component that it is attached to.
The image resolution, defined by a certain pixel width and
height in the robot’s URDF file, as well as the field of view of
the camera are customizable. As with all image sensors, we
are able to apply Gaussian white noise to the image in a post
processing step to generate more realistic data.

Depth-Camera—The second image sensor in URSim is the
depth-camera sensor. It is used to generate depth information
images from the scene of the environment. While in non-
simulated systems, a depth image is often generated from
the disparity of a stereo camera pair, we skip this step in
favor of directly reading the depth information provided by
the Unreal Engine. This is done to increase performance,
since less processing effort is required to generate the depth
image. However, a stereo camera can still be simulated by
attaching two RGB-cameras with a slight offset to each other.
The noise model customization options are the same as for
the RGB-camera.

Semantic-Camera—The last image sensor we provide is the
semantic-camera. This is a special type of camera that is
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able to capture semantically segmented images. An internal
stencil value is provided for every object in the environment
to enable the segmentation of objects in the scene. Contrary
to the RGB-camera, the semantic-camera does not render the
texture of each object but uses the respective stencil values
instead. The value is encoded in the red channel of the
image. Thus, we receive a labeled image with the semantic
ground truth information gathered from the environment. The
semantic segmentation is performed on a terrain class level.
Therefore, separate object instances of the same terrain type
are not distinguished between. An example use case for this
sensor type is the semantic mapping presented in Section 5.
In Figure 6, we show images of the same scene captured with
all image sensor types side by side.

Gyroscope—Our gyroscope sensor is able to gather the ro-
tational velocities of the robot component it is attached to.
These velocities are directly supplied by the Unreal Engine
4’s physics simulation. A noise model that considers both
white noise and bias of the sensor is available.

Accelerometer— To measure the linear accelerations of a
robot component, the accelerometer sensor is used. Since
the Unreal Engine 4 does not provide acceleration data of
simulated objects natively, we must fall back on approxi-
mated data. We use the linear velocities of the respective
component at the current and previous simulation frame, as
well as the corresponding time difference between the frames,
to approximate the experienced acceleration. As with the
gyroscope sensor, a configurable noise model with white
noise and bias is available.

IMU—With our IMU sensor, it is possible to measure the lin-
ear accelerations, the rotational velocities, and the orientation
of a robot component at the same time. Thus, it combines the
functionality of our gyroscope and our accelerometer with the
additional capabilities of a magnetometer. The noise model
configuration options are therefore a combination of the ones
of the previous two sensors.

IMU with trigger— This sub-type of the IMU sensor has
the additional capability to trigger measurements of other
sensors. This is particularly useful if processing components,
e.g., the local reference filter of LRU, require camera data
and IMU data with matching timestamps. In that case, the
IMU with trigger sensor is able to trigger measurements of
image sensors, thus generating synchronized data. Since a
cameras frame rate is usually lower than the IMU frequency,
the cameras are able to be triggered on only a subset of
IMU measurements. Whether or not a camera image was
triggered is indicated by a flag that is included with the IMU
measurement.

Maps

In this section, we briefly describe all of the maps currently
available in URSim. We point out their properties, give
examples for use cases, and show snapshots in Figure 7 of
each of them to give an impression.

Lunar—With its craters of varying sizes and rocky terrain
shown in Figure 7a the Lunar map simulates an environment
similar to Earth’s moon in a visually quite detailed fashion.
A special property of this environment is the reduced gravita-
tional pull to its surface. Furthermore, the lightning is solely
based on the sun and no ambient lights are added.

Mars—The Mars map, as shown in Figure 7b, resembles the
surface of Mars. It is a large-scale environment containing

different types of rocks, pebbles, and the signature red-
colored dirt floor. Some parts of the map are flat with large
plateaus, while others are rough mountainous terrain.

DLR-OP—The DLR-OP map we present is of the DLR site
in Oberpfaffenhofen, Germany. It was created from real
flight data taken in multiple passes by a drone. The separate
sections of the map were then stitched together to create the
top-down view seen in Figure 7c.

Modern House—Furthermore, we use the Modern House map
an indoor environment for evaluation of service robots in
typical house-hold scenarios. The house consists of several
rooms on different levels as can be seen in Figure 7d. Most
of the objects have reflecting and repetitive textures.

Test and Calibration Map— Lastly, we show our Test and
Calibration map in Figure 7e, which we use to calibrate and
test our robots and their sensory measurements. The map
features a visualized coordinate system which helps with
calibration and debugging processes. It also has concentric
circles drawn on the ground with in regular intervals of
increasing radii. For image sensor calibration, a checkerboard
can be spawned into the map as seen in Figure 7f. While the
camera sensors in URSim use the precise camera intrinsics
they are configured with, camera calibration can still be
useful to simulate calibration errors.

IPC

As described in Section 3 we designed URSim with the
different inter-process communication interfaces used at the
German Aerospace Center (DLR) in mind. We provide a con-
venient way to choose which IPC implementations are avail-
able on each robot using the RDDF presented in Section 3.
Furthermore, each sensor can be individually configured to
use one or more of the enabled IPCs. This configuration is
performed within the robot description file.

ROS—The first IPC interface implemented in URSim is the
well known Robot Operating System. When publishing
sensor measurements with ROS, they are converted from
URSim internal data structures to the ones defined by the
ROS framework. Furthermore, we also provide and interface
for subscribers to ROS topics in URSim. These are able
to receive command messages that can be used to control
the robots movements and actions. The connection between
URSim and the externally running roscore is facilitated by a
rosbridge [44]. ROS is the IPC used on the robotic systems
LRU and ARDEA.

LN— The second interface available in URSim is to the
middleware links and nodes, that has been developed at the
German Aerospace Center (DLR). LN provides real-time
messaging streams, process management, and low-overhead
marshaling. Similarly to the ROS framework, LN supports
the subscription and publishing to message streams. It is
the IPC deployed to communicate with the robotic platform
Rollin’ Justin.

Console—Lastly, we provide the Console IPC that is useful
for debugging and testing purposes. It simply outputs all
published sensor messages in text format to the console using
the Unreal logging system. Thus, it is independent from spe-
cialized hardware and software and therefore usable on every
machine URSim runs on. The logged messages all contain the
name of the emitting sensor, a time stamp, the reference frame
name, and the measured data. Messages containing large
amounts of data, such as image measurements, are condensed
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(a) Image captured with RGB-camera. (b) Image captured with depth-camera. (c) Image captured with semantic-camera.

Figure 6: Side by side comparison of scene in moon environment captured by URSim’s three image sensor types.

(a) Lunar landscape. (b) Martian landscape.

(c) Map of the DLR site in Oberpfaffenhofen. (d) Modern house map.

(e) Test and calibrations map for robots and sensors. (f) Checkerboard for camera calibration in URSim’s calibration map.

Figure 7: Renderings of the currently available maps in URSim.
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Figure 8: Translation error of navigation filter pose estima-
tion relative to a change in position of 1 m for multiple runs
in the Mars map.

to maintain readability.

5. EVALUATION

To demonstrate the capabilities of URSim, we conducted an
exploration mission with the simulated LRU in the virtual
Mars and Moon landscapes. For this evaluation, we examine
three different aspects of that mission. Firstly we analyzed
the accuracy of the pose estimation provided by the local
reference filter [26]. Secondly we assessed the results of the
local and global mapping. Finally we performed semantic
mapping with the LRU.

Pose estimate evaluation— In this section, we show that
data generated with URSim can be processed with a visual-
inertial navigation system to accurately estimate the pose of
the LRUs. To this end, we manually steered the rover to
followed three different trajectories within the Mars map.
Afterwards, we evaluated the accuracy of the LRUs pose
estimated with the local reference filter by comparing the esti-
mated trajectory with the ground truth trajectory. The ground
truth is directly provided by the simulation’s internal physics
state. The following trajectory evaluations and plots where
generated utilizing the evo [45] package. Figure 8 displays
the relative translational errors and Figure 9 shows the relative
rotational errors for the three followed trajectories.

The mean relative translational error per meter of displace-
ment was between 0.0097 m and 0.0127 m for the three
trajectories. The mean relative rotational error per meter
of displacement was below one degree for all trajectories.
When only integrating the output of a visual-inertial system,
the absolute translational error increases as the relative errors
accumulate over time. This effect can be seen in Figure 10,
which shows a top-down view of the ground truth and esti-
mated trajectory for the second run. The accuracy of the pose
estimation of the simulated LRU is similar to the one that can
be achieved with the real robot.

Local and global mapping— In this section, we present
the maps built while following trajectories through the
Mars(Figure 7b) and Moon world (Figure 7a). These maps
are created using the geometric information of the mea-
surements made by depth camera sensor that is attached to
the simulated LRU. In conjunction with the current pose
estimate, these measurements are incrementally added to a
gridmap. Figure 11a shows the resulting gridmap when
navigating through the Mars world. Similarly to the real
system, obstacles are detected directly on the virtual depth
images. A costmap is derived from the detected obstacles

Figure 9: Rotational error of navigation filter pose estimation
relative to a change in position of 1 m for multiple runs in the
Mars map.

Figure 10: Top-down view of ground truth and pose estimate
trajectories of run #2 in the Mars map.

and steep slopes. Figure 11b shows an example of a costmap
used to plan a path (green line) through the rough Mars
environment. Finally, we show the probabilistic voxel-grid
representation of the 3D map in Figure 11c generated by
applying our 6D global localization and mapping system [29].

Semantic mapping— In this section, we present the results
of our third experiment, where we applied our semantic
mapping pipeline in the Lunar world. The goal is to anno-
tate the geometric map with additional semantic information
about respective terrain types. To this end, the meshes
used to represent different objects in the simulated Moon
environment, e.g., various rock types, were annotated with
ground truth labels in the simulation map. This enables
the virtual semantic camera sensor (see section 4) to render
these semantic annotations into a semantically segmented
image. Next, an additional gridmap layer was created for
each of the semantic terrain types. Each of the semantic
layers includes the probability distribution of its respective
terrain type. During the semantic mapping process, these
layers were then incrementally filled with information based
on the current sensor input. In Figure 12a, we show the
geometric local gridmap layer and in Figure 12b several
semantic mapping representation, including the probability
distributions for the individual terrain classes for each grid
cell, retrieved from the semantic mapping layers.

6. SUMMARY & CONCLUSION

With URSim, we solve the common issues of developing
software for complex robotic systems. URSim is a versatile
Software-in-the-Loop (SiL) simulator to develop and test
high-level software components, which allows for a contin-
uous test cycle without requiring access to the real system. A
generic robot class is used to interface the simulated hardware
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(a) Height-colored elevation layer of the rolling gridmap. It was built while driving down a slope in the Mars environment.

(b) Local costmap with terrain classification results used
for path planning (green → red: traversible → obstacle).
The narrow green line indicates the planned path between
the rover’s current and its goal location.

(c) Height-colored global 3D probabilistic voxel-grid map overlaid with the
SLAM graph (blue nodes and edges).

Figure 11: Different local and global map representations generated while navigation through the unstructured Mars
environment.

and generates the physical representation of the engine. It
can be customized by adding different physical and virtual
components to represent the real system as accurately as pos-
sible. Each robot is described by a Robot Design Description
File and the various visual and physical sensors provided by
URSim can be easily attached to the robot by adding them to
the description file, which allows for a fast change between
different sensor setups. The modern and adaptable system
architecture allows to customize the simulator for different
setups, frameworks and modules required for a specific mis-
sion. A layer of abstraction for the IPC offers the possibility
to integrate different communication infrastructures, such as
ROS and LN.

Testing high-level software components is also often limited
as the challenging conditions in space cannot be reproduced
on Earth. URSim is based on the Unreal Engine 4, which is
capable of rendering photo-realistic scenes. The UE4 allows
us to reproduce many of the challenging light conditions
relevant to space missions and thus to test robotic software
components in realistic scenarios. The graphical capabilities
of the underlying UE4 are highlighted by our integrated maps,
e.g., the Martian Landscape, Lunar Landscape, and Modern

House map. We demonstrate the capabilities and advantages
of URSim when developing and testing software components
by simulating a planetary exploration mission. We have
integrated our flying system ARDEA, our rover prototype
LRU and the humanoid robot Rollin’ Justin in URSim. For
the LRU, we have simulated the kinematic system, as well
as the sensor setup and provide similar interfaces as on the
real robotic system. Furthermore, we were able to apply
and test the complete navigation and mapping stack of the
LRU, without changing parameters compared to the real
system and could show that the provided sensor data can be
used as input for an visual-inertial navigation system. The
evaluation of navigation and mapping tests in multiple virtual
environments, using only simulated measurements, yields
compelling results. We have achieved similar translational
and rotational errors for the pose estimation as on the real
system and the mapping of the virtual environment is accurate
and consistent. Thus, URSim can be applied to test complete
software stacks of robotic systems and to evaluate visual-
inertial navigation systems.
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(a) Local elevation map of a region in the Lunar map. (b) Semantic map color coded by most likely terrain class.

