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Executive Summary

Interferometric Synthetic Aperture Radar (SAR) (InSAR) is a well-established method
for measuring the topography of the Earth and the displacements of its surface with
millimeter accuracy. As this information is essential for infrastructure safety, there are
numerous operational SAR missions, InSAR processing systems and InSAR-based moni-
toring services.

The SAR coherence magnitude is an essential parameter in InSAR. It is directly related to
the signal-to-noise ratio and is therefore synonymous with it. It is also used to characterize
InSAR systems, as the statistics of the interferometric measurements are parameterized by
the coherence magnitude. And more recently, with SqueeSAR and CAESAR, it became
the fundamental weighting for analyzing long time series from observations of distributed
scatterers (DSs). The latter application, in particular, requires accurate coherence esti-
mation to minimize error propagation and provide an accurate measurement of ground
motion.

Estimators of the coherence magnitude, e.g., the sample estimator, are biased, and the
smaller the coherence and the number of available samples, the more biased they are.
The objective of this thesis is to develop new coherence magnitude estimators of jointly
complex circular Gaussian (CCG) signals and to describe, characterize, and demonstrate
the methods. In addition, Bayesian coherence priors are developed, which are applicable
in everyday InSAR processing.

Bayesian methods are well-established in statistical inference and estimation, and allow
to include prior information. However, there are currently no publications on methods for
coherence magnitude estimation using this principle. Therefore, an empirical Bayesian
estimation is developed. Another technique that has not yet been studied for coherence
magnitude estimation is machine learning (ML). Two estimators are developed for this
principle, and they are adapted to support prior information.

Using simulations, the estimators are characterized with respect to various sample sizes
and the underlying true coherence by the corresponding bias, standard deviation, and
root mean squared error (RMSE). Also, the respective performance is compared with the
conventional sample estimator. Furthermore, the new methods are demonstrated on real
Sentinel-1 data as a proof of concept.

In this thesis, the use of prior knowledge on the coherence is demonstrated for the first
time, and all developed estimators support prior information. The more information is
used and the stricter the prior, the more accurate the coherence estimate will be. The
developed estimators offer two main advantages compared to the conventional sample
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estimator. All improve the estimation of small coherences. And, they better estimate
the coherence from small sample sizes. The empirical Bayesian estimator works advanta-
geously up to 15 InSAR samples. The direct ML method is advantageous up to 30 samples,
and the composite estimator was demonstrated to be advantageous for 200 InSAR sam-
ples. The performance and advantages are the reasons why the composite estimator is
suitable and recommended for implementation in operational InSAR systems. It sup-
ports small and large sample sizes and has the best estimation performance compared to
the other methods. An advantage worth emphasizing is its estimation performance even
without prior. This makes the estimator universally applicable and comparable with the
conventional sample estimator.



Kurzfassung

Die SAR-Interferometrie (InSAR) ist eine etablierte Methode zur Messung der Topografie
der Erde und millimetergenauer Bewegungen ihrer Oberfläche. Da diese Informationen
für die Sicherheit der Infrastruktur unerlässlich sind, gibt es zahlreiche operative SAR-
Missionen, InSAR-Verarbeitungssysteme und InSAR-basierte Monitoring-Dienste für Bo-
denbewegungen.

Die Kohärenz ist ein wesentlicher Parameter bei InSAR. Sie steht in direktem Zusam-
menhang mit dem Signal-Rausch-Verhältnis und ist daher für dieses ein Synonym. Sie
wird auch zur Charakterisierung von InSAR-Systemen verwendet, da die Statistik der
interferometrischen Messungen durch die Kohärenz parametrisiert wird. Mit den neuen
Prozessierungsverfahren SqueeSAR und CAESAR wurde es zur grundlegenden Gewich-
tung für die Analyse langer Zeitreihen aus Beobachtungen flächiger verteilter Streuer (auf
engl. distributed scatterer). Insbesondere die letztgenannte Anwendung erfordert eine
genaue Kohärenzschätzung, um eine Fehlerfortpflanzung zu vermeiden und eine präzise
Messung der Bodenbewegung zu ermöglichen.

Alle Kohärenzschätzer, wie z. B. der Stichprobenschätzer, sind verzerrt, und zwar umso
mehr, je kleiner die Kohärenz und die Anzahl der verfügbaren Stichprobenwerte ist. Das
Ziel dieser Arbeit ist es, neue Kohärenzschätzer für jointly complex circular Gaussian
(CCG) Signale zu entwickeln, die Methoden zu beschreiben, zu charakterisieren und zu
demonstrieren. Darüber hinaus werden Bayes’sche Kohärenzprior entwickelt, die in der
alltäglichen InSAR-Verarbeitung anwendbar sind.

Bayes’sche Methoden sind in der statistischen Inferenz und Schätzung fest etabliert und
ermöglichen das Einbeziehen zusätzlicher Informationen. Allerdings gibt es bisher keine
Veröffentlichungen über Methoden zur Kohärenzschätzung nach diesem Prinzip. Daher
wird eine empirische Bayes’sche Schätzung entwickelt. Eine weitere Technik, die noch
nicht für die Schätzung der Kohärenz untersucht wurde, ist das Machine Learning (ML).
Für dieses Prinzip werden zwei Schätzer entwickelt, die an die Unterstützung von Vora-
binformationen angepasst sind.

Durch Simulationen werden die Schätzer in Bezug auf verschiedene Stichprobengrößen
und die zugrundeliegende tatsächliche Kohärenz durch den Bias, die Standardabweichung
und den mittleren quadratischen Fehler (RMSE) charakterisiert. Zusätzlich wird die jew-
eilige Performanz mit dem herkömmlichen Stichprobenschätzer verglichen. Darüber hin-
aus werden die neuen Methoden anhand realer Sentinel-1 Daten als Machbarkeitsnachweis
demonstriert.
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In dieser Arbeit wird zum ersten Mal die Verwendung von Vorwissen über die Kohärenz
demonstriert und alle entwickelten Schätzer unterstützen diesen Ansatz. Je mehr Infor-
mation verwendet wird und je strenger der Prior ist, umso genauer wird die Kohären-
zschätzung. Die entwickelten Schätzer bieten zwei wesentliche Vorteile im Vergleich zu
den herkömmlichen Stichprobenschätzern. Alle verbessern die Schätzung von kleinen Ko-
härenzen. Und sie schätzen die Kohärenz bei kleinen Stichprobengrößen besser. Der em-
pirische Bayes’sche Schätzer funktioniert vorteilhaft bis zu 15 InSAR-Stichprobenwerten.
Die direkte ML-Methode ist bis zu 30 InSAR-Werten vorteilhaft, während der zusam-
mengesetzte Schätzer sich bei 200 InSAR-Stichproben noch als vorteilhaft erwiesen hat.
Die Leistung und die Vorteile sind die Gründe, warum der zusammengesetzte Schätzer für
den Einsatz in operationellen InSAR-Systemen geeignet und empfohlen ist. Er unterstützt
kleine und große Stichproben und hat im Vergleich zu den anderen Methoden die beste
Schätzleistung. Ein hervorzuhebender Vorteil ist seine Schätzleistung auch ohne Prior.
Dies macht den Schätzer universell einsetzbar und vergleichbar mit dem herkömmlichen
Stichprobenschätzer.



Contents

Executive Summary iii

Kurzfassung v

List of Symbols ix

1 Introduction 1
1.1 Scientific Motivation and Relevance of the Topic . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Solution Approach and Methodology . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 SAR Interferometry 5
2.1 InSAR Background and Fundamentals . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Data Acquisition Principle . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 InSAR Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 InSAR Data Statistic and Coherence Applications . . . . . . . . . . 11

2.2 State of the Art in Coherence Magnitude Estimation . . . . . . . . . . . . 18

3 Methods for Coherence Magnitude Estimation 23
3.1 Empirical Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Uninformative Prior . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Informative Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Estimation of Coherence Magnitude . . . . . . . . . . . . . . . . . . 32

3.2 Machine Learning Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Generation of Estimators . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Estimation of Coherence Magnitude . . . . . . . . . . . . . . . . . . 38

3.3 Composite Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Estimator Configuration Notation . . . . . . . . . . . . . . . . . . . 41
3.3.2 Detailed Implementation . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Experimental Results 47
4.1 Empirical Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Comparison of MAP, EAP and MEDAP Estimators . . . . . . . . . 48
4.1.2 Comparison of EAP, EAPLSP and EAPSP Estimators . . . . . . . 48
4.1.3 Characteristics for N = 2 . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.4 Characteristics for Large N . . . . . . . . . . . . . . . . . . . . . . 51
4.1.5 Sentinel-1 Application Demonstration . . . . . . . . . . . . . . . . . 51

vii



viii Contents

4.2 Machine Learning Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Comparison of MLWP, MLLSP and MLSP Estimators . . . . . . . 57
4.2.2 Characteristics for N = 2 . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Characteristics for Large N . . . . . . . . . . . . . . . . . . . . . . 60
4.2.4 Sentinel-1 Application Demonstration . . . . . . . . . . . . . . . . . 60

4.3 Composite Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Concept Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Test of Two Partial Estimators Only . . . . . . . . . . . . . . . . . 62
4.3.3 Testing the Need for Different Statistics . . . . . . . . . . . . . . . 63
4.3.4 Testing the Need for an Intermediate Sample . . . . . . . . . . . . . 63
4.3.5 Comparison of Different Subsample Sizes . . . . . . . . . . . . . . . 64
4.3.6 Comparison of Strict Prior Test Cases . . . . . . . . . . . . . . . . 64
4.3.7 Characteristics for N = 9 and N = 30 . . . . . . . . . . . . . . . . 65
4.3.8 Characteristics for Large N . . . . . . . . . . . . . . . . . . . . . . 67
4.3.9 Sentinel-1 Application Demonstration . . . . . . . . . . . . . . . . . 67

5 Discussion 71
5.1 On the CCG Signal Model and Simulation . . . . . . . . . . . . . . . . . . 71
5.2 On the Estimator Characteristic . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and Outlook 73
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 77

A List of Abbreviations 83

B About the Author 87
B.1 Study and Work Experience . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Relevant Peer Reviewed Publications . . . . . . . . . . . . . . . . . . . . . 87



List of Symbols

Latin Symbols

1 vector of ones
A decomposition of the square, positive definite and Hermitian covariance matrix

Σ = AAH

a vector of square roots of the expected intensities Ik of each channel k,
a =

(√
I1

√
I2 . . .

√
INSLC

)T

a amplitude without relation to a specific sample, e.g., an argument of a PDF
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1 Introduction

1.1 Scientific Motivation and Relevance of the Topic

Interferometric SAR (InSAR) is well-established for surveying the topography of the Earth
(Hensley et al. 2000, Eineder et al. 2001, Zink et al. 2017) and its changes, i.e., ground
deformations (Ferretti et al. 2001, Berardino et al. 2002, Adam et al. 2003, Hooper et al.
2004, Guarnieri & Tebaldini 2008, Ferretti et al. 2011). The reasons for this are, on the one
hand, cost-effectiveness due to remote sensing surveying and automatic data processing
and, on the other hand, the characteristics of the data. The generated digital elevation
model (DEM) is homogeneous and consistent as it has a uniform pixel grid, is acquired
over a large area during a short mission time, and the observation is independent of cloud
cover in contrast to optical methods.

