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 A B S T R A C T

Polymer nanocomposites, formed by incorporating nanoparticles into epoxy matrices, exhibit exceptional 
thermo-mechanical and fracture properties, making them ideal for advanced engineering applications. This 
study explores the enhancement of fracture properties of epoxies by nanoparticles and develops a coarse-
grained (CG) model to enable this investigation. We present a novel artificial neural network (ANN)-assisted 
optimization framework to calibrate CG molecular simulation models. The algorithm integrates particle swarm 
optimization with ANN predictions, where ANN accelerates parameter optimization by minimizing errors 
between CG simulation results and all-atom reference data. This process significantly reduces computational 
cost while ensuring accurate predictions of critical properties, such as yield stress and elastic modulus, over 
a wide temperature range, demonstrating excellent temperature transferability of the model. Large-scale CG 
simulations facilitated the analysis of nanoparticle agglomeration effects on fracture behavior, a challenge 
infeasible for all-atom simulations. Simulation outcomes were qualitatively compared with experimental 
findings, offering valuable insights into the influence of nanoparticle distribution on fracture properties. This 
integrated approach provides a robust pathway for designing and optimizing polymer nanocomposites for 
real-world applications.
1. Introduction

Polymer nanocomposites (PNCs) have gained significant attention 
for their potential in environmental and engineering applications. 
Defined as polymer matrices with nano-fillers of at least one dimension 
smaller than 100 nm [1], PNCs offer exceptional thermo-mechanical 
properties that surpass those of individual components. Among com-
mercially available nanofillers, boehmite nanoparticles (BNPs) are par-
ticularly suited for dispersing in epoxy resins to create lightweight 
structures for applications such as wind turbine rotor blades or struc-
tural components in aircraft and spacecraft. With their excellent
thermo-mechanical properties, BNPs can significantly improve the char-
acteristics of epoxy resins, even at low filler loadings [2].

However, BNPs often agglomerate during manufacturing, leading 
to poor dispersion within the polymer matrix and reducing their rein-
forcement efficiency [3]. Khorasani et al. [4] investigated the influence 
of BNPs on the thermomechanical properties of epoxy, finding that 
their presence not only improved thermal stability but also enhanced 
the nanomechanical properties of the resin. Specifically, the study 
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reported increased hardness and modulus, indicating a stiffer, more 
durable epoxy matrix with BNPs. Jux et al. [5] demonstrated that BNPs 
significantly enhance the fracture toughness of epoxy resins, with the 
most substantial improvement observed at a filler content of 15 wt%. 
They found that a 15% BNP weight fraction increased the tensile 
modulus by 26% and the critical energy release rate by 62%. Arlt 
et al. [6] further explored the effects of taurine-modified BNPs, showing 
that incorporating 15 wt% of these modified nanoparticles resulted 
in a 25% increase in the elastic properties of carbon fiber/epoxy 
composites. Wu et al. [7] reported that BNP/epoxy nanocomposites 
with 4 wt% BNPs improved tensile strength and fracture toughness by 
24.2% and 28.7%, respectively, over pure epoxy. Fankhänel et al. [8] 
used molecular dynamics simulations to show that strong BNP-polymer 
interactions alter chain packing, increase density, and restrict mobility 
near particles. These changes enhance the interphase, improving stiff-
ness, strength, thermal stability, and stress transfer, leading to superior 
nanocomposite performance. Sangermano et al. [9] highlights the role 
of BNP dispersion and interfacial interactions in improving the thermal 
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and electrical insulation performance. These findings underscore the 
critical role of nanoparticle dispersion and interaction in optimizing the 
mechanical and fracture properties of polymer nanocomposites.

Due to the inherent complexity of nanomaterials, experimental 
tests alone often fail to fully elucidate their reinforcement mecha-
nisms and effects on material failure. Polymer nanocomposites, which 
integrate nanoscale fillers within a polymer matrix, exhibit notable 
enhancements in mechanical and fracture properties, primarily be-
cause of unique molecular-level interactions between nanofillers and 
the polymer matrix. These nanofillers significantly influence fracture 
behavior by enhancing energy dissipation during crack initiation and 
propagation [10,11]. To gain deeper insights, researchers increas-
ingly rely on molecular dynamics (MD) simulations, which allow pre-
cise observation of atomic-level interactions shaping composite behav-
ior [12–15]. MD simulations by Li et al. [16] showed that Carbon 
nanotube/epoxy composites with a predefined crack exhibited gains 
of 24.8% in tensile strength and around 35% in energy release rate. 
Zhou et al. [17] provided a comprehensive review on PNCs rein-
forced with two-dimensional nanomaterials, discussing how variations 
in nanoparticle size, aspect ratio, and dispersion impact the mechanical 
and fracture properties of these composites. Hou et al. [18] further 
explored how the morphology of supra-molecular networks, modeled 
via MD simulations, influences the mechanical performance and self-
healing behavior of PNCs, shedding light on their fracture resistance. 
Similarly, Hagita et al. [19] investigated the fracture behavior of PNCs 
with various fillers, revealing how filler type and distribution within 
the polymer matrix affect the fracture toughness. Roy et al. [20] 
focused on the inclusion of nanoparticles in polymer matrices, utilizing 
MD simulations to examine their impact on fracture toughness and 
material failure mechanisms at the atomic scale. Additionally, Arash 
et al. [21] introduced a complementary approach to study fracture 
mechanisms in viscoelastic polymer nanocomposites, capturing time-
dependent deformation, exploring diverse loading scenarios, employing 
advanced modeling techniques, and providing insights into nanoparti-
cle dispersion and interactions. Collectively, these studies highlight the 
critical role of MD simulations in studying nanoparticle characteristics, 
dispersion, and filler–matrix interactions to determine the fracture 
properties of polymer nanocomposites.

Despite their strengths, one primary challenge of all-atom simula-
tions is the mismatch of time and length scales with experimental tests, 
making them computationally expensive and unsuitable for analyzing 
particle agglomeration effects on the mechanical and fracture behavior 
of nanocomposites. To address these limitations, CG simulations extend 
accessible time and length scales while preserving essential atomic 
details [22–24]. CG simulations simplify all-atom systems by repre-
senting groups of atoms as single superatoms, significantly reducing 
the degrees of freedom. Arash et al. [25] used a CG-based J-integral 
calculation to study fracture behavior in polymer nanocomposites. 
Cui et al. [26] explored how structural parameters influence the im-
pact resistance of graphene-based nanocomposites, highlighting failure 
mechanisms like chain scission and disentanglement. Similarly, Hu 
et al. [27] investigated the effects of grafting density and chain length 
on fracture energy and void formation in polymer nanocomposites. 
Liu et al. [28] analyzed the mechanical and dynamic properties of 
nanocomposites with functionalized polymer chains, using simulations 
to reveal critical polymer-filler interactions that enhance mechanical 
performance and fracture toughness. Similarly, Arora et al. [29] em-
ployed coarse-grained simulations to study the effects of mechanical 
stress and structural inhomogeneities, such as chain length distribution 
and cross-link density, on the fracture behavior of polymer networks. 
Higuchi et al. [30] focused on double-network gels, using CG simula-
tions to uncover how their unique structure resists crack propagation 
and enhances toughness. Moreover, Hu et al. [31] investigated dual 
cross-linked hydrogels, emphasizing the interplay between physical and 
chemical cross-links in energy dissipation and fracture behavior. Con-
structing accurate CG force fields, however, remains challenging, with 
2 
traditional methods like the Martini force field [32], iterative Boltz-
mann inversion (IBI) [33,34], and strain energy conservation [35,36] 
providing calibration frameworks that face issues in convergence and 
structural specificity. These limitations highlight the need for improved 
approaches to achieve both accuracy and efficiency in CG modeling.