(c) Probability distribution of first rock terrain type. (d) Probability distribution of second rock terrain type.

Figure 12: Visualized semantic terrain types of the local gridmap for the Moon environment.

7. FUTURE WORK

Currently URSim can be used to simulate and test a single
robot at the same time. However, as multi-robot scenarios, in
which a heterogeneous team of robots is working together to
maximize the scientific return of space missions is currently
in the focus of the research community, we want to extend
URSim to be able to simulate space exploration missions
with several robots. Furthermore, we want to provide a better
interface to set the lightning conditions expected at a certain
day or night time on the target planetary surface. This is
important to easily adapt tests of robotic vision algorithms
in different realistic conditions.
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Abstract—Future crewed missions beyond low earth orbit will
greatly rely on the support of robotic assistance platforms to
perform inspection and manipulation of critical assets. This
includes crew habitats, landing sites or assets for life support
and operation.

Maintenance and manipulation of a crewed site in extra-
terrestrial environments is a complex task and the system will
have to face different challenges during operation. While most
may be solved autonomously, in certain occasions human inter-
vention will be required. The telerobotic demonstration mission,
Surface Avatar, led by the German Aerospace Center (DLR),
with partner European Space Agency (ESA), investigates differ-
ent approaches offering astronauts on board the International
Space Station (ISS) control of ground robots in representative
scenarios, e.g. a Martian landing and exploration site.

In this work we present a feasibility study on how to integrate
auditory information into the mentioned application. We will
discuss methods for obtaining audio information and localizing
audio sources in the environment, as well as fusing auditory
and visual information to perform state estimation based on the
gathered data. We demonstrate our work in different experi-
ments to show the effectiveness of utilizing audio information,
the results of spectral analysis of our mission assets, and how
this information could help future astronauts to argue about the
current mission situation.
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1. INTRODUCTION

Accomplishing the goals of bringing humankind to the Moon
and Mars is some of the greatest challenges ahead for the
space community. To help meet these challenges, robotic
assistance will be key, particularly for the construction and
support of habitat infrastructure, as well as for carrying out
scientific tasks. However, due to the long distances, com-
munication round trip will cause delays of 20min to several
hours between Earth and Mars.

Surface Avatar, a telerobotic technology validation mission
led by German Aerospace Center (DLR) with partner Euro-

978-1-6654-9032-0/23/$31.00 ©2023 IEEE

Figure 1: Integrated audio perception into the telerobotic
system of Surface Avatar. The robot in the experimental
area detected a sound event with an unknown spectral profile
and requests manual action from an astronaut on board the
International Space Station (ISS).

pean Space Agency (ESA), gives astronauts on board the In-
ternational Space Station (ISS) control over robotic assets [1].
It investigates a combined approach offering scalable auton-
omy through multi-modal teleoperation to perform tasks in
different scenarios. These can range from simple surveillance
to complex maintenance tasks which often include a search
for failure in which the astronaut has to detect an anomaly
in the environment. The astronaut has to investigate multiple
objects to observe their state, often accompanied by detailed
inspection and manipulation of inner components.

Audio perception provides an additional modality that may
decrease crew time to find the anomaly in extra-terrestrial
environments with an atmosphere like Mars. The direction
of arrival of a sound event received by the system can be
estimated and displayed to the astronaut. Furthermore, the
robot’s knowledge of the world can be used to infer the
current state of a known object remotely and detect failures.
All of these can be displayed to the crew as illustrated in the
simulated view in Figure 1.

In this feasibility study, we aim to show our preliminary re-
sults on using audio perception, in the context of a telerobotic
mission, to help understand the world around the robot and
propose an approach to:

• detect sound events
• localize sound sources
• fuse sound input with vision sensors and prior knowledge
• obtain spectral knowledge and infer objects’ state based on
the received data
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2. RELATED WORK

Early research in the field of sound source localization has fo-
cused on the imitation of binaural audio perception of humans
and animals [2][3][4][5]. They are based on the interaural
phase difference (IPD) and interaural intensity difference
(IID) of received signals. The inclusion of the head-related
transfer function [6] and the modeling of the reverberation
of the environment [7][8] increases the robustness further.
However, these approaches require an accurate calibration
process, where deviations and unexpected components in the
environmental modeling greatly influence the outcome.

Successive work has been carried out on the estimation of
Direction of Arrival (DoA) of a signal [9][10]. Incorporat-
ing a delay and sum beamformer (DSBF) these approaches
estimate the direction using the time delay between the input
signal of individual sensors. But low signal to noise ratio
(SNR) environments or varying spectral profiles of the sound
sources prevent usable results. Approaches based on deep
learning [11][12][13][14][15] promise to overcome the men-
tioned problems, but require dedicated data sets for specific
sources for training or immense data for generalization.

More recently, research attention has shifted toward
subspace-based approaches like multiple signal classification
(MUSIC) [16] or Estimation of Signal Parameters via Rota-
tional Invariance Techniques (ESPRIT) [17]. To overcome
the limitations and constraints of the chosen sampling fre-
quency, they offer increased robustness and angular resolu-
tion [18][19][20]. The initial high computational demand
could be decreased with recent advances in offering real-time
estimations for outdoor [21] and indoor [22] environments.

The field of acoustic monitoring is well established in the area
of ecological research, especially for ornithology [23][24].
Semi-automated analysis [25][26][27] are utilized for tem-
poral and spatial estimation of bird behavior, which has
been developed to detect and monitor audio events. How-
ever, expert knowledge is necessary to label received au-
dio fragments. Full-automation methods [28][29][30][31]
offering an unsupervised approach, which requires intense
training. These methods have been applied toward factory
and technical applications for process monitoring for additive
manufacturing [32][33]. Furthermore, convolutional neural
networks have been added for detecting the degradation state
of robotic system [34]. However, the unknown spectral
profiles or signals with high variances are still problematic.

In this work, we aim to show that acoustic perception can be
effectively used as an additional modality in telepresence ap-
plications by implementing it in a ISS-to-Earth demonstration
missions, Surface Avatar [1]. It depends on knowledge gained
in previous space-to-ground missions, Analog-1 [35][36][37]
and Meteron Supvis Justin [38]. We focus on a system
that extends the immersion of the robot operator to obtain
more knowledge about the environment and which keeps the
astronaut in the loop.

3. SYSTEM OVERVIEW

This work is intended to be integrated into DLR’s Rollin’
Justin [39]. It is a dexterous humanoid robot with a mobile
wheel-base, which has served in a wide array of research
toward space exploration and terrestrial applications [38]
[40]. Equipped with an Intel Realsense D435i RGBD camera,
it is able to visually perceive its environment. The sensor
is mounted on the head to mimic human-like anatomy and

Figure 2: DLR’s dexterous humanoid robot, Rollin’ Justin,
and the microphone array (red) used in this work.

Audio Source
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Visual Object
Detection
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Object 
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Audio

Vision
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Figure 3: Overview of the system architecture. The approach
is divided into auditoral, visual and prior knowledge.

follows the head movement to stay aligned with the visual
processing pipeline.

We utilize a four-sensor microphone array as depicted in
Figure 2 to receive audio information on the environ-
ment. The sensors are arranged linearly with located
d = [0.00, 0.015, 0.06, 0.09] cm along the x-axis and enables
broadband estimation of signals in the audible range. We
investigated a future integration of the array into a novel head
design [41] consisting of eight microphones heterogeneously
placed on the forehead of the robot. The estimated directivity
patterns (−3dB at ±40◦) are integrated into this feasibility
study to assure the applicability.

Furthermore, the robot operates in an environment at the
DLR simulating a Martian exploration and science site [42].
The environment includes a mechanical mock-up of a lander,
several Smart Payload Units (SPUs) for scientific experi-
ments and monitoring and a visual representation of Martian
setting. All objects a marked with Apriltags [43] for easy
identification and localization.

All data are recorded and pre-processed before fusing them
together. Afterwards, using prior knowledge on the environ-
ment, the semantic information on the current perception of
the world will be jointly inferred. An overview is given in
Figure 3.

Audition

Audio is captured using the microphone array. For pro-
cessing it is essential to have synchronous data acquisition.
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Figure 4: Estimation of the background noise profile for the
robot environment. An audio probe is used to capture a highly
accurate frequency spectrum that can be used for spectral
subtraction in noise filtering.
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Figure 5: Audio processing branch. After pre-processing the
received signals are transformed into the frequency domain
and the presence of a sound source is estimated. Afterwards,
a possible source is localized.

Therefore, the analog-to-digital conversion is triggered on
hardware side. The sampling rate is set to 44100Hz to
capture the full spectrum of most signals available in our
environment.

Background noise such as wind or system noise created
by mechanical components, e.g. cooling fans, induce an
omnipresent spectral component that is always accumulated
to the received signal. A prior statistical profile is estimated
using a sound probe as shown in Figure 4 to obtain an accu-
rate recording of the actual noise. Then, a Fourier analysis
is performed to obtain the gains of the spectral components.
These can be applied later for noise reduction by spectral
subtraction. To prohibit unnecessary detection and estimation
efforts that may lead to false positive results in subsequent
modules, the presence of a suitable input signal is detected.
An evaluation of the power equivalent of the sound signal
is performed, comparing the active input to the previously
acquired noise spectrum. The received response is used to
classify the audio as noise or sound event. Afterwards, the
DoA of the signal is estimated to obtain the spatial informa-
tion of the sound source used later in the fusion process. The
chain of modules is shown in Figure 5.

PoseGlobal LocalizationRGB Object Selector Object 
Database

Scene
Objects

Figure 6: Components of the vision processing. The cam-
era data is used for a global position strategy based on a
Simultaneous Localization and Mapping (SLAM) approach
and refinement using AprilTags. This information is used to
receive current scene objects from a knowledge base.

Object 
Database

Object Poses

Object Outlines

Object Spectral
Analysis

Figure 7: The object database is storage of the robots per-
ception and knowledge about the world. It included the poses
of known objects, their geometric outlines and previously
obtained spectral profiles of observed states.

Visual Perception

The vision system is primarily used to obtain the localization
information of the system. The coarse ego-pose estimation
is retrieved by a SLAM system based on a multi-camera
approach [44] in the base. Further refinement of the pose
is obtained by using visible AprilTags in the environment.
Finally, based on the current localization, all scene objects
are loaded from a central object database. It is noteworthy
that the query returns more objects than visible to the camera
as the auditory system is capable of perceiving more of the
world than the field-of-view of the camera. As seen in
Figure 6 the system returns the list of scene objects needed
for the fusion process.

Multi-Modal Fusion and Processing

In this step the information of the audio and visual branch
are fused together to obtain a multi-modal description of
the world. The DoA estimation retrieved from the audio
beamforming module is used to cast a ray from the current
position of the robot and infer the 3D position of the sound
source using the known geometric outline of scene objects
obtained from the vision branch. If a sound source can be
located within an object, the relevant spectral information of
the given entity is loaded from the database. Finally, this is
compared to the received spectrum and the state is inferred.

Object Database

The aforementioned object database is a storage of prior
knowledge obtained before the operation of the system (Fig-
ure 7). It contains for each object in the environment its exact
position, orientation and geometric outline. Furthermore,
it also contains a list of spectral information of different
states. Each consists of the median and an acceptance band
of normalized frequency spectra, e.g. Figure 8 displays the
characteristic spectrum of a running drill. This is used to
estimate the state of an object or infer if the observed situation
is unknown.
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Figure 8: Normalized frequency spectrum of a running drill.
The median is depicted as a dashed line. The acceptance
band of the sound spectrum is shown by the 20th and 80th
percentile.

4. METHODOLOGY

The following sections describes the key aspects of the se-
lected approaches and applied customizations in depth.

LTSD Power Evalutation

The module for detecting sound events is based on the voice
activity detection (VAD) approach by Ramırez et al. [45].
The received input signal is analyzed on smaller chunks.
Each is further divided into overlapping subframes, which
are transformed into the frequency domain using a short-term
Fourier transform. We estimate the spectral envelope for the
chunk for the frequency bin l on N subframes as

LTSEN(k) = max (X(k, 0),X(k, 1), ...,X(k,N)) (1)

with X(k, n) representing the k-th bin of the n-th subframe.

Each long-term spectral envelope (LTSE) value represents the
current maximal gain for each frequency bin in the envelope.
To receive information on the overall spectrum differs from
the noise reference ξ, we calculate the long-term spectral
divergence (LTSD) as given by

LTSDN = 10 log10

(

1

nFFT

∑ LTSE2(k)

ξ2(k)

)

(2)

with nFFT as the amount of frequency bins in each subframe
analysis. Subsequently inserting the audio chunks, we receive
a temporal trend of the LTSD responses. A typical result can
be seen in Figure 9. Furthermore, we exploit Equation (2) and
retrieve the m-most deviating frequency bins compared to the
reference ξ and propagate this information to the beamformer
module.