In recent years, InSAR has developed rapidly and now allows continuous monitoring of
subtle deformations of the Earth’s surface with millimeter accuracy. The basis is the
persistent scatterer interferometry (PSI), which was invented by Ferretti et al. (2001).
As an example, Fig. 1.1 visualizes the ground deformation in the area nearby Cologne

-5        [mm/year]       +5

Hambach

Kreuz Kerpen

Türnich

Kerpen

Sindorf

Figure 1.1: Ground motion monitoring example of infrastructure from ERS data.
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2 1 Introduction

(Germany), with red indicating strong subsidence of more than 30 mm/yr and green
indicating stable areas. The spaceborne monitoring of ground motion with millimeter
range is important because such information is crucial for the safety of infrastructure and
buildings as well as for the early detection of geohazards. The example above illustrates
the amount of omnipresent infrastructure worth protecting in a small area of ca. 20 km
× 15 km with railway lines, highways, bridges and buildings.

There is an increasing number of wide area operational services such as the European
Ground Motion Service (EGMS) (Frei 2017, Crosetto et al. 2020, Costantini et al. 2022),
and the Ground Motion Service Germany (BBD) (Kalia 2017, Kalia et al. 2018, Lege et al.
2019) that make the deformation maps freely available and, thus, widely visible (Even
et al. 2024). For their production, the coherence magnitude is an essential estimate. As
pointed out by Zebker & Villasenor (1992) as well as Just & Bamler (1994), the coherence
magnitude is a proxy for the signal-to-noise ratio (SNR). This is the reason why it is the
crucial weighting in all estimation methods based on distributed scatterers. Furthermore,
Bamler & Hartl (1998) describe the coherence to be a useful concept for InSAR system
description and for interferogram quality assessment. Due to the large amount of data
and the significance, there is an actual need to estimate this parameter as accurately and
computationally effectively as possible. Technically, the task is to estimate the population
parameter coherence magnitude from a sample of size N . However, the challenges are the
bias and variance of the estimate, which are large for small coherences and small sample
sizes, and the high computational cost of using more precise methods. Up to now, little
is published on the Bayesian estimation, i.e., include prior information, on using machine
learning (ML) and on composite inference methods for the estimation of the Synthetic
Aperture Radar (SAR) coherence magnitude.

1.2 Problem Statement and Objectives

The objective of this thesis is to develop new SAR coherence magnitude estimators and to
describe the principle and respective methods. Using simulations, they are characterized
with respect to various sample sizes and the underlying true coherence by the correspond-
ing bias, standard deviation, and root mean squared error (RMSE). Also, the respective
performance is compared with the conventional sample estimator. Furthermore, the new
methods are demonstrated on real data as a proof of concept.

Bayesian methods are well-established in statistical inference and estimation and allow to
include prior information. However, there are currently no publications on methods for
SAR coherence estimation using this principle. In this thesis, the use of prior knowledge
on the coherence is demonstrated for the first time with the newly developed empirical
Bayesian coherence magnitude estimation.

Another objective of this thesis is to improve the empirical Bayesian coherence estima-
tion in terms of accuracy and computational cost. Up to now, the coherence magnitude
estimation based on ML has not been studied and published. In this thesis, the ML frame-
work is applied to estimate the SAR coherence magnitude. Two types of ML algorithms
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are developed. The first method implements the fundamental principle and already im-
proves the estimation performance. The second method is more complex and uses the
first method as a subsystem, but improves the estimate even further. The principle of
prior is established also for the ML methods. This means, this thesis solves the problem
how to integrate the prior information into the ML approach.

In this thesis, coherence priors are developed which are applicable in everyday InSAR
processing. Uninformative and informative priors are accomplished and for the latter, two
typical InSAR scenarios are being considered, i.e., a strict prior and a less strict prior. In
order to support a practical application, the techniques are checked for different use cases
whether they are suitable for operational systems in terms of estimation performance and
availability of priors.

1.3 Solution Approach and Methodology

In this thesis, the coherence estimation is systematically improved using various tech-
niques. Figure 1.2 visualizes the developed methods and highlights them with reddish
boxes. All three methods are based on different principles. Firstly, Bayesian inference
is an established method in parameter estimation. However, it has not yet been used
for coherence estimation. Furthermore, Bayesian estimation is understood as a regular-
ization of the maximum likelihood estimation, which is currently the state of the art in
coherence estimation. Second, ML is an area of research that is currently receiving a lot
of attention, especially for classification and regression analysis for predictive modelling.
Methods of the latter are adapted and used for coherence estimation and the inclusion of
prior information. Thirdly, composite estimation is a further improvement of coherence
estimation. In this method, the ML framework learns the statistics of partial estimates
from subsamples. It utilizes the performance and accuracy of the second ML algorithm.
An important contribution of this thesis is that the concept of prior information has been
introduced into the SAR coherence estimation and has been systematically implemented
in all techniques. The more information is used and the stricter the general prior, the
more accurate the estimate will be.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Section 2 introduces InSAR with some
background information and fundamentals, e.g., InSAR theory and data statistics, coher-
ence applications, and the state of the art in estimating the coherence magnitude. Section
3 presents the methods of all estimators developed. Section 4 provides the experimental
results, including a Sentinel-1 test case for each method. Finally, Section 5 presents the
conclusion of this thesis and an outlook on possibilities for further development of the
research conducted in this thesis.
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Figure 1.2: Overview about the developed coherence estimation methods.



2 SAR Interferometry

2.1 InSAR Background and Fundamentals

InSAR is a modern radar remote sensing application. It is based on SAR as coherent
imaging method. Bamler & Hartl (1998) provide in detail the technology and the signal
theoretical aspects of InSAR as well its origins (Richman 1971, Graham 1974, Goldstein
et al. 1985). Since then, InSAR has developed into an active research field with numerous
operational spaceborne missions e.g., Seasat, ERS-1/2, JERS-1, SRTM, Envisat/ASAR,
RadarSAT-1/2, TerraSAR-X, TanDEM-X and the fleets of Radarsat, Cosmo-SkyMed,
Hongtu-1 and of Sentinel-1. The step from research to operational commercial missions
has now been completed, e.g., by Capella’s, ICEYE’s and Umbra’s SAR satellite constel-
lations.

First InSAR processing results were published by Zebker & Goldstein (1986), Gabriel &
Goldstein (1988) and Prati et al. (1989). With across-track InSAR, the phase informa-
tion contained in the radar echoes is used to calculate the topography of the Earth or
displacements of the Earth’s surface from at least two acquisitions. For topography map-
ping, the radars of the acquisitions need to be spatially separated perpendicular to the
line of sight (LOS). For deformation monitoring, the acquisitions have to be separated in
time and the technique is named differential InSAR (D-InSAR). This method was first
demonstrated in practice by Massonnet et al. (1993) and Goldstein et al. (1993). PSI
invented by Ferretti et al. (2001) is an operational spaceborne SAR technique to monitor
subtle motion of the Earth’s surface. It extends the InSAR by a time series analysis and
allows mitigation of atmospheric effects and as a result millimeter monitoring precision.
Variants of multi-temporal techniques are developed by Berardino et al. (2002), Colesanti
et al. (2003), Adam et al. (2003), Hooper et al. (2004), Kampes (2005), Ferretti et al.
(2011), Fornaro et al. (2015) and Ansari et al. (2017).

Another extension is SAR tomography (Reigber & Moreira 2000, Fornaro et al. 2003,
Lombardini 2003, Zhu & Bamler 2010). It reconstructs the reflectivity along elevation
and separates scatterers within a resolution cell.

The subsequent subsections explain the InSAR principle and the signals as well as their
statistics, which are typically expressions parameterized by coherence magnitude. This
is the reason why Bamler & Hartl (1998) describe the coherence to be a useful concept
for system description and for interferogram quality assessment. In the sections below,
some statistics and an experiment are presented to demonstrate the importance of this
parameter and applications of its estimate.

5
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2.1.1 Data Acquisition Principle

The SAR illuminates an area on the ground. In doing this, the reflected echoes are
recorded and processed coherently. The result is a radar image that is composed of
complex numbers. Figure 2.1 shows on the right an example radar acquisition with the
amplitude to explain the two types of backscatters that can be observed. Distinguishing
these scattering types is important because they are characterized differently.

Point scatterer is a dominant scatterer with a high reflectivity and a fix phase center
which is only slightly affected by temporal and geometrical decorrelation. As a conse-
quence, such a scatterer has a high phase stability over long time spans and different look
angles (effective baselines). Ferretti et al. (1999) introduced point scatterers (PSs) into a
systematic interferometric processing. The used scatterers are characterized by di- or tri-
hedral reflection or simple deterministic antenna like single-bounce scattering. Typically,
man-made structures made of metal, boulders, and outcrops can all generate good PSs
(Ferretti et al. 2011). PSs are characterized by the signal-to-clutter ratio (SCR) (Freeman
1992) which is related to and estimated by the dispersion index (Ferretti et al. 2001).

Distributed scatterer is an areal scatterer observed from vegetated areas, fields and
forests. If the scattering surface is rough with respect to the radar wavelength λ and the
resolution cell includes many scatterers, i.e., it is large compared to the single scatterers,
the amplitude and phase of all elementary scatterers are statistically independent and all

5 m

Figure 2.1: SAR scene amplitude (right image), point scatterer example (upper left image) and
distributed scatterer example (lower left image).
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phases are equally likely in the interval [−π, π). It is characterized by a homogeneous
backscattering intensity. Such data are modeled by a stationary complex, circular Gaus-
sian (CCG) process as stated by Goodman (1976) and Just & Bamler (1994) as well as
Rocca (2007). In practice, distributed scatterers (DSs) are not coherent over long tempo-
ral intervals. Nevertheless, they can be exploited for motion estimation using conventional
D-InSAR techniques Rocca (2007) and advanced time series methods (Berardino et al.
2002, Ferretti et al. 2011, Ansari et al. 2017).

2.1.2 InSAR Theory

The variable xk,i = ak,i exp(jϕk,i) denotes the single look complex (SLC) SAR scene pixel
with acquisition index k, e.g., k = 1 for the primary and k = 2 for the secondary scene,
more technically named as channel. i is the pixel index within a statistically homogeneous
area with N independent and identically distributed (i.i.d.) samples. In this thesis, the
resolution cell corresponding to a scene pixel is assumed to be a DS according to section
2.1.1.

CCG signals are decomposed into two autarkic components xk,i = Re(xk,i) + j Im(xk,i).
The real Re(xk,i) and imaginary Im(xk,i) parts are independent Gaussian distributed
random variables with zero mean E{Re(xk,i)} = 0 and E{Im(xk,i)} = 0. Within each
channel k, the standard deviation of the real part σre is the same as of the imaginary
component σim, i.e., σre = σim = σk

Re(xk,i) ∼ N (0, σk)
Im(xk,i) ∼ N (0, σk).

(2.1)

This also means that the amplitude is Rayleigh distributed ak,i ∼ pa(ak,i | σk) with

pa(a | σ) = a

σ2 exp(− a2

2σ2 ). (2.2)

The component σk is related to the channel signal power Ik = 2σ2
k. However, the phase

of a SAR sample is uniform distributed ϕk,i ∼ U(−π, π), i.e., the phase of a SAR scene
alone is not usable. Practically, the random object phase ϕ

(obj)
k,i is the reason.

