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Polymer nanocomposites, formed by incorporating nanoparticles into epoxy matrices, exhibit exceptional
thermo-mechanical and fracture properties, making them ideal for advanced engineering applications. This
study explores the enhancement of fracture properties of epoxies by nanoparticles and develops a coarse-
grained (CG) model to enable this investigation. We present a novel artificial neural network (ANN)-assisted
optimization framework to calibrate CG molecular simulation models. The algorithm integrates particle swarm
optimization with ANN predictions, where ANN accelerates parameter optimization by minimizing errors
between CG simulation results and all-atom reference data. This process significantly reduces computational
cost while ensuring accurate predictions of critical properties, such as yield stress and elastic modulus, over
a wide temperature range, demonstrating excellent temperature transferability of the model. Large-scale CG
simulations facilitated the analysis of nanoparticle agglomeration effects on fracture behavior, a challenge
infeasible for all-atom simulations. Simulation outcomes were qualitatively compared with experimental
findings, offering valuable insights into the influence of nanoparticle distribution on fracture properties. This
integrated approach provides a robust pathway for designing and optimizing polymer nanocomposites for
real-world applications.

1. Introduction reported increased hardness and modulus, indicating a stiffer, more
durable epoxy matrix with BNPs. Jux et al. [5] demonstrated that BNPs
Polymer nanocomposites (PNCs) have gained significant attention

for their potential in environmental and engineering applications.

significantly enhance the fracture toughness of epoxy resins, with the
most substantial improvement observed at a filler content of 15 wt%.

Defined as polymer matrices with nano-fillers of at least one dimension
smaller than 100 nm [1], PNCs offer exceptional thermo-mechanical
properties that surpass those of individual components. Among com-
mercially available nanofillers, boehmite nanoparticles (BNPs) are par-
ticularly suited for dispersing in epoxy resins to create lightweight
structures for applications such as wind turbine rotor blades or struc-
tural components in aircraft and spacecraft. With their excellent
thermo-mechanical properties, BNPs can significantly improve the char-
acteristics of epoxy resins, even at low filler loadings [2].

However, BNPs often agglomerate during manufacturing, leading
to poor dispersion within the polymer matrix and reducing their rein-
forcement efficiency [3]. Khorasani et al. [4] investigated the influence
of BNPs on the thermomechanical properties of epoxy, finding that
their presence not only improved thermal stability but also enhanced
the nanomechanical properties of the resin. Specifically, the study

* Corresponding author.
E-mail address: a.hente@isd.uni-hannover.de (A. Hente).

https://doi.org/10.1016/j.mtcomm.2025.113185

They found that a 15% BNP weight fraction increased the tensile
modulus by 26% and the critical energy release rate by 62%. Arlt
et al. [6] further explored the effects of taurine-modified BNPs, showing
that incorporating 15 wt% of these modified nanoparticles resulted
in a 25% increase in the elastic properties of carbon fiber/epoxy
composites. Wu et al. [7] reported that BNP/epoxy nanocomposites
with 4 wt% BNPs improved tensile strength and fracture toughness by
24.2% and 28.7%, respectively, over pure epoxy. Fankhanel et al. [8]
used molecular dynamics simulations to show that strong BNP-polymer
interactions alter chain packing, increase density, and restrict mobility
near particles. These changes enhance the interphase, improving stiff-
ness, strength, thermal stability, and stress transfer, leading to superior
nanocomposite performance. Sangermano et al. [9] highlights the role
of BNP dispersion and interfacial interactions in improving the thermal
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and electrical insulation performance. These findings underscore the
critical role of nanoparticle dispersion and interaction in optimizing the
mechanical and fracture properties of polymer nanocomposites.

Due to the inherent complexity of nanomaterials, experimental
tests alone often fail to fully elucidate their reinforcement mecha-
nisms and effects on material failure. Polymer nanocomposites, which
integrate nanoscale fillers within a polymer matrix, exhibit notable
enhancements in mechanical and fracture properties, primarily be-
cause of unique molecular-level interactions between nanofillers and
the polymer matrix. These nanofillers significantly influence fracture
behavior by enhancing energy dissipation during crack initiation and
propagation [10,11]. To gain deeper insights, researchers increas-
ingly rely on molecular dynamics (MD) simulations, which allow pre-
cise observation of atomic-level interactions shaping composite behav-
ior [12-15]. MD simulations by Li et al. [16] showed that Carbon
nanotube/epoxy composites with a predefined crack exhibited gains
of 24.8% in tensile strength and around 35% in energy release rate.
Zhou et al. [17] provided a comprehensive review on PNCs rein-
forced with two-dimensional nanomaterials, discussing how variations
in nanoparticle size, aspect ratio, and dispersion impact the mechanical
and fracture properties of these composites. Hou et al. [18] further
explored how the morphology of supra-molecular networks, modeled
via MD simulations, influences the mechanical performance and self-
healing behavior of PNCs, shedding light on their fracture resistance.
Similarly, Hagita et al. [19] investigated the fracture behavior of PNCs
with various fillers, revealing how filler type and distribution within
the polymer matrix affect the fracture toughness. Roy et al. [20]
focused on the inclusion of nanoparticles in polymer matrices, utilizing
MD simulations to examine their impact on fracture toughness and
material failure mechanisms at the atomic scale. Additionally, Arash
et al. [21] introduced a complementary approach to study fracture
mechanisms in viscoelastic polymer nanocomposites, capturing time-
dependent deformation, exploring diverse loading scenarios, employing
advanced modeling techniques, and providing insights into nanoparti-
cle dispersion and interactions. Collectively, these studies highlight the
critical role of MD simulations in studying nanoparticle characteristics,
dispersion, and filler-matrix interactions to determine the fracture
properties of polymer nanocomposites.

Despite their strengths, one primary challenge of all-atom simula-
tions is the mismatch of time and length scales with experimental tests,
making them computationally expensive and unsuitable for analyzing
particle agglomeration effects on the mechanical and fracture behavior
of nanocomposites. To address these limitations, CG simulations extend
accessible time and length scales while preserving essential atomic
details [22-24]. CG simulations simplify all-atom systems by repre-
senting groups of atoms as single superatoms, significantly reducing
the degrees of freedom. Arash et al. [25] used a CG-based J-integral
calculation to study fracture behavior in polymer nanocomposites.
Cui et al. [26] explored how structural parameters influence the im-
pact resistance of graphene-based nanocomposites, highlighting failure
mechanisms like chain scission and disentanglement. Similarly, Hu
et al. [27] investigated the effects of grafting density and chain length
on fracture energy and void formation in polymer nanocomposites.
Liu et al. [28] analyzed the mechanical and dynamic properties of
nanocomposites with functionalized polymer chains, using simulations
to reveal critical polymer-filler interactions that enhance mechanical
performance and fracture toughness. Similarly, Arora et al. [29] em-
ployed coarse-grained simulations to study the effects of mechanical
stress and structural inhomogeneities, such as chain length distribution
and cross-link density, on the fracture behavior of polymer networks.
Higuchi et al. [30] focused on double-network gels, using CG simula-
tions to uncover how their unique structure resists crack propagation
and enhances toughness. Moreover, Hu et al. [31] investigated dual
cross-linked hydrogels, emphasizing the interplay between physical and
chemical cross-links in energy dissipation and fracture behavior. Con-
structing accurate CG force fields, however, remains challenging, with
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traditional methods like the Martini force field [32], iterative Boltz-
mann inversion (IBI) [33,34], and strain energy conservation [35,36]
providing calibration frameworks that face issues in convergence and
structural specificity. These limitations highlight the need for improved
approaches to achieve both accuracy and efficiency in CG modeling.