MUSIC DoA Estimation

We integrate a modified implementation [22] of the MUSIC
algorithm [16] [21] to locate sources using the directed sub-

Figure 9: LTSD response for three different sound sources.
The input audio is separated into sound event (SED=high)
and noise (SED=low).

spaces of the frequency domain. Considering the complex
short-term input signal sk(t) for the k-th frequency band, we
get

sk(t) = λk(t)e
i2πfkt

= λk(t)e
iωkt (3)

For a linear microphone array of N sensors where each signal
is delayed by

∆n =
dnsin (θ)

c0
(4)

with the DoA θ and the speed of sound c0, we can construct
the system equation as













1
eiωk∆1

eiωk∆2

...

eiωk∆N













sk(t) =: aks(t) (5)

We denote ak as the steering vector of the sound source,
describing the angular dependency of the received signal to
the direction of arrival. As described in the referenced work,
the source subspace US of the received signal is extracted.
The aforementioned steering vector is an element of the
signal subspace, therefore

ak ∈ US , (6)

⇒ ak § UΣ (7)

of the noise subspace UΣ. We can formulate the response
equation as
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Figure 10: Pseudospectrum as returned from the custom
MUSIC implementation. The frequency evaluation is adapted
to the current received spectrum and the DoA can be recon-
structed from the signal maximum.

P (θ) = 10 log10

KN
∑

k=1

1

ïak,UΣð2
(8)

where ï·, ·ð denotes the inner product. We further only
examine the N -most deviating frequency bins as calculated
in the LTSD power evaluation to integrate into the final
response. This reduces the amount of resources needed to
process the data while increasing the robustness in low SNR
scenarios. An exemplary pseudospectrum is displayed in
Figure 10 showing a detected sound source at ≈ 100◦.

Modality Fusion

Processing the separate modalities independently, the modal-
ity fusion combines both branches and estimates the joint
state. Based on the global position of the system, a set
of scene objects is loaded from the object database. The
received geometry is projected on the 2D ground plane as
the microphone array is only capable to distinguish between
azimuth but not elevation angles. As ray is casted starting
at the microphones reference position and with the estimated
orientation. The ray is tested with each outline of the scene
objects for an intersection. The point is reprojected to the
microphone array and checked against the sensor accuracy
to take measurement tolerances into account. Finally, after
testing all lines, the intersection with the shortest ray length
is taken as the source position.

Spectral Classification

As a last step, the spectral information of the object is
examined. The received audio is compared in the frequency
domain with already obtained spectral profiles. For each
profile, a audio sample is recorded with a duration of at least
5s. These audio samples are transformed with a short-term
Fourier transform (SFTF) using small overlapping subframes
with a hop-parameter of 32 samples. The median spectrum
P50 is calculated over all received spectra. The highest
value of the median is used to normalize the spectrum and
constraint it to [0, 1]. Afterwards, the 20th percentile P20 and
the 80th percentile P80 for each frequency bin are taken as

the lower and upper bound of the acceptance band. When
receiving a new and unclassified spectrum, first the spectral
components of the background noise is subtracted from the
input signal. Afterwards, the median spectrum is estimated
and normalized. We calculate the sum of the squared dif-
ferences of frequencies that are within the acceptance band
range of each bin.

s =
∑

k∈K

1

sk
(9)

sk =







0 Xk < P20,k

(Xk − P50,k)
2

P20,k f Xk f P80,k

0 Xk > P80,k

(10)

The received score describes the similarity of two frequency
spectra within the acceptance band. Further we can set a
threshold τ for recognizing known profiles. A analyzed
spectrum is only considered if the s g τ , ultimately leading to
the assumption, if no score passes the threshold, the spectrum
originates from an unknown source.

5. EVALUATION

For the evaluation, we consider the scenario of a dexterous
mobile robot operating in a Martian environment. During the
final ISS-Earth experiment session of METERON SUPVIS
Justin [38] [46], ESA astronaut Alexander Gerst was tasked
with finding, and replacing a failed component in a SPUs in
the simulated Martian environment on ground. To recover
to nominal operation, the operator first had to search for
the problem with visual inspection of all components in the
environment. This failure investigation and maintenance
(shown in Figure 11), was, as expected, time-consuming.
This inspired us to consider other modes of surveying the en-
vironment to achieve faster failure detection and localization.
This desire turned us to audio perception, to remotely infer
the state of an object.

We start with an evaluation in a simulated environment show-
ing the applicability of our method for audio perception and
finally show experiments conducted in our laboratory to show
the transferability to actual applications.

Simulation

We use a simulated environment of a room with a rectangular
floor shape of W = 8m, L = 8m and a constant height
of H = 4m. Further, we define the absorption properties
of the walls, the floor and the ceiling based on the data
in [47] to mimic the acoustic behavior of our lab. The floor
is constructed of rigid plywood with a linoleum surface. The
northern and eastern wall are of hard surfaces. The ceiling
and southern, as well as the western wall are with high
absorption to reflect open space. All parameters are shown
in Table 1. We design a reverberation time of t60 = 0.5s for
our evaluation.

We further placed three sound sources (an engine, a press, and
an unknown air valve) in the room, each emitting a different
pre-recorded sound. An eight-sensor microphone array with
the same directivity pattern as the future integrated sensor
array of the system is placed at the south wall of the room.
The resulting room is shown in Figure 12 and the source-
specific room impulse response (RIR) in Figure 13.
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Figure 11: Detecting and replacing a failed component in
a simulated Martian habitat. Prior missions required visual
inspection of the enclosed modules for failure detection.
Robot audition can enable remote detect the components’
state, which can speed up anomaly detection.

Table 1: Material absorption properties at different frequen-
cies were used for the simulation.

Element 250Hz 500Hz 1kHz 2kHz 4kHz 8kHz

Floor 0.21 0.10 0.08 0.06 0.06 0.06

Ceiling 0.45 0.55 0.60 0.90 0.86 0.75

Wall N 0.02 0.03 0.03 0.04 0.05 0.05

Wall E 0.02 0.03 0.03 0.04 0.05 0.05

Wall S 0.93 1.00 1.00 1.00 1.00 1.00

Wall W 0.93 1.00 1.00 1.00 1.00 1.00

Figure 12: Simulated room environment. Displayed are the
three sound sources, the position of the first microphone of
the sensor array and the dimensions of the room. Absorption
properties of all elements can be extracted from Table 1.

Figure 13: Estimated RIR of the simulated environment in
Figure 12. The graphs show the propagation delay each signal
needs to reach the first microphone. Further, echo can be
identified as the following peaks in the graph. The slow drop
after the impulse is due to the reverberation of t60 = 0.5s.

The simulated audio data is loaded into the proposed process-
ing pipeline. Positions of the system and scene objects are
altered by an uncertainty of 10cm. An exemplary result of the
data fusion is shown in Figure 14 and shows the localization
of a simulated source. For classification, we evaluate the
naı̈ve approach of comparing the sum of squared differences
(SSD) and our proposed method of calculating the difference
in the acceptance band.

The resulting score distribution is shown in Figure 15. The
SSD approach for classification yields to individual class
scores that are mostly in the range of [10, 20]. In general,
narrow spectral profiles like drill or saw result in similar
scoring results. Since the complete spectrum is compared,
and in the case of a narrow-band signal, most of the spectral
components are the background noise which scores a high
similarity in this approach. Contrary, our approach takes the
variance of the pre-recorded profile into account. While still a
fairly simple approach, it results in high deviating class scores
and is more robust to narrow-band profiles.

Further, we expect unforeseen sound events to occur and
the spectral information of those is unknown. Since our
classification approach is explicitly designed to handle this
case, it estimates the score only on the acceptance band, thus
yielding a significantly lower score compared to known sound
profiles. An example can be seen in Figure 16. SSD scores in
a comparable range as in the case of a known source. In the
given example, it results in the selecting the saw class as it is a
highly narrow-band profile and therefore more frequency bins
with only the background noise. Our approach scores higher
values for wide-band profiles like engine or press due to
the higher probability of components of the unknown source
laying coincidentally within the acceptance band. However,
the overall scoring range is below 1 and by deploying a
threshold of τ = 5 including a safety margin, we can safely
classify the input signal as unknown.

We further investigate the impact of the SNR and the number
of simultaneously emitting sources on the successful infer-
ence in the modality fusion outcome. We place one, two and
three sources in the room and artificially change the SNR

6



Figure 14: Illustration of the simulated room including three
objects and the microphone array. The estimated DoA is
shown as a dashed line. By using ray tracing, the source can
be located within the object on the upper left-hand side.

Figure 15: Results of the classification process for a known
spectral profile of an engine. While the naı̈ve approach SSD
performs poorly and only small deviations between different
sound profiles are recognizable, our approach correctly clas-
sifies the profile.

of the target in the simulation. The noise sources are set
to be at SNR = 10dB compared to the background noise.
We sample 50 different scenarios where the sources a placed
at random positions in the 3m cone as defined in [41] at
distances in the range of [0.5m, 5.0m]. We define a threshold
of 0.90 for the desired hit rate as this is a good trade-off on
correctly detected sound events and misses in our scenario.
The results of the evaluation are shown in Figure 17. While
in the single source case the threshold is already reached
at SNRtarget,1 ≈ 5dB, additional sources decrease the
performance. For two active sources the minimum ration
is increased to SNRtarget,2 ≈ 20dB, for three sources the
threshold is reached at SNRtarget,3 ≈ 30dB.

Concluding with respect to a future use-case within the Sur-
face Avatar mission, the results show that the perception of
audio events and the fusion of the different modalities is feasi-
ble. The simulated signals could be identified for their origin

Figure 16: Results of the classification process for an un-
known sound event. Compared to the results in Figure 15
the score of our approach is significantly lower and it can be
easily stated the system received an unknown spectral profile.

Figure 17: Evaluation of the relation between SNR, the num-
ber of active emitting sources and the success rate of detecting
the target object. The three curves (blue, orange, green) show
the rates for one, two and three sources respectively. We
added a threshold of 0.90 as the minimum success rate for
use in our scenario. It can be seen that additional sources
increase the minimum SNR for successful operation.

and a simple yet effective approach based on an acceptance
band in the spectral profile led to the successful estimation of
different states. However, the presence of additional sources
in the environment affects the performance of the processing
pipeline and the rate of successful identification of emitting
objects. Assuming that the robotic system itself will be acting
as an emitting source in the world, a SNR of at least 20dB
must be assured for operation.

Lab Evaluation

Further evaluation is conducted on recordings taken in a
laboratory environment. In this experiment, we aim to show
the transferability of our approach into a realistic scenario.

A speaker is placed inside of one of the scene objects and
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Figure 18: Audio perception evaluation in the METERON
environment. A speaker is placed inside the SPU, shown
with an antenna mounted on top, and is emitting a recording
of running drill at low and high speed. The system shall
differentiate between both states.

is set to alternately emit the sound of the pre-recorded drill at
low and high speed. As discussed before, the robot is emitting
noise and is a sound source itself in the environment resulting
in a minimum of at least two sources at the same time. The
speaker is set to transmit at an average of 50dB taking into
account the transmission from inside the object and over
the distance to the sensor array to meet the requirement of
SNRtarget,2 ≈ 20dB. The sensor array is positioned in front
of the robot facing the same direction as the camera interface.
The setup is shown in Figure 18 including the robot, the
sensor array and the target object. All data is fed into the
proposed processing pipeline, including the prior knowledge
of the positions of objects, possible spectral profiles and the
mapping of object’s emitting frequencies. The source object
is detected in the localization module, the robot’s knowledge
is updated according to the database content and the state is
determined based on the received audio signal.

An exemplary result is shown in Figure 19. Based on the
prior knowledge, the system reduced the total amount of
possible spectral profiles to two, drill 1 and drill 2. The
classification resulted in correct associations with the emit-
ting profiles. However, the yielded scores a significantly
lower than compared to the simulated ones. This is due
to further sources in the environment emitting sounds that
are overlaying the audio signal and induce further spectral
noise. The transmission through the scene objects and the
frequency depending sampling accuracy of the microphones
were not simulated. Nevertheless, the preliminary results
already show that the desired estimation can be achieved
under lab conditions.

6. CONCLUSION AND OUTLOOK

In this work we presented a first study on the integration
of audio perception into the context of the Surface Avatar
mission led by DLR with partner ESA. We aimed to show the
usability of audio input as an additional perception modality
to improve situational awareness of the surface environment
where the robot is operating in. This can offer further
information on the world and the state of objects in the robot’s

Figure 19: Scoring results for the state estimation of the drill
object. The approach correctly estimated the correct states of
the object on low and high speed. As the system identified the
object according to its prior knowledge, only the associated
sound profiles are loaded for estimation.

surrounding.

Our approach is divided into an audio and vision branch,
which eventually are fused into a single state estimation of
located sources withing known objects. We further introduces
a method to compare the received spectral information with
prior learned profiles. Moreover, the system is able to detect
unknown profiles which are not part of the set of known data.

We showed the performance of our proposed method in
simulation as well as the transferability in a real scenario.
The sound source localization yields high accuracy in combi-
nation with the visual perception and results in robust fusion
of the two modalities for spectral profile and state estimation.
Deployed to our laboratory, the system was able to detect and
estimate the current state of the target object.