With SAR, the specific measured phase ϕk,i of scene k and pixel with index i is the
superposition of the range distance Rk,i related phase ϕ

(R)
k,i = 4π

λ
Rk,i which is the signal

component, and the random object phase ϕ
(obj)
k,i as well as the unavoidable noise ϕ

(noise)
k,i

introduced by the electronics, analog to digital conversion and approximations in the
focusing

ϕk,i = ϕ
(obj)
k,i + ϕ

(R)
k,i + ϕ

(noise)
k,i . (2.3)

InSAR combines two SAR scenes pixel by pixel, and ideally eliminates the random and
not predictable object phase ϕ

(obj)
k,i . For the following considerations, it is unimportant

which two scenes are combined. Therefore, the scene index k is set to 1 and 2 for the
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primary and secondary scenes, respectively. An interferogram sample zi is the conjugate
complex product of the primary and secondary SLC SAR scene pixel at index i

zi = |zi| e jφi

= x1,i x∗
2,i.

(2.4)

The interferometric phase of the pixel is

φi = arg
(
e j(ϕ1,i−ϕ2,i)

)
. (2.5)

For a single resolution cell on ground represented by a pixel in the interferogram, a 2 × 2
covariance matrix Σ describes the relation of the respective CCG processes X1 and X2.
For this, X1 and X2 must be jointly circular Gaussian. In addition to the characteristics
of (2.1), the conditions

E{Re(x1,i)Re(x2,i)} = E{Im(x1,i) Im(x2,i)}
E{Im(x1,i)Re(x2,i)} = − E{Re(x1,i) Im(x2,i)}

(2.6)

must be met according to Lee et al. (1993) and Touzi et al. (1999). That this assumption is
valid is accepted for distributed scatterer. The covariance matrix Σ contains the expected
intensities on the diagonal and the covariances on the off-diagonal

Σ =
(

I1 Cov(X1,X2)
Cov(X1,X2)∗ I2

)
. (2.7)

Basically, the covariance is defined for the random variables X1 and X2, i.e., for the
primary and the secondary signal by

Cov(X1,X2) = E{X1X
∗
2 } − E{X1} E{X∗

2 } (2.8)

where E{.} is the expected value operator, i.e., the ensemble average. The linear correla-
tion coefficient ρX1,X2 is defined by the normalization

ρX1,X2 = Cov(X1,X2)√
Var(X1)

√
Var(X2)

. (2.9)

For a CCG process, (2.8) simplifies with E{X1} = 0 and E{X2} = 0 and the complex
coherence is

γ e jφ = E{X1 X∗
2 }√

E{|X1|2}
√

E{|X2|2}
. (2.10)

The principle of ergodicity allows using the spatial mean instead of the ensemble average
and gives the sample estimator of the coherence coefficient γ̂s based on N i.i.d. samples.
In practice, a homogenous area is detected providing a spatially homogenous backscatter
coefficient and a stationary phase signal (i.e., residual topography, deformation and at-
mospheric phase screen are compensated). Finally, the random processes are represented
by the samples of each channel X1 : {x1,1, x1,2, . . . , x1,N} and X2 : {x2,1, x2,2, . . . , x2,N}.
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In operational systems, the sample estimator γ̂s is typically implemented to infer the
coherence magnitude γ

γ̂s e jφ̂s =
∑N

i=1 x1,i x∗
2,i√∑N

i=1 |x1,i|2
√∑N

i=1 |x2,i|2
. (2.11)

Carter et al. (1973) as well as Touzi & Lopes (1996) show this is a random variable
which is systematically biased toward higher coherence and provide the statistic of this
sample estimate based on the conditional probability density pγ̂s | γ(γ̂s | γ, N) visualized
in Fig. 2.2. It depends on the number of samples N and the underlying coherence γ:

pγ̂s | γ(γ̂s | γ, N) = 2γ̂s
(
1 − γ̂2

s

)N−2
(N − 1)(1 − γ2)N

2F1
(
N, N ; 1; γ2 γ̂2

s

)
. (2.12)

In the equation above, 2F1(.) is the Gaussian hypergeometric function. Carter et al. (1973)
also provide the respective cumulative distribution function (CDF)

Pγ̂s | γ(γ̂s | γ, N) = γ̂2
s

(
1 − γ2

1 − γ2γ̂2
s

)N N−2∑
k=0

(
1 − γ̂2

s
1 − γ2γ̂2

s

)2

2F1
(
−k, 1 − N ; 1; γ2 γ̂2

s

)
(2.13)

and the m-th raw moment

E{γ̂m
s | γ, N} =

(
1 − γ2

)N Γ(N)Γ(m
2 + 1)

Γ(m
2 + N) 3F2

(
m

2 + 1, N, N ; m

2 + N, 1; γ2
)

. (2.14)

In the equation above, 3F2(.) is the generalized hypergeometric function. The expected
value is computed from (2.14) with m = 1

E{γ̂s | γ, N} =
√

π (1 − γ2)N Γ(N) 3F2
(

3
2 , N, N ; 1, N + 1

2 ; γ2
)

2Γ
(
N + 1

2

) (2.15)

N=3

N=30
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p γ
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γ
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s

γ


γ=0.3

Figure 2.2: Example conditional probability density (2.12) with γ = 0.3 for N = 3 (blue) and
N = 30 (orange).
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and the second raw moment, i.e., m = 2 in (2.14), by

E{γ̂2
s | γ, N} = (1 − γ2)N Γ(N) 3F2(2, n, n; 1, n + 1; γ2)

Γ(N + 1) . (2.16)

Carter et al. (1973) as well as Touzi et al. (1999) use the relation between the central
moments and the raw moments to calculate the sample estimator bias γ(bias)

s

γ(bias)
s = E{γ̂s | γ, N} − γ (2.17)

and the sample estimation standard deviation γ(σ)
s

γ(σ)
s =

√
E{γ̂2

s | γ, N} − E{γ̂s | γ, N}2

=
(1 − γ2)N Γ(N) 3F2(2, N, N ; 1, N + 1; γ2)

Γ(N + 1)

−
π (1 − γ2)2N Γ(N)2

3F2
(

3
2 , N, N ; 1, N + 1

2 ; γ2
)2

4 Γ
(
N + 1

2

)2


1
2

.

(2.18)

Figure 2.3 visualizes examples of the sample estimator bias (2.17) and standard deviation
(2.18). By Fig. 2.3a, it is clear, the sample estimator is asymptotically unbiased, i.e., for
large N and/or high coherence γ. By additionally looking at Fig. 2.3b, it can be seen
that the sample estimator is consistent, meaning that it estimates more accurately as
the sample size increases. Efficiency is a criterion for the best possible estimator. An
estimator is efficient if it achieves the Cramér-Rao Lower Bound (CRLB) or, formulated
for estimators that are biased, achieves the best possible mean squared error (MSE) or
RMSE. This is certainly the case if both the bias γ(bias)

s (2.17) and the variance (γ(σ)
s )2

(2.18) are zero. It can be shown that limγ→1 γ(bias)
s = 0 and limγ→1 γ(σ)

s = 0. Therefore,
the sample estimator is efficient for an underlying coherence γ = 1 and all sample sizes
N ≥ 2. The limits as N goes to infinity can only be calculated for trivial γ (e.g., γ = 0
or γ = 1). But it is a feature of maximum likelihood estimates (MLEs) that they are,
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(a) Bias.
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Figure 2.3: Characteristics of the sample estimation γ̂s for N = 3 (blue) and N = 30 (orange).
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with respect to sample size, asymptotically unbiased and have an asymptotically minimal
variance. Therefore, the sample estimator is efficient when N is infinity and/or γ = 1.
However, both cases of γ = 1 and N = ∞ are rather theoretical. In practice, these
results mean that other estimators cannot be better for these extreme configurations, and
it becomes more difficult for other estimators the closer one gets to these extremes. I.e.,
N is large and/or the coherence is large.

Olkin & Pratt (1958) formulate the condition to construct an unbiased estimator G(γ̂s)
based on the sample estimate (2.11)

E{G(γ̂s)} = γ. (2.19)

Based on the basic approach

E{G(γ̂s)} =
∫ 1

0
G(γ̂s) pγ̂s(γ̂s | γ, N) dγ̂s, (2.20)

Touzi et al. (1999) prove that G(γ̂s) cannot be constructed. As a consequence, all co-
herence estimators are biased, and importantly, the conventional CRLB, i.e. the inverse
Fisher information matrix (FIM), is not relevant for the variance of such estimators.

2.1.3 InSAR Data Statistic and Coherence Applications

The probability density functions (PDFs) below are independent from the pixel position i,
i.e., they are valid for each jointly CCG sample vector and the indices are associated with
the SLC acquisition k. For this reason, the pixel index i is not present in the variable
names. Generally, for NSLC scenes, the conditional PDF with an underlying (given)
complex covariance matrix Σ of a zero mean complex NSLC-variate Gaussian random
variable x = X∗,i =

(
x1,i . . . xk,i . . . xNSLC,i

)T
is

pCCG(x | Σ) = 1
πNSLC det (Σ) exp (−xHΣ−1x). (2.21)

Based on the equation above, the joint PDF of an InSAR data pair, i.e., NSLC = 2, is
published by Touzi & Lopes (1996) as a function of the primary scene amplitude a1 and the
secondary scene amplitude a2 as well as the interferometric phase difference φ1,2 = ϕ1 −ϕ2
given the underlying coherence γ and true interferometric phase φ

pInSAR1(a1, a2, φ1,2 | γ, φ, I1, I2) =
2 a1 a2

π I1 I2 (1 − γ2) exp
(

−I2 a2
1 + I1 a2

2 − 2a1 a2
√

I1 I2 γ cos(φ1,2 − φ)
I1 I2 (1 − γ2)

)
.

(2.22)

The equation above is the general joint PDF of two correlated complex samples with
individual expected intensities I1 and I2 and is valid for a1 ≥ 0, a2 ≥ 0, I1 > 0, I2 > 0 and
0 ≤ γ < 1. The phase difference is relevant only, because the object phase is completely



12 2 SAR Interferometry

random and does not contribute to the statistic. A more specific joint PDF with given
parameter σ =

√
I1/2 =

√
I2/2 is published by Goodman (1975)

pInSAR2(a1, a2, φ1,2 | γ, φ, σ) =
a1 a2

2 π σ4 (1 − γ2) exp
(

−a2
1 + a2

2 − 2a1 a2 γ cos(φ1,2 − φ)
2 σ2 (1 − γ2)

)
.

(2.23)

This equation assumes equal channel intensities I1 = I2 and uses the standard deviation
σ of the real and imaginary components as parameter. Straight forward to implement
estimators for the MLE are known for (2.22) and (2.23). According to Touzi et al. (1999),
the sample coherence magnitude γ̂s in (2.22) is the MLE of the coherence magnitude γ.
Seymour & Cumming (1994) developed the MLE based on (2.23).