To further overcome computational challenges, optimization and
neural network-based algorithms have been proposed to reduce costs
and overcome challenges in convergence and recalibration, particu-
larly for capturing temperature effects [37,38]. Bahtiri et al. [39,40]
developed machine learning-based models, including a viscoelastic—
viscoplastic and a physics-informed model, to enhance prediction accu-
racy for epoxy and short fiber/polymer nanocomposites under varied
conditions. Hente et al. [41] introduced an optimization-assisted IBI
method for calibrating temperature-transferable CG force fields. Be-
jagam et al. [42] combined all-atom simulations with particle swarm
optimization (PSO) and ANN to expedite CG model development, and
Duan et al. [43] extended this approach to model epoxies across
broad temperature ranges and cross-linking degrees. Ruza et al. [44]
introduced temperature-dependent graph neural network potentials to
predict ionic liquid properties, while Lemke et al. [45] and Wang
et al. [46] used neural networks to extract free energy surfaces and
learn CG free energy functions, respectively. Loeffler et al. [47] pro-
posed an active-learning workflow for training neural network force
fields. Building on these methods, Loose et al. [48] demonstrated that
equivariant neural networks enhance both accuracy and data efficiency
in CG modeling, whereas Costa et al. [49] developed a hierarchical
CG approach using SO(3)-equivariant autoencoders for scalable protein
modeling. Furthermore, Yu et al. [50] introduced a graph neural net-
work framework for identifying CG dynamical systems. Ricci et al. [51]
focuses on enhancing CG simulations by incorporating machine learn-
ing algorithms to improve the accuracy and efficiency of modeling
polymer systems. This integration facilitates efficient exploration of
monomer sequence-structure—property relationships, aiding in the de-
sign of polymers with tailored properties while reducing computational
costs and time.

The ongoing demand for efficient, robust algorithms to calibrate CG
force fields with high accuracy and low computational cost remains
a central challenge in nanocomposite modeling. This study addresses
this by introducing an artificial neural network-based optimization
approach that streamlines CG force field parameterization, significantly
reducing computational time and improving accuracy compared to
traditional methods like Martini, IBI, or strain energy conservation.
Our CG force field accurately predicts properties like yield stress and
elastic modulus across a wide temperature range, demonstrating strong
temperature transferability. The primary novelty lies in integrating
ANN-based optimization with CG simulations to overcome computa-
tional challenges, enhance force field accuracy, and ensure temperature
transferability, resulting in a comprehensive CG model. Furthermore,
our ANN-assisted optimization algorithm facilitates the development of
a predictive CG model, enabling qualitative exploration of the impact
of BNP agglomeration on the fracture properties of nanocomposites
beyond the time and length scales accessible by all-atom simulations.
This work investigates the relationship between fracture properties and
the size of the volume element. It further examines the effects of BNP
weight fraction, agglomerate size, and BNP distribution on the fracture
behavior of BNP-reinforced polymers, supported by a combination of
simulations and experimental validation.

2. All-atom simulations

In this study, all-atom simulations are conducted to obtain the
thermo-mechanical properties of BNP/epoxy nanocomposites, which
serve as target values for an ANN-assisted optimization procedure. The
following sections explain the simulation details related to the curing
process, glass transition temperature (Tg) predictions, and mechanical
tests.
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Fig. 1. Molecular structures of (a) a bisphenol-A-diglycidylether monomer, (b) a 4-methyl-1,2-cyclohexanedicarboxylic anhydride curing agent, and (c) the unit cell of the crystalline
structure of boehmite (with lattice parameters a = 3.693, b = 12.221, and ¢ = 2.865 ;\). In (a) and (b), gray represents carbon, while in (c), it represents aluminum. Red and
white indicate oxygen and hydrogen atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Curing reaction mechanism between DGEBA epoxy and anhydride curing agent.

2.1. Materials

The curing simulations are performed for an epoxy resin consisting
of bisphenol-A-diglycidylether (DGEBA) monomers and 4-methyl-1,2-
cyclohexane dicarboxylic anhydride (MTHPA) hardeners. The molec-
ular structure of DGEBA and the curing agent are shown in Figs.
1(a) and 1(b). The mixing ratio is the standard stoichiometric epoxy
monomer/hardener mixing ratio of 100 : 90. The chemical reactions
depicted in Fig. 2 involve the opening of the epoxide rings and the
hydrolysis of the curing agent, enabling them to react with each other
and generate carboxylic acids. These acids then react with the epoxy
groups to produce hydroxyl groups, which further react with DGEBA
and MTHPA.

As mentioned earlier, nanocomposite systems contain nano-scaled
reinforcement materials to enhance mechanical properties. In this
work, boehmite nanoparticles are added to our epoxy system.
Boehmite, with the formula y-AIO(OH), is an aluminum oxide hydrox-
ide with lattice parameters a = 3.693, b = 12.221, and ¢ = 2.865 A. As
illustrated in Fig. 1(c), central aluminum atoms are bonded to double
layers of oxygen to form the crystalline structure of BNPs. The oxygen is
bonded by hydrogen bonds to the hydroxyl groups of the octahedrons.

2.2. Cross-linking simulations

To obtain the material properties, the topology of the molecular
network must realistically represent a cured epoxy system. For this
purpose, DGEBA and hardener molecules are randomly placed in a
periodic 60 X 60 x 60 A’ simulation box with an initial density of
1.2 g/cc. The selected box size represents the largest feasible dimension
for MD simulations, ensuring that the RVE is adequately sized to
capture the material’s characteristics without exceeding computational
resources [52]. The non-cross-linked models are generated using the
open-source package PACKMOL [53]. Additionally, all-atom models of
the BNP/epoxy systems contain one BNP nanoparticle centrally located.
The boehmite structure consists of four layers with a thickness of 20 A,
as shown in Fig. 3. This thickness is selected as a compromise between
computational feasibility and ensuring a realistic representation of
nanoparticle dimensions. This size also allows the boehmite to inter-
act effectively with the surrounding epoxy matrix while maintaining
compatibility with the periodic boundary conditions.

For intermolecular interactions, the Dreiding force field [54] is uti-
lized in all-atom simulations. Harmonic force fields govern all bond in-
teractions, including stretching and bending potentials. Lennard-Jones
potentials are used for the non-bond interactions between atoms with
a cut-off distance of 12 A. To obtain unlike pair potentials, the arith-
metic mixing rule is applied [55]. The barostat [56] and Nosé-Hoover
thermostat are used to control the system’s pressure and temperature.

In the curing process of pure epoxy, epoxy monomers connect to
an agent molecule, as explained in Section 2.1. This connection occurs
through the formation of a methyl group on the monomer, which
links to the hydroxyl group of the agent molecule. In the BNP/epoxy
nanocomposite, the hydroxyl groups on the boehmite surface can also
participate in the curing reaction [8].

For the cross-linking simulation of an uncured system, after energy
minimization, the temperature is linearly increased to the curing tem-
perature of 450 K [5]. An NPT ensemble for 1 ns and the constant
pressure of 1 atm are used in the process. The following steps are then
conducted for the cross-linking simulation:

1. A bond is formed between two reactive sites with the shortest
possible length, with a cut-off of 4.5 A for the reaction distance;
2. An equilibration is performed for a time period of 2.5 ps;

The cut-off distance of 4.5 A represents the maximum distance at
which reactive sites can form a bond, based on typical bond lengths
and interaction distances observed in the chemical system. It balances
realism and computational efficiency, avoiding unrealistic bonds with
larger cut-offs and missed reactions with smaller ones. These two
steps are repeated until the final degree of curing of around 90% is
reached. Achieving 100% curing is often challenging in practice due to
incomplete reactions and unreacted species. A 90% cure is not only
more realistic but also reflects typical processing conditions. At this
level, materials show significant mechanical property improvements
while maintaining flexibility, striking an optimal balance between per-
formance and processability. The time step during the simulation was
1 fs. The duration of each step and the cut-off value were selected
to ensure a well-equilibrated system and sensible computing time.
Due to the layered structure of the boehmite, the simulation box for
nanocomposites is simulated using an isoenthalpic—isobaric ensemble
(NPH) with a Nosé-Hoover barostat [56] and an additional Langevin
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(b)

Fig. 3. A simulation box of cured boehmite/epoxy nanocomposites with dimensions of 60 x 60 x 60 A3 for the all-atom model, and (b) a four-layer boehmite structure with a

thickness of 20 A.

thermostat [57], instead of an NPT ensemble. The curing process is
conducted using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [58] with our modification to the fix bond/create
command. This command calculates the distances between all possible
reaction groups and forms a bond with the smallest reaction distance,
discarding all reaction distances larger than the chosen cut-off. Addi-
tionally, for visualization and analysis of the data, OVITO [59] is used
in this work.