To further overcome computational challenges, optimization and 
neural network-based algorithms have been proposed to reduce costs 
and overcome challenges in convergence and recalibration, particu-
larly for capturing temperature effects [37,38]. Bahtiri et al. [39,40] 
developed machine learning-based models, including a viscoelastic–
viscoplastic and a physics-informed model, to enhance prediction accu-
racy for epoxy and short fiber/polymer nanocomposites under varied 
conditions. Hente et al. [41] introduced an optimization-assisted IBI 
method for calibrating temperature-transferable CG force fields. Be-
jagam et al. [42] combined all-atom simulations with particle swarm 
optimization (PSO) and ANN to expedite CG model development, and 
Duan et al. [43] extended this approach to model epoxies across 
broad temperature ranges and cross-linking degrees. Ruza et al. [44] 
introduced temperature-dependent graph neural network potentials to 
predict ionic liquid properties, while Lemke et al. [45] and Wang 
et al. [46] used neural networks to extract free energy surfaces and 
learn CG free energy functions, respectively. Loeffler et al. [47] pro-
posed an active-learning workflow for training neural network force 
fields. Building on these methods, Loose et al. [48] demonstrated that 
equivariant neural networks enhance both accuracy and data efficiency 
in CG modeling, whereas Costa et al. [49] developed a hierarchical 
CG approach using SO(3)-equivariant autoencoders for scalable protein 
modeling. Furthermore, Yu et al. [50] introduced a graph neural net-
work framework for identifying CG dynamical systems. Ricci et al. [51] 
focuses on enhancing CG simulations by incorporating machine learn-
ing algorithms to improve the accuracy and efficiency of modeling 
polymer systems. This integration facilitates efficient exploration of 
monomer sequence-structure–property relationships, aiding in the de-
sign of polymers with tailored properties while reducing computational 
costs and time.

The ongoing demand for efficient, robust algorithms to calibrate CG 
force fields with high accuracy and low computational cost remains 
a central challenge in nanocomposite modeling. This study addresses 
this by introducing an artificial neural network-based optimization 
approach that streamlines CG force field parameterization, significantly 
reducing computational time and improving accuracy compared to 
traditional methods like Martini, IBI, or strain energy conservation. 
Our CG force field accurately predicts properties like yield stress and 
elastic modulus across a wide temperature range, demonstrating strong 
temperature transferability. The primary novelty lies in integrating 
ANN-based optimization with CG simulations to overcome computa-
tional challenges, enhance force field accuracy, and ensure temperature 
transferability, resulting in a comprehensive CG model. Furthermore, 
our ANN-assisted optimization algorithm facilitates the development of 
a predictive CG model, enabling qualitative exploration of the impact 
of BNP agglomeration on the fracture properties of nanocomposites 
beyond the time and length scales accessible by all-atom simulations. 
This work investigates the relationship between fracture properties and 
the size of the volume element. It further examines the effects of BNP 
weight fraction, agglomerate size, and BNP distribution on the fracture 
behavior of BNP-reinforced polymers, supported by a combination of 
simulations and experimental validation.

2. All-atom simulations

In this study, all-atom simulations are conducted to obtain the 
thermo-mechanical properties of BNP/epoxy nanocomposites, which 
serve as target values for an ANN-assisted optimization procedure. The 
following sections explain the simulation details related to the curing 
process, glass transition temperature (Tg) predictions, and mechanical 
tests.
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Fig. 1. Molecular structures of (a) a bisphenol-A-diglycidylether monomer, (b) a 4-methyl-1,2-cyclohexanedicarboxylic anhydride curing agent, and (c) the unit cell of the crystalline 
structure of boehmite (with lattice parameters a = 3.693, b = 12.221, and c = 2.865 Å). In (a) and (b), gray represents carbon, while in (c), it represents aluminum. Red and 
white indicate oxygen and hydrogen atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Curing reaction mechanism between DGEBA epoxy and anhydride curing agent.
2.1. Materials

The curing simulations are performed for an epoxy resin consisting 
of bisphenol-A-diglycidylether (DGEBA) monomers and 4-methyl-1,2-
cyclohexane dicarboxylic anhydride (MTHPA) hardeners. The molec-
ular structure of DGEBA and the curing agent are shown in Figs. 
1(a) and 1(b). The mixing ratio is the standard stoichiometric epoxy
monomer/hardener mixing ratio of 100 : 90. The chemical reactions 
depicted in Fig.  2 involve the opening of the epoxide rings and the 
hydrolysis of the curing agent, enabling them to react with each other 
and generate carboxylic acids. These acids then react with the epoxy 
groups to produce hydroxyl groups, which further react with DGEBA 
and MTHPA.

As mentioned earlier, nanocomposite systems contain nano-scaled 
reinforcement materials to enhance mechanical properties. In this 
work, boehmite nanoparticles are added to our epoxy system.
Boehmite, with the formula 𝛾-AlO(OH), is an aluminum oxide hydrox-
ide with lattice parameters a = 3.693, b = 12.221, and c = 2.865 Å. As 
illustrated in Fig.  1(c), central aluminum atoms are bonded to double 
layers of oxygen to form the crystalline structure of BNPs. The oxygen is 
bonded by hydrogen bonds to the hydroxyl groups of the octahedrons.

2.2. Cross-linking simulations

To obtain the material properties, the topology of the molecular 
network must realistically represent a cured epoxy system. For this 
purpose, DGEBA and hardener molecules are randomly placed in a 
periodic 60 × 60 × 60 Å3 simulation box with an initial density of 
1.2 g/cc. The selected box size represents the largest feasible dimension 
for MD simulations, ensuring that the RVE is adequately sized to 
capture the material’s characteristics without exceeding computational 
resources [52]. The non-cross-linked models are generated using the 
open-source package PACKMOL [53]. Additionally, all-atom models of 
the BNP/epoxy systems contain one BNP nanoparticle centrally located. 
The boehmite structure consists of four layers with a thickness of 20 Å, 
as shown in Fig.  3. This thickness is selected as a compromise between 
computational feasibility and ensuring a realistic representation of 
nanoparticle dimensions. This size also allows the boehmite to inter-
act effectively with the surrounding epoxy matrix while maintaining 
compatibility with the periodic boundary conditions.
3 
For intermolecular interactions, the Dreiding force field [54] is uti-
lized in all-atom simulations. Harmonic force fields govern all bond in-
teractions, including stretching and bending potentials. Lennard-Jones 
potentials are used for the non-bond interactions between atoms with 
a cut-off distance of 12 Å. To obtain unlike pair potentials, the arith-
metic mixing rule is applied [55]. The barostat [56] and Nosé–Hoover 
thermostat are used to control the system’s pressure and temperature.

In the curing process of pure epoxy, epoxy monomers connect to 
an agent molecule, as explained in Section 2.1. This connection occurs 
through the formation of a methyl group on the monomer, which 
links to the hydroxyl group of the agent molecule. In the BNP/epoxy 
nanocomposite, the hydroxyl groups on the boehmite surface can also 
participate in the curing reaction [8].

For the cross-linking simulation of an uncured system, after energy 
minimization, the temperature is linearly increased to the curing tem-
perature of 450 K [5]. An NPT ensemble for 1 ns and the constant 
pressure of 1 atm are used in the process. The following steps are then 
conducted for the cross-linking simulation:

1. A bond is formed between two reactive sites with the shortest 
possible length, with a cut-off of 4.5 Å for the reaction distance;

2. An equilibration is performed for a time period of 2.5 ps;

The cut-off distance of 4.5 Å represents the maximum distance at 
which reactive sites can form a bond, based on typical bond lengths 
and interaction distances observed in the chemical system. It balances 
realism and computational efficiency, avoiding unrealistic bonds with 
larger cut-offs and missed reactions with smaller ones. These two 
steps are repeated until the final degree of curing of around 90% is 
reached. Achieving 100% curing is often challenging in practice due to 
incomplete reactions and unreacted species. A 90% cure is not only 
more realistic but also reflects typical processing conditions. At this 
level, materials show significant mechanical property improvements 
while maintaining flexibility, striking an optimal balance between per-
formance and processability. The time step during the simulation was 
1 fs. The duration of each step and the cut-off value were selected 
to ensure a well-equilibrated system and sensible computing time. 
Due to the layered structure of the boehmite, the simulation box for 
nanocomposites is simulated using an isoenthalpic–isobaric ensemble 
(NPH) with a Nosé–Hoover barostat [56] and an additional Langevin 
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Fig. 3. A simulation box of cured boehmite/epoxy nanocomposites with dimensions of 60 × 60 × 60 Å3 for the all-atom model, and (b) a four-layer boehmite structure with a 
thickness of 20 Å.
thermostat [57], instead of an NPT ensemble. The curing process is 
conducted using the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) [58] with our modification to the fix bond/create 
command. This command calculates the distances between all possible 
reaction groups and forms a bond with the smallest reaction distance, 
discarding all reaction distances larger than the chosen cut-off. Addi-
tionally, for visualization and analysis of the data, OVITO [59] is used 
in this work.