Integrating (2.22) over a1 and a2 provides the marginal PDF of the measured interfero-
metric phase difference φ1,2. It is published by Goodman (1975), Lee et al. (1993), Bamler
& Hartl (1998) and in more detail by Goodman (2007)

pφ1,2(φ1,2 | γ, φ) =
(1 − γ2)

(√
1 − β2 + πβ − β arccos(β)

)
2π (1 − β2)3/2 . (2.24)

In the equation above, the term β = γ cos(φ1,2 − φ) needs to be substituted. Finally, the
expected value

E{φ1,2 | γ, φ} = φ (2.25)
and standard deviation of the interferometric phase

σφ1,2 =
(

π2

3 − π arcsin(γ) + arcsin2(γ) − 1
2 Li2(γ2)

)1/2

(2.26)

result, where Li2(.) is the dilogarithm function. The last equation clearly shows that the
coherence γ alone determines the standard deviation of the InSAR phase φ1,2 and thus its
precision. However, the multilook statistic, i.e., for the InSAR phase sample estimate

φ̂s = arg
(

N∑
i=1

x1,i x∗
2,i

)
, (2.27)

is more relevant in practice. Lee et al. (1993) have published the respective PDF

pφ̂s(φ̂s | γ, φ, N) = (1 − γ2)N

2π

2F1

(
1, N ; 1

2; β2
)

+
√

πΓ
(
N + 1

2

)
β

Γ(N) (1 − β2)N+ 1
2

 . (2.28)

In the equation above, the term β = γ cos(φ̂s − φ) needs to be substituted. Unfortu-
nately, there is no closed-form solution for the standard deviation of the multilook phase
σφ̂s =

√
E{(φ̂s − φ)2}. To describe the exact functional relationship between σφ̂s and γ,

numerical integration is used (Lee et al. 1993, Touzi & Lopes 1996, Bamler & Hartl 1998).
Rosen et al. (2000) suggest using the Cramer–Rao bound as a reasonable approximation

σφ̂s ≈ 1√
2N

√
1 − γ2

γ
(2.29)
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when N > 4.

The applications of coherence are based on its relationship to the InSAR phase standard
deviation σφ̂s described above. For instance, for DEM mapping, the error propagation
from phase standard deviation to topography height standard deviation σĥ is

σĥ =
√

k2
z σ2

φ̂s . (2.30)

kz is the vertical wavenumber or, more precisely, the phase to height conversion factor
which is for bistatic single-pass interferometry

kz = 2π

λ

Beff

R0 sin(θ0)
. (2.31)

It depends on the observation geometry, i.e., the effective baseline Beff , the range distance
from sensor to the ground R0, the radar wavelength λ and the local incidence angle θ0.
First, the DEM precision σĥ can be provided as an operational quality data layer based on
the estimated coherence, i.e., based on the actual data quality. Second, because σφ̂s can
be tuned by the number of averaged samples N , the spatial resolution and the precision
of the height monitoring can be adjusted according to the requirements. Furthermore, in
operational processing, the coherence is an essential layer to support phase unwrapping
(Derauw 1995).

Another application of the coherence magnitude is the estimation of the coregistration
accuracy depending on the underlying coherence. In InSAR systems, the complex cross
correlation is used to estimate the mutual shift ∆̂ for the coregistration of the primary
and secondary scene. According to Bamler (2000), the standard deviation of this shift
estimate σ∆̂ for homogeneous image patches in units of samples is

σ∆̂ =
√

3
2N

√
1 − γ2

πγ
r3/2. (2.32)

r is the oversampling of the data. Figure 2.4a visualizes this functional relationship. In or-
der to provide the actual coregistration accuracy during InSAR processing, the coherence
needs to be estimated from the data. Accordingly, the coherence γ is to be substituted
by the sample estimate γ̂s with the PDF (2.12), i.e., γ̂s ∼ pγ̂s | γ(γ̂s | γ, N). Applying
the transformation of random variables, the PDF of the standard deviation of the shift
estimate

pσ∆̂
(σ∆̂ | γ, N) =3(N − 1)r3

π2Nσ3
∆̂

((
γ2 − 1

)( 3r3

2π2Nσ2
∆̂ + 3r3 − 1

))N

× 2F1

(
N, N ; 1; 3r3γ2

3r3 + 2Nπ2σ2
∆̂

) (2.33)

is obtained. This PDF is visualized in Fig. 2.4b for N = 3 and N = 25. In addition, the
true coregistration standard deviations are shown as dashed lines. As γ̂s has a bias and
a variance, the accuracy estimate σ∆̂ is also subject to bias and dispersion based on the
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Figure 2.4: The estimated coregistration standard deviation σ∆̂ depends on the characteristics of
the coherence estimator used. (b), (c) and (d) are examples for the sample estimator.

fundamental coherence. Figure 2.4c visualizes as an example for N = 3 the estimation
likelihoods depending on the true coherence. For specific N , the bias can be provided as
a closed-form expression, e.g., for N = 3 it is

σ
(bias)
∆̂ =

√
2 − 2γ2r3/2

64πγ

(
3πγ

(
3γ4 − 8γ2 + 8

)
− 32

)
. (2.34)

The corresponding graph is visualized in Fig. 2.4d together with the verification simulation
(dots). Due to the characteristics of the sample estimator, however, the estimate (2.32)
is not always completely precise, especially with low coherence and few data points.

There is now a very important application for coherence magnitude in InSAR time series
analysis for ground motion monitoring. The respective methods have been published by
Guarnieri & Tebaldini (2008), by Ferretti et al. (2011) with SqueeSAR, by Perissin &
Wang (2012) and by Fornaro et al. (2015) with CAESAR. These methods estimate long
time span coherent InSAR phases arg(x̂PS) from DSs which originally decorrelate over
time. For this purpose, a vector xPS =

(
ejϕ1 . . . ejϕk . . . ejϕNSLC

)T
is analyzed to

optimally represent the data matrix X of the statistically homogenous pixels (SHP) with
respect to the phases. Such estimates can be used directly in a PSI processing comple-
menting PSs and therefore make a significant contribution to increasing the measurement
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density outside urban areas. The basis is the detection of SHP, which provides i.i.d.
samples per channel and allows a statistical analysis by exploiting the principle of ergod-
icity. Ferretti et al. (2011) as well as Parizzi & Brcic (2011) propose amplitude-based
statistical goodness-of-fit tests to group i.i.d. pixels, i.e., the two-sample Kolmogorov-
Smirnov, the Kullback-Leibler divergence, the Anderson-Darling, and the Generalized
Likelihood Ratio tests. As (2.10) shows, it is an inherent principle that coherence is
related to only two channels. The reason is, that the bivariate complex Gaussian dis-
tribution results in the single complex coherence parameter γ exp(jφ) as the statistic
parameter. For InSAR long time series analysis based on zero mean complex NSLC-
variate Gaussian random variables, the signal description can be extended to a coherency
matrix T . Each entry Tk1,k2 at index k1, k2 in T corresponds to the respective com-
plex coherence Tk1,k2 = γk1,k2 exp(jφk1,k2). Now, the task remains to estimate each entry
T̂k1,k2 = γ̂k1,k2 exp(jφ̂k1,k2) in T for k1 = 2 . . . NSLC and k2 = k1 +1 . . . NSLC. Two methods
are presented to demonstrate that the coherence matrix T and as a consequence coherence
estimation is fundamental for DS based InSAR time series estimation.

Ferretti et al. (2011) published the MLE based on the likelihood function formed from
products of (2.21). Finally, the nonlinear estimation

x̂PS = argmax
xPS

(
xH

PS

(∣∣∣T̂ ∣∣∣−1
◦ T̂

)
xPS

)
subject to ϕ1 = 0.

(2.35)

over the parameter vector xPS provides the solution arg(x̂PS). The matrix operation ◦
represents the element-wise (i.e., the Hadamard) product.

Fornaro et al. (2015) published the phase estimation based on the Eigenvalue Decomposi-
tion (EVD) of the covariance matrix Σ. PS like InSAR phases are estimated by extracting
the phases of the eigenvector associated with the largest eigenvalue from the estimated
covariance matrix

Σ̂ = 1
N
XXH . (2.36)

According to Cao et al. (2015), the EVD can also be implemented on the coherence
matrix T instead of the covariance matrix. This implies that the SHP data only shows
one scattering mechanism. The conversion from a covariance matrix into a coherence
matrix is

T̂ = Σ̂ ⊘
(
ââT

)
. (2.37)

The symbol ⊘ is the Hadamard division, i.e., the matrix element-wise division. The vector
â consists of the square roots of the expected intensities Ik of each channel k and can be
extracted from the covariance matrix using the identity matrix I and a vector of ones 1

â =
√(

Σ̂ ◦ I
)

1. (2.38)

T is a Hermitian matrix and its eigendecomposition is the sum of outer products of its
eigenvectors ui, weighted by their eigenvalues λi

T =
NSLC∑
i=1

λiuiu
H
i . (2.39)
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Figure 2.5: Principle of experiment.

Practically, the estimated coherence matrix T̂ is used and the method solves for

x̂PS = argmax
yPS

(
yH

PST̂ yPS
)

subject to yH
PSyPS = 1

(2.40)

with yPS =
(
a1ejϕ1 . . . akejϕk . . . aNSLCejϕNSLC

)T
. However, the solution is computed

directly by u1 without the need for a nonlinear solver for (2.40). Ferretti et al. (2011)
mention in equation 8 this approach in the framework of SqueeSAR.

In the applications above, knowledge of the true coherence γ is originally assumed. In
practice, however, the estimated γ̂ needs to be used instead. It is clear that in all men-
tioned applications error propagation occurs due to uncertainties in γ̂. The influence of
the estimation uncertainty of the coherences γ̂k1,k2 on the phases estimated by CAESAR
is demonstrated by an experiment. The principle is visualized in Fig. 2.5. The experiment
is based on a data simulation with the parameters of Table 2.1. Rocca (2007) and Zheng

parameter and value unit description
NSLC = 10 number of SLC scenes, i.e., channels
N = 10 number of i.i.d. samples in each scene
τ = 40 day characteristic decorrelation time
γ∞ = 0 long-term coherence
T = 12 day repeat cycle of sensor
ϕk ∼ U(−π, π) rad simulated phase of scene k
Nsimu =1 000 000 number of simulations

Table 2.1: Parameters to show how coherence magnitude impacts CAESAR phase estimation.
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et al. (2020) describe a temporal decorrelation law of DSs

γmodel(t) = γ∞ + (1 − γ∞) exp(− t

τ
). (2.41)

γ∞ is the long-term coherence and τ represents the characteristic decorrelation time, which
means that after a time t of 3τ , the modeled coherence has approximately decayed to the
long-term coherence, i.e., γmodel(3τ) ≈ γ∞. With this model, SLC scenes are simulated
and the data are represented by the matrix X. Next, the sample covariance matrix Σ̂s
is estimated according to (2.36), and (2.37) is used to calculate the coherence matrix T̂s.
This matrix is composed of complex sample coherence estimates γ̂k1,k2 exp(jφ̂k1,k2). On
the one hand, this matrix is used directly for CAESAR estimation, resulting in the PS
like InSAR phases arg(x̂(a)

PS). On the other hand, it is modified. The estimated coherence
magnitudes γ̂k1,k2 are replaced by the true values from the simulation γ

(simu)
k1,k2 and the

estimated phases φ̂k1,k2 are retained. The modified coherency matrix T̂m is also used for
the CAESAR estimation resulting in arg(x̂(b)

PS).