2.3. Tensile simulations and Tg predictions

After cross-linking, the cured system is cooled down to room tem-
perature and then relaxed using an NPT ensemble for 1.5 ns. To
obtain the stress—strain relationship, tensile deformation is applied to
the systems by increasing the box length in the tensile direction and
remapping the atom coordinates at every step. To allow for natural
Poisson contraction, stresses perpendicular to the tensile direction are
fixed at zero. The time step for a constant strain rate of ¢ = 10° 1/s
is set to 0.02 fs. To obtain an average stress—strain response, tensile
simulations are repeated in the X, Y, and Z directions for five different
configurations. Fig. 4(b) shows the average stress—strain curve.

A piecewise cubic spline interpolation is fitted to the simulation data
points to extract the yield stress, considering an optimized knot. The
position of each knot is optimized by minimizing the least square error
between the fit curve and the data points. The yield point is identified
as the first maximum of the spline fit, where the derivative of stress
with respect to strain is zero. Furthermore, to extract the relationship
between specific volume (1/p) and temperature for calculating Tg,
the temperature of an equilibrated system is linearly increased from
200 K to 600 K. Fig. 4(a) shows the variation of specific volume versus
temperature, measured based on the average of simulation results for
five different configurations. The glass transition temperature 7, =
433.15 K, predicted using all-atom simulations, is consistent with the
experimental value of 426.15 K reported in the literature [4].

3. Coarse-grained modeling
3.1. Mapping scheme

In coarse-grained models, a set of atoms is mapped into a CG
super-atom (bead). Therefore, the first step in coarse-graining is to
define proper mapping schemes. CG beads must enable the model
to maintain the underlying chemistry. Mapping schemes are based
on the chemical compositions of molecules and the repeating units
of the monomers [60]. In this work, the highest achievable level
of coarse-graining is adopted based on the research work of Hente
et al. [41].

Each monomer is mapped into one bead in the epoxy mapping
scheme, as illustrated in Figs. 5(a) and 5(b). Accordingly, the CG system
comprises two types of beads: one for the bisphenol-A monomer, named
A, and one for the hardener, named B. The atomic masses of beads
A and B are 340.4128 amu and 166.1739 amu, respectively. In this
scenario, the degrees of freedom (DOF) for beads A and B decrease b
factors of 49 and 22, respectively. For a box size of 60 X 60 x 60 A~
filled with the epoxy system, the number of beads decreases by ap-
proximately 32 times for the CG model compared to the full atomistic
model.

Boehmite is a mineral composed of aluminum with a bulk modulus
of 93 GPa [61]. Its structural properties have been studied experi-
mentally using XRD [62] and Raman spectroscopy [63], as well as
numerically using quantum mechanics [61]. The ultra-high elastic
modulus of BNPs, compared to the epoxy matrix, allows us to model
them as rigid particles in CG modeling. In the subsequent simulations,
one primary particle with a length of 20 A is mapped to a single CG
bead, named P. Compared to its full atomistic system, the DOF in this
CG model decrease by 656 times. The atomic mass of P is 10,433 amu.
The primary particle is illustrated in Fig. 5(c).

3.2. Coarse-grained force field

After the mapping scheme, a CG force field should be calibrated
to simulate BNP/epoxy nanocomposites and predict their thermo-
mechanical properties. The potential energy function of a CG force
field is decomposed into bond and non-bond terms. The total potential
energy of a system is then given by

Emm[(d’ 0,r)= 2 Eb, + 2 Eaj + 2 Enonbk’ @
i J k

where E,, E, are the energy terms corresponding to variations in bond
length and bond angle, respectively, and E,,, represents the non-bond
interactions. It is worth noting that terms corresponding to torsional
interactions are omitted due to their minor effects.

To consider bond breakage, the Morse potential [54] is used in this
CG model for stretching:

E,(I) = Dy(1 — e7®r=r0)y2, @)

where r( represents the equilibrium bond distance, D, is the depth of
the potential well, and a shows a stiffness parameter. Considering the
bond between epoxy and BNPs [8], there are two types of bonds in our
nanocomposite system, AB and PB.

The harmonic force field is applied for the bending potential in this
CG model:

@@=%www, 3)



A. Hente et al.

0.830 T T . . .
X Glass transition temperature (Tg = 433.15 (K))
| AAll-atom simulations

0 0.820
<

m3

C
o
0
=
o

T

o

0

S

S
T

0.790

o
9
0
S

Specific Volume

0.770 -

Y

\

‘

‘

‘

‘

‘
U3

1 1
300 350 400 450 500 550 600

Temperature (K)

(a)

Materials Today Communications 48 (2025) 113185

400 |-
= 300
&
&)
#2200
[
—
=
n
100 - —— MD simulations |
«=== Cubic spline interplotions
X Yield point o,
\

0 L L L L
0 5.10-2 0.1 015 02 025 03
Strain

(b)

Fig. 4. (a) Average specific volume-temperature curve and (b) average stress—strain curve for pure epoxy, obtained from all-atom simulations.
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Fig. 5. All-atom model illustrations of (a) a DGEBA epoxy, (b) a curing agent, and (c) a four-layer boehmite structure with a thickness of 20 A. Each is represented by a

corresponding CG bead.

where K, and 6, represent the spring constant and the equilibrium
angle, respectively. In the CG model, there are two types of angles: BAB
and PBP.

The non-bond interactions are modeled using a Lennard-Jones-
(12,6) potential with a cut-off distance of 20 A,

Epgw (1) =€ [(%)‘2 - (%)"’] , 4)

where ¢ represents the equilibrium well depth and ¢ the equilibrium
distance. Since there are three CG types, the CG model of nanocompos-
ites includes six total unknown non-bond force fields: e44, ¢85, ¢PP,
44, 688, ¢PP_ For unlike bead pairs, the arithmetic mixing rule [55] is
used to obtain pair potentials, where the Lennard-Jones (LJ) parameters
are determined as follows: ¢; = ,/e€; and o;; = %(‘71 +0)).

The CG force field is utilized to predict the thermo-mechanical
properties of BNP/epoxy nanocomposites. The preparation of the non-
cross-linked system and the curing process mirror those used in all-atom
simulations. Initially, monomer and hardener molecules are generated
and randomly distributed within a simulation box. Morse potentials
are employed for bond interactions, while harmonic potentials manage
bending interactions. Before initiating the cross-linking simulation, the
simulation box undergoes energy minimization. Similar steps are fol-
lowed for the cross-linking of an uncured system, treated as a molecular
system. In CG simulations, a reaction distance cutoff of 10 A is applied.
The final degree of curing reaches approximately 90%. The durations of
the individual steps and the chosen cut-off value are carefully selected
to ensure the system is well-equilibrated within a reasonable computing
time.