2.3. Tensile simulations and Tg predictions

After cross-linking, the cured system is cooled down to room tem-
perature and then relaxed using an NPT ensemble for 1.5 ns. To 
obtain the stress–strain relationship, tensile deformation is applied to 
the systems by increasing the box length in the tensile direction and 
remapping the atom coordinates at every step. To allow for natural 
Poisson contraction, stresses perpendicular to the tensile direction are 
fixed at zero. The time step for a constant strain rate of 𝜖̇ = 109 1/s 
is set to 0.02 fs. To obtain an average stress–strain response, tensile 
simulations are repeated in the X, Y, and Z directions for five different 
configurations. Fig.  4(b) shows the average stress–strain curve.

A piecewise cubic spline interpolation is fitted to the simulation data 
points to extract the yield stress, considering an optimized knot. The 
position of each knot is optimized by minimizing the least square error 
between the fit curve and the data points. The yield point is identified 
as the first maximum of the spline fit, where the derivative of stress 
with respect to strain is zero. Furthermore, to extract the relationship 
between specific volume (1/𝜌) and temperature for calculating Tg, 
the temperature of an equilibrated system is linearly increased from 
200 K to 600 K. Fig.  4(a) shows the variation of specific volume versus 
temperature, measured based on the average of simulation results for 
five different configurations. The glass transition temperature 𝑇𝑔 =
433.15 K, predicted using all-atom simulations, is consistent with the 
experimental value of 426.15 K reported in the literature [4].

3. Coarse-grained modeling

3.1. Mapping scheme

In coarse-grained models, a set of atoms is mapped into a CG 
super-atom (bead). Therefore, the first step in coarse-graining is to 
define proper mapping schemes. CG beads must enable the model 
to maintain the underlying chemistry. Mapping schemes are based 
on the chemical compositions of molecules and the repeating units 
of the monomers [60]. In this work, the highest achievable level 
of coarse-graining is adopted based on the research work of Hente 
et al. [41].
4 
Each monomer is mapped into one bead in the epoxy mapping 
scheme, as illustrated in Figs.  5(a) and 5(b). Accordingly, the CG system 
comprises two types of beads: one for the bisphenol-A monomer, named 
A, and one for the hardener, named B. The atomic masses of beads 
A and B are 340.4128 amu and 166.1739 amu, respectively. In this 
scenario, the degrees of freedom (DOF) for beads A and B decrease by 
factors of 49 and 22, respectively. For a box size of 60 × 60 × 60 Å3, 
filled with the epoxy system, the number of beads decreases by ap-
proximately 32 times for the CG model compared to the full atomistic 
model.

Boehmite is a mineral composed of aluminum with a bulk modulus 
of 93 GPa [61]. Its structural properties have been studied experi-
mentally using XRD [62] and Raman spectroscopy [63], as well as 
numerically using quantum mechanics [61]. The ultra-high elastic 
modulus of BNPs, compared to the epoxy matrix, allows us to model 
them as rigid particles in CG modeling. In the subsequent simulations, 
one primary particle with a length of 20 Å is mapped to a single CG 
bead, named P. Compared to its full atomistic system, the DOF in this 
CG model decrease by 656 times. The atomic mass of P is 10,433 amu. 
The primary particle is illustrated in Fig.  5(c).

3.2. Coarse-grained force field

After the mapping scheme, a CG force field should be calibrated 
to simulate BNP/epoxy nanocomposites and predict their thermo-
mechanical properties. The potential energy function of a CG force 
field is decomposed into bond and non-bond terms. The total potential 
energy of a system is then given by 
𝐸𝑡𝑜𝑡𝑎𝑙(𝑑, 𝜃, 𝑟) =

∑

𝑖
𝐸𝑏𝑖 +

∑

𝑗
𝐸𝑎𝑗 +

∑

𝑘
𝐸𝑛𝑜𝑛𝑏𝑘 , (1)

where 𝐸𝑏, 𝐸𝑎 are the energy terms corresponding to variations in bond 
length and bond angle, respectively, and 𝐸𝑛𝑜𝑛𝑏 represents the non-bond 
interactions. It is worth noting that terms corresponding to torsional 
interactions are omitted due to their minor effects.

To consider bond breakage, the Morse potential [54] is used in this 
CG model for stretching: 

𝐸𝑏(𝑙) = 𝐷𝑏(1 − 𝑒−𝛼(𝑟−𝑟0))2, (2)

where 𝑟0 represents the equilibrium bond distance, 𝐷𝑏 is the depth of 
the potential well, and 𝛼 shows a stiffness parameter. Considering the 
bond between epoxy and BNPs [8], there are two types of bonds in our 
nanocomposite system, AB and PB.

The harmonic force field is applied for the bending potential in this 
CG model: 

𝐸 (𝜃) =
𝐾𝜃 (𝜃 − 𝜃 )2, (3)
𝑎 2 0
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Fig. 4. (a) Average specific volume–temperature curve and (b) average stress–strain curve for pure epoxy, obtained from all-atom simulations.
Fig. 5. All-atom model illustrations of (a) a DGEBA epoxy, (b) a curing agent, and (c) a four-layer boehmite structure with a thickness of 20 Å. Each is represented by a 
corresponding CG bead.
where 𝐾𝜃 and 𝜃0 represent the spring constant and the equilibrium 
angle, respectively. In the CG model, there are two types of angles: BAB 
and PBP.

The non-bond interactions are modeled using a Lennard-Jones-
(12,6) potential with a cut-off distance of 20 Å, 

𝐸𝑣𝑑𝑊 (𝑟) = 𝜖
[

(𝜎
𝑟
)12 − (𝜎

𝑟
)6
]

, (4)

where 𝜖 represents the equilibrium well depth and 𝜎 the equilibrium 
distance. Since there are three CG types, the CG model of nanocompos-
ites includes six total unknown non-bond force fields: 𝜖𝐴𝐴, 𝜖𝐵𝐵 , 𝜖𝑃𝑃 , 
𝜎𝐴𝐴, 𝜎𝐵𝐵 , 𝜎𝑃𝑃 . For unlike bead pairs, the arithmetic mixing rule [55] is 
used to obtain pair potentials, where the Lennard-Jones (LJ) parameters 
are determined as follows: 𝜖𝑖𝑗 = √

𝜖𝑖𝜖𝑗 and 𝜎𝑖𝑗 = 1
2 (𝜎𝑖 + 𝜎𝑗 ).

The CG force field is utilized to predict the thermo-mechanical 
properties of BNP/epoxy nanocomposites. The preparation of the non-
cross-linked system and the curing process mirror those used in all-atom 
simulations. Initially, monomer and hardener molecules are generated 
and randomly distributed within a simulation box. Morse potentials 
are employed for bond interactions, while harmonic potentials manage 
bending interactions. Before initiating the cross-linking simulation, the 
simulation box undergoes energy minimization. Similar steps are fol-
lowed for the cross-linking of an uncured system, treated as a molecular 
system. In CG simulations, a reaction distance cutoff of 10 Å is applied. 
The final degree of curing reaches approximately 90%. The durations of 
the individual steps and the chosen cut-off value are carefully selected 
to ensure the system is well-equilibrated within a reasonable computing 
time.
5 
3.3. Machine-learning assisted optimization

In this study, an ANN-assisted optimization algorithm is proposed to 
calibrate CG force fields for BNP/epoxy nanocomposites. The suggested 
algorithm represented in Table  1, includes CG simulations and a combi-
nation of an ANN algorithm and PSO. This approach aims to accelerate 
the search process in finding the optimal solution. In the ANN-assisted 
CG model optimization, each particle represents a set of unknown CG 
force field parameters that define the interactions in the system. These 
parameters are optimized to match the thermo-mechanical properties of 
the CG model to those obtained from all-atom simulations. The inputs 
to the ANN are the force field parameters, including bond and angle 
constants, equilibrium values, and van der Waals parameters (e.g. 𝐷𝑏, 
𝛼, 𝑟0, 𝐾𝜃 , 𝜃0, 𝜎, and 𝜖). The outputs of the ANN are the corresponding 
thermo-mechanical properties derived from CG simulations, such as 
mass density, Young’s modulus, glass transition temperature, and yield 
stress. 