The experiment is evaluated using Fig. 2.6. Figure 2.6a shows the bias and standard
deviation of the coherence estimates in T̂s (blue plot) and the true, i.e., simulated by
(2.41), coherence (orange plot). In Figure 2.6b can be seen that the phase of the first
scene is set to zero as a reference and therefore has no RMSE. Also, the more accurate
the coherence is, the more accurate is the estimation accuracy of the phases. The RMSE
of the phases arg(x̂(a)

PS) (blue plot) is always larger than that of the phases arg(x̂(b)
PS) and

grows faster with increasing time interval (i.e., index number k). It is noteworthy that
the improved PS like phase estimate results only from the coherence magnitude, since
T̂s and T̂m contain the same phase estimates. Finally, the experiment confirms that the
estimation accuracy of the DS estimation methods can be significantly improved by the
accuracy of the coherence estimation.
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Figure 2.6: Estimation precision of coherences and phases from CAESAR. Orange: true coher-
ence used. Blue: sample coherence estimates used.
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2.2 State of the Art in Coherence Magnitude Estimation

Coherence magnitude estimation has been an active research field for decades. However,
the main focus was on bias mitigation. In operational systems, still the sample coherence
magnitude estimator is typically implemented.

Touzi et al. (1999) investigated two methods for unbiased estimation of the coherence
magnitude. Both assume a stationary coherence in an area larger than the coherence
estimation window. First, the coherence magnitude from a coherence magnitude map
(CMM) is considered. It allows spatially averaging the absolute value of L independent
sample coherence estimates from N samples γ̂s,i from (2.11), i.e.,

γ̂
(L)
CMM = 1

L

L∑
i=1

γ̂s,i. (2.42)

Touzi et al. (1999) provide an example with N = 4 and L = 1000. γ̂
(L)
CMM tends to be

distributed normally about E{γ̂s | γ, N = 4} given by (2.15) with standard deviation
γ

(σ)
s /

√
L based on (2.18). The low standard deviation allows to invert (2.15) using a table.

Touzi et al. (1999) state that for γ < 0.1 this bias corrected estimate is better than the
sample estimate (2.11) based on all samples in the overall area. Second, the coherence
estimation from a complex coherence map (CCM) is proposed with

γ̂
(L)
CCM = 1

L

∣∣∣∣∣
L∑

i=1
γ̂s,i exp(jφ̂s,i)

∣∣∣∣∣ . (2.43)

It is shown that a nearly unbiased coherence estimate results from spatially averaging the
complex coherence map of sufficiently coarse resolution, e.g., N = 20. The proof starts
with the joint PDF of the complex coherence (Touzi et al. 1999, equation 48)

pγ̂s,φ̂s(γ̂s, φ̂s | γ, φ, N) = (1 − γ2)N γ̂s(1 − γ̂2
s )N−2

πΓ(N)Γ(N − 1)

·
[
Γ2(N) 2F1

(
N, N ; 1

2; γ̂2
s γ2 cos2(φ̂s − φ)

)
+2Γ2(N + 1

2)γ̂sγ cos(φ̂s − φ) 2F1

(
N + 1

2 , N + 1
2; 3

2; γ̂2
s γ2 cos2(φ̂s − φ)

)]
.

(2.44)

The expected value for the complex coherence γ̂s exp(jφ̂s) is

E{γ̂s exp(jφ̂s) | γ, φ, N}

=
∫ 1

0

∫ 2π

0
γ̂s exp(jφ̂s) pγ̂s,φ̂s(γ̂s, φ̂s | γ, φ0, N) dφ̂sdγ̂s

=
Γ2(N + 1

2)
Γ(N)Γ(N + 1)2F1

(
N + 1

2 , N + 1
2; N + 1; γ2

)
γ(1 − γ2)N exp(jφ).

(2.45)

Since E{γ̂s exp(jφ̂s) | γ, φ, N} ̸= 0, the estimator is biased. However, the bias has an
interesting characteristic which is visualized in Fig. 2.7. Figure 2.7a demonstrates that
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(a) Theoretical bias (2.45) depending on the sample
size N .

L=50

L=500

L=5000

(b) Bias depending on the sample size L from sim-
ulations with N = 20.

Figure 2.7: Bias characteristic of CCM estimator.

the bias reduces increasing the partial sample size N and is negative, i.e., the coherence
magnitude is underestimated. What is remarkable about this figure is that, in contrast
to the conventional sample estimator, small coherences are without bias. In order to
realistically estimate the performance, one must consider the dependence on the number
L of averaged complex coherences. Figure 2.7b shows that the theoretical bias can only be
achieved with very large L and in practice, small coherences are estimated worse compared
to Fig. 2.7a. For an estimate, a total of T = NL i.i.d. samples are required and for the
example in Fig. 2.7b with N = 20, T = 1000 for L = 50 (blue graph), T = 10 000 for
L = 500 (orange graph) and T = 100 000 i.i.d. samples for L = 5000 (green graph).

Another work on bias removal for coherence magnitude estimation has been published by
Abdelfattah & Nicolas (2006). Similar to the CMM and CCM of Touzi et al. (1999), it also
assumes a stationary coherence in an area larger than the coherence estimation window.
In this work, the coherence is computed from the logarithm of the sample coherence, i.e.,
a logarithmic coherence magnitude map (LCMM)

γ̂
(L)
LCMM = 1

L

L∑
i=1

log (γ̂s,i) . (2.46)

The principle of second kind statistic allows to evaluate the bias of this estimator and to
compensate the biased estimate. Practically, the expected value of the estimate (2.46) is
computed using (2.12) from the first log-moment

m1 =
∫ 1

0
log (γ̂s) pγ̂s | γ(γ̂s | γ, N) dγ̂s. (2.47)

by
E{γ̂LCMM | γ, N} = exp (m1) . (2.48)

Abdelfattah & Nicolas (2006) propose a numerical solution for (2.47). Nowadays, Math-
ematica can evaluate a closed-form solution for small N . The example for N = 3 is

m1 = −γ4

4 + γ2 − 3
4 , (2.49)
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N=3

N=10

(a) Theoretical bias depending on the sample
size N .

L=2

L=5

L=20

(b) Bias depending on the sample size L from sim-
ulations with N = 10.

Figure 2.8: Bias characteristic of LCMM estimator.

and for N = 10 it is1

m1 = γ18

18 − 9γ16

16 + 18γ14

7 − 7γ12 + 63γ10

5 − 63γ8

4 + 14γ6 − 9γ4 + 9γ2

2 − 7129
5040 . (2.50)

Using these results and (2.48), Fig. 2.8a shows that the bias is very large for small N .
Also, Fig. 2.8b visualizes that many independent values, e.g., L ≥ 20, need to be averaged
in order to achieve the theoretical bias, which is plotted as a dashed line. In this example,
the total number of i.i.d. samples T = NL is 20 for L = 2, 50 for L = 5 and 200 for
L = 20.

Zebker & Chen (2005) have developed a method to correct the bias fitting a polynomial to
correlation estimates of simulated data as a function of true correlation and the number
of looks in the estimate. This is a very practicable and powerful approach, as it represents
the expected value of (2.15) favorably and corrects the bias.

More recently, Jiang et al. (2014) demonstrated the mitigation of the sample coherence
bias with only several samples based on Double Bootstrapping. Basically, Bootstrapping
is a non-parametric approach to statistical inference. It is powerful to estimate the bias
of an estimate and a second iteration is proposed in order to estimate and mitigate the
bias in the bias estimate. Generally, Bootstrapping is based on randomly sample N
times with replacement from a given sample of size N . First, the original observations
X = {x1,i=1, x2,i=1, . . . , x1,i=N , x2,i=N} are R times sampled respectively resulting in the
samples X∗

r . Each X∗
r provides a sample estimate γ̂∗

r using (2.11). Second, M times
random samples X∗∗

r,m from the first random samples X∗
r are taken and provide the sample

coherence estimates γ̂∗∗
r,m. The original sample X provides γ̂s. Jiang et al. (2014) derived

the estimation equation for the Double Bootstrapping estimate γ̂DB

γ̂DB = 3γ̂s − 3
R

R∑
r=1

γ̂∗
r + 1

RM

R∑
r=1

M∑
m=1

γ̂∗∗
r,m. (2.51)

1Since the domain of γ is between 0 and 1, the large powers are also in this range.
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This method is computationally demanding and requires R(1 + M) + 1 sample coherence
estimations (2.11) of size N , where Jiang et al. (2014) suggests R ≥ 500. Furthermore,
the double bias correction introduces extra estimation variability which can be observed
by a high estimator RMSE which is evident in column 2 of Table I reported by Adam
(2022).

ML is an active field of research in its own right. The application of ML in remote sensing
is comprehensively reviewed by Zhu et al. (2017) and Schmitt et al. (2023). In the context
of SAR signal processing, Sica et al. (2021, 2023) apply Deep Learning and self-supervised
learning for InSAR phase and coherence estimation with focus on phase denoising.





3 Methods for Coherence Magnitude
Estimation

Starting point are random CCG processes X1 and X2 with an underlying coherence
magnitude γ and InSAR phase φ represented by specific realizations x1 and x2. The
specific realizations x1 and x2 are available by coregistered samples of a homogenous
area with N interferometric data pairs {x1 | x1,1, . . . , x1,N} and {x2 | x2,1, . . . , x2,N}.
Practically, the coherence estimators are allowed to use only the N samples, which do
not fully represent the processes X1 and X2. However, some relevant parameters can
be estimated from these samples by the respective sample estimators, e.g., the expected
intensity of the channel with index k

Îk = E{|xk|2}

= 1
N

N∑
i=1

|xk,i|2
(3.1)

and the expected InSAR phase

φ̂s = arg (E{x1x
∗
2})

= arg
(

N∑
i=1

x1,i x∗
2,i

)
.

(3.2)

The data are assumed to be stationary, i.e., all sample pairs have one and the same joint
probability distribution (2.22) with equal conditional parameters γ, φ, I1 and I2 and are
independent. Such samples are named i.i.d.. Practically, the samples are free of phase
components other than the underlying InSAR phase φ which is disturbed by independent
noise. According to Bamler & Hartl (1998), the latter is characterized by the SNR

γ = 1√
1 + 1

SNR1

√
1 + 1

SNR2

. (3.3)

As a matter of fact, the i.i.d. principle is not fulfilled by any available real SAR scene,
regardless of the sensor. All focusing algorithms introduce a spectral weighting for side-
lobe reduction and improving the signal to azimuth ambiguity ratio (SAAR) as described
by Breit et al. (2008), Bourbigot (2016) in section A1.3.6 and Piantanida (2022) in sec-
tion 9.7. Additionally, an oversampling is introduced in order to respect the fundamental
Nyquist–Shannon sampling theorem and to simplify the InSAR signal processing, e.g., the
interpolation. The latter effect is visualized by Hanssen & Bamler (1999) in Figs. 1 and

23
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3. Hanssen & Bamler (1999) also describe the relevant parameters, i.e., the oversampling
ratios in range rrg and azimuth raz, the range sampling frequency (RSF), the range band-
width (RBW), the azimuth bandwidth (ABW) and the pulse-repetition frequency (PRF).
These are related to each other by rrg = RSF/RBW and raz = P RF/ABW . In practice, the
number of SAR scene samples Npixel and the number of effectively available i.i.d. samples
N are related by N = Npixel/(rrgraz). Oversampling and spectral weighting cause autocorre-
lation in the channels and need to be reversed before coherence is estimated. This does
not have to be done individually per statistically homogeneous area, but is better calcu-
lated only once for each SAR scene. Such preprocessing from SLC into i.i.d. SAR data
is not a disadvantage of the developed techniques in particular. It is also necessary for
all other coherence magnitude estimation methods. In fact, all known estimators work
with i.i.d. samples, where independence implies zero autocorrelation of samples within
the primary and secondary channel. In case of autocorrelation, the spatial arrangement
of the samples (for InSAR on the 2D grid) would have to be considered by the estimators.
To illustrate typical effective number of looks, Sentinel-1 acquired with Interferometric
Wide swath mode beam IW2 is chosen as an example. An area of 5 azimuth times 4 range
samples, i.e., Npixel = 20, corresponds to N = 9 and 6 azimuth times 7 range samples,
i.e., Npixel = 42, reduce to N = 20 independent samples.