3.3. Machine-learning assisted optimization

In this study, an ANN-assisted optimization algorithm is proposed to
calibrate CG force fields for BNP/epoxy nanocomposites. The suggested
algorithm represented in Table 1, includes CG simulations and a combi-
nation of an ANN algorithm and PSO. This approach aims to accelerate
the search process in finding the optimal solution. In the ANN-assisted
CG model optimization, each particle represents a set of unknown CG
force field parameters that define the interactions in the system. These
parameters are optimized to match the thermo-mechanical properties of
the CG model to those obtained from all-atom simulations. The inputs
to the ANN are the force field parameters, including bond and angle
constants, equilibrium values, and van der Waals parameters (e.g. D,,
a, ry, Ky, 0y, o, and ¢). The outputs of the ANN are the corresponding
thermo-mechanical properties derived from CG simulations, such as
mass density, Young’s modulus, glass transition temperature, and yield
stress.

3.3.1. MLP training

The true advantage of neural networks lies in their ability to rep-
resent both linear and nonlinear relationships derived directly from
data processing. A multilayer perceptron (MLP) is a representation
of nonlinear connections between sets of input data and a set of
outputs [64]. A typical MLP structure is composed of interconnected
nodes in multiple layers, where the outputs of each node are processed
through a nonlinear activation function. The output activation a/*! at
layer I + 1 is derived from the input activation o [65],

a1V = W Dgh 4 p0), (5)
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ANN-assisted optimization algorithm for calibrating CG force fields.

1. Generate particles with random swarm positions and velocities

2. Evaluate the fitness of the swarm, and find the individual and global best of the swarm
3. Update the velocity and position of each particle using a simulation-trained ANN model
4. Update the inertia weight and check for termination criterion
5. if f < tolerance (see Eq. (11)) then
return the optimized CG force field
else
go to step 2
end if
a a
T e T S TP
4 4 4 4 4 n 4 4 4 4 n
—1.5 —1 —0.5 0.5 1 -2 —1 1 2

(a) a = purelin(n)

(b) a = tansig(n)

Fig. 6. Transfer functions for (a) the linear function and (b) the hyperbolic tangent function.

where [ stands for a specific layer, W® and 5 represent the weight
and bias at layer / and o denotes the nonlinear activation function. The
activation functions for the input and output layers are the identity
function, as shown in Fig. 6(a). For the hidden layers, the hyperbolic
tangent function, which is a nonlinear activation function, is used (see
Fig. 6(b)).

In the case of an m-layer multilayer perceptron, the last output layer
is defined as,

hw,b(x) = a(m), (6)

while the first input layer is represented by a = x. The weights
W and bias b are trained using a local optimization method from the
Levenberg-Marquardt algorithm [66],

Jew =Jora — (JTJ + ﬂl)_lJTe’ @)

where J represents the Jacobian and I stands for the identity matrix,
respectively. The error vector in this equation is denoted by e. The
objective function is designed to minimize the difference between the
predicted and the desired outputs,

T 53,9 = 3 0 = ®

Egs. (8)—(11) and Fig. 6 represent standard neural network formula-
tions, included for completeness and to support readers who may be
less familiar with these techniques. Here, the force field parameters
are optimized using an ANN surrogate, as shown in Fig. 7(a). To
gather the comprehensive results required for training the ANN model,
the epoxy system under various thermo-mechanical loadings is first
simulated using the CG model with different force field parameters.
These simulations facilitate the collection of data on the corresponding
thermo-mechanical properties of the epoxy, including mass density,
Young’s modulus, glass transition temperature, and yield stress. To mit-
igate noise from randomly cross-linked polymer networks and thermal
fluctuations, the simulation results from each test are averaged over
nine different molecular configurations and compiled into a dataset.
If a simulation result deviates from others by more than 50%, it is
considered an outlier resulting from an unrealistic molecular structure
and is excluded from the dataset. Consequently, the distribution of

thermo-mechanical properties relative to the force field parameters is
obtained. The output parameters of the ANN algorithm — density,
Young’s modulus, glass transition temperature, and yield stress — are
computed from CG simulations of the pure epoxy system. The force
field parameters, including DZ‘B, alB, r(*)‘B, K;;AB, 05/‘3, AA BB oAA
and ¢B8, are selected as input data for a MLP, a type of feedforward
ANN.

We optimize all force field parameters, including equilibrium bond
distances and angles, using an ANN to enhance the adaptability and
accuracy of our CG model across diverse simulation conditions. This
method facilitates flexible parameterization and the discovery of non-
intuitive relationships that static extraction methods might miss. Al-
though this approach increases complexity and could lead to multiple
viable parameters sets, it prevents overfitting to specific all-atom simu-
lations and ensures broader applicability. By incorporating constraints
within the ANN assisted optimization, we keep parameters within
physically plausible ranges, addressing concerns about their physical
meaningfulness. Additionally, comparative validation studies, as shown
in the author’s previous paper [41], confirm the effectiveness and
accuracy of these parameters against traditional methods like the in-
verse Boltzmann method, which was insufficiently robust for this study.
While constitutive equations provide physical interpretability, the com-
plexity of nanoparticle-reinforced polymers — particularly dispersion
and agglomeration effects — challenges their derivation without sim-
plifications. The ANN approach was selected for its ability to model
these behaviors directly from data, facilitating efficient CG force field
optimization.

Based on the dataset, the MLP is trained to establish a representa-
tion of the data relations. The dataset randomly divides into training,
validation, and testing data. The datasets are generated as follows: a
training set with 3600 configurations, a validation set containing 200
configurations, and a test set with 200 configurations to evaluate the
performance of the model. The 4000 configurations refer to unique
sets of CG force field parameters varied systematically, with each set
used in LAMMPS-based CG simulations to compute thermo-mechanical
properties for MLP training. The parameters are sampled using the
Halton sequence algorithm [67] to ensure uniform parameter space

o
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Fig. 7. (a) A schematic illustration of the CG force field parameterization and (b) the ANN surrogate with one input layer, one output layer, and two hidden layers.
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Fig. 8. Performance of the ANN model for (a) training and testing, and (b) training and validation. Known values in x-axis refer to target thermo-mechanical properties from
All-atom Simulations (Density, Young’s Modulus, T, Yield Stress). Each data point represents a prediction for one of these four properties across the dataset (3600 training, 200

validation, and 200 testing configurations).

coverage. The topology of the model, which includes an input layer,
two hidden layers, and one output layer, is represented in Fig. 7(b).
Each hidden layer contains 20 neurons, and the hyperbolic tangent
function is used as the activation function for neurons in the hidden
layers. Our simulations suggest that this configuration of hidden lay-
ers and neurons provides sufficient prediction accuracy. It is worth
noting that the chosen architecture adequately addresses the problem,
as empirical evidence from model evaluation (training and validation
loss curves) supports this choice. The architecture strikes the right
balance between model complexity and the problem’s requirements
while avoiding potential overfitting, which is the model’s failure to
generalize from the training data to new data. Input and output data
were normalized to [0, 1] using min—-max scaling, with bounds derived
from the dataset’s extrema, ensuring uniform scaling across diverse
physical properties.

Here, The Levenberg-Marquardt algorithm is utilized to perform
regression and optimize the weights of the ANN model. Performance is
evaluated using a loss function based on the mean squared error (MSE).
To enhance the MLP’s generalization capacity, both input and output
data are normalized within the range of 0 to 1. The entire learning
process is conducted in MATLAB using the Neural Network Toolbox.
The regressions predicted by the ANN model for both training and test
data are shown in Fig. 8. For CG models, achieving high predictive
accuracy means effectively balancing accuracy with computational ef-
ficiency. An R? of 0.8 suggests that the ANN captures a significant

portion of the necessary dynamics, generally satisfactory for many
coarse-grained simulations [68-70]. The consistent R?> values across
training, testing, and validation indicate that the model generalizes
well to different datasets—a crucial aspect for CG modeling, as the
force fields must perform reliably under various conditions. In the field
of computational chemistry and molecular dynamics, this ANN model
shows robust performance and generalizes well without significant
overfitting. This level of performance is adequate for many practical
applications, including ours, as future validation will demonstrate in
the following sections. It is worth noting that the MLP’s R?> of 0.8
reflects a balanced trade-off in predicting multiple properties, achieved
through normalization and a summed error objective function, ensuring
adequate accuracy for CG applications without overfitting to any single
property.