The presented system shall be integrated into the perceptional
system of the robotic assistance platforms and provide the
audio modality in the upcoming Surface Avatar ISS-Earth
telerobotic experiment sessions in 2023-2024.
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Abstract—In the field of robotics, ensuring precise represen-
tation of spatial transformations is imperative for maintaining
reliable system performance. However, conventional approaches
often prove inadequate due to their failure to consider internal in-
accuracies in the robot and environmental factors. In the context
of robotic systems, deviations from nominal transformations arise
from various sources such as sensor decalibration, inaccuracies
in joint positions, deformations induced by mechanical stress,
and gravitational influences, among other contributing factors.
The same applies to environmental uncertainties, where the
registered poses of objects and landmarks suffer from limitations
in the perception methods. This paper advocates for a paradigm
shift by introducing a framework that incorporates uncertainty
into transformation trees, utilizing Lie Algebra for a consis-
tent computation. Our approach addresses the aforementioned
challenges, providing a realistic and robust representation of
transformations. We demonstrate the applicability and efficacy
of our framework through real-world examples.

Index Terms—robotics, transformation tree, uncertainty mod-
eling, Lie Algebra

I. INTRODUCTION

In the dynamic landscape of robotics, accurately repre-

senting spatial transformations is pivotal for reliable system

performance. Conventional methods, which treat provided

transformations as precise and deterministic, face difficul-

ties in coping with inherent inaccuracies within the system

and environmental complexities. This paper underscores the

critical need for inaccuracies-aware spatial representations in

robotics, often denoted as scene graphs. These representations

allow modeling not only the spatial relationships in a robot-

environment system but also our missing knowledge about it.

An illustrative instance can be found in the distinction

between a robotic arm’s repetition accuracy, which signifies its

capability to consistently reach the same point in a workspace,

and the robot’s absolute accuracy. There, the first can be

assumed to be ”exact” for conventional robotic systems. How-

ever, the error of the latter can be higher by several orders

of magnitude, motivating the modeling of the error. Position

This work was supported by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy (StMWi) by means of the project
SMiLE2gether (LABAY102).
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measurements constrained by both physical limitations and

environmental influences, frequently fall short of the requisite

precision. This constraint becomes especially critical in appli-

cations requiring high accuracy, such as surgical robotics.

An additional example is the process of registering a robot

with respect to its environment, a task achieved through

either an inaugural calibration procedure or by means of the

navigation implemented in mobile robotic systems.

Interestingly, various scholarly works have considered robot

uncertainty within specific domains, such as the kinematic

structure or autonomous navigation components.However,

there is limited progress in combining these several domains

into one single representation like a scene graph to have

a unified consideration of inaccuracy-aware spatial relations.

Conventional approaches that disregard uncertainty in scene

graphs fall short in capturing the intricacies of real-world

scenarios.

This paper advocates for a paradigm shift by introducing

a framework that incorporates uncertainty into scene graphs,

offering a more realistic and robust representation of transfor-

mations. By addressing challenges posed by both robot internal

inaccuracies and the uncertainty of the robot’s interaction with

the environment, our approach aims to enhance the reliability

and performance of robotic systems in practical applications.

We use the following terminology in this paper: Robotic

systems can be subject to errors that cause inaccurate pose

calculations, either within the system or with respect to its

environment. A common simplification is to model such

inaccuracies in a probabilistic way, thus subjecting nominal

relative poses to an additional uncertainty. For a multitude of

robotic applications, such uncertainty is modeled as a zero-

mean normal distribution, thus an uncertain pose consists

of a nominal pose and a covariance matrix. Generally, this

simplification trades the exact representation of robotic errors

for the availability of powerful mathematical tools and is thus

well established in the robotic community. We adopt this error

modeling as well, which allows us to immediately integrate the

probabilistic pose information from other software components

into our scene graph.

II. RELATED WORK

Accurately describing the spatial relationships of a robot

and its environment is a key aspect of robotics specifically



and mechanical mechanisms generally.

Commencing with the early explorations in formulating

a framework for kinematics in mechanical structures [1],

[2], the field witnessed significant strides with one of the

pivotal works by Denavit and Hartenberg [3]. In this ground-

breaking contribution, the authors devised a structured yet

elegant methodology to comprehensively describe the chain

of transformations associated with robotic arms. Subsequent

endeavors augmented the toolbox of robot kinematics rep-

resentation, for example by considering the underlying Lie-

Algebra of spacial transformations [4]. Our recent work [5]1

provides a kinematic robot description that allows to consider

the inaccuracies from joint position measurements, mechanical

stress-induced deformations, and gravitational influences in a

probabilistic manner.

In the field of robotic navigation, many approaches already

consider the uncertainty of relative transformations, especially

in the area of SLAM where e.g. [6] or [7] use the covariance

or information matrix, respectively, to weigh different spatial

transformations in a graph optimization.

The interaction of a robot with objects in its environment,

specifically the uncertainties inherent in the workspace, has

been investigated in [8]. Additionally, notable strides have

been made in recent research towards modeling the uncertainty

embedded within the perception process of classical [9] and

deep-learning-based [10]1 methods.

Finally, the hand-eye-calibration of a robot is nothing else

but an additional transformation between the real and the

nominal robot geometry, and can thus also be subject to

inaccuracies, as discussed by [11].

In the end, all these sub-fields of robotics provide a mul-

titude of different types of spatial transformations, where

potentially all of them are subjected to errors which are being

modeled as uncertainties.

Systematic approaches to order a multitude of intercon-

nected transformations, particularly within the realm of virtual

reality (VR) [12], [13], and robotic simulators [14], [15],

considered the utilization of a scene graph to represent rel-

ative spatial relationships. This scene graph, akin to a tree

structure, comprises multiple nodes arranged in a parent-child

manner. This innovative approach enhanced the representation

and simulation capabilities in both virtual reality and robotic

simulation domains. The current state of the art is tf [16], the

scene graph framework of ROS (robot operating system).

Interestingly, very little work has been published that con-

siders the uncertainty of spatial information by interconnecting

the different realms of robotics. Initial efforts have been

directed towards acknowledging uncertainty within the scene

graph, for example [17]. However, these early attempts typ-

ically fall short in correctly modeling the error propagation

using Lie Algebra. Alternatively, some implementations resort

to sampling-based approaches to represent the overall uncer-

tainty within the system, such as [18], which however comes

with computational costs.

1Now known as L. Burkhard, et al.

The Lie-Algebra allows to acknowledge the manifold char-

acter of spatial relationships and is a powerful tool to compute

and propagate uncertainty along chains of spatial transforma-

tions. An introduction to it together with the application to

robotic navigation is provided by [19]. Similarly, Lie-Algebra-

based concepts are provided for the error propagation within

robotic manipulators, either for single errors [20] or as our

comprehensive kinematic model [5].

Despite the widespread use of Lie Algebra in uncertainty

estimation, to the best of our knowledge, no existing approach

formulating a scene graph for robotics has integrated Lie

Algebra-based uncertainty propagation. In our ongoing work,

we aim to address this gap and demonstrate the efficacy of

incorporating Lie Algebra into a scene graph framework for

a more nuanced and accurate representation of uncertainty in

kinematic systems.

III. ROBOTIC AND ENVIRONMENTAL CONFIGURATION

STATE

Accurate assessment of the current configuration state in

robotic systems holds significant importance across various

applications. This is particularly pronounced in scenarios

involving non-static components equipped with perception

sensors. Registering cameras affixed to robotic manipulators

to the robot’s origin is imperative for seamlessly integrating

spatial information within the correct coordinate framework.

Knowledge of the system’s distance to the environment is

indispensable for collision avoidance, especially when navi-

gating confined spaces. To achieve this, it’s crucial to carefully

observe and organize the positions of joints into a trans-

formation tree. This tree helps illustrate how the coordinate

framework depends on a specified starting point known as

the root frame and obtaining an estimate of the robot’s

spatial volume. However, overlooking the inherent uncertainty

in these measurements and the subtle non-static character-

istics of certain links—attributable to mechanical stress and

gravitational forces—can lead to erroneous state estimations.

In the ensuing discussion, we elaborate on representing the

robotic and environmental configuration state (RECS) as a

transformation tree. Subsequently, we introduce Lie Algebra

as a robust solution for modeling uncertainty in this process.

Finally, we detail our implementation of a managed and

centralized approach for addressing the RECS problem within

an inter-process communication (IPC) framework.

A. Transformation Tree

Deriving the transformation between two coordinate frames

is a pivotal task in robotics. A widely employed approach

involves modeling the system as a hierarchical tree of frame

transformations, as seen in the example Figure 1. This facil-

itates information extraction from the CAD model, allowing

for the calculation of spatial offsets between structural points.

A key optimization involves consolidating static displace-

ments into a singular transformation, pruning the tree for

computational efficiency. Movable connections are represented

as rotations or translations centered around joints, contributing
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Fig. 1: An illustrated exampled of a robotic manipulator and

an external camera. The transformation from the camera to the

tool center point of the robot can be calculated concatenating

all individual frame transformations.

to a chain of static links and dynamic joints. This approach not

only streamlines computational complexity but also provides a

comprehensive understanding of a robotic system’s kinematic

properties, enhancing efficiency and reliability.

Following the comprehensive description of robot kine-

matics within the previously mentioned tree structure, the

process of retrieving the direct transformation between any

two arbitrary frames unfolds by traversing the path articulated

within this structured tree. This systematic approach ensures

a clear and methodical procedure for obtaining the specific

transformation information required for precise spatial rela-

tionships between frames within the robotic system.

B. Transformations and Uncertainty

Our treatment of uncertainties follows our previous work on

probabilistic robot kinematics [5], which in turn builds upon

the mathematical foundations provided by [19] and [21].

We briefly introduce the applied methods here, but refer

the interested reader to the related works for more thorough

insights. For a general introduction to Lie Algebra in the scope

of robotics, we recommend the excellent [22], who’s notation

we mostly follow.

A pose TAB ∈ SE(3) describes the position and orientation

of an object B with respect to a reference frame A. While

a pose quantity is generally an element of the manifold

SE(3), it can be described locally by its linear tangent space

representation ξ = [ρθ]T ∈ R
6, related by the exponential

map [22]

T = Exp(ξ). (1)

There, ρ denotes the translational and θ the rotational com-

ponent of the tangent space element. Local tangent space

quantities can be mapped between two different local spaces

using the adjoint matrix Ad as

Aξ = Ad(TAB)
Bξ, (2)

with

Ad =

[

R [t]×R
0 R

]

∈ R
6×6, (3)

where R being the rotation matrix of T an [t]× the skew-

symmetric matrix formed by the translation. The term [t]×R

illustrates, how local rotation errors create translation errors

further down a chain of transformations, with the magnitude

depending on the distance from the original error’s location.

Recall that we describe the error of a pose as local deviation

ξB,err of a nominal pose TAB , i.e., in the tangent space of

the pose’s reference frame B. The corresponding covariance

matrix ΣAB = E
[

ξB,err ξ
T

B,err

]

∈ R
6x6 is therefore a locally

defined tangent space quantity.

The two mathematical operations on poses, which are

needed for the scene graph, are thus defined in these terms.

The concatenation is computed as

TAC = TAB ∗ TBC (4)

ΣAC = Ad
T

−1

BC

ΣABAd
T

T
−1

BC

+ΣBC . (5)

Note that the two covariance matrices are transported into the

common reference frame C using the adjoint matrix, where

they can be added due to the linearity of the tangent space. The

covariance composition eq. (5) is a first order approximation

(called second order in some publications) and is discussed in

detail in [19].

Analogously, the inverse is computed as

TBA = T−1

AB
(6)

ΣBA = AdTAB
ΣABAd

T

TAB
, (7)

shifting the uncertainty from the tangent space of B in the

tangent space A. We omit the discussion on the specific mod-

eling of probabilistic rover kinematics here and refer the reader

to our previous publication [5]. Note that this representation

can implicitly also consider exact transformations, as zero-

covariances simply vanish in eq. (5) and eq. (7).

C. Implementation

The presented methodology has been implemented within a

C++ library, and the corresponding source code is accessible

online2. Further, a wrapper for the scripting language Python is

provided. Each coordinate frame is characterized by a node-

element. A frame is precisely defined by its pose matrix T

and an accompanying covariance matrix Σ which may be set

to zero for precisely known transformations. Distinctive iden-

tification of each frame is facilitated through the application

of a unique character string. Furthermore, the mathematical

operations of concatenation and inverse for each frame are

executed leveraging the computational capabilities provided

by the manif library [22] augmented by the uncertainty prop-

agation.