Although extensive research has been carried out on coherence estimation described in
section 2.2 no single study exists which includes prior information on the coherence magni-
tude. All estimation methods developed in this thesis allow to include prior information.
During development, attention was paid to supporting typical InSAR use cases and a
straight forward parameterization of the prior. Finally, two prior types result from typi-
cal InSAR scenarios namely the strict and the less strict prior.

One example for the strict prior is omnipresent and results from the technical SAR system
limit caused by thermal, quantization and SAR processing noise. Each operational SAR
system characterizes this system limit by the Noise Equivalent Sigma Zero (NESZ) or
the Noise Equivalent Beta Naught (NEBN). Both parameters describe the SNRk of the
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(a) Strict prior.
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(b) Less strict prior.

Figure 3.1: Distribution of priors pγ(γ) with γmax = 0.3 (blue) and γmax = 0.6 (orange).
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respective data samples in each channel k

SNRk = σ0
k

NESZ

= β0
k

NEBN .

(3.4)

The respective channel’s radar brightness (Beta Naught) β0
k = Îk or the respective

backscatter coefficient (Sigma Naught) σ0
k = Îk sin(θ0) are estimated by the expected

channel intensities (3.1) and the corresponding substitution in (3.4) provides the best
possible SNR1 and SNR2. Equation (3.3) transforms both SNRs into the maximum co-
herence γmax which can be received interferometrically. This prior can be modeled by a
uniform distribution U(0, γmax)

pγ(γ) = U(0, γmax) =


1
γmax

0 ≤ γ ≤ γmax

0 otherwise
. (3.5)

Another prior information is available in InSAR based on stacks of interferograms. For
example, γmax can be estimated from an initial coherence matrix (Ferretti et al. 2011,
Fig. 5) which can straight forward be converted into the best possible coherence as a
function of acquisition time difference. Depending on the γmax accuracy and the likelihood
that the underlying coherence is above γmax, the less strict or strict prior should be
selected. In this thesis, the less strict prior is defined by

pγ(γ) =


2

(1+γmax) 0 ≤ γ ≤ γmax
2

1−γ2
max

− 2 γ
1−γ2

max
γmax < γ ≤ 1

0 otherwise
. (3.6)

Figure 3.1a shows the distribution of the strict and Fig. 3.1b of the less strict prior. The
strict prior limits the estimates inside the assumed range and the less strict prior favors
estimates in this range. In principle, any shape of prior can easily be implemented in the
developed estimators. The uninformative prior is the strict prior with γmax = 1.
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3.1 Empirical Bayesian Estimation

The method described in this section was originally published by the author in (Adam
2022).

The Bayesian analysis (Berger 1985) is based on the posterior distribution of the processes
underlying true coherence γ which is constructed by Bayes’ theorem from the data samples
D

pAP(γ | D) = pL(D | γ) pP(γ)∫
γ pL(D | γ) pP(γ) dγ

. (3.7)

In InSAR, the data samples are available in pairs from the two SLC scenes D = {x1,i, x2,i |
i = 1, . . . , N}. That is, D denotes all pairs of samples of a homogeneous region. The
likelihood function pL(D | γ) is proportional to the probability of receiving the data D
if the coherence γ was the basis. pP(γ) is the prior and corresponds to a hypothesis on
the coherence γ. In the equation above, the denominator is named evidence. It is the
normalization which makes the posterior a proper probability density distribution. It is
apparent that the posterior coherence γ is a random variable described by the posterior
pAP(γ | D) in contrast to the γ in the likelihood pL(D | γ). This is the reason why the
coherence is estimated to be the mode for the maximum a posteriori (MAP) estimator

γ̂MAP = argmax
γ

pAP(γ | D) (3.8)

or the expected value of the posterior distribution for the expected a posteriori (EAP)
estimator

γ̂EAP = E{pAP(γ | D)} (3.9)
or the median value of the posterior distribution for the median a posteriori (MEDAP)
estimator

γ̂MEDAP = Median{pAP(γ | D)}. (3.10)
The mode, mean and median of the posterior distribution pAP(γ | D) make a difference
because of the skewness of this distribution. In order to evaluate pAP(γ | D), the right
hand side terms of (3.7), i.e., likelihood, prior and evidence, need to be computed.

Assuming N i.i.d. random variables x1,i and x2,i in a homogeneous area of each SAR
scene with pixel index i, the likelihood function pL(D | γ) in (3.7) is the product of the
N individually joint PDFs p(x1,i, x2,i | γ, φ)

pL(D | γ) =
N∏

i=1
p(x1,i, x2,i | γ, φ). (3.11)

The specific joint PDFs are given by (2.22) as a function of the sample pair’s ampli-
tudes ak,i = |xk,i| and of the pixel-wise interferometric phase difference φi = arg(x2,i) −
arg(x1,i) = ϕ2,i − ϕ1,i given the underlying coherence γ, the true interferometric phase φ
and the expected (true) channel intensities I1 and I2, i.e.,

pL(D | γ) =
N∏

i=1
pInSAR1(a1,i, a2,i, φi | γ, φ, I1, I2). (3.12)
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Figure 3.2: Example likelihood (3.12) with γ̂s = 0.52 for N = 5 and γ = 0.4.

As an example, Fig. 3.2 visualizes a likelihood function for five simulated CCG process
sample pairs with true γ = 0.4. The MLE overestimates the underlying simulated co-
herence and is in this particular example γ̂s = 0.52. It is noticeable in plot 3.2 that
negative coherences also have a likelihood, although negative values are not meaningful
according to the definition (2.10). It is clear, the true coherence magnitude γ and the
MLE argmax(.) are always in the domain {γ | 0 ≤ γ ≤ 1}. However, transforming the
likelihood by using the prior and the evidence requires to expand the domain of the co-
herence parameter. All previous studies have not dealt with this empirical generalization.
The expanded domain of coherence and the way in which it is carried out leads to the
name empirical Bayesian estimation.

In (3.7), the prior PDF pP(γ) is a key element. As far as the conventional Bayesian
framework is concerned, it is independent of the observed data. This thesis develops
an approach where the prior distribution is estimated from the data, i.e., the sample
estimator (2.11). It is another reason for the name empirical Bayes estimation.

Subject is to develop the prior pP(γ) in (3.7) which depends on the sample estima-
tor outcome γ̂s. For this reason, it is a conditional probability distribution pP(γ) =
pγ | γ̂s(γ | γ̂s, N) expressing the underlying coherence γ probability given the sample es-
timate γ̂s based on N sample pairs. It needs to include the available bias information.
For the sample coherence estimator (2.11), Carter et al. (1973) and Touzi & Lopes (1996)
deduced the respective conditional probability distribution for N > 2 samples provided
by (2.12). The product rule relates the joint PDF pγ̂s,γ(γ̂s, γ | N) of the sample coherence
γ̂s and underlying coherence γ with (2.12)

pγ̂s,γ(γ̂s, γ | N) = pγ̂s |γ(γ̂s | γ, N) pγ(γ | N). (3.13)

The term pγ(γ | N) is the data independent prior and is simplified into pγ(γ) due to the
independence of γ and N , i.e., N has no effect on the true coherence γ and vice versa.
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First, no assumption is made about the underlying coherence and this prior is named un-
informative prior. Of course, a general hypothesis on the maximum coherence magnitude
γmax can be made also. This information corresponds to a data independent prior and is
established by a modification of the uninformative prior Bayes approach and is introduced
subsequently.

3.1.1 Uninformative Prior

For a generally applicable estimator, a uniform distribution U(−1, 1), i.e., a flat prior is
selected for pγ(γ)

pγ(γ) = U(−1, 1) =
1/2 −1 ≤ γ ≤ 1

0 otherwise
. (3.14)

In doing so, the joint PDF pγ̂s,γ(γ̂s, γ | N) of γ̂s and γ is proportional to the conditional
probability distribution of the estimated coherence magnitude γ̂s in (2.12)

pγ̂s,γ(γ̂s, γ | N) = 1
2 pγ̂s |γ(γ̂s | γ, N). (3.15)

An example joint PDF of γ̂s and γ is visualized in Fig. 3.3

From the joint PDF pγ̂s,γ(γ̂s, γ | N), the conditional probability distribution pγ | γ̂s(γ | γ̂s, N)
providing the empirical prior pP(γ) can be derived with Bayes’ theorem

pP(γ) = pγ | γ̂s(γ | γ̂s, N) =
pγ̂s,γ(γ̂s, γ | N)

pγ̂s(γ̂s | N) . (3.16)

In the equation above, it is difficult to make assumptions about the term pγ̂s(γ̂s | N). It
is the PDF of observing γ̂s from N interferometric samples. Practically, for a posteriori

Figure 3.3: Example joint PDF of γ̂s and γ, i.e., pγ̂s,γ(γ̂s, γ | N = 3).
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based estimators, we are interested in a prior PDF pP(γ) which integrates to 1 whereas
pγ | γ̂s(γ | γ̂s, N) typically has not this characteristic. The following marginalization of
pγ̂s,γ(γ̂s, γ | N) with respect to γ makes the expression pP(γ) a valid PDF and comparison
with (3.7) provides the PDF of observing γ̂s given the number of samples

pγ̂s(γ̂s | N) =
∫ 1

−1
pγ̂s,γ(γ̂s, γ | N)dγ

= γ̂s(N − 1)(1 − γ̂2
s )N−2√π N !

Γ
(
N + 3

2

) 3F2

(1
2 , N, N ; 1, N + 3

2; γ̂2
s

)
.

(3.17)

pγ̂s(γ̂s | N) is plotted in Fig. 3.4 and the graphs correspond with the known characteristic
of the sample coherence estimator. For N very small, e.g., N = 3, the likelihood for large
γ̂s is higher than for each smaller γ̂s because all sample estimates are biased towards higher
coherence values. For N = 9, the plot shows a similar likelihood for sample estimates
above 0.4. For N very large, e.g., N = 100, the likelihood above 0.3 is similar. In fact,
all graphs visualize the effect that small coherences are unlikely to be estimated due to
the bias. The plot also shows, the larger the sample size, the smaller the coherence that
can be reliably estimated.