Fig. 9 presents the property-specific performance of our ANN model,
revealing significant variations in predictive accuracy across different
thermo-mechanical properties. The model achieves excellent perfor-
mance for density predictions (R?> = 0.87), reflecting the direct cor-
relation between molecular packing and basic force field parameters.
Young’s Modulus (R?> = 0.84) also demonstrates strong performance
while yield Stress (R*> = 0.74) and glass transition temperature (R*> =
0.72) show reasonable accuracy. The consistent gap between training
and testing performance (typically 2%-7% lower R? for test data)
indicates good model generalization without significant overfitting. The
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Fig. 9. Individual ANN model performance for predicting thermo-mechanical properties from CG force field parameters: (a) Density, (b) Young’s Modulus, (¢) Glass transition
temperature, and (d) Yield stress. Each subplot shows predictions vs. target values from all-atom simulations, with separate R? values revealing property-specific model performance.

overall average R? of 0.80 across all properties demonstrates that the
MLP provides reliable predictions while highlighting which properties
can be predicted with higher confidence for practical applications.

Fig. 10 shows the MSE versus epoch for training (3600 configu-
rations), validation (200 configurations) and test (200 configurations)
sets. The plot demonstrates a steady decrease in training loss, confirm-
ing effective learning of the thermo-mechanical property mappings. In
addition, it shows a corresponding decrease in validation loss, plateau-
ing near the tolerance of 0.01, indicating no significant overfitting. Fig.
10 presents the training and validation loss versus epoch, illustrating
convergence of the MLP model and its ability to generalize across the
dataset.

3.3.2. PSO optimization

We chose PSO for its suitability in optimizing continuous force
field parameters. It provides fast convergence, balances exploration and
refinement efficiently, minimizes computational overhead, and scales
well with parallel simulations. In the PSO algorithm, the swarm moves
across the grid search space as defined by [71],

X =X 4V )
Vi =1V + eyl (PP = XD + o1 (Pf‘b”’ -Xb), (10)

where V; and X; denote the velocity and position of the ith particle
at the jth iteration, respectively. P/~%¢s" and Pf._b“’ represent the indi-
vidual best and the global best positions of the swarm, respectively.
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Fig. 10. The MSE versus epoch for training (3600 configurations), validation (200
configurations) and test (200 configurations) sets. Best validation performance is 0.01
at epoch 161.

Coefficients ¢; and ¢, are the constants; # is the inertia factor. r’ij and
r;j are random parameters within the range of 0 to 1.
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Search space for CG force field parameters used in the optimization process.

Type of interactions Parameters Initial guess range Optimization boundaries
Bond D, (kcal/mol/A?) 40-100 10-150
a (=) ~1
ry (A) 5-12 2-20
Angle Ky (kcal/mol/rad?) 20-100 10-200
8, (°) ~ 150
vdw € (kcal/mol) 4-100 >0
6 (A) 7-16 >0
We employ the ANN model to generate “good particles” during each Table 3
PSO iteration, which aids in accelerating the search process for the Optimized CG force field parameters.
optimal solution. These particles are closer to the best solution com- Type of interactions Parameters Epoxy BNP
pared to other searched positions. The PSO particle with the greatest Bond D, (kcal/mol/A%) 45.86 95.81
fitness is replaced by the new particle predicted by the ANN model. * ((_fi) g'zz (1)'2935
. . . r . .
Consequently, all PSO particles are updated based on this new particle. Angle ,20 (keal/mol/rad?) 25.07 98.23
The swarm size used in the PSO optimization algorithm is set to 10 0, ) 149.74 150.98
particles, with each particle representing the unknown CG force field vdw e (keal/mol) 4.53,4.47 100.64
o Q) 7.94,7.78 16.19

parameters.

To determine the specific size of the search space initially, as men-
tioned earlier, an empirical approach is informed by physical intuition
and preliminary parametric studies. Specifically, for the Morse bond
potential parameters, the equilibrium bond distance (r,) was initial-
ized based on average bond lengths from all-atom simulations of the
BNP/epoxy system, typically ranging from 5 to 12 A depending on
the bead pair (e.g., AB or PB bonds). The potential well depth (D,)
was set between 40 and 100 kcal/mol, reflecting typical bond energies
in polymers, while the stiffness parameter (a) was initialized around
1.0, consistent with similar materials. For the harmonic angle potential,
the spring constant (K,) was set between 20 and 100 kcal/mol/rad?,
and the equilibrium angle (6,) near 150°, in line with epoxy chain
geometry. Lennard-Jones parameters were initialized with e values
between 4 and 100 kcal/mol and ¢ between 7 and 16 [o\, based on van
der Waals interactions observed in all-atom data. To ensure physical
realism during PSO optimization, parameter bounds were applied. Bond
lengths (r,) were restricted to 2-20 .7\, and force constants (D,, K,)
were limited to 10-150 kcal/mol and 10-200 kcal/mol/rad?, respec-
tively. LJ parameters were constrained to positive values with upper
limits set to avoid unphysical energy scales or atomic overlaps. To
provide a clear visual reference Table 2 has been prepared.

In the optimization procedure, the total error is defined using
the thermo-mechanical properties obtained from CG simulation-trained
ANN models and all-atom simulations,

N/ FANN(x) 2
2 () o

1

where Fi"’f (i = 1,2,...,N) represents a set of known properties from
all-atom simulations, and FANN(X) is the same set calculated by the
CG simulation-trained ANN model using the unknown force field pa-
rameters X = [Dy, a, ry, Ky, 6y, €, o]. The iteration continues until
the objective function is reduced to a specified tolerance. The target
values used in the procedure are the mass density, Young’s modulus,
glass transition temperature and yield stress from the all-atom sim-
ulations. To balance high accuracy and low computational cost, the
tolerance is set at 0.01. It is worth noting that using yield stress instead
of the full stress—strain curve simplifies the optimization process by
reducing complexity, as it represents a single scalar value rather than
a comprehensive dataset. Yield stress is a critical mechanical indicator,
capturing the onset of plastic deformation, which is often sufficient for
many applications. This approach also reduces computational costs by
eliminating the need to simulate the entire stress—strain response. While
optimizing yield stress alone may not be as robust as analyzing the full
curve, it is a practical and efficient metric, particularly as it is one of
the four thermomechanical properties considered in this study.

The trained network will significantly accelerate the calculation
of thermo-mechanical properties derived from a set of force field pa-
rameters. This model can be utilized to optimize these parameters by
minimizing the differences between the thermo-mechanical properties
obtained from the CG simulation-trained ANN model and those from
the all-atom simulations. The use of the ANN model significantly re-
duced the computational time required for the optimization process,
achieving a reduction by an order of magnitude compared to pure
optimization alone. With ANN assistance, the optimization process
becomes far more efficient, enabling faster convergence and facilitating
a broader exploration of the design space. The reason we employ opti-
mization is to reduce computational effort. One example that highlights
the differences is the work by Wang et al. [46], who demonstrated
that a deep learning approach for CG-MD can achieve high accuracy in
capturing multi-body interactions for systems such as alanine dipeptide
and Chignolin. However, this level of accuracy comes at the cost of
requiring extensive training data. For alanine dipeptide, their model
was trained on 1 million configurations derived from a 1-microsecond
all-atom simulation in explicit solvent, with coordinates and forces
saved every picosecond. For Chignolin, the training dataset comprised
3742 short MD simulations, each 50 nanoseconds long, resulting in
a total simulation time of 187.2 microseconds. These large datasets
underscore the data-intensive nature of MLFFs compared to the ANN-
assisted approach in our study, which utilizes a more modest dataset
of 4000 configurations to achieve sufficient accuracy for CG parameter
optimization.