The hierarchical structure is implemented using the

Boost.Graph data structure.Each vertex encapsulates a frame

as its payload, and the edges define the direction of trans-

formations. To determine a path between two nodes within

the tree, a breadth-first search (BFS) routing algorithm is

employed. The cumulative transformation along the identified

path is computed based on the direction specified by the

graph’s edges, facilitating a comprehensive understanding of

2https://rmc.dlr.de/rm/en/staff/marco.sewtz/software
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Fig. 2: A schematic overview of the tree structure holding all

transformation information. The whole system is consisting

of separate trees that do not share any connection. Each tree

is constructed by child nodes that are added by directed

transformations to their parent node. Further, neighboring

nodes can be grouped to a cluster. A transformation between

non-neighboring nodes is described by a path.

the transformations between the starting and ending points of

the path.

The system allows for the addition of additional root

nodes, thereby declaring new trees that remain disconnected

from preceding ones. It is imperative to underscore that the

establishment of a path between nodes situated on distinct

trees within the forest is not feasible. Each root node initiates

an independent tree structure, and inter-tree connectivity is

explicitly precluded within the system’s framework.

The default operational paradigm involves centralized con-

trol over all trees, nodes, and computations via a central

server. A connected client possesses the capability to perform

operations such as creation, retrieval, updating, or deletion

of nodes. Additionally, the client can request the cumulative

transformation of a specific path. An added feature allows

the definition of a local cluster within a tree, enabling the

transfer of ownership from the server to a designated client.

Consequently, the client gains the ability to locally compute a

path within this cluster without necessitating network calls for

information retrieval, thereby enhancing computational speed

for that particular client. Other clients will be still able to

access this information however it must be routed through the

server. An illustration of this architecture is given in Figure 2.

IV. APPLICATION

To demonstrate the practical utility of the proposed frame-

work, two examples of application will be illustrated in the

following. An in-depth analysis of the applying Lie Algebra to

the configuration modeling problem has been presented in [5],

therefore we want to focus on the scene-graph implementation.

At first, the initial application showcases the integration on a

robotic arm affected by bending introduced by gravitational

Fig. 3: TINA arm bending due to gravitation. The computed

position, designated as T
′, represents the theoretical location

without accounting for uncertainties.

pull of the Earth. The second instance will illustrate a map-

ping application on a system featuring an uncertain RECS,

formulated as a graph optimization problem.

A. Uncertain robotic and environmental configuration state

As an integral component of the European Space Agency

(ESA) project for a Sample Transfer Arm breadboard study,

the German Aerospace Center (DLR) developed the TINA

manipulator [23] as a compact, modular, and torque-controlled

robotic system designed to adhere to the requirements of the

Mars Sample Return mission. Figure 3 illustrates the robotic

arm in its initial position mounted on a lander. Upon closer

inspection, it becomes evident that the manipulator, even in

its initial configuration, experiences moderate deformations

attributable to its own weight and joint play, particularly in

the axial direction. As a result, the pose of the end effector

is subjected to several uncertainties, which can be modeled

with the proposed framework. By incorporating the expected

variance parameters into the transformation tree, the state

of the robot configuration can be predicted probabilistically,

and the position of the end effector is constrained to an

anticipated uncertainty region. Consequently, the consideration

of uncertainties provides a more realistic depiction of the arm’s

pose, acknowledging the impact of various factors, including

gravitational forces, and enhances the accuracy of the posi-

tional assessment, enabling more precise manipulations. The

selection of adequate probabilistic parameters heavily depends

on the associated system’s specific characteristics and requires

specialized technical knowledge. If necessary, an experimental

evaluation has to be conducted to validate and fine-tune these

parameters.

B. Environmental Mapping

To enable more intricate manipulations and interactions

between the robot and its environment, a significant challenge

lies in achieving precise registration of the robot relative to its

surroundings. This entails aligning various world representa-

tions generated for different types of tasks to ensure coherence

and accuracy in the robot’s perception of its environment.
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Fig. 4: Rollin’ Justin mapping a SPU in a Martian environment

(a) and the associated optimization graph is represented in

(b). The uncertainty-ridden transformation is summarized as

TRB HC from robot base (RB) to the head camera (HC), from

which fiducials associated to the SPU are registered.

As depicted in Figure 4a, Rollin’ Justin [24] is mapping

a Smart Payload Unit (SPU) in a Martian surroundings. In

addition to the unknown state of the environmental configura-

tion, a further challenge arises from within the robot. Although

the upper body assembly is rigidly connected to the base

platform, the wire rope construction in different parts of the

torso is inherently less precise than the rigid joints of the

arms, introducing uncertainties into the robot’s configuration

state. Effectively managing and mitigating this uncertainty is

crucial since information for navigation purposes is collected

from sensors in the base, while other higher-level tasks, e.g.,

object recognition and manipulation, rely on information from

the camera mounted in Justin’s head. Therefore, modeling

the spatial relations of the robot configuration state, includ-

ing uncertainties, is essential and can be addressed by the

proposed framework. It is further capable of simplifying the

handling of transformations and their associated uncertainties

by summarizing them into one single step.

In the context of environmental mapping, the transformation

from the robot base to the head camera becomes particularly

critical as it serves as the foundation for registering fiducials

linked to the SPU. Combined with the spatial relationship to

the registered fiducials and information regarding the global

reference provided by MROSLAM [25], an optimization graph

can be constructed, as illustrated in Figure 4b. The optimiza-

tion problem can be effectively addressed using GTSAM [26]

or comparable algorithms, leading to an optimized estimation

of the SPU’s pose. This comprehensive approach significantly

improves the reliability and quality of environmental mapping

outcomes in the robot’s operational context.

V. CONCLUSION

We present a Lie Algebra-based framework for uncertainty

estimation, realized as a transformation tree. Our work de-

velops a scene-graph-like structure and details the library

implementation. Real-world examples demonstrate practical

applicability, and comparative analysis highlights method su-

periority. This contribution enhances robotic transformations,

offering a versatile tool for improved reliability and perfor-

mance.

Future work includes temporal deviation modeling for

enhanced capabilities, enabling configuration retrieval from

previous timesteps. We aim to align the interface with ROS’s

tf implementation for seamless integration.
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A Robust Graph-Based Extension to Multi-Sensor Applications for

Visual Odometry Systems in the Indoor Domain

Marco Sewtz1, Xiaozhou Luo1, Tim Bodenmüller1, Martin J. Schuster1 and Rudolph Triebel1,2

Abstract— Assistant robotics is an evolving field of research
and promises support for humans in their everyday life.
Household robots are designed to handle cleaning, mainte-
nance, transportation, and monitoring tasks. However, typical
indoor environments are challenging for the localization and
navigation system as they lack suitable features, or mobile
platforms have to operate close to obstacles. Furthermore, the
hardware requirements must make robotic platforms affordable
for household use. In this work, we propose an extension
of single-sensor approaches to the multi-sensor case. It fuses
various loosely-coupled and independent-running odometries,
including vision-only and visual-inertial approaches, taking into
account robust countermeasures for frequent loss-of-tracking
(LoT) scenarios while preserving high accuracy. We minimized
hardware requirements to only rigidly-connected visual sensors,
eliminating the need for high-priced LIDAR or additional
synchronization circuitry. We demonstrate the effectiveness of
our approach in realistic experiments in a representative indoor
environment and simulation.

I. INTRODUCTION

Mobile robots designed for home assistance tasks demand

robust ego-motion estimation and localization for success-

ful deployment. Challenges persist in the form of limited

landmarks, confined operational spaces, and close interaction

with obstacles or humans, posing difficulties for localization

methods.

Incorporating these robots seamlessly into everyday life

on a large scale demands resource-saving and sustainable

hardware design. Advancements in commercial-of-the-shelf

(COTS) hardware have rendered the integration of multi-

ple sensors into home assistants increasingly viable. Most

commercial systems in indoor environments, such as server

robots, rely on simple CMOS cameras for perception [1].

This work introduces a novel approach for robust odome-

try fusion on a robotic platform. This approach is based on

ego-motion estimation using multiple cameras, as illustrated

in Figure 1. The aim is to avoid adding any hardware

requirements to the system design, thereby supporting cost-

effective use of COTS components found in current systems.

Notably, this methodology eliminates the need for trigger and

timing circuitry, substituting them with software equivalents.

Furthermore, it allows for flexibility in sensor positioning

and orientation.

This work was supported by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy (StMWi) by means of the project
SMiLE2gether (LABAY102).

1Marco Sewtz, Xiaozhou Luo, Tim Bodenmüller, Martin J.
Schuster and Rudolph Triebel are with the Institute of Robotics
and Mechatronics, German Aerospace Center, Wessling, Germany
{firstname.lastname}@dlr.de

2Rudolph Triebel is with the Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Fig. 1: Illustration of a multi-camera localization and navi-

gation system used in an indoor environment. Each camera

is individually mounted, with no requirements on position,

orientation, trigger, or frequency.

The proposed two-step approach entails running a visual

odometry (VO) module independently for each sensor, aim-

ing to derive the locally-optimal estimate for each unique

view. These individual estimates are then approximated

using a time-continuous representation, acknowledging the

distinctiveness of each sensor’s perspective and addressing

challenges like loss-of-tracking (LoT) in close proximity to

obstacles.

In the second step, a fusion process is used to construct a

joint motion model, leveraging the time-continuous approx-

imation from each individual module. This results in a tra-

jectory estimation that integrates distinctive information from

each sensor. By independently processing and fusing sensor

data, the approach enhances robustness and simplifies hard-

ware requirements. We believe that this promotes resource-

saving and sustainable architectures for mobile robots in

home environments.

Our contributions are summarized as follows:

• A graph-based extension of state-of-the-art approaches

using a unified fusion of multiple independent-running

and loosely-coupled VOs that enables locally-optimal

operation for each module while aiming for minimal

system complexity.

• A generalization of the Slerp algorithm to the weighted

n-elements case.

• Evaluation of the approach on a realistic dataset and in

simulation.



II. RELATED WORK

Starting from early pioneering work on filter-based meth-

ods for ego-motion estimation [2], which introduced the

concept of VO and stereo feature tracking [3], research has

increasingly shifted towards graph-based formulations. Tong

et al. [4] proposed a Gaussian process for modeling the

robot’s movement. The work of Lim et al. [5] proposes to

use the FAST detector and BRIEF descriptor to decrease

processing power to estimate the current state. This eventu-

ally resulted in ORB-SLAM3 [6]. In addition to its real-time

capabilities, a robust approach for selecting Keyframes in the

tracking thread contributes to the results of this work.

In particular, robust Keyframe selection has been a critical

component for most systems, and a great number of funda-

mental research has been dedicated to it. With PTAM [7],

the utilization of Keyframes was introduced to reduce the

processing amount to only a subset of all available frames.

The work of Lim et al. [5] further introduces the process of a

double-window selection for local batch optimization. Lastly,

a stable approach for Keyframe culling was introduced with

VINS-Mono [8] and its extension VINS-Fusion was focused

on finding the trade-off between sparse graphs and optimal

representation.

In the field of multi-camera localization and mapping,

Kaess and Dellaert [9] proposed filter-based methods to

integrate eight camera views into the mapping process.

Further, MultiCol-SLAM [10] introduces the formulation

of Multi-Keyframes to construct a central graph of time-

synchronized camera views. In contrast, Müller et al. [11]

introduced a formulation for independent running VO sys-

tems, which yield Keyframes being sampled at different

points in time. However, most multi-sensor or multi-modal

systems, e.g., by Zhao et al. [12], Meng et al. [13], or

Xu and Zhang [14], use a tightly coupled approach but

require a central sensor that all other sensors depend on.

Eckenhoff et al. [15] in addition approach this using multiple

visual and inertial sensors in a tightly-coupled fashion to

integrate online extrinsic calibration based on the IMU data.

Lastly, in our latest work, we presented MROSlam [16]

as a multi-sensor fusion approach running several instances

of ORB-SLAM2 [17] in parallel, but not including a joint

motion-model. However, all instances are run independently,

and information is not exchanged between nodes. Therefore

loop-closures can not be utilized as they lead to large offsets

in unknown environments.

In summary, most previous work requires synchronous

and centralized behavior, including simultaneous sampling

of frames and respective Keyframes. Our objective is to

propose a unified solution that utilizes multiple VO modules

to estimate the robot’s ego-motion without imposing the

aforementioned requirements or expensive hardware. We

enable asynchronous and independent operation of each

sensor module to obtain an optimal motion estimate for each

individual observable view. Our primary focus is to enhance

the system’s robustness without significantly increasing hard-

ware requirements or system complexity.

III. METHODOLOGY

In our multi-sensor approach, we fuse the information of

all available cameras and thus can compensate for LoT situ-

ations. For each device, a separate VO instance is executed.

An exemplary architecture for a system with three modules

is illustrated in Figure 2.

First, we define the terms Keypose and Keyframe and

clarify their distinction.

A Keyframe is a selected frame used by a VO module

to estimate motion for consecutive frames. It represents a

unique viewpoint for motion estimation. The Keypose is the

associated platform pose at the time the Keyframe is sampled.

It reflects the pose at that specific time, estimated using all

available data. Since Keyframes are selected independently

by each VO instance, a Keypose can have multiple Keyframes

if they are sampled simultaneously.