From (2.12) and (3.17), the empirical prior results

pP(γ) = pγ | γ̂s(γ | γ̂s, N)

=
(1 − γ2)N

2F1(N, N ; 1; γ2 γ̂2
s ) Γ

(
N + 3

2

)
3F2
(

1
2 , N, N ; 1, N + 3

2 ; γ̂2
s

) √
π N !

.
(3.18)

The data dependent prior is in principle a bimodal PDF which becomes unimodal for
small γ̂s and is visualized in Fig. 3.5. With (3.11) and (3.18), the posterior distribution

Figure 3.4: PDF of observing the sample estimate γ̂s.
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(a) N = 3. (b) N = 9.

Figure 3.5: Example empirical priors based on an uninformative general prior.

(3.7) is practically evaluated by

pAP(γ | a1,i=1, a2,i=1, . . . , a1,i=N , a2,i=N , φi=1 . . . , φi=N) =

1
m

(1 − γ2)N
2F1(N, N ; 1; γ2 γ̂2

s ) Γ
(
N + 3

2

)
3F2
(

1
2 , N, N ; 1, N + 3

2 ; γ̂2
s

) √
π N !

N∏
i=1

pInSAR1(a1,i, a2,i, φi | γ, I1, I2, φ̂s).

(3.19)

The evidence, i.e., the marginal likelihood m =
∫ 1

−1 pL(.) pP(.) dγ is not needed for the
coherence estimation by the MAP and MEDAP principle. However, for the EAP method,
it is straight forward implemented within the expected value calculation. It is only needed
once for the calculation of this value and a numerical integration works without any
problems.

3.1.2 Informative Priors

The principle of the estimator with uninformative prior is extended. Two general priors are
designed to express practically available information. In order to be used in the empirical
estimation, (3.5) and (3.6) need to be adjusted. First, a strict maximum underlying
coherence γmax is assumed, e.g., by knowing the best possible primary and secondary
SNRs from the relation (3.3). The respective data independent prior is

pγ(γ) = U(−γmax, γmax) =
1/(2γmax) −γmax ≤ γ ≤ γmax

0 otherwise
. (3.20)

Second, a less strict maximum underlying coherence γmax is assumed, e.g., a maximum
coherence is known from many measurements. For InSAR based on time series, this is
a typical situation with data stacks covering more than a decade. A linearly decreasing
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function outside of the assumed range makes the prior less strict

pγ(γ) =



1/(1+γmax) −γmax ≤ γ ≤ γmax
1/(1−γ2

max) + γ/(1−γ2
max) −1 ≤ γ < −γmax

1/(1−γ2
max) − γ/(1−γ2

max) γmax < γ ≤ 1
0 otherwise

. (3.21)

Both informative priors are visualized in Fig. 3.6.

In order to get the data dependent prior pγ | γ̂s(γ | γ̂s, N) equivalent to (3.16), the joint
probability pγ̂s,γ(γ̂s, γ | N) = pγ̂s | γ(γ̂s | γ, N) pγ(γ) needs to be evaluated. This is straight
forward implemented with (2.12) and (3.20) or (3.21). However, the respective marginal-
ization integral over γ for the normalization pγ̂s(γ̂s) cannot be solved directly and numer-
ical integration in a later calculation step works well. It needs to be evaluated once per
estimation and can be computed together with the overall normalization (i.e., evidence)
which is finally needed for the a posteriori PDF. Analogous to (3.19) which describes
the general situation, the posterior distribution for the more informative prior pγ(γ) from
(3.20) or (3.21) is

pAP(γ | a1,i=1, a2,i=1, . . . , a1,i=N , a2,i=N , φi=1 . . . , φi=N) =
pγ̂s | γ(γ̂s | γ, N) pγ(γ)

m

N∏
i=1

pInSAR1(a1,i, a2,i, φi | γ, I1, I2, φ̂s).
(3.22)

In practice, the equations (3.19) and (3.22) can only be implemented directly without
normalization m. To denote these non-normalized posterior functions, the symbol qAP(.)
is used below

qAP(γ | a1,i=1, a2,i=1, . . . , a1,i=N , a2,i=N , φi=1 . . . , φi=N) =

pγ̂s | γ(γ̂s | γ, N) pγ(γ)
N∏

i=1
pInSAR1(a1,i, a2,i, φi | γ, I1, I2, φ̂s).

(3.23)

(a) Strict prior. (b) Less strict prior.

Figure 3.6: Data independent informative prior γmax = 0.3 (blue) and γmax = 0.6 (orange).
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Effectively, the evidence i.e., the marginal likelihood is computed from the non-normalized
posterior functions

m =
∫ 1

−1
qAP(.) dγ (3.24)

and a numerical integration is fine.

3.1.3 Estimation of Coherence Magnitude

For the coherence estimation, the statistic of the a posteriori PDF pAP(.) (3.19) or (3.22)
is analyzed based on the non-normalized versions qAP(.).

MAP estimation The MAP estimation (3.8) is implemented by a numerical 1-D maxi-
mization of qAP(.) with the constraint 0 ≤ γ̂MAP ≤ γmax. For the uninformative and the
less strict prior, the constraint is γmax = 1 and for the strict prior, it is the specific γmax
parameter

γ̂MAP = argmax
γ

qAP(γ | D) (3.25)

The respective implementation is straight forward as the posterior function is unimodal
in the range 0 − 1.

EAP estimation The EAP estimation (3.9) is implemented by numerical integration

γ̂EAP = 1
m

∫ 1

−1
γ qAP(.) dγ (3.26)

with the evidence m calculated independently from (3.24). The specific estimators γ̂EAP,
γ̂EAPLSPγmax and γ̂EAPSPγmax use directly equation (3.19), or (3.23) with (3.21) or (3.20)
respectively.

MEDAP estimation The MEDAP estimation (3.10) is implemented by bisection on the
left and right areas separated by γ̂MEDAP under the posterior functions. This is the reason
why the marginal m is not relevant for the median computation∫ γ̂MEDAP

−1
qAP(.) dγ

!=
∫ 1

γ̂MEDAP
qAP(.) dγ. (3.27)

The != indicates the condition that must be fulfilled. However, this straight forward
implementation requires two integrations per bisection step. Using (3.24), the bisection
can be simplified into ∫ 1

γ̂MEDAP
qAP(.) dγ

!= m

2 (3.28)

and requires only one integration per bisection step.
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3.2 Machine Learning Estimation

The method described in this section was originally published by the author in (Adam
2023).

ML can solve many tasks, and there are numerous specialized areas of ML. A com-
mon classification is that of supervised, unsupervised, and reinforcement learning. To
implement coherence estimation, supervised learning must be selected from the ML sub-
domains because it learns the objective function from labeled datasets. It is therefore
suitable for classification or regression and can be implemented practically, e.g., as neural
network (NN) or decision tree based. Zhu et al. (2017) describe some NN architectures,
e.g., the Convolutional Neural Network (CNN), the Recurrent Neural Network (RNN) and
the Generative Adversarial Network (GAN). Tree-based methods use decision trees where
each node is a test on an attribute, each branch is an outcome of the test and the leaf of a
node is the regression or classification outcome. Ensemble methods combine many decision
trees and improve the performance and avoid overfitting. Corresponding ML techniques
are Random Forrest and Gradient Boosting. A Random Forrest (Ho 1995) builds many
decision trees from different subsets of the data and averages the outcomes. Gradient
Boosting (Freund & Schapire 1996) builds many week decision trees in a clever sequence,
correcting the errors of the previous decision trees. eXtreme Gradient Boosting (XGBoost)
(Chen & Guestrin 2016) and Light Gradient-Boosting Machine (LightGBM) (Meng et al.
2016) are popular implementations of gradient boosting.

Subject is to develop a new method for estimation of the coherence magnitude γ̂ based
on the random CCG processes X1 and X2 with specific realizations x1 and x2

γ̂ =f(x1,x2)
=f(x1,i=1, x2,i=1, . . . , x1,i=N , x2,i=N).

(3.29)

The ML approach results in a non-parametric method. Because input samples are mapped
to a continuous output value, this ML task corresponds to the regression problem in
contrast to classification. Figure 3.7 visualizes the basic principle and components of the
development. Initially, non-parametric estimators f̂N(x1,i=1, x2,i=1, . . . , x1,i=N , x2,i=N) are
automatically generated from simulations and by supervised learning for any practically
occurring number of samples N . In the operational system, this estimator f̂N(.) is then
used with N single look i.i.d. interferometric samples. Both system components are
described in the following.

3.2.1 Generation of Estimators

For all required sample sizes N , ML provides a representative non-parametric model
f̂N(.). That means, there is no assumption about the function shape and the internal
dependencies of the extracted features. As a result, a previously unknown number of
internal parameters is required to represent the model and, accordingly, a lot of training
data and computational effort are necessary for the learning. However, this does not pose
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Figure 3.7: Principle of the ML framework for coherence magnitude estimation.

a problem, since the corresponding data can be simulated in practically any quantity and
the theoretically infinite number of possible variants of input data can be restricted in
terms of quantity.

Simulation

As pointed out by Goodman (1976) and Just & Bamler (1994), we can limit ourselves to
CCG signals for medium resolution SAR. Starting point is the 2 × 2 covariance matrix Σ
which describes the relation of the respective CCG processes X1 and X2

Σ = Cov(X1,X2) =
(

(a1)2 a1 a2 γ ejφ

a1 a2 γ e−jφ (a2)2

)
. (3.30)

It is defined by the simulation parameters a1, a2, which are the CCG processes’ expected
amplitudes, and the complex coherence γejφ. The coherence magnitude γsimu is substi-
tuted for γ and is also used as the ML label for the respective simulated data. The
matrix above contains the expected intensities on the diagonal and the covariances on the
off-diagonal. φ is the true interferometric phase.

First of all, the square, positive definite and Hermitian covariance matrix Σ is decom-
posed

Σ = AAH . (3.31)

The superscript H denotes the conjugate transpose of the complex matrix. Practically,
this operation can be performed using singular value decomposition (SVD), Schur decom-
position or Cholesky decomposition.

The SVD
UWV = SVD(Σ) (3.32)
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results in A = U
√
W , where

√
W denotes the element-by-element square root of the

diagonal.

The Schur decomposition produces an orthonormal matrix Q and an upper triangular
matrix T

QT = Schur(Σ). (3.33)
This gives A = Q

√
T , where

√
T is the element-wise square root of all matrix entries in

the complex domain.

With the Cholesky decomposition

LLH = CholeskyL(Σ), (3.34)

the product of a lower triangular L and its conjugate transpose matrix LH arises. In this
case A = L. In case, the library provides the upper triangular matrix U such that

UHU = CholeskyU(Σ) (3.35)

then A = UH .

Next, a complex matrix Z ∈ C2×N of independent CCG random variables

zk,i = Re(zk,i) + jIm(zk,i)
Re(zk,i) ∼ N (0, 1/

√
2)

Im(zk,i) ∼ N (0, 1/
√

2)
(3.36)

is created. N (0, 1/
√

2) denotes the normal distribution with zero mean and standard
deviation 1/

√
2. The simulated interferometric data pair corresponds to the complex matrix

S ∈ C2×N calculated by

S =
(

xT
1

xT
2

)
=
(

x1,i

x2,i

)
= AZ. (3.37)

This principle of transforming the covariance matrix Σ into an interferometric data pair S
can be applied to the simulation of InSAR data stacks. The dimensions of the covariance
and the CCG matrix Z need to be increased accordingly. All three decompositions were
implemented and finally the SVD was used for this thesis.