3.3.1. MLP training
The true advantage of neural networks lies in their ability to rep-

resent both linear and nonlinear relationships derived directly from 
data processing. A multilayer perceptron (MLP) is a representation 
of nonlinear connections between sets of input data and a set of 
outputs [64]. A typical MLP structure is composed of interconnected 
nodes in multiple layers, where the outputs of each node are processed 
through a nonlinear activation function. The output activation 𝑎(𝑙+1) at 
layer 𝑙 + 1 is derived from the input activation 𝑎(𝑙) [65], 

𝑎(𝑙+1) = 𝜎(𝑊 (𝑙)𝑎(𝑙) + 𝑏(𝑙)), (5)
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Table 1
ANN-assisted optimization algorithm for calibrating CG force fields.
 1. Generate particles with random swarm positions and velocities  
 2. Evaluate the fitness of the swarm, and find the individual and global best of the swarm 
 3. Update the velocity and position of each particle using a simulation-trained ANN model 
 4. Update the inertia weight and check for termination criterion  
 5. if 𝑓 ≤ tolerance (see Eq. (11)) then  
   return the optimized CG force field  
   else  
   go to step 2  
   end if  
Fig. 6. Transfer functions for (a) the linear function and (b) the hyperbolic tangent function.
where 𝑙 stands for a specific layer, 𝑊 (𝑙) and 𝑏(𝑙) represent the weight 
and bias at layer 𝑙 and 𝜎 denotes the nonlinear activation function. The 
activation functions for the input and output layers are the identity 
function, as shown in Fig.  6(a). For the hidden layers, the hyperbolic 
tangent function, which is a nonlinear activation function, is used (see 
Fig.  6(b)).

In the case of an m-layer multilayer perceptron, the last output layer 
is defined as, 
ℎ𝑊 ,𝑏(𝑥) = 𝑎(𝑚), (6)

while the first input layer is represented by 𝑎(1) = 𝑥. The weights 
𝑊  and bias 𝑏 are trained using a local optimization method from the 
Levenberg–Marquardt algorithm [66], 
𝐉𝑛𝑒𝑤 = 𝐉𝑜𝑙𝑑 − (𝐉𝑇 𝐉 + 𝜇𝐈)−1𝐉𝑇 𝐞, (7)

where 𝐉 represents the Jacobian and 𝐈 stands for the identity matrix, 
respectively. The error vector in this equation is denoted by 𝐞. The 
objective function is designed to minimize the difference between the 
predicted and the desired outputs, 

𝐽 (𝑊 , 𝑏; 𝑥, 𝑦) = 1
2
‖

‖

ℎ𝑊 ,𝑏(𝑥) − 𝑦‖
‖

2 . (8)

Eqs. (8)–(11) and Fig.  6 represent standard neural network formula-
tions, included for completeness and to support readers who may be 
less familiar with these techniques. Here, the force field parameters 
are optimized using an ANN surrogate, as shown in Fig.  7(a). To 
gather the comprehensive results required for training the ANN model, 
the epoxy system under various thermo-mechanical loadings is first 
simulated using the CG model with different force field parameters. 
These simulations facilitate the collection of data on the corresponding 
thermo-mechanical properties of the epoxy, including mass density, 
Young’s modulus, glass transition temperature, and yield stress. To mit-
igate noise from randomly cross-linked polymer networks and thermal 
fluctuations, the simulation results from each test are averaged over 
nine different molecular configurations and compiled into a dataset. 
If a simulation result deviates from others by more than 50%, it is 
considered an outlier resulting from an unrealistic molecular structure 
and is excluded from the dataset. Consequently, the distribution of 
6 
thermo-mechanical properties relative to the force field parameters is 
obtained. The output parameters of the ANN algorithm — density, 
Young’s modulus, glass transition temperature, and yield stress — are 
computed from CG simulations of the pure epoxy system. The force 
field parameters, including 𝐷𝐴𝐵

𝑏 , 𝛼𝐴𝐵 , 𝑟𝐴𝐵0 , 𝐾𝐵𝐴𝐵
𝜃 , 𝜃𝐵𝐴𝐵0 , 𝜎𝐴𝐴, 𝜎𝐵𝐵 , 𝜖𝐴𝐴

and 𝜖𝐵𝐵 , are selected as input data for a MLP, a type of feedforward 
ANN.

We optimize all force field parameters, including equilibrium bond 
distances and angles, using an ANN to enhance the adaptability and 
accuracy of our CG model across diverse simulation conditions. This 
method facilitates flexible parameterization and the discovery of non-
intuitive relationships that static extraction methods might miss. Al-
though this approach increases complexity and could lead to multiple 
viable parameters sets, it prevents overfitting to specific all-atom simu-
lations and ensures broader applicability. By incorporating constraints 
within the ANN assisted optimization, we keep parameters within 
physically plausible ranges, addressing concerns about their physical 
meaningfulness. Additionally, comparative validation studies, as shown 
in the author’s previous paper [41], confirm the effectiveness and 
accuracy of these parameters against traditional methods like the in-
verse Boltzmann method, which was insufficiently robust for this study. 
While constitutive equations provide physical interpretability, the com-
plexity of nanoparticle-reinforced polymers — particularly dispersion 
and agglomeration effects — challenges their derivation without sim-
plifications. The ANN approach was selected for its ability to model 
these behaviors directly from data, facilitating efficient CG force field 
optimization.

Based on the dataset, the MLP is trained to establish a representa-
tion of the data relations. The dataset randomly divides into training, 
validation, and testing data. The datasets are generated as follows: a 
training set with 3600 configurations, a validation set containing 200 
configurations, and a test set with 200 configurations to evaluate the 
performance of the model. The 4000 configurations refer to unique 
sets of CG force field parameters varied systematically, with each set 
used in LAMMPS-based CG simulations to compute thermo-mechanical 
properties for MLP training. The parameters are sampled using the 
Halton sequence algorithm [67] to ensure uniform parameter space 
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Fig. 7. (a) A schematic illustration of the CG force field parameterization and (b) the ANN surrogate with one input layer, one output layer, and two hidden layers.
Fig. 8. Performance of the ANN model for (a) training and testing, and (b) training and validation. Known values in 𝑥-axis refer to target thermo-mechanical properties from 
All-atom Simulations (Density, Young’s Modulus, 𝑇𝑔 , Yield Stress). Each data point represents a prediction for one of these four properties across the dataset (3600 training, 200 
validation, and 200 testing configurations).
coverage. The topology of the model, which includes an input layer, 
two hidden layers, and one output layer, is represented in Fig.  7(b). 
Each hidden layer contains 20 neurons, and the hyperbolic tangent 
function is used as the activation function for neurons in the hidden 
layers. Our simulations suggest that this configuration of hidden lay-
ers and neurons provides sufficient prediction accuracy. It is worth 
noting that the chosen architecture adequately addresses the problem, 
as empirical evidence from model evaluation (training and validation 
loss curves) supports this choice. The architecture strikes the right 
balance between model complexity and the problem’s requirements 
while avoiding potential overfitting, which is the model’s failure to 
generalize from the training data to new data. Input and output data 
were normalized to [0, 1] using min–max scaling, with bounds derived 
from the dataset’s extrema, ensuring uniform scaling across diverse 
physical properties.

Here, The Levenberg–Marquardt algorithm is utilized to perform 
regression and optimize the weights of the ANN model. Performance is 
evaluated using a loss function based on the mean squared error (MSE). 
To enhance the MLP’s generalization capacity, both input and output 
data are normalized within the range of 0 to 1. The entire learning 
process is conducted in MATLAB using the Neural Network Toolbox. 
The regressions predicted by the ANN model for both training and test 
data are shown in Fig.  8. For CG models, achieving high predictive 
accuracy means effectively balancing accuracy with computational ef-
ficiency. An 𝑅2 of 0.8 suggests that the ANN captures a significant 
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portion of the necessary dynamics, generally satisfactory for many 
coarse-grained simulations [68–70]. The consistent 𝑅2 values across 
training, testing, and validation indicate that the model generalizes 
well to different datasets—a crucial aspect for CG modeling, as the 
force fields must perform reliably under various conditions. In the field 
of computational chemistry and molecular dynamics, this ANN model 
shows robust performance and generalizes well without significant 
overfitting. This level of performance is adequate for many practical 
applications, including ours, as future validation will demonstrate in 
the following sections. It is worth noting that the MLP’s 𝑅2 of 0.8 
reflects a balanced trade-off in predicting multiple properties, achieved 
through normalization and a summed error objective function, ensuring 
adequate accuracy for CG applications without overfitting to any single 
property.