Additionally, we clarify the terms ego-motion and odom-

etry. Motion refers to the change in position and orientation

between two time frames. Ego-motion specifies the motion

estimation of the system performing the calculation. In

contrast, odometry measures the pose difference between the

current pose and a reference frame, requiring continuous ego-

motion measurements.

In the multi-sensor scenario, the trajectory estimated by

odometry for each sensor is called a track.

A. Time-Continuous Local Trajectory Approximation

A design goal of this work is tracking-agnostic imple-

mentation, independent of the sensor, feature type, or filter

design. We anticipate any tracking approach to produce a

continuous stream of discrete estimations of the ego-motion,

structured as pose estimations connected by metric delta

poses. We aim to transform these estimates into a time-

continuous approximation that can be evaluated at any point

between measurements received from the sensors. This offers

the opportunity to have independent VO modules that can

operate optimally based on their currently observable field-

of-view.

A generally accepted approach in the automotive sec-

tor, as shown in [18], is using B-spline for converting a

discrete set of poses into a continuous representation. B-

splines can be used to calculate the first and second order

derivative efficiently at an evaluation point, making them

useful for a motion-model approximation [19]. However,

transferring the mentioned approach into the domain of

indoor service robotics, the system has to deal with higher

acceleration-changes and spontaneous changes in direction.

While the smoothing behavior of B-splines adds a more

linear motion in the automotive case which better reflects

the actual vehicle’s motion, in the aforementioned cases

this leads in combination with Keyframe-discretization to

missing trajectory coverage in corners. Evaluating this on the

KITTI benchmark [20] (an automotive dataset) compared to

TUM-RGBD [21] and IndoorMCD [22] (two indoor, hand-

held/robot datasets) using the Keyframe-sampling approach

of ORBSlam3 [6], we can identify a worst-case increase

of only 2.6% on the median trajectory error on all KITTI
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Fig. 2: Overview of an exemplary architecture for three visual odometry modules and the integration of SOTA approaches.

data. However, on TUM-RGBD the median trajectory error

is increased by worst-case 12.8% and on IndoorMCD by

20.1%.

To overcome this domain-issue, we require a linear-motion

constraint for the Keyframe-sampling described in the follow-

ing. We linearize the trajectory by reducing graph nodes that

can be represented by a linear motion. To achieve this, we

define a set of consecutive poses {P0,P1, ...,Pn}, where

P ∈ SE(3), as linearizable if any P ∈ {P1, ...,Pn−1} can

be explained by a linear motion from P0 to P1. We further

introduce an acceptable positional error elin,t and angular

error elin,R to enhance the process’s robustness against small

errors in the estimation of the ego-motion.

The result is a sparse set of discrete pose estimations

whose density is depending on the change of the first

derivative of the initial trajectory. To achieve a continuous

time representation, the method proposed by Yang et al. [18]

is followed, utilizing cumulative Spline-Fusion [23]. This

assures a twice continuously differentiable representation

which is crucial for motion-models.

The whole approximation process is illustrated in a step-

by-step example in Figure 3.

B. Local Graph

To obtain a combined motion estimation of the system

as seen in Figure 4, it is necessary to fuse the trajectory

from each sensor into a single one. Since each sensor is

positioned at a different location on the robotic system, their

trajectory estimations result in different outputs. Therefore,

all trajectory poses must be transformed into a common

coordinate system, referred to here as the robot’s origin

PO = FO
nPn, (1)

where FO
n is a transform from sensor n to the robot’s origin

O and Pn and PO poses in the respective frames.

Subsequently, each estimated pose can be translated into

a Keypose. At each timestep when a control pose is inserted

into the trajectory, all other trajectories are queried for

their local motion estimate. This is denoted as a virtual

pose, which is based on the approximation described in

continuous
B-Spline

interpolated
trajectory

control
pose

interpolation
point

real
trajectory

sensor
measurement

estimated
trajectory

ego-
motion

linearized
trajectory

linearization
error

Fig. 3: Step-by-step illustration of the process for acquiring a

time-continuous interpolated motion-model from a sensor’s

trajectory.

Section III-A. The combined pose is determined through a

weighted average that includes all virtual poses. Translation

and rotation are considered separately in this process.

The position is

TPlatform(t) =
n∑

wnTn(t) =
n∑



wn T1,n(t)
wn T2,n(t)
wn T3,n(t)


 , (2)

with the virtual position Tn(t) at time t, T ∈ R
3, and the

corresponding weight wn ∈ [0; 1] (see Equation (7)) for the

valid track of sensor n.

For the rotational component, we employ the Spherical
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odometry modules.

Linear Interpolation (Slerp) [24] algorithm, which utilizes

Lie Algebra to interpolate two rotations with a constant

angular velocity, similar to the approach in Equation (2).

We extend this method to the n-element and weighted

average case by employing a concatenation of individual

Slerp operations. However, it is important to note that these

operations themselves are not commutative, so the weights

applied are not accounted for as intended. For instance, when

interpolating two unit quaternions qa and qb with equal

weights, the resulting quaternion q∗ is composed of equal

contributions (1:1) of qa and qb. Adding a third quaternion

qc with equal weight results in a shifted contribution towards

the latter one (1:1:2).

To overcome this miss-alignment and obtain the correct

weights after all operations have been applied, the weights

have to be adapted. With the set of all weights

w0, w1, ..., wn ∈ [0; 1]
n∑

wn
!
= 1, (3)

the corrected weights un to apply can be calculated as a

series starting with the last element

un
!
= wn

un−1 =
wn−1

1− ũn−1

ũn = 1− un. (4)

Afterward, the final quaternion can be calculated by con-

catenating the individual operations

q̃2 = Slerp (q0,q1, u1)

q̃3 = Slerp (q2, q̃2, u2)

... (5)

The weights of each track are based on the temporal

distance between the nearest measurement and the requested

virtual pose. Let tmax,e be the point in time in which

the error of the velocity model is at its maximum. Since

we constrain our motion-model at the control points, the

error is increasing with the minimal difference ∆t =
min (t− t1, t2 − t) and the maximum being at

tmax,e = t1 +
t2 − t1

2
=

t1 + t2

2
. (6)

The weight for each track n at time t is defined as follows

wn,t = η max

(
1−

2∆t

t2 − t1
, ŵmin

)
, (7)

with a minimal weight limit of ŵmin, and a factor η to

normalize them to a sum of 1.

The final pose is used for two important registrations.

Firstly, when a new track is added to the system and its

relative pose estimates have to be registered to the platform.

Secondly, when a new Keyframe is issued and the corre-

sponding Keypose has to be estimated for insertion into the

global graph. Therefore, the final pose is used to register the

new track in terms of spatial offset with respect to the other

tracks. Similarly, if a Keypose is registered, its pose will be

estimated in the same manner to incorporate the information

of all sensors and will be inserted into a global graph.

C. Time Domain Synchronization

Our approach allows transferring individual processes to

different nodes within the robot’s network. This flexibil-

ity comes with the downside that two arbitrary nodes’

clock domains can have a time offset which has to be

estimated.However, accurate synchronization often involves

recurring complex calibrations or additional interfaces on

the sensor. By exploiting the dynamic behavior and rigid

transformation of the sensor configuration, this offset can be

estimated as long as an initial guess of the offset is known.

For any two tracks that have a valid ego-motion estimation

within the same time-span [tn, tm], we determine the interval

I = {Tn,Tn+1, ...,Tm} in which the positional change

delta-poses exceeds a threshold λ∆T. While in the general

case this describes a change in acceleration, experimental

evaluation has shown that our requirements for the sampling

of Keyframes lead to similar results when determining the

intervals with the highest Keyframe sampling frequency. We

select the track with the higher density of Keyframes as the

source and the other as the target. The process of finding

the offset can be formulated as a constrained minimization

problem

min
∆t∈I

∑(
FT

STS (t)−T′
T (t−∆t)

)2
, (8)

where the estimated positions TS (t) of the source track

are transformed onto the target using FT
S . The timestamps of

the target track are altered by the offset parameter ∆t and the

interpolation T′
T at the given time is used. The parameter

∆t minimizes the sum of squared differences.



IV. EVALUATION

In the following, we want to demonstrate the effectiveness

of our approach. We first investigate the tracking accuracy

on a multi-sensor indoor benchmark [22]. This involves

comparing the performance of single-instance systems, the

impact of our fusion method on two selected methods, and

one multi-tracking by-design approach on 97 trajectories in

5 different scenarios and a varying distance from 3m to 37m.

Selected images are presented in Figure 5. To our knowledge,

this is the only multi-sensor dataset in the indoor domain

with high-resolution ground truth information. Afterward,

we demonstrate the individual sampling of Keyposes and the

reduction of factor insertions into the pose graph. We conduct

an experiment showing the robustness by avoiding loss-of-

tracking due to single module failure. Lastly, the possibility

to estimate an offset in the clock domain is demonstrated.

A. Accurate and robust ego-motion estimation

For this evaluation, we utilized the IndoorMCD

dataset [22]. A small wheeled system and a hand-held camera

device recorded sensor data from three Intel RealSense

D435i devices, each providing color, depth, and Inertial

Measurement Unit (IMU) streams. The evaluated systems

include VINS-Mono [8] and its extension VINS-Fusion,

ORB-SLAM2 [17] and its successor ORB-SLAM3 [6], as

well as the multi-camera MROSlam [16].

For assessing tracking accuracy, we computed the relative

pose error (RPE) with a delta-pose of 0.1m for each ap-

proach. Additionally, we determined the success rate (SR),

defined as the percentage of trajectories with valid tracking

(according to the method) for at least 90% of the time

to compensate for initial setup phase of each approach.

This metric has been selected to specifically address the

robustness of the system to reach the end of the trajectory.

In the case of single-sensor approaches, we iterated through

each sensor instance, selecting the worst-performing one

since the advantage of multiple views cannot be utilized.

If the SR fell below 10% for a single instance, we evaluated

the error on the next better-performing instance to ensure

comparable results. We employed the evo package [25] for

error evaluation. The compiled results of the investigation

are presented in Table I.

Analyzing the results reveals that extending the motion

estimation process can enhance accuracy or, at the very

least, maintain the same error level. MROSlam, a fully

decoupled multi-sensor extension of ORB-SLAM2, outper-

forms the single-sensor variant by a factor of 4.5 in sce-

nario 3 and a factor of 12.0 in scenario 4. Our exten-

sion similarly yields significant performance improvements

when considering mean error, proving our assumptions that

multiple sensors enhance the estimation process. Examining

the maximum error in each scenario, our proposed fusion

approach significantly enhances estimation accuracy. In all

five scenarios, both the Multi variants of ORB-SLAM3 and

VINS-Fusion outperform their counterparts, demonstrating

our robust fusion capability. This is confirmed by the success

rate, unequivocally validating the initial claim of a LoT-

robust method. Particularly noteworthy is the exceptional

performance of the Multi VINS-Fusion, accurately estimating

every trajectory in the IndoorMCD benchmark.

To visually demonstrate our approach, we selected a

single trajectory and plotted the estimated motion using our

extension on ORB-SLAM3. The trajectory of run 15 from

scenario 0, as depicted in Figure 6, utilizes the absolute

pose error (APE) to color-code the segments for better visual

inspection of the close-to-real estimation. However, we want

to underline that this metric is not suitable for evaluating the

performance of VO systems as shown in [26]. The chosen

approach incorporates an initialization step at the beginning

of each run, affecting the origin and orientation at the start.

Therefore, we optimized the final trajectory over the ground

truth to minimize errors for each system. Consequently, the

trajectories of the estimation and ground truth may not align

at the starting point. Additionally, we marked the position

when the multi-sensor approach MROSlam lost all three

VO instances and reported a loss-of-tracking. Due to its

requirement for an already mapped area to recover from LoT,

MROSlam was unable to estimate the entire trajectory. In

contrast, our approach can dynamically handle a reset of any

VO, ensuring full-trajectory coverage. A plot indicating the

currently valid VO track estimates is presented in Figure 7

showing the frequent LoT events for individual modules.

The results show that our fusion approach does not neg-

atively impact the estimation accuracy. Instead, it slightly

improves the maximal error experienced by all systems due

to the averaging effect of the local map. Our claim of

higher robustness is clearly demonstrated by the significant

improvements of the success-rate.

B. Keyframe and Keypose selection

Keypose selection is a crucial factor impacting the robust

operation of a localization system, as discussed in Section II.

In scenarios where sensors are mounted with different ori-

entations and have no overlap, the decision to sample new

Keyposes should be left to the individual VO modules, as

views may vary significantly between sensors. While the first

sensor may observe a feature-rich area, the second one might

enter a low-textured region and delay sampling (or sample

earlier if suitable). Sampling too many Keyframes can lead

to a complex pose graph that may not be optimized online

and in real-time. Therefore, individual sampling may result

in the optimal set of Keyframes and minimal Keyposes for

mapping.