After optimizing the CG force field for the epoxy system, the same
ANN-assisted optimization procedure is applied to calibrate the force
field parameters related to BNP nanoparticles. In this case, the inputs
to the ANN model are D;5, o”5, r(‘;B, K2PB, 05”’3, ePP, and PP,
Additionally, the normalized mass density, Young’s modulus, glass
transition temperature, and yield stress computed using CG simulations
of a single BNP/epoxy system serve as the output values. The design of
the ANN model is identical to that used for the pure epoxy. The optimal
solutions searched for the force fields of the CG model are listed in
Table 3.

4. Experiments
4.1. Manufacturing
Manufacturing BNP/Epoxy test specimens can be divided into four

sections: dispersing, mixing, curing, and chipping. The aim of dispers-
ing is to comminute and homogenize BNP in the epoxy resin. To achieve
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Fig. 11. Fracture test device with a single nanocomposite test specimen.

the best results, it is essential to attain a high particle fraction (30 wt%).
As a result, the suspensions become highly viscous, which facilitates
the effective transmission of shear forces necessary for dispersing. Dis-
persing was performed using both a kneader and a three-roll mill. The
quality of dispersion was verified by dynamic light scattering methods,
analogous to those described in [3]. Since BNP can interact with epoxy,
the dispersions are stored at low temperatures (—20 °C) to prevent
pre-cross-linking. After dispersing, curing agents are added during the
mixing process with a ratio of 100:90:1 (epoxy:hardener). Mixing was
carried out using a vacuum centrifugal mixer at rotational speeds up
to 2100 rpm, with simultaneous degassing, leading to high-quality
mixtures. For curing, the mixtures are cast into pre-heated molds and
cured for 4 hours at 80 °C for gelation and an additional 4 hours at
120 °C for post-curing. In the final step, the cured test plates are milled
into test specimens according to ISO 13586.

4.2. Mechanical tests

To make the experimental results statistically robust, 10 different
compact-tension (CT) specimens are used for the fracture tests. All
fracture specimens are produced and tested according to ISO 13586, as
shown in Fig. 11. The specimens were kept under constant conditions
for at least two days at a temperature of 23 °C and humidity of
51%. The test speed is set at 10 mm/min. The cross-head displace-
ment and arising forces during the fracture testing are recorded. The
specimens are pre-notched with lengths ranging from 7 to 13 mm.
The mode I stress intensity factor, K;, is then measured using the
force-displacement curves obtained from the CT tests. Furthermore, the
effects of BNP content on the fracture properties were studied using
a standardized test configuration, with BNP weight fractions varying
from 0 to 15 wt%.

5. Results and discussion
5.1. Experimental results

The fracture behavior of BNP/epoxy composites is investigated
using CT tests, as described in Section 4. Accordingly, the mode I stress
intensity factor for the BNP/epoxy nanocomposites is measured. The
stress intensity factor for the CT specimen, illustrated in Fig. 12(a), is
given by [72]:
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Table 4
Mode I stress intensity factor for BNP/epoxy nanocomposites at varying BNP weight
fractions.

wt% 0 1
K; (kPay/m)

2.5 5 10 15

502+ 11 559+8 564+ 10 598+ 11 641 +38 702 £ 12

where W =35 mm and B = 5 mm represent the width and thickness of
the specimen, respectively; a = 16 mm is the initial crack length, and P
is the maximum force obtained from the force-displacement response.

The force—displacement curves obtained for BNP/epoxy specimens
with different BNP weight fractions are shown in Fig. 12(b). Using the
force—displacement responses and Eq. (12), K; can be measured, and
the results are listed in Table 4. According to the experimental data,
increasing the particle content leads to a significant increase in K;. For
example, 15 wt% BNP increases K; by around 39% compared to pure

€pOxYy.
5.2. Numerical verification of the ANN-calibrated CG model

Verifying a CG model is crucial to prevent inaccuracies from sim-
plifications, ensuring their effective use in academic and industrial
applications. Initially, a simulation box size of 60 x 60 x 60 A3
with periodic boundary conditions is constructed, containing 21,374
atoms. Another box of the same size is also constructed, featuring
a primary particle with an average diameter of 20 A in the center,
containing 21,095 atoms, representing a 6 wt% nanoparticle weight
fraction. The epoxy molecules are randomly placed in the box, with
periodic boundary conditions applied in all directions. The simulation
box of the cured BNP/epoxy nanocomposites for the all-atom model
can be seen in Fig. 13(a). The system is then cured as described
in Section 2.2, and the steps are repeated to generate three unique
all-atom configurations. The mass density of the system is 1.2 £. All-
atom simulations are conducted using the Dreiding force field with a
harmonic bond potential and a LJ potential for non-bond interactions,
with a non-bond cut-off distance set at 12 A. For all-atom simulations
of the BNP/epoxy nanocomposite, the timestep for the curing process
is reduced to 0.1 fs due to the crystalline structure of the particles. An
NPH with an additional Langevin thermostat [57] is used to relax the
system.

The CG models are then constructed according to the mapping
schemes introduced in Section 3.1. The simulation box for pure epoxy
contains 677 beads. In the case of the nanocomposite, the box includes
668 epoxy beads and one boehmite bead. The mass density of the CG
models is set at p = 1.2 £. The simulation box of the cured BNP/epoxy
nanocomposites used for the CG model is illustrated in Fig. 13(b). In the
CG simulations, Morse and harmonic potentials are used for bond and
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Fig. 12. (a) Schematic illustration of the compact-tension specimen and (b) the effect of BNP weight fraction on the force-displacement response.

(a)

(b)

Fig. 13. Simulation boxes of cured boehmite/epoxy nanocomposites, each with dimensions of 60 x 60 x 60 A3, for (a) the all-atom model and (b) the CG model.
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Fig. 14. Specific volume-temperature curves of pure

bending interactions, respectively, while LJ potentials are applied for
non-bond interactions. The truncation distance for the LJ potential is
set at 2.5¢ [73]. The steps for construction, curing, equilibration, and
the tensile simulation procedure are explained in detail in Section 2.3.
Both the all-atom and CG simulations are repeated for three different
temperatures and two different strain rates.
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epoxy obtained using (a) the all-atom model and (b) the CG model.

To evaluate the predictive capability of the ANN-calibrated CG
model, the mass density and the glass transition temperature predicted
by the model have been compared with those obtained from all-atom
simulations. As shown in Figs. 14(a) and 14(b), the value of Tg for
pure epoxy is presented using three configurations for both all-atom
and CG models. The mass density predicted by CG simulations agrees
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Fig. 15. Average stress—strain curves of pure epoxy obtained using the all-atom and ANN-calibrated CG models at (a) two different strain rates and (b) three different temperatures.
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Fig. 16. Average stress—strain curves of BNP (6 wt%)/epoxy nanocomposites obtained using the all-atom and ANN-calibrated CG models at (a) two different strain rates and (b)

three different temperatures.

well with that from all-atom simulations across a wide temperature
range of 300 to 600 K, recording values of 418.15 K for the CG
model and 433.15 K for the all-atom model. These values change to
415 K for the CG model and 431 K for the all-atom model in the case
of the BNP/epoxy nanocomposite. The glass transition temperatures
obtained from CG and all-atom simulations for both the pure epoxy and
the nanocomposite are consistent with the experimental data reported
in [4], with a recorded value of 426.15 K for the pure epoxy and
approximately 423 K for the BNP/epoxy nanocomposite.