Fig.  9 presents the property-specific performance of our ANN model, 
revealing significant variations in predictive accuracy across different 
thermo-mechanical properties. The model achieves excellent perfor-
mance for density predictions (𝑅2 = 0.87), reflecting the direct cor-
relation between molecular packing and basic force field parameters. 
Young’s Modulus (𝑅2 = 0.84) also demonstrates strong performance 
while yield Stress (𝑅2 = 0.74) and glass transition temperature (𝑅2 = 
0.72) show reasonable accuracy. The consistent gap between training 
and testing performance (typically 2%–7% lower R2 for test data) 
indicates good model generalization without significant overfitting. The 
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Fig. 9. Individual ANN model performance for predicting thermo-mechanical properties from CG force field parameters: (a) Density, (b) Young’s Modulus, (c) Glass transition 
temperature, and (d) Yield stress. Each subplot shows predictions vs. target values from all-atom simulations, with separate R2 values revealing property-specific model performance.
overall average R2 of 0.80 across all properties demonstrates that the 
MLP provides reliable predictions while highlighting which properties 
can be predicted with higher confidence for practical applications.

Fig.  10 shows the MSE versus epoch for training (3600 configu-
rations), validation (200 configurations) and test (200 configurations) 
sets. The plot demonstrates a steady decrease in training loss, confirm-
ing effective learning of the thermo-mechanical property mappings. In 
addition, it shows a corresponding decrease in validation loss, plateau-
ing near the tolerance of 0.01, indicating no significant overfitting. Fig. 
10 presents the training and validation loss versus epoch, illustrating 
convergence of the MLP model and its ability to generalize across the 
dataset.

3.3.2. PSO optimization
We chose PSO for its suitability in optimizing continuous force 

field parameters. It provides fast convergence, balances exploration and 
refinement efficiently, minimizes computational overhead, and scales 
well with parallel simulations. In the PSO algorithm, the swarm moves 
across the grid search space as defined by [71], 
𝐗𝑖
𝑗+1 = 𝐗𝑖

𝑗 + 𝐕𝑖
𝑗+1, (9)

𝐕𝑖
𝑗+1 = 𝜂𝐕𝑖

𝑗 + 𝑐1𝑟
𝑖
1𝑗 (𝐏

𝑖−𝑏𝑒𝑠𝑡
𝑗 − 𝐗𝑖

𝑗 ) + 𝑐2𝑟
𝑖
2𝑗 (𝐏

𝑔−𝑏𝑒𝑠𝑡
𝑗 − 𝐗𝑖

𝑗 ), (10)

where 𝐕𝑖
𝑗 and 𝐗𝑖

𝑗 denote the velocity and position of the 𝑖th particle 
at the 𝑗th iteration, respectively. 𝐏𝑖−𝑏𝑒𝑠𝑡

𝑗  and 𝐏𝑔−𝑏𝑒𝑠𝑡
𝑗  represent the indi-

vidual best and the global best positions of the swarm, respectively. 
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Fig. 10. The MSE versus epoch for training (3600 configurations), validation (200 
configurations) and test (200 configurations) sets. Best validation performance is 0.01 
at epoch 161.

Coefficients 𝑐1 and 𝑐2 are the constants; 𝜂 is the inertia factor. 𝑟𝑖1𝑗 and 
𝑟𝑖2𝑗 are random parameters within the range of 0 to 1.
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Table 2
Search space for CG force field parameters used in the optimization process.
 Type of interactions Parameters Initial guess range Optimization boundaries
 Bond 𝐷𝑏 (kcal/mol/Å2) 40–100 10–150  
 𝛼 (–) ∼ 1  
 𝑟0 (Å) 5–12 2–20  
 Angle 𝐾θ (kcal/mol/rad2) 20–100 10–200  
 θ0 (◦) ∼ 150  
 vdW ϵ (kcal/mol) 4–100 > 0  
 σ (Å) 7–16 > 0  
We employ the ANN model to generate ‘‘good particles’’ during each 
PSO iteration, which aids in accelerating the search process for the 
optimal solution. These particles are closer to the best solution com-
pared to other searched positions. The PSO particle with the greatest 
fitness is replaced by the new particle predicted by the ANN model. 
Consequently, all PSO particles are updated based on this new particle. 
The swarm size used in the PSO optimization algorithm is set to 10 
particles, with each particle representing the unknown CG force field 
parameters.

To determine the specific size of the search space initially, as men-
tioned earlier, an empirical approach is informed by physical intuition 
and preliminary parametric studies. Specifically, for the Morse bond 
potential parameters, the equilibrium bond distance (𝑟0) was initial-
ized based on average bond lengths from all-atom simulations of the 
BNP/epoxy system, typically ranging from 5 to 12 Å depending on 
the bead pair (e.g., AB or PB bonds). The potential well depth (𝐷𝑏) 
was set between 40 and 100 kcal/mol, reflecting typical bond energies 
in polymers, while the stiffness parameter (𝛼) was initialized around 
1.0, consistent with similar materials. For the harmonic angle potential, 
the spring constant (𝐾𝜃) was set between 20 and 100 kcal/mol/rad2, 
and the equilibrium angle (𝜃0) near 150◦, in line with epoxy chain 
geometry. Lennard-Jones parameters were initialized with 𝜖 values 
between 4 and 100 kcal/mol and 𝜎 between 7 and 16 Å, based on van 
der Waals interactions observed in all-atom data. To ensure physical 
realism during PSO optimization, parameter bounds were applied. Bond 
lengths (𝑟0) were restricted to 2–20 Å, and force constants (𝐷𝑏, 𝐾𝜃) 
were limited to 10–150 kcal/mol and 10–200 kcal/mol/rad2, respec-
tively. LJ parameters were constrained to positive values with upper 
limits set to avoid unphysical energy scales or atomic overlaps. To 
provide a clear visual reference Table  2 has been prepared. 

In the optimization procedure, the total error is defined using 
the thermo-mechanical properties obtained from CG simulation-trained 
ANN models and all-atom simulations, 

𝑓 =
𝑁
∑

𝑖=1

(

𝐹𝐴𝑁𝑁
𝑖 (𝐗)

𝐹 𝑟𝑒𝑓
𝑖

− 1

)2

, (11)

where 𝐹 𝑟𝑒𝑓
𝑖 (𝑖 = 1, 2,… , 𝑁) represents a set of known properties from 

all-atom simulations, and 𝐹𝐴𝑁𝑁
𝑖 (𝐗) is the same set calculated by the 

CG simulation-trained ANN model using the unknown force field pa-
rameters 𝐗 = [𝐷𝑏, 𝛼, 𝑟0, 𝐾𝜃 , 𝜃0, 𝜖, 𝜎]. The iteration continues until 
the objective function is reduced to a specified tolerance. The target 
values used in the procedure are the mass density, Young’s modulus, 
glass transition temperature and yield stress from the all-atom sim-
ulations. To balance high accuracy and low computational cost, the 
tolerance is set at 0.01. It is worth noting that using yield stress instead 
of the full stress–strain curve simplifies the optimization process by 
reducing complexity, as it represents a single scalar value rather than 
a comprehensive dataset. Yield stress is a critical mechanical indicator, 
capturing the onset of plastic deformation, which is often sufficient for 
many applications. This approach also reduces computational costs by 
eliminating the need to simulate the entire stress–strain response. While 
optimizing yield stress alone may not be as robust as analyzing the full 
curve, it is a practical and efficient metric, particularly as it is one of 
the four thermomechanical properties considered in this study.
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Table 3
Optimized CG force field parameters.
 Type of interactions Parameters Epoxy BNP

 Bond 𝐷𝑏 (kcal/mol/Å2) 45.86 95.81  
 𝛼 (–) 0.97 0.98  
 𝑟0 (Å) 5.04 12.05  
 Angle 𝐾θ (kcal/mol/rad2) 25.07 98.23  
 θ0 (◦) 149.74 150.98 
 vdW ϵ (kcal/mol) 4.53, 4.47 100.64 
 σ (Å) 7.94, 7.78 16.19  

The trained network will significantly accelerate the calculation 
of thermo-mechanical properties derived from a set of force field pa-
rameters. This model can be utilized to optimize these parameters by 
minimizing the differences between the thermo-mechanical properties 
obtained from the CG simulation-trained ANN model and those from 
the all-atom simulations. The use of the ANN model significantly re-
duced the computational time required for the optimization process, 
achieving a reduction by an order of magnitude compared to pure 
optimization alone. With ANN assistance, the optimization process 
becomes far more efficient, enabling faster convergence and facilitating 
a broader exploration of the design space. The reason we employ opti-
mization is to reduce computational effort. One example that highlights 
the differences is the work by Wang et al. [46], who demonstrated 
that a deep learning approach for CG-MD can achieve high accuracy in 
capturing multi-body interactions for systems such as alanine dipeptide 
and Chignolin. However, this level of accuracy comes at the cost of 
requiring extensive training data. For alanine dipeptide, their model 
was trained on 1 million configurations derived from a 1-microsecond 
all-atom simulation in explicit solvent, with coordinates and forces 
saved every picosecond. For Chignolin, the training dataset comprised 
3742 short MD simulations, each 50 nanoseconds long, resulting in 
a total simulation time of 187.2 microseconds. These large datasets 
underscore the data-intensive nature of MLFFs compared to the ANN-
assisted approach in our study, which utilizes a more modest dataset 
of 4000 configurations to achieve sufficient accuracy for CG parameter 
optimization.