We illustrate that our system independently samples

Keyframes and the corresponding Keyposes for each sensor

in Figure 10. The figure shows three plots of the same

trajectory, each depicting the sampling process for a different

sensor. Starting with the upper plot, it displays the selected

poses for the front-facing camera. As the system rotates,

more poses are registered, but in forward motion, only a

few are required. In contrast, consider the left- and right-

facing cameras. Both are oriented to the side, resulting in a

higher sampling rate during forward motion compared to the



Fig. 5: IndoorMCD [22] benchmark. On the left, panoramic views of three out the five scenarios are shown. On the right, the

images depict typical low-texture environments where loss-of-tracking frequently occurs due to homogeneous appearance,

missing edges, or low-quality features.

TABLE I: Evaluation of the relative trajectory accuracy estimated on the scenarios with ground truth information of the

IndoorMCD dataset [22] in meters. Shown are the mean and maximal RPE for the different approaches in meters. The

success-rate (SR) indicates if the system was able to maintain valid tracking on all trajectories. The rows starting with Multi

at the bottom correspond to extensions using our approach.

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

mean max SR mean max SR mean max SR mean max SR mean max SR

VINS-Mono [8] 0.11 1.59 0.82 0.13 1.45 0.93 0.05 0.47 0.88 0.07 0.62 0.92 0.03 0.62 0.93

VINS-Fusion [8] 0.13 1.57 0.81 0.10 1.40 0.86 0.07 0.32 0.96 0.05 0.50 1.00 0.04 0.59 0.93

ORB-SLAM2 [17] 0.25 5.42 0.00
∗

0.15 4.64 0.24 0.18 5.82 0.00
∗

0.16 2.43 0.63 0.12 1.73 0.73

ORB-SLAM3 [6] 0.09 5.43 0.05
∗

0.09 3.99 0.00
∗

0.04 4.91 0.05
∗

0.02 3.49 0.75 0.01 4.93 0.53

MROSlam [16] 0.03 3.67 0.68 0.02 6.06 0.79 0.04 6.20 0.92 0.06 6.44 1.00 0.01 1.03 1.00

Multi ORB-SLAM3 0.04 1.91 0.77 0.02 1.80 0.90 0.04 2.05 0.96 0.18 1.73 1.00 0.01 0.99 1.00

Multi VINS-Fusion 0.07 1.22 1.00 0.10 1.31 1.00 0.07 0.27 1.00 0.03 0.41 1.00 0.03 0.40 1.00

∗) the trajectory error has been evaluated on the second worst instance due to bad performance

Full trajectory estimation on S0R15

Fig. 6: Estimation result using our approach based on

ORB-SLAM3 [6] that was able to recover the full tra-

jectory. The red circle marks the area, where the multi-

camera approach MROSlam [16] (trajectory not displayed

to enhance readability; please refer to original publication)

lost all motion estimations and was not able to recover until

an already mapped position was revisited.

Fig. 7: Number of valid tracking estimations received from

the VO modules during traversing the trajectory of Figure 6.

previously discussed front sensor. It is noteworthy that the

density of sampled Keyposes is higher in curves compared

to the front sensor. Both side sensors are located outside the

rotational axis of the platform and, therefore, move faster

relative to the others.

C. Reduction of Pose Graph Factors

Besides optimal and independent selection of Keyframes,

one of the major advantages of using a decoupled approach

for the odometry estimation, mapping, and fusion of the

simultaneous localization and mapping (SLAM) system is

the effective reduction of factors in the final pose graph



for global optimization. Our Keypose formulation allows

single VO modules to insert observations solely based on

the state to maintain efficient, robust, and optimal tracking,

as discussed in Section II.

To further investigate the impact of utilizing decentralized

Keyposes over centralized and synchronized Multi-Keyframes

(e.g. [27]), we evaluate the trajectories obtained from the

TUM SLAM Benchmarks [21], [28], the KITTI dataset [20],

and IndoorMCD [22] in a simulation that can be seen

in Figure 8. We sample 3D landmarks in the proximity

of the trajectory and assign unique IDs to simulate the

sampling of features in a VO system. In addition, an in-

tended error is induced consisting of a local normal for

the pose error and a constant directed delta to mimic re-

alistic odometry behavior. In the simulation, eight different

sensor configurations are selected with two (C1 front/back,

C2 front/down) three (C3 3 in line, C4 2 in line/down,

C5 −45◦/front/+45◦, C6 −90◦/front/+90◦) and four (C7

front/left/right/back, C8 −135◦/−45◦/+45◦/+135◦) sensors

to reflect typical hardware configuration across household

robots, exploration rovers, drones and automotive. Features

are tracked across the frames, and Keyframes are sampled

according to our requirements using elin,t = 0.02m and

elin,R = 2◦. We then obtain the number of observations

and compare the result with the number of observations that

would have been inserted in the centralized and synchronized

system, in which every module samples simultaneously.

Since numerous approaches offer the possibility to limit

the number of features per Keyframe, we introduce a similar

behavior by selecting nbest = 20, 50, 100, 300,∞ random

features. Each pair of configurations and parameters is eval-

uated 20 times to overcome statistical outliers. Figure 9

illustrates the reduction of pose graph factors of the evaluated

sensor configurations. It can be seen that the number of

cameras has an impact on the ratio. In the case of two

cameras, the median number of inserted factors reaches 0.46,

decreasing to 0.32 for a three-camera setup and 0.26 for a

four-camera configuration.

D. Computational Complexity

It is crucial to localization systems of any kind to run

under real-time constraints. For this approach, we define the

criteria for real-time capability as the time period between

two received Keyframes. Therefore, we implemented the

approach using Python 3.10 and evaluated the runtime on

a computer with an Intel i7-8650H CPU. We measured the

execution time for estimating a combined pose for both

approaches described in Section IV-A on all trajectories.

For our ORB-SLAM3 implementation, we observed a mean

computation time of 0.13ms (variance < 0.01ms) and for

VINS-Fusion 0.15ms (variance < 0.01ms). In a worst-case

scenario, we assume that Keyframes are sampled for every

frame at a frame-rate of 60Hz. As a result, the time between

consecutive frames would be 16ms, hence the margin is a

factor of 100. For this reason, we expect no complication for

running this approach under real-time constrains.

Simulated view of three virtual cameras

Fig. 8: Simulated view of a sensor setup with three cameras.

The scene displays a single frame and the current visible

features for each sensor coded by color.

Fig. 9: Estimated reduction of inserted observation factors

into the final pose graph for global optimization.

Fig. 10: Locally-optimal selection of Keyframes for each VO

module depending on their internal state along the trajectory.



E. Time Offset Estimation

We reuse the simulation from Section IV-C for this evalua-

tion, in which the timestamps of received frames are altered

by an offset of 10ms. That corresponds to the worst-case

scenario of an Network Time Protocol (NTP)-based clock

synchronization and unknown offset due to interface stacks

like USB. We limit the evaluation to indoor datasets only,

as described in Section III-C. For the minimal change in

pose-delta we select λ∆T = 20cms−2 and a minimum

of 30 Keyframes per track. Some trajectories contain very

few pose-delta changes in which the condition above is not

fulfilled. For all others, we receive a median offset recovery

of 0.9ms. For indoor systems with a theoretical maximum

velocity of 2ms−1 this corresponds to a miss-match of

1.8mm, which is an acceptable error.

V. CONCLUSION AND FUTURE WORK

This work presents an extension to state-of-the-art ap-

proaches by fusing multiple, loosely-coupled, and indepen-

dently running visual odometries. We carefully ensured that

our proposed work does not impose any additional hardware

requirements for the placement and connection of sensors.

Our decoupled approach provides a locally-optimal estima-

tion based on the current view of each camera while min-

imizing the overall graph complexity for optimization. The

primary design goal was to enhance the robustness of current

ego-motion-estimation approaches to overcome challenging

indoor environments, where loss-of-tracking events occur

frequently due to low texture and close distances to obstacles.

Additionally, we offer a time-continuous representation of

the full motion based on all input sensors that can be

evaluated at any point in time.

We demonstrate the applicability of our system in a

representative indoor environment using multiple D435i sen-

sors. Our approach decrease the maximum relative pose

error while maintaining the mean error at the same level

as a comparable multi-sensor by-design method. In addi-

tion, our approach significantly improves the robustness by

successfully recovering nearly all trajectories. Furthermore,

our evaluation in a simulation shows that our formulation

reduces the number of inserted nodes in the final graph

for optimization. Finally, we present a first demonstration

of online time synchronization, acknowledging that further

research is necessary to apply the method outside the indoor

domain.

Hereby, we also want to underscore the limitations of

our system. At first, fast movements, particularly rotations,

introduce a significant level of motion blur across all sensors.

Therefore, the disturbances degrade the quality of sensor

information, and they cannot be resolved through the fu-

sion approach. Additionally, this method does not address

highly dynamic environments where scene appearance spon-

taneously changes. In the end, our goal is to integrate this

approach into a large-scale SLAM system with active loop-

closure detection and place recognition. We anticipate having

a robust localization system in operation, which is crucial for

our research on robotic assistance in elderly care.
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Abstract:

The paper presents the design and implementation of a microphone array for the humanoid robot Rollin’

Justin, aiming to enhance human-robot interaction by enabling robust sound source localization and speech

processing. Recognizing the importance of natural and intuitive interaction in populated environments,

the study addresses the need for robots to detect and track speakers from various positions. The proposed

microphone array, integrated into the robot’s head, facilitates this by localizing and tracking sound sources

within a speci�c range. The design considers an indoor environment with multiple noise sources and utilizes

a sub-array approach to handle di�erent frequency bands. The system processes include ambient noise

removal, ego-noise suppression, and sound source localization using a modi�ed MUSIC algorithm. This setup

enhances interaction capabilities by reorienting the robot’s head sensors towards the speaker. Preliminary

evaluations indicate the system’s potential, with further experiments planned to validate its performance in

realistic scenarios. This work contributes to the development of human-centered interfaces in service robotics,

leveraging advanced audio processing techniques to improve robot audition capabilities.
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I. INTRODUCTION

For a humanoid robot operating in populated environments it is

a key competence to interact with humans naturally and intuitively.

Therefore, research in human-robot interaction explores the interpre-

tation of visual, auditive and even tactile sensing modalities. One

important aspect here is to recognize robustly the intention of the

human interacting with the robot. To achieve this, robot audition is

a suitable modality, as it allows for detecting and tracking speakers

from arbitrary positions around the robot and also from distant places.

In this paper we present the design of a microphone array for the head

of our humanoid robot Rollin’ Justin that allows us to localize and

track sound sources within a certain distance to the robot. Until now,

high-level interfacing to the robot was only possible using a tablet

or by verbal communication via a headset using speech recognition.

However, neither method allows to localize the operator. With the

microphone array in the head we can do sound source localization

and then re-position the head sensors towards the speaker, enabling

advanced interaction possibilities.

In recent years, the research in the field of service robotics focuses

on human-centered interfaces. This includes easy-to-use as well as

easy-to-understand systems like robots with audio input [1]. Several

systems have been developed using microphone arrays to extract

speech [2], [3]. More complex systems use multiple techniques for

processing including sound source localization, feature extraction and

speech-to-text engines [4].

In the following we present the design of a microphone array for

Rollin’ Justin for sound source localization and speech recognition.

First we describe the considered household scenario and present

an overview of the proposed processing system. We than discuss

our design considerations regarding the microphone array as well

as possible sound source localization and speech processing. We

conclude with a description of system integration.

II. DESIGN

For the design of our microphone array we consider the following

scenario: our robot is located in a typical indoor environment, for

instance an apartment (Figure 1). This implies that we have multiple

sources of noise, e.g. a fridge, and reverberations. In addition, we

suppose that there is only one person at a time speaking to the robot,

called the operator. The expected distance r between the robot and

the operator is between 1m and 4m. We assume that, from the

robot’s point of view the operator and any other sound source have a

minimum tangential distance of at least dmin = 1m. This results in

a minimum angular distance ¹min = arctan(dmin/rmax) ≈ ±14◦

separating the speech from any other sound source. Figure 2b

illustrates this scenario.

A. System Overview

We plan our system as illustrated in Figure 2a. The sound from

the sound sources is received and sampled by a microphone array. In

All authors are with: Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), Wessling, Germany. Email:
marco.sewtz@dlr.de, tim.bodenmueller@dlr.de,
rudolph.triebel@dlr.de

Figure 1: Lab environment imitating a typical small apartment

(a) (b)
Figure 2: (left) System overview and (right) illustration of assumed

audio scenario.

a preprocessing step we remove ambient noise and the robot’s ego-

noise. Then, we localize the sound source by calculating the direction

and distance of the source. This is used by subsequent beam forming

to improve the signal for speech recognition.

B. Microphone Array

For the design of the microphone array, we consider the expected

sound signals, the processing requirements, as well as geometrical

limitations. In general, we follow the approach of a broadband

microphone sub-array [5]. Hence, we divide the frequency spectrum

into three sub-bands (< 1 kHz, 1-2 kHz, > 2 kHz), each handled

by a specific sub-array. For lower frequencies, we need large dis-

tances between microphones to capture longer delays. For higher

frequencies, we have to use a smaller spacing. However, the range of

feasible distances between the microphones is small due to limited

space within the robot’s face mask. Also, they have to be placed on

a single plane because of limited space and appearance constraints.