All-atom and CG simulations were performed to display the average
stress-strain curves of pure epoxy at two different strain rates, ¢ =
1071/s and ¢ = 10%1/s, at room temperature, as shown in Fig. 15(a).
The average stress—strain curves of the pure epoxy at three different
temperatures — 24, 40, and 80 °C — at a strain rate of ¢ = 10%1/s
are illustrated in Fig. 15(b). As can be seen, the predicted stress—strain
response of the pure epoxy using the CG models aligns very well with
those obtained from the all-atom models.

In the next step, the average stress—strain relationship of the
BNP(6 wt%)/epoxy nanocomposite at different strain rates and tem-
peratures are compared using all-atom and CG simulations. Figs. 16(a)
show the stress—strain relationships of the BNP(6 wt%)/epoxy nanocom-
posite at strain rates of ¢ = 107 1/s and ¢ = 10% 1/s using both
models. Additionally, to evaluate the predictive capability of the ANN-
calibrated CG model, the predicted stress—strain curves are compared
with those from all-atom simulations at temperatures of 24, 40, and
80 °C in Fig. 16(b). As a conclusion, Fig. 16 confirms that the ANN-
informed CG model of BNP/epoxy nanocomposite agrees well with
the all-atom model. These verification results allow us to use the
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suggested ANN-calibrated CG model to study the fracture properties
of nanoparticle-reinforced epoxy resin nanocomposites.

5.3. Numerical results

The following sections explore how various parameters impact the
fracture behavior of the nanocomposites using the proposed CG model.
These investigations focus on the RVE size, nanoparticle weight frac-
tion, and agglomerate size. Examining the RVE size and agglomerate
size helps ensure that the simulations accurately reflect the overall me-
chanical properties of the material. Analyzing the nanoparticle weight
fraction is critical for optimizing the balance between material strength
and flexibility.

5.3.1. Effect of volume element

We first study the effect of volume element (VE) size on the force—
displacement curve of BNP/epoxy nanocomposite specimens. In the
simulations, single-edge-notched panels with a thickness of B and
an initial crack length a, as depicted in Fig. 17(a), are simulated to
measure the fracture properties. To generate the CG model, epoxy
and hardener are randomly placed in a simulation box with periodic
boundary conditions. The system, before curing, is subjected to energy
minimization to find the global minimum energy configuration. The
curing process and preparation of the equilibrated system are then
performed as described in Section 3. After the curing simulation, a
single-edge crack, measuring 40% of the length and a width of 6 A,
is created in the middle of the simulation box, as shown in Fig.
17(b). To create this crack configuration, all beads and bonds within
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Fig. 17. (a) Schematic of a single-edge notched panel under tensile loading and (b) periodic simulation box of pure epoxy with dimensions 650 x 650 x 160 A3,
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Fig. 18. (a) Variation of potential energy with displacement for pure epoxy with dimensions of 650 x 650 x 160 A3, and (b) load—displacement curve for pure epoxy using the
CG model. Fracture propagation in the pure epoxy at points indicated by red crosses is illustrated in Fig. 19.

the crack region are deleted, followed by another round of energy
minimization. The system is then relaxed using an NPT simulation at
room temperature and atmospheric pressure for 2 ns.

In the next step, tensile deformation is applied in a direction that
increases the box length at a constant displacement rate, and the coor-
dinates of the CG beads are remapped at every timestep accordingly.
Meanwhile, stresses in the lateral directions, perpendicular to the ten-
sile direction, are maintained at zero to accommodate natural Poisson
contraction. Bond breakage is also captured using the Morse potential
presented in Eq. (2). It is worth noting that the tensile deformation
described here is distinct from that applied to simulation boxes without
notches, as detailed in Section 2.3.

The fracture simulation is initially performed on pure epoxy spec-
imens. Fig. 17(b) shows a 650 x 650 x 160 7\3 simulation box con-
taining 215,664 beads, which corresponds to an all-atom system with
3,666,288 atoms. To predict K, it is necessary to establish the rela-
tionship between force and displacement. For this purpose, a tensile
load with a constant displacement rate is applied to the system to
observe the variation in potential energy versus displacement. The
force-displacement response is then derived from the first derivative
of the potential energy with respect to displacement. During the sim-
ulation, stresses perpendicular to the tensile direction are maintained
at atmospheric pressure using an NPT ensemble. Fig. 18(a) presents
the potential energy variation of the system versus displacement, from
which the force-displacement curve is obtained, as shown in Fig. 18(b).

The propagation of cracks at different load levels is illustrated in
Fig. 19, which shows that the crack growth occurs along the liga-
ment of the initial notch. This observation allows us to conclude that
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mode I fracture is dominant, and we can extract it from the load—
displacement curve. The fracture simulation is conducted at room
temperature with a displacement rate set at 325 m/s. After obtaining
the force—displacement response, the mode I stress intensity factor for
the specimen is calculated using the following equation [72]:

P 2tan 22 2W

BVW  cos
where B is the panel thickness, and P, W, and a are defined in Fig.
18(a).

In the simulations, periodic boundary conditions are used to elim-
inate size effects. Although these conditions help remove artifacts
caused by unwanted boundaries, they introduce the artifact of peri-
odic conditions. For amorphous polymer systems, the motion of one
molecule affects other molecules placed around it [74]. The long-
range interactions between molecules demonstrate an extrusive size
effect in simulations. To explore the size dependency of the epoxy
system, we increased the side lengths of the simulation box from 300 to
650 A, while keeping the thickness constant at 160 A. The simulation
results, shown in Fig. 20, demonstrate an increase in the mode I stress
intensity factor of the epoxy systems with increasing VE size. Here, the
data represent the mean value of 9 simulations at room temperature.
Observing only a slight convergence in Fig. 20, we have decided to
consider the largest possible volume element that the computational
time allows as an representative volume element (RVE) to continue the
study, keeping in mind that this RVE is not large enough to definitively
report the stress intensity factor.

K; = —|0. 752+202(—)+037(1 —sm—)z 13)
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Fig. 20. Variation of K, of a pure epoxy system with respect to the simulation box
side length.

It is noteworthy, that while CG simulations are not suitable for
predicting the macro-scale fracture properties of polymer nanocom-
posites, they remain invaluable for qualitative analyses of key fac-
tors such as nanoparticle weight fraction and agglomeration. These
aspects are crucial for designing optimized nanocomposites. CG mod-
els provide critical insights that inform continuum-level or multiscale
models, effectively bridging nanoscale behaviors with macro-scale frac-
ture properties. By enabling computationally efficient predictions of
macro-scale behavior based on nanoscale data, they link fundamental
mechanisms to practical applications, playing a vital role in the design
of high-performance, reliable nanocomposites.

5.3.2. Effect of agglomerate size

As mentioned earlier, boehmite nanoparticles typically have a ten-
dency to form agglomerates. To investigate how the size of these
agglomerates affects the fracture properties of nanocomposites, we

(b) B

(e) C

Fracture propagation in pure epoxy at (a) 4=8 A, (b) 4=26 A, and (c) 4 =36 A. Snapshots correspond to the points specified in Fig. 18.

systematically increase the average diameter of the agglomerates. This
process continues until a point of convergence is observed, indicating
that further increases in size no longer significantly affect the mate-
rial’s fracture behavior. This approach helps to determine the optimal
agglomerate size for enhancing the structural integrity and toughness
of the nanocomposite.