After optimizing the CG force field for the epoxy system, the same 
ANN-assisted optimization procedure is applied to calibrate the force 
field parameters related to BNP nanoparticles. In this case, the inputs 
to the ANN model are 𝐷𝑃𝐵

𝑏 , 𝛼𝑃𝐵 , 𝑟𝑃𝐵0 , 𝐾𝐵𝑃𝐵
𝜃 , 𝜃𝐵𝑃𝐵0 , 𝜖𝑃𝑃 , and 𝜎𝑃𝑃 . 

Additionally, the normalized mass density, Young’s modulus, glass 
transition temperature, and yield stress computed using CG simulations 
of a single BNP/epoxy system serve as the output values. The design of 
the ANN model is identical to that used for the pure epoxy. The optimal 
solutions searched for the force fields of the CG model are listed in 
Table  3. 

4. Experiments

4.1. Manufacturing

Manufacturing BNP/Epoxy test specimens can be divided into four 
sections: dispersing, mixing, curing, and chipping. The aim of dispers-
ing is to comminute and homogenize BNP in the epoxy resin. To achieve 



A. Hente et al. Materials Today Communications 48 (2025) 113185 
Fig. 11. Fracture test device with a single nanocomposite test specimen.
the best results, it is essential to attain a high particle fraction (30 wt%). 
As a result, the suspensions become highly viscous, which facilitates 
the effective transmission of shear forces necessary for dispersing. Dis-
persing was performed using both a kneader and a three-roll mill. The 
quality of dispersion was verified by dynamic light scattering methods, 
analogous to those described in [3]. Since BNP can interact with epoxy, 
the dispersions are stored at low temperatures (−20 ◦C) to prevent 
pre-cross-linking. After dispersing, curing agents are added during the 
mixing process with a ratio of 100:90:1 (epoxy:hardener). Mixing was 
carried out using a vacuum centrifugal mixer at rotational speeds up 
to 2100 rpm, with simultaneous degassing, leading to high-quality 
mixtures. For curing, the mixtures are cast into pre-heated molds and 
cured for 4 hours at 80 ◦C for gelation and an additional 4 hours at 
120 ◦C for post-curing. In the final step, the cured test plates are milled 
into test specimens according to ISO 13586.

4.2. Mechanical tests

To make the experimental results statistically robust, 10 different 
compact-tension (CT) specimens are used for the fracture tests. All 
fracture specimens are produced and tested according to ISO 13586, as 
shown in Fig.  11. The specimens were kept under constant conditions 
for at least two days at a temperature of 23 ◦C and humidity of 
51%. The test speed is set at 10 mm/min. The cross-head displace-
ment and arising forces during the fracture testing are recorded. The 
specimens are pre-notched with lengths ranging from 7 to 13 mm. 
The mode I stress intensity factor, 𝐾𝐼 , is then measured using the 
force–displacement curves obtained from the CT tests. Furthermore, the 
effects of BNP content on the fracture properties were studied using 
a standardized test configuration, with BNP weight fractions varying 
from 0 to 15 wt%.

5. Results and discussion

5.1. Experimental results

The fracture behavior of BNP/epoxy composites is investigated 
using CT tests, as described in Section 4. Accordingly, the mode I stress 
intensity factor for the BNP/epoxy nanocomposites is measured. The 
stress intensity factor for the CT specimen, illustrated in Fig.  12(a), is 
given by [72]:

𝐾𝐼 = 𝑃

𝐵
√

𝑊

2 + 𝑎
𝑊

(1 − 𝑎
𝑊 )

3
2

[0.886 + 4.64( 𝑎
𝑊

) − 13.32( 𝑎
𝑊

)2

+ 14.72( 𝑎
𝑊

)3 − 5.60( 𝑎
𝑊

)4], (12)
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Table 4
Mode I stress intensity factor for BNP/epoxy nanocomposites at varying BNP weight 
fractions.
 wt% 0 1 2.5 5 10 15

 K𝐼 (kPa
√

m) 502 ± 11 559 ± 8 564 ± 10 598 ± 11 641 ± 8 702 ± 12 

where 𝑊 = 35 mm and 𝐵 = 5 mm represent the width and thickness of 
the specimen, respectively; 𝑎 = 16 mm is the initial crack length, and 𝑃
is the maximum force obtained from the force–displacement response.

The force–displacement curves obtained for BNP/epoxy specimens 
with different BNP weight fractions are shown in Fig.  12(b). Using the 
force–displacement responses and Eq. (12), 𝐾𝐼  can be measured, and 
the results are listed in Table  4. According to the experimental data, 
increasing the particle content leads to a significant increase in 𝐾𝐼 . For 
example, 15 wt% BNP increases 𝐾𝐼  by around 39% compared to pure 
epoxy. 

5.2. Numerical verification of the ANN-calibrated CG model

Verifying a CG model is crucial to prevent inaccuracies from sim-
plifications, ensuring their effective use in academic and industrial 
applications. Initially, a simulation box size of 60 × 60 × 60 Å3
with periodic boundary conditions is constructed, containing 21,374 
atoms. Another box of the same size is also constructed, featuring 
a primary particle with an average diameter of 20 Å in the center, 
containing 21,095 atoms, representing a 6 wt% nanoparticle weight 
fraction. The epoxy molecules are randomly placed in the box, with 
periodic boundary conditions applied in all directions. The simulation 
box of the cured BNP/epoxy nanocomposites for the all-atom model 
can be seen in Fig.  13(a). The system is then cured as described 
in Section 2.2, and the steps are repeated to generate three unique 
all-atom configurations. The mass density of the system is 1.2 gcc . All-
atom simulations are conducted using the Dreiding force field with a 
harmonic bond potential and a LJ potential for non-bond interactions, 
with a non-bond cut-off distance set at 12 Å. For all-atom simulations 
of the BNP/epoxy nanocomposite, the timestep for the curing process 
is reduced to 0.1 fs due to the crystalline structure of the particles. An 
NPH with an additional Langevin thermostat [57] is used to relax the 
system.

The CG models are then constructed according to the mapping 
schemes introduced in Section 3.1. The simulation box for pure epoxy 
contains 677 beads. In the case of the nanocomposite, the box includes 
668 epoxy beads and one boehmite bead. The mass density of the CG 
models is set at 𝜌 = 1.2 gcc . The simulation box of the cured BNP/epoxy 
nanocomposites used for the CG model is illustrated in Fig.  13(b). In the 
CG simulations, Morse and harmonic potentials are used for bond and 
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Fig. 12. (a) Schematic illustration of the compact-tension specimen and (b) the effect of BNP weight fraction on the force–displacement response.
Fig. 13. Simulation boxes of cured boehmite/epoxy nanocomposites, each with dimensions of 60 × 60 × 60 Å3, for (a) the all-atom model and (b) the CG model.
Fig. 14. Specific volume–temperature curves of pure epoxy obtained using (a) the all-atom model and (b) the CG model.
bending interactions, respectively, while LJ potentials are applied for 
non-bond interactions. The truncation distance for the LJ potential is 
set at 2.5𝜎 [73]. The steps for construction, curing, equilibration, and 
the tensile simulation procedure are explained in detail in Section 2.3. 
Both the all-atom and CG simulations are repeated for three different 
temperatures and two different strain rates.
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To evaluate the predictive capability of the ANN-calibrated CG 
model, the mass density and the glass transition temperature predicted 
by the model have been compared with those obtained from all-atom 
simulations. As shown in Figs.  14(a) and 14(b), the value of Tg for 
pure epoxy is presented using three configurations for both all-atom 
and CG models. The mass density predicted by CG simulations agrees 
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Fig. 15. Average stress–strain curves of pure epoxy obtained using the all-atom and ANN-calibrated CG models at (a) two different strain rates and (b) three different temperatures.
Fig. 16. Average stress–strain curves of BNP (6 wt%)/epoxy nanocomposites obtained using the all-atom and ANN-calibrated CG models at (a) two different strain rates and (b) 
three different temperatures.
well with that from all-atom simulations across a wide temperature 
range of 300 to 600 K, recording values of 418.15 K for the CG 
model and 433.15 K for the all-atom model. These values change to 
415 K for the CG model and 431 K for the all-atom model in the case 
of the BNP/epoxy nanocomposite. The glass transition temperatures 
obtained from CG and all-atom simulations for both the pure epoxy and 
the nanocomposite are consistent with the experimental data reported 
in [4], with a recorded value of 426.15 K for the pure epoxy and 
approximately 423 K for the BNP/epoxy nanocomposite.