In total we use eight microphones that are arranged as shown in

Figure 4b and grouped into sub-arrays as shown in Figure 4a. The

outer microphones have a distance of 146mm. To improve the speech

quality [6], we sample with at least 16 kHz instead of the usual 8 kHz.

The signals are bandpass filtered, amplified and summed up to the

complete signal. We optimized the microphone positions by a free-

air simulation. The resulting combined directivity pattern is shown in

Figure 3. The main lobe of the array is focused around our defined

14◦ corridor at -3 dB, and sources at larger angles are suppressed. In

the lower frequency range, the lobe is somewhat less focused due to

a limited maximum inter-signal delay.



Figure 3: Directivity pattern for the combined array approach. The

figure shows the pattern truncated at -3 dB. The dashed red line

illustrates a ±14◦ corridor.

(a) Sub-Array concept

(b) CAD drawing of the proposed

microphone positions
Figure 4: (left) Illustration of the sub-array approach, (right) CAD

drawing of the microphones on the robot’s face.

C. Sound Source Localization

For localization, we only use signal snippets that contain speech,

which we identify by means of the Long-Term Speech Diver-

gence [7]. For an accurate and robust localization from these snippets

we use a modified version of the MUSIC algorithm [8].

The main principle of the estimation process relies on the delay

between the received signals. In case of a linear array, the delay is

proportional to the spacing between the microphones. For our 2D

array design, the delay ∆ti between microphone i and a reference

point assuming a signal from direction ¹ is given by the projection

onto the direction vector of the arriving sound wave, i.e.

∆ti = (p¦

i eθ)/c0 ,

where pi is the position of the i-th microphone with respect to the

reference point, eθ the direction unit vector of the sound wave and

c0 ≈ 343m/s the speed of sound. Figure 5 illustrates this relation.

D. Further Processing

With the direction of the sound source, we steer our system towards

the source using a delay-and-sum beamformer in combination with

our sub-array approach. We expect a high increase in signal-to-noise

ratio as well as noise suppression from this technique. The retrieved

speech signal will be used to extract commands from the operator.

We will use already available offline speech processing engines such

as CMU Sphinx [9], which has already been used with our headset.

We also plan to adapt voice assistant paradigms as in the NAOMI

Project [10].

Figure 5: Illustration of the delay calculation for an arriving sound

wave. The intersections of the dashed lines show the projection onto

the direction vector e⃗θ . The red dot represents the reference point.

III. INTEGRATION

For the array we chose SPH0645LM4H-8 MEMS microphones

with I2S support1. They will be sampled simultaneously by the native

I2S ports of an Nvidia Jetson TX2 board mounted onto an Auvidea

J140 carrier. The whole system will be integrated physically into the

head of the robot, and the software will be part of our “Links and

Nodes” framework.

IV. CONCLUSION

We presented the design of a microphone array for sound source

localization and speech processing on the humanoid robot Rollin’

Justin. We introduced our overall system architecture, gave an

overview of the subsequent sound processing, and described design

considerations, implementation details and preliminary evaluations.

In a next step, we will finalize the implementation on the robot and

execute several experiments in realistic scenarios.
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Sound Source Localization for Robotic Applications

Marco Sewtz1 Tim Bodenmüller1 Rudolph Triebel1,2

Abstract— Intuitive human robot interfaces like speech or
gesture recognition are essential for gaining acceptance for
robots in daily life. However, such interaction requires that
the robot detects the human’s intention to interact, tracks his
position and keeps its sensor systems in an optimal configu-
ration. Audio is a suitable modality for such task as it allows
for detecting a speaker in arbitrary positions around the robot.
In this paper, we present an extension of our proposed sound
source localization approach Motion Model Enhanced MUltiple
SIgnal Classification (MME-MUSIC) for segmenting speech
input.

We evaluate the system with speech captured under real
conditions in an experimental setup and show the use of our
estimation in real applications.

I. INTRODUCTION

The ability of mobile robots to interact with people in

an intuitive and maybe anthropomorphic manner is a key to

the acceptance of robots in human-dominated environments.

Human-robot-interaction (HRI) can be visual (e.g. gestures),

tactile (e.g. guiding) as well as auditive (e.g. instructing).

However, all modalities require that the robot recognizes the

intention of a human to interact. Visual systems can only

recognize intention in the sensor’s field of view, which is

usually limited and may also be occluded by obstacles. Tac-

tile systems require that the human is nearby. Robot audition,

however, allows for detecting and tracking a speaker from

arbitrary positions around the robot and also from distant

places. Figure 1 illustrates a typical situation. The human

on the sofa wants to interact with the robot, but the latter

is currently performing another task, thus, positioning its

visual sensor in the opposite direction. Moreover, audio also

allows for gaining information about the environment or to

separate between different speakers. The information about

the speaker’s position can also be used to enhance the audio

input signal, e.g. to improve speech processing as well as

getting more information about the position of humans in

the scenario.

We presented a novel approach for localization of speakers

in reverberant and echoic environments by use of a mi-

crophone array in [1]. We classify received audio streams

as speech or non-speech using a voice activity detector

(VAD). We transform the signal into the frequency domain

and analyze the fourier coefficients to calculate a score.

Afterwards we select the most significant bins and fed them

into our direction of arrival (DoA) estimator. Further on we

1Institute of Robotics and Mechatronics, German Aerospace Center
(DLR), Oberpfaffenhofen, Germany.
2Dep. of Computer Science, Technical Univ. of Munich, Germany
marco.sewtz@dlr.de tim.bodenmueller@dlr.de
rudolph.triebel@dlr.de

Fig. 1: Illustration of the interaction recognition problem:

The robot is turned away from the operator. While the vision

system might not recognize him, the audio input will do so.

propose a motion model to check the calculated direction

spectrum to improve the robustness.

In this work we want to show the application and the use

of the motion model to segment received speech and assign

them to different speakers. We deliberately avoid using other

techniques like mel cepstrum analysis [2]–[5] or vision-based

aid [6]–[9] to illustrate the performance of a single DoA

estimator.

II. RELATED WORK

At first, research focused on imitating the binaural audio

localization of animals and humans [10]–[13]. Using both

the interaural phase difference (IPD) and the interaural

intensity difference (IID). Further, some techniques take into

account the head-related transfer function [14], [15] as well

as the prior information on reverberant properties of the

environment to achieve accurate results. Incorporation of a

particle filter approach to be used on binaural measurements

improves the estimation of sound sources as well [16].

Nonetheless these systems need a demanding hardware setup

and calibration.

Other approaches use an array of microphones to over-

come the challenging requirements on the hardware and to

estimate the direction of arrival (DoA) of a received signal

[17], [18]. It is possible to calculate the most probable DoA

by estimating the time delay between the signals received

by each microphone. Combining these methods with delay

and sum beam forming (DSBF) as well as random sample

consensus (RANSAC), more than one sound source can be



localized simultaneously [19]. However, these approaches

have problems with low signal-to-noise-ratios (SNR) input

signals, changing acoustic conditions and varying speak-

ers. Different approaches using neural networks have been

studied to tackle these problems. Nevertheless, they need

training dedicated to the specific speaker or require very large

amounts of data for generalizing [20]–[24].

Recently, exploiting the properties of the subspace as in

Multiple Signal Classification (MUSIC) [25] and Estimation

of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) [26] have received more interest. They overcome

the resolution limit constrained by the sampling rate and are

more robust to signal noise but they are computational costly

[27]–[30].

Several extensions have been proposed for enhancing the

performance of MUSIC, e.g. using singular value decom-

position [31] to reduce the computational complexity while

enhancing robustness against noise. Incremental versions are

introduced to reach real-time performance while enhancing

robustness against noise [32], [33]. Additional research to

further reduce the computational costs in the representation

space is done in [34], [35].

However, even recent sound source localization systems

face problems when detecting humans in indoor scenar-

ios under non-optimal acoustic conditions. We identified

significant effects that degrade the performance, namely

reverberation and echo. The first one is the reflection of

numerous acoustic wavelets at every surface which results

in a ”fading-out” effect and lower SNR. The latter one is

the complete reflection and delayed reception of the original

source. This leads to miss-classification.

III. SYSTEM

Our system Motion Model Enhanced Multiple Signal Clas-

sification (MME-MUSIC) is based on the SEVD-MUSIC

[36] approach. We enhance the process by limiting the

estimation only to speech phases classified by the voice

activity detector. Furthermore we reduce the number of

frequency bins by selecting the most significant ones based

on a score calculated in the previous step. Additionally we

post-filter our results using a motion model. Lastly we exploit

the decision of the model to segment the speech and assign it

to the speakers. For capturing the audio we use a microphone

array consisting of four acoustic sensors. An overview on the

system is illustrated in Figure 2.

A. Voice Activity Detector and Band Selection

We use the VAD proposed by Ramı́rez et al. to classify the

incoming signal [37]. First, we transform the audio into the

frequency domain. Afterwards, we use the Longterm Speech

Divergence (LTSD) approach which assumes that the spec-

trum of noise differs significantly from frames containing

speech. Yet, short time sound events like clapping or door

closing are suppressed.

Subsequently we use the gained information on the dif-

ference of individual frequency bins compared to noise to

find the significant components. This enables the reduction

of calculation costs while preserving estimation accuracy.

VAD
Band 

Selection
MUSIC

Motion 

Model

Segmentation

FFT

Fig. 2: System overview.

B. DoA Estimation

We assume that our received signal consists only of the

direction-depending source signal and independent system

noise. The approach of MUSIC exploits this dependency

and decomposes the transformed audio into noise and source

subspace. Ultimately it tries to find the corresponding direc-

tion vector which fulfills the constraints given by the system

and the subspaces. We repeat this estimation for all selected

frequency bins and accumulate a total pseudospectrum to

reflect the direction dependencies.

C. Motion Model and Segmentation

We check the plausibility of the estimated angle by eval-

uating it with a motion model. To do this, we assume that

for a given time span the source moves with mean angular

velocity. We take into account a constant motion tolerance

to cope with dynamic changes and measurement noise.

When receiving a new DoA from the previous steps we

gather all estimation within the time span. If we can explain

the measurement given our motion model, we flag them as

valid. We need at least 3 valid estimations, the first ones to

calculate the motion vector, the last one to verify the model.

Furthermore we exploit the verification for our segmen-

tation. We consider a scenario with two persons speaking.

If we receive new measurements which are marked as

valid but based on a different motion vector than previous

measurements, we assign them to a different speaker. This

is a fairly naı̈ve approach, however the performance shown

in the next section is notable.

IV. EXPERIMENTS

We show the application of our sound source localization

in a segmentation process where two persons are having

a conversation. Our system uses the estimated position to

assign the speech to the corresponding speaker. The scenario

is shown in Figure 3. We illustrate both cases, the speakers

facing the system and each other. We assume the last one as



Fig. 3: Conversation between two person. Left side shows the

case where both of them are speaking towards the camera.

In this scenario a vision-based system may lead comparable

performance. Right side shows the case where both speakers

are facing each others. This is a hard task for vision classifier.

As indicated by the blue bar, the auditory system succeeded

in identifying the current speaker.

a hard task for camera-based systems, as the visual clues for

identifying the speaker are reduced to a minimum.

We compare our approach with AFRF-MUSIC [38], which

is an optimized version of SEVD-MUSIC [31] according to

execution time. In contrast, our approach is also optimized

for use in indoor scenarios.

For AFRF-MUSIC we add the information, that the left

speaker can be localized by positive angles, the right speaker

by negative, as the system has no indicator for changing

sources.

We manually labeled the data for left and right speaker and

compare it with the outcome of the algorithms. The results

are shown in Figure 4.

For AFRF-MUSIC we get correct assignment in 79.5%

of all estimated cases, for MME-MUSIC in 93.1%. In total

comparing all cases where the approaches did not assign

a speaker, AFRF-MUSIC performs with 61.0% and MME-

MUSIC with 73.0% successfull assignments (see Table I).

V. CONCLUSION

In this work we showed the application of our recently

developed sound source localization system Motion Model

Enhanced MUSIC (MME-MUSIC). We shortly introduced

TABLE I: Segmentation results.

Total Segmented
Method TP FP TP FP

AFRF 61.0% 39.0% 79.5% 20.5%
MME 73.9% 26.1% 93.1% 6.9%

the pitfalls of indoor scenarios and the resulting effects

on auditory systems. We developed a simple segmentation

algorithm based on our approach to assign speech phases of a

received signal to specific speakers. Furthermore we showed

that this naı̈ve approach is reliable enough in situations where

classical approaches using vision-based systems may fail to

locate the correct speaker.

With this work we want to propagate the benefit of using

robot audition as an additional modality for robust robotic

systems. We expect enhanced perception systems which

operate robustly in complex environments.
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better assignments.
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