In the simulations, the box lengths in the x- and y-directions are
set to 650 Z\, while the thickness is maintained at 160 A. The initial
crack length and width are 260 A and 6 A, respectively, and the BNP
weight fraction is consistently held at 5wt%. The average diameter of
the agglomerates increases from 23 to 100 A as the number of BNPs
increases from 3 to 80, as depicted in Fig. 21. The simulation details
and conditions replicate those of previous simulations. The effects of
agglomeration size on the mode I stress intensity factor are illustrated
in Fig. 22. The simulation results indicate that the average magnitude
of K; converges to approximately 693 kPaﬁ, as the agglomerate size
increases to 100 A. In subsequent simulations, agglomerates containing
80 BNPs with an average diameter of 100 A are considered sufficiently
large to serve as representative.

5.3.3. Effect of nanoparticle weight fraction

We next explore the impact of nanoparticle weight fraction on the
force—displacement response of BNP/epoxy nanocomposites. The RVE
size, initial crack length, and mass density are consistent with those
detailed in earlier subsections. In this study, the BNP weight fraction
varies from 0 to 15 wt%. Figs. 23(a) and 23(b) provide top views and
perspectives of a CG model for a BNP/epoxy nanocomposite with a
10% BNP weight fraction, serving as a representative example for this
analysis.

Fig. 24 presents the load-displacement behavior of pure epoxy
resin and its BNP-reinforced nanocomposites under tensile loading, as
predicted by the CG model. The results reveal that adding BNPs to
the epoxy matrix increases the material’s resistance to fracture in the
presence of cracks. Fig. 24 confirms that the BNP/epoxy nanocomposite
becomes more resistant to fracture as the nanoparticle weight fraction
increases from 0 to 15 wt%. Additionally, it is shown that the area
under the load-displacement curve, and thus the maximum force, is
higher for the dispersed BNP (15 wt%) compared to the agglomerated
BNP (15 wt%). Therefore, as expected, the epoxy matrix demonstrates
greater fracture resistance when the BNPs do not form agglomerates.

Fig. 21. Illustration of a single agglomerate containing (a) 3, (b) 40, and (c) 80 BNPs.
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Fig. 22. Variation of K, with increasing x- and y-dimensions of BNP (5 wt%)/epoxy
nanocomposites, while maintaining a constant simulation box width set to 650 A.

In experiments, some BNPs are uniformly distributed, while other
nanoparticles form agglomerates, as noted in [4]. This results in a non-
uniform dispersion of BNPs within the epoxy matrix. However, due to
the limited length scale and the use of periodic boundary conditions,
our CG simulations can only model either fully distributed or fully
agglomerated particles. Although this simplification leads to deviations
between the numerical predictions and experimental data, the CG
model still allows us to qualitatively predict lower and upper bounds for
the fracture properties of BNP/epoxy nanocomposites. Fig. 26 includes
snapshots of the pure epoxy matrix and BNP (15 wt%)/epoxy nanocom-
posites with fully agglomerated and well-dispersed nanoparticles at a
displacement of 36 A. It is evident that BNP/epoxy nanocomposites
exhibit enhanced strength in the presence of cracks compared to pure
epoxy.

Fig. 25 illustrates the effect of nanoparticle distribution on the stress
intensity factor across different BNP weight fractions. The average K;
for BNP/epoxy nanocomposites increases from 600 to 693 kPa\/r; for
agglomerated BNPs, and to 732 kPa\/E for fully dispersed BNPs, as
the BNP weight fraction increases from 0 to 5 wt%. This corresponds
to percentage increases of 15% and 22% compared to pure epoxy,
respectively. As the weight fraction of BNPs increases to 10 wt%, the
mode 1 stress intensity factor rises further to 738 and 786 kPay/m
for agglomerated and fully dispersed BNPs, showing deviations of
23% and 31% compared to pure epoxy, respectively. The calculated
average values of K; for the BNP (15 wt%)/epoxy nanocomposite
are 804 and 853 kPaﬁ for agglomerated and fully dispersed BNPs,
respectively, showing percentage increases of about 34% and 42%
compared to pure epoxy. Notably, the observed behavior suggests that

Materials Today Communications 48 (2025) 113185

the dispersion and agglomeration of BNPs are concentration-dependent.
At 5 and 10 wt%, fewer BNPs result in intermediate behavior due
to weaker interparticle interactions and lower matrix saturation. At
15 wt%, the higher concentration promotes the formation of smaller,
more dispersed agglomerates, which align the system behavior closer
to that of fully dispersed BNPs.

6. Conclusions

This research introduces an ANN-based optimization framework
for calibrating CG models tailored to nanoparticle-reinforced poly-
mers. The approach defines an objective function as the total squared
error between thermo-mechanical properties predicted by the ANN-
trained CG model and those obtained from all-atom simulations. This
method significantly reduces computational cost while maintaining
high fidelity in predicting the thermo-mechanical properties of polymer
nanocomposites across a wide temperature range. This study integrates
ANN-based optimization with CG simulations to tackle challenges in
force field parameterization, improving predictive accuracy and ensur-
ing temperature transferability. This intermediate approach balances
accuracy and cost, improving upon traditional CG methods through
machine learning optimization while avoiding the data and computa-
tional demands of machine learning force fields (MLFFs), making it
ideal for qualitative studies of nanocomposite fracture behavior. The
ANN model is tailored to the DGEBA/MTHPA epoxy system with BNPs.
While the methodology is generalizable, predicting fracture properties
for a different polymer matrix would require retraining the model with
new all-atom simulation data. Nevertheless, qualitative insights, such
as the role of nanoparticle dispersion in enhancing fracture resistance,
may apply broadly to polymer nanocomposites.

Leveraging the optimized CG model, we investigated the effects
of BNP weight fraction and distribution (agglomerated vs. dispersed)
on the fracture properties of epoxy nanocomposites. Simulations of
two extreme cases — fully dispersed and agglomerated BNPs — pro-
vided bounds for the stress intensity factor. Experimental K; values
for nanocomposites with non-uniform BNP dispersion fell within these
bounds, validating the model’s capability to capture the influence of
agglomeration on fracture properties. For instance, a 15 wt% BNP
content increased K; by 39% experimentally, aligning with simulation
results showing increases of 42% for dispersed and 34% for agglomer-
ated nanoparticles. Both numerical simulation and experimental results
indicate that nanoparticle additives significantly improve the fracture
properties of the epoxy matrix. This numerical-experimental compar-
ison confirms that the proposed machine-learning-assisted CG model
effectively captures the impact of nanoparticle agglomeration on the
fracture properties of polymer nanocomposites.

While CG models may not deliver exact quantitative predictions
for macro-scale fracture properties, they are invaluable for obtaining

(a)

(b)

Fig. 23. Simulation box of BNP (10 wt%)/epoxy nanocomposites with dimensions of 650 x 650 x 160A3 featuring an initial crack: (a) top view and (b) perspective view.
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(a)

(b) ()

Fig. 26. Snapshots of (a) pure epoxy, (b) agglomerated BNP (15 wt%)/epoxy nanocomposite, and (c¢) randomly distributed BNP (15 wt%)/epoxy nanocomposite at a displacement

of 36 A.

qualitative insights into the mechanisms governing polymer nanocom-
posites’ behavior. The MLP’s R? of 0.8 reflects a well-balanced com-
promise in predicting various properties. Meanwhile, future research

could investigate property-specific ANNs to improve individual ac-
curacies, although this may come at a higher computational cost.
Future work could explore neural networks as direct CG force fields,
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predicting forces and energies from configurations, to potentially im-
prove multi-property accuracy, though this would require increased
data and computational investment compared to our current approach.
Additionally, future work could also explore hybrid models integrat-
ing constitutive equations with machine learning, combining physical
grounding with data-driven flexibility to further improve predictions of
fracture properties in polymer nanocomposites.
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