All-atom and CG simulations were performed to display the average 
stress–strain curves of pure epoxy at two different strain rates, 𝜖̇ =
1071∕s and 𝜖̇ = 1081∕s, at room temperature, as shown in Fig.  15(a). 
The average stress–strain curves of the pure epoxy at three different 
temperatures — 24, 40, and 80 ◦C — at a strain rate of 𝜖̇ = 1081∕s
are illustrated in Fig.  15(b). As can be seen, the predicted stress–strain 
response of the pure epoxy using the CG models aligns very well with 
those obtained from the all-atom models.

In the next step, the average stress–strain relationship of the
BNP(6 wt%)/epoxy nanocomposite at different strain rates and tem-
peratures are compared using all-atom and CG simulations. Figs.  16(a) 
show the stress–strain relationships of the BNP(6 wt%)/epoxy nanocom-
posite at strain rates of 𝜖̇ = 107 1/s and 𝜖̇ = 108 1/s using both 
models. Additionally, to evaluate the predictive capability of the ANN-
calibrated CG model, the predicted stress–strain curves are compared 
with those from all-atom simulations at temperatures of 24, 40, and 
80 ◦C in Fig.  16(b). As a conclusion, Fig.  16 confirms that the ANN-
informed CG model of BNP/epoxy nanocomposite agrees well with 
the all-atom model. These verification results allow us to use the 
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suggested ANN-calibrated CG model to study the fracture properties 
of nanoparticle-reinforced epoxy resin nanocomposites.

5.3. Numerical results

The following sections explore how various parameters impact the 
fracture behavior of the nanocomposites using the proposed CG model. 
These investigations focus on the RVE size, nanoparticle weight frac-
tion, and agglomerate size. Examining the RVE size and agglomerate 
size helps ensure that the simulations accurately reflect the overall me-
chanical properties of the material. Analyzing the nanoparticle weight 
fraction is critical for optimizing the balance between material strength 
and flexibility.

5.3.1. Effect of volume element
We first study the effect of volume element (VE) size on the force–

displacement curve of BNP/epoxy nanocomposite specimens. In the 
simulations, single-edge-notched panels with a thickness of 𝐵 and 
an initial crack length 𝑎, as depicted in Fig.  17(a), are simulated to 
measure the fracture properties. To generate the CG model, epoxy 
and hardener are randomly placed in a simulation box with periodic 
boundary conditions. The system, before curing, is subjected to energy 
minimization to find the global minimum energy configuration. The 
curing process and preparation of the equilibrated system are then 
performed as described in Section 3. After the curing simulation, a 
single-edge crack, measuring 40% of the length and a width of 6 Å, 
is created in the middle of the simulation box, as shown in Fig. 
17(b). To create this crack configuration, all beads and bonds within 



A. Hente et al. Materials Today Communications 48 (2025) 113185 
Fig. 17. (a) Schematic of a single-edge notched panel under tensile loading and (b) periodic simulation box of pure epoxy with dimensions 650 × 650 × 160 Å3.
Fig. 18. (a) Variation of potential energy with displacement for pure epoxy with dimensions of 650 × 650 × 160 Å3, and (b) load–displacement curve for pure epoxy using the 
CG model. Fracture propagation in the pure epoxy at points indicated by red crosses is illustrated in Fig.  19.
the crack region are deleted, followed by another round of energy 
minimization. The system is then relaxed using an NPT simulation at 
room temperature and atmospheric pressure for 2 ns.

In the next step, tensile deformation is applied in a direction that 
increases the box length at a constant displacement rate, and the coor-
dinates of the CG beads are remapped at every timestep accordingly. 
Meanwhile, stresses in the lateral directions, perpendicular to the ten-
sile direction, are maintained at zero to accommodate natural Poisson 
contraction. Bond breakage is also captured using the Morse potential 
presented in Eq. (2). It is worth noting that the tensile deformation 
described here is distinct from that applied to simulation boxes without 
notches, as detailed in Section 2.3.

The fracture simulation is initially performed on pure epoxy spec-
imens. Fig.  17(b) shows a 650 × 650 × 160 Å3 simulation box con-
taining 215,664 beads, which corresponds to an all-atom system with 
3,666,288 atoms. To predict 𝐾𝐼 , it is necessary to establish the rela-
tionship between force and displacement. For this purpose, a tensile 
load with a constant displacement rate is applied to the system to 
observe the variation in potential energy versus displacement. The 
force–displacement response is then derived from the first derivative 
of the potential energy with respect to displacement. During the sim-
ulation, stresses perpendicular to the tensile direction are maintained 
at atmospheric pressure using an NPT ensemble. Fig.  18(a) presents 
the potential energy variation of the system versus displacement, from 
which the force–displacement curve is obtained, as shown in Fig.  18(b).

The propagation of cracks at different load levels is illustrated in 
Fig.  19, which shows that the crack growth occurs along the liga-
ment of the initial notch. This observation allows us to conclude that 
13 
mode I fracture is dominant, and we can extract it from the load–
displacement curve. The fracture simulation is conducted at room 
temperature with a displacement rate set at 325 m/s. After obtaining 
the force–displacement response, the mode I stress intensity factor for 
the specimen is calculated using the following equation [72]: 

𝐾𝐼 = 𝑃

𝐵
√

𝑊

√

2 tan 𝜋𝑎
2𝑊

cos 𝜋𝑎
2𝑊

[0.752 + 2.02( 𝑎
𝑊

) + 0.37(1 − sin 𝜋𝑎
2𝑊

)3], (13)

where 𝐵 is the panel thickness, and 𝑃 , 𝑊 , and 𝑎 are defined in Fig. 
18(a).

In the simulations, periodic boundary conditions are used to elim-
inate size effects. Although these conditions help remove artifacts 
caused by unwanted boundaries, they introduce the artifact of peri-
odic conditions. For amorphous polymer systems, the motion of one 
molecule affects other molecules placed around it [74]. The long-
range interactions between molecules demonstrate an extrusive size 
effect in simulations. To explore the size dependency of the epoxy 
system, we increased the side lengths of the simulation box from 300 to 
650 Å, while keeping the thickness constant at 160 Å. The simulation 
results, shown in Fig.  20, demonstrate an increase in the mode I stress 
intensity factor of the epoxy systems with increasing VE size. Here, the 
data represent the mean value of 9 simulations at room temperature. 
Observing only a slight convergence in Fig.  20, we have decided to 
consider the largest possible volume element that the computational 
time allows as an representative volume element (RVE) to continue the 
study, keeping in mind that this RVE is not large enough to definitively 
report the stress intensity factor.
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Fig. 19. Fracture propagation in pure epoxy at (a) 𝛥 = 8 Å, (b) 𝛥 = 26 Å, and (c) 𝛥 = 36 Å. Snapshots correspond to the points specified in Fig.  18.
Fig. 20. Variation of 𝐾𝐼 of a pure epoxy system with respect to the simulation box 
side length.

It is noteworthy, that while CG simulations are not suitable for 
predicting the macro-scale fracture properties of polymer nanocom-
posites, they remain invaluable for qualitative analyses of key fac-
tors such as nanoparticle weight fraction and agglomeration. These 
aspects are crucial for designing optimized nanocomposites. CG mod-
els provide critical insights that inform continuum-level or multiscale 
models, effectively bridging nanoscale behaviors with macro-scale frac-
ture properties. By enabling computationally efficient predictions of 
macro-scale behavior based on nanoscale data, they link fundamental 
mechanisms to practical applications, playing a vital role in the design 
of high-performance, reliable nanocomposites.

5.3.2. Effect of agglomerate size
As mentioned earlier, boehmite nanoparticles typically have a ten-

dency to form agglomerates. To investigate how the size of these 
agglomerates affects the fracture properties of nanocomposites, we 
14 
systematically increase the average diameter of the agglomerates. This 
process continues until a point of convergence is observed, indicating 
that further increases in size no longer significantly affect the mate-
rial’s fracture behavior. This approach helps to determine the optimal 
agglomerate size for enhancing the structural integrity and toughness 
of the nanocomposite.

In the simulations, the box lengths in the 𝑥- and 𝑦-directions are 
set to 650 Å, while the thickness is maintained at 160 Å. The initial 
crack length and width are 260 Å and 6 Å, respectively, and the BNP 
weight fraction is consistently held at 5wt%. The average diameter of 
the agglomerates increases from 23 to 100 Å as the number of BNPs 
increases from 3 to 80, as depicted in Fig.  21. The simulation details 
and conditions replicate those of previous simulations. The effects of 
agglomeration size on the mode I stress intensity factor are illustrated 
in Fig.  22. The simulation results indicate that the average magnitude 
of 𝐾𝐼  converges to approximately 693 kPa

√

m, as the agglomerate size 
increases to 100 Å. In subsequent simulations, agglomerates containing 
80 BNPs with an average diameter of 100 Å are considered sufficiently 
large to serve as representative.

5.3.3. Effect of nanoparticle weight fraction
We next explore the impact of nanoparticle weight fraction on the 

force–displacement response of BNP/epoxy nanocomposites. The RVE 
size, initial crack length, and mass density are consistent with those 
detailed in earlier subsections. In this study, the BNP weight fraction 
varies from 0 to 15 wt%. Figs.  23(a) and 23(b) provide top views and 
perspectives of a CG model for a BNP/epoxy nanocomposite with a 
10% BNP weight fraction, serving as a representative example for this 
analysis.

Fig.  24 presents the load–displacement behavior of pure epoxy 
resin and its BNP-reinforced nanocomposites under tensile loading, as 
predicted by the CG model. The results reveal that adding BNPs to 
the epoxy matrix increases the material’s resistance to fracture in the 
presence of cracks. Fig.  24 confirms that the BNP/epoxy nanocomposite 
becomes more resistant to fracture as the nanoparticle weight fraction 
increases from 0 to 15 wt%. Additionally, it is shown that the area 
under the load–displacement curve, and thus the maximum force, is 
higher for the dispersed BNP (15 wt%) compared to the agglomerated 
BNP (15 wt%). Therefore, as expected, the epoxy matrix demonstrates 
greater fracture resistance when the BNPs do not form agglomerates. 
Fig. 21. Illustration of a single agglomerate containing (a) 3, (b) 40, and (c) 80 BNPs.
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Fig. 22. Variation of 𝐾𝐼 with increasing 𝑥- and 𝑦-dimensions of BNP (5 wt%)/epoxy 
nanocomposites, while maintaining a constant simulation box width set to 650 Å.

In experiments, some BNPs are uniformly distributed, while other 
nanoparticles form agglomerates, as noted in [4]. This results in a non-
uniform dispersion of BNPs within the epoxy matrix. However, due to 
the limited length scale and the use of periodic boundary conditions, 
our CG simulations can only model either fully distributed or fully 
agglomerated particles. Although this simplification leads to deviations 
between the numerical predictions and experimental data, the CG 
model still allows us to qualitatively predict lower and upper bounds for 
the fracture properties of BNP/epoxy nanocomposites. Fig.  26 includes 
snapshots of the pure epoxy matrix and BNP (15 wt%)/epoxy nanocom-
posites with fully agglomerated and well-dispersed nanoparticles at a 
displacement of 36 Å. It is evident that BNP/epoxy nanocomposites 
exhibit enhanced strength in the presence of cracks compared to pure 
epoxy.

Fig.  25 illustrates the effect of nanoparticle distribution on the stress 
intensity factor across different BNP weight fractions. The average 𝐾𝐼
for BNP/epoxy nanocomposites increases from 600 to 693 kPa

√

m for 
agglomerated BNPs, and to 732 kPa

√

m for fully dispersed BNPs, as 
the BNP weight fraction increases from 0 to 5 wt%. This corresponds 
to percentage increases of 15% and 22% compared to pure epoxy, 
respectively. As the weight fraction of BNPs increases to 10 wt%, the 
mode I stress intensity factor rises further to 738 and 786 kPa

√

m
for agglomerated and fully dispersed BNPs, showing deviations of 
23% and 31% compared to pure epoxy, respectively. The calculated 
average values of 𝐾𝐼  for the BNP (15 wt%)/epoxy nanocomposite 
are 804 and 853 kPa

√

m for agglomerated and fully dispersed BNPs, 
respectively, showing percentage increases of about 34% and 42% 
compared to pure epoxy. Notably, the observed behavior suggests that 
15 
the dispersion and agglomeration of BNPs are concentration-dependent. 
At 5 and 10 wt%, fewer BNPs result in intermediate behavior due 
to weaker interparticle interactions and lower matrix saturation. At 
15 wt%, the higher concentration promotes the formation of smaller, 
more dispersed agglomerates, which align the system behavior closer 
to that of fully dispersed BNPs.

6. Conclusions

This research introduces an ANN-based optimization framework 
for calibrating CG models tailored to nanoparticle-reinforced poly-
mers. The approach defines an objective function as the total squared 
error between thermo-mechanical properties predicted by the ANN-
trained CG model and those obtained from all-atom simulations. This 
method significantly reduces computational cost while maintaining 
high fidelity in predicting the thermo-mechanical properties of polymer 
nanocomposites across a wide temperature range. This study integrates 
ANN-based optimization with CG simulations to tackle challenges in 
force field parameterization, improving predictive accuracy and ensur-
ing temperature transferability. This intermediate approach balances 
accuracy and cost, improving upon traditional CG methods through 
machine learning optimization while avoiding the data and computa-
tional demands of machine learning force fields (MLFFs), making it 
ideal for qualitative studies of nanocomposite fracture behavior. The 
ANN model is tailored to the DGEBA/MTHPA epoxy system with BNPs. 
While the methodology is generalizable, predicting fracture properties 
for a different polymer matrix would require retraining the model with 
new all-atom simulation data. Nevertheless, qualitative insights, such 
as the role of nanoparticle dispersion in enhancing fracture resistance, 
may apply broadly to polymer nanocomposites.

Leveraging the optimized CG model, we investigated the effects 
of BNP weight fraction and distribution (agglomerated vs. dispersed) 
on the fracture properties of epoxy nanocomposites. Simulations of 
two extreme cases — fully dispersed and agglomerated BNPs — pro-
vided bounds for the stress intensity factor. Experimental 𝐾𝐼  values 
for nanocomposites with non-uniform BNP dispersion fell within these 
bounds, validating the model’s capability to capture the influence of 
agglomeration on fracture properties. For instance, a 15 wt% BNP 
content increased 𝐾𝐼  by 39% experimentally, aligning with simulation 
results showing increases of 42% for dispersed and 34% for agglomer-
ated nanoparticles. Both numerical simulation and experimental results 
indicate that nanoparticle additives significantly improve the fracture 
properties of the epoxy matrix. This numerical–experimental compar-
ison confirms that the proposed machine-learning-assisted CG model 
effectively captures the impact of nanoparticle agglomeration on the 
fracture properties of polymer nanocomposites.

While CG models may not deliver exact quantitative predictions 
for macro-scale fracture properties, they are invaluable for obtaining 
Fig. 23. Simulation box of BNP (10 wt%)/epoxy nanocomposites with dimensions of 650 × 650 × 160Å3 featuring an initial crack: (a) top view and (b) perspective view.
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Fig. 24. Force–displacement response of agglomerated BNP/epoxy nanocomposites at varying nanoparticle weight fractions.
Fig. 25. Effect of nanoparticle distribution on the stress intensity factor across different BNP weight fractions.
Fig. 26. Snapshots of (a) pure epoxy, (b) agglomerated BNP (15 wt%)/epoxy nanocomposite, and (c) randomly distributed BNP (15 wt%)/epoxy nanocomposite at a displacement 
of 36 Å.
qualitative insights into the mechanisms governing polymer nanocom-
posites’ behavior. The MLP’s R2 of 0.8 reflects a well-balanced com-
promise in predicting various properties. Meanwhile, future research 
16 
could investigate property-specific ANNs to improve individual ac-
curacies, although this may come at a higher computational cost. 
Future work could explore neural networks as direct CG force fields, 
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predicting forces and energies from configurations, to potentially im-
prove multi-property accuracy, though this would require increased 
data and computational investment compared to our current approach. 
Additionally, future work could also explore hybrid models integrat-
ing constitutive equations with machine learning, combining physical 
grounding with data-driven flexibility to further improve predictions of 
fracture properties in polymer nanocomposites.
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