Encoder

The encoder transforms the input data and has two preprocessing functions: a) reduce
redundancies and b) convert the input into an advantageous data representation.

Ideally, the signal entering the ML training includes all appropriate features and recogniz-
able patterns, and is a data representation without ambiguity or redundancy. This makes
the ML training algorithm more precise and computationally efficient, and requires less
computer memory.
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Redundancy Reduction: From the original simulation input parameters (3.30) {a1 |
0 < a1 < ∞}, {a2 | 0 < a2 < ∞}, {γ | 0 ≤ γ ≤ 1} and {φ | −π < φ ≤ π} with
their unrestricted domains and the unlimited possible combinations, we can see that
there is an infinite number of possible input data sets. Generating and training all this
is not realistic. As will be shown shortly, the expected channel amplitudes and the
expected interferometric phase cause redundancies in the signal representation. Indeed
the correlation coefficient ρX1,X2 is independent of change of origin, e.g., by real numbers
b and d and scale of the data, e.g., by real numbers a and c

ρX1,X2 = corr(X1,X2) = corr(aX1 + b, cX2 + d). (3.38)

This means that by scaling the amplitudes

x1,i = x1,i

max(|x1|)
, x2,i = x2,i

max(|x2|)
for i = 1, . . . , N (3.39)

the data are restricted without loss of information to a domain {a1 | 0 < a1 ≤ 1},
{a2 | 0 < a2 ≤ 1} known to the ML model.

Equation (2.11) shows that the coherence magnitude γ and the interferometric phase φ,
which is optimally estimated by the sample estimator φ̂s, are independent of each other.
Hence, assuming a stationary phase signal, the expected interferometric phase φ can be
estimated from the statistically homogeneous pixels (SHPs)

φ = arg (E{X1 · X∗
2 })

≈φ̂s = arg
(

N∑
i=1

x1,i · x∗
2,i

)
.

(3.40)

Since only the interferometric phase difference between each i.i.d. sample is used, the
expected value can be compensated in the primary scene in advance

x1,i = x1,i · exp(−jφ̂s). (3.41)

This transformation eliminates the phase ambiguities ϕk,i + K 2π and preserves the re-
spective amplitude’s Rayleigh PDF of the primary and secondary scene and the statistics
of the interferometric phase differences (except for the mean).

As a result of the amplitude scaling and interferometric phase compensation, the number
of possible input data has now been significantly reduced.

Data Representation: The encoder converts the CCG input data because the data rep-
resentation has an impact on the performance of the model. This is due to the fact that
there is practically no direct regression from the input variables to the output value. In-
side the ML model, attributes that are not visible from the outside are calculated. This
internal automatic generation of features is manually supported by the encoding. Two
examples for possible CCG data representations are {Re(x1), Im(x1),Re(x2), Im(x2)}
and {|x1| , |x2| , arg(x1 x

∗
2)}. Tests have shown that the latter data representation, con-

sisting of the sample amplitudes and expected interferometric phase compensated phase
differences, is more advantageous than others.
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ML Training

The ML training learns the features with which the internal model is evaluated to return
the coherence magnitude estimate. According to James et al. (2021), the general form of
ML regression is

γ̂ = f(.) + ϵ. (3.42)
ϵ is an inherent random error term and is named the irreducible error. In this application,
it results from the random sampling and the limited sample size N but not from the noise
in the data. Practically, every sample is differently representative and ϵ corresponds to
unmeasured information which results in bias and variance of the coherence magnitude
estimate. Touzi et al. (1999) have proven that an unbiased estimator, which is a function
of the sample coherence magnitude, cannot be found. It follows that the ML estimator
will also have a bias and a variance. In other words, ϵ is independent of the input data
x1, x2 and can only be mitigated by increasing the sample size N reducing unmeasured
information.

ML provides procedures for estimating f(.) based on training data and approximately
represents it by f̂(.). Depending on the ML method, f̂(.) is represented differently, such as
a Decision Tree, a Random Forest or a Neural Network. According to James et al. (2021),
the error from the approximation f̂(.) of a particular ML method is termed reducible error.
It can be diminished by choosing an appropriate ML method and, if used, suitable Neural
Network layers as well as optimizing the learning parameters such as the learning rate and
the learning iteration count. In this thesis, Gradient Boosted Trees ML is implemented
based on the XGBoost library with its C-API developed by Chen & Guestrin (2016),
Chen et al. (2022).

All possible CCG input processes must be simulated for the ML training. To get as close
to the real estimation scenario as possible, the amplitudes of the primary and secondary
signals and the interferometric phases are modeled in such a way that the encoder works
as it will later. In this thesis, the scenes’ expected amplitudes are simulated with uniform
likelihoods a1 ∼ U(0, 2) and a2 ∼ U(0, 2), and the expected interferometric phase with
φ ∼ U(−π, π). For the training of an estimator, 108 interferograms are generated. In
the course of the ML learning, the parameters of the model are tuned to perform best
on the given training data. This suggests to add prior knowledge on the underlying
coherence magnitude by adjusting the training data set. In doing so, the fact that ML
learns the model from the data is exploited. Training data are generated with a number of
observations corresponding to the prior on the underlying coherence. The assumption is
that the ML parameter tuning then works better for these observed values than with the
data, who has not or rarely seen the training. A single parameter γmax is used to model
the priors (3.5) and (3.6). In the following, this parameter is specified as a subscript at
the respective method.

ML Without Prior (MLWP) Without prior information, training data are generated
with the straight forward characteristic and γsimu is sampled from the uniform distribution
γsimu ∼ U(0, 1).
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ML Less Strict Prior (MLLSP) Figure 3.1b shows the distribution of γsimu for the
less strict prior. The implementation is based on the inverse CDF sampling method. It
provides one random variate γsimu ∼ pγ(γ) (3.6) from one random sample with distribution
u ∼ U(0, 1). The corresponding CDF is

CDF =


2γ
γmax+1 0 ≤ γ ≤ γmax

(γ−2)γ+γ2
max

γ2
max−1 γmax < γ ≤ 1.

(3.43)

This leads to the respective inverse CDF

CDF−1 =
1
2(γmaxu + u) u ≤ 2γmax

γmax+1

1 −
√

γ2
maxu − γ2

max − u + 1 u > 2γmax

γmax+1 .

(3.44)

ML Strict Prior (MLSP) Figure 3.1a visualizes the distribution of the underlying co-
herence magnitude γ for the strict prior. Consequently, the respective training data are
generated with γsimu sampled from the uniform distribution γsimu ∼ U(0, γmax).

Practically, one ML model f̂N,p(.) is generated for each prior type {p | MLWP, MLLSPγmax ,
MLSPγmax} with every needed prior parameter {γmax | 0.1, 0.2, . . . , 0.9}. The utilized
library XGBoost allows to persistently save each model into a JSON file (Chen & Guestrin
2016, Chen et al. 2022) for later operational estimation use.

3.2.2 Estimation of Coherence Magnitude

N interferometric samples are input to the operational coherence magnitude estimation.
These data are transformed according to (3.39) and (3.41). I.e., 3×N real values, encoded
by {|x1|/max(|x1|), |x2|/max(|x2|), arg(x1 x

∗
2 exp(−jφ̂s)}, enter the ML prediction model f̂N,p(.).

Once again, all phases are the expected interferometric phase compensated phase differ-
ences. The model is extremely fast evaluated because no iteration, numeric integration
or Bootstrapping is needed. The estimated coherence magnitude γ̂p with {p | MLWP,
MLLSPγmax , MLSPγmax} is deterministic, i.e., one and the same input data result in one
and the same estimate.
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3.3 Composite Estimation

The method described in this section was originally published by the author in (Adam
2024).

Subject is to develop a new method based on the composition of coherence estimates
from subsamples and ML. Starting point are N available i.i.d. InSAR sample pairs
representing not perfectly the population of the random CCG processes of the primary
X1 : {x1,1, x1,2, ..., x1,N} and secondary channel X2 : {x2,1, x2,2, ..., x2,N}. As a result, all
estimators of the coherence magnitude, e.g., the sample estimator (2.11), are biased, and
the smaller the coherence and the number of available samples, the more biased they are.
Figure 2.2 visualizes this effect by the conditional PDF, i.e., pγ̂s | γ(γ̂s | γ, N) provided in
(2.12), of the estimated sample coherence γ̂s published by Carter et al. (1973) as well Touzi
& Lopes (1996). Obviously, N = 30 samples represent the statistic of X1 and X2 better
than N = 3 samples and the underlying coherence can be estimated more precisely.

For large samples with size N , PN,S independent subsamples each of size S can be gener-
ated by partitioning the original sample

PN,S = ⌊N

S
⌋. (3.45)

⌊.⌋ is the floor function. For the example from Figure 2.2, the number of partitions is
P30,3 = 10 and P30,30 = 1. The subsamples with respect to one and the same sample size
S provide random, independent coherence estimates γ̂

(S=3)
1 , ..., γ̂

(S=3)
10 (subsample group

1) and γ̂
(S=30)
1 (subsample group 2). Each coherence estimate within a specific subsample

group is distributed with a frequency of occurrence corresponding to the blue and orange
PDF in Figure 2.2. Accordingly, the estimated values follow a specific statistic, whereby
the statistic is different for unequal subsample sizes and estimation algorithms. Figure 3.8
visualizes examples of statistics related to the estimated coherence γ̂(S=3) and γ̂(S=30), i.e.,
from subsamples with S = 3 and S = 30 respectively for the expected value and vari-
ance of the sample estimator (2.11). Naturally, the estimates from the small subsamples
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Figure 3.8: Statistics of estimated coherence γ̂s given the true coherence γ = 0.3, N = 3 (blue)
and N = 30 (orange) InSAR samples.
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Figure 3.9: Ratio of moments of the estimated coherence γ̂s from subsamples S = 3 and S = 30.

{γ̂
(S=3)
i |i = 1, ..., P30,3} have a large variance as can be seen in Figure 3.8b by the blue

graph. However, the variance can only be estimated using the numerous, in this example
P30,3 = 10, independent subsample estimates. This means, the variance is introduced as
a new feature useful for inference. For the single estimate γ̂(S=30) the variance and higher
moments describing the orange PDF in Fig. 2.2 are not available. Nevertheless, this es-
timate is the most precise we can obtain. As a result, many imprecise estimates provide
valuable complementary information to the single complete sample estimate. Figure 3.9
shows examples of the ratio of statistical moments and it is obvious that the underlying
coherence can be estimated from these ratios as features.

For the sample estimator, these relationships can still be derived for higher moments,
however this is no longer possible for other estimators, as the estimation characteristics
are not known as a formula in closed-form. In this thesis, ML is used for a practicable
approach to derive the unknown functional relation directly from realistically simulated
data. Essentially, the principle is to give the ML framework a set of independent coherence
estimates with different estimation characteristics as features. It exploits the fact that
ML can automatically evaluate the statistics of the subsample estimates for all possible
estimators and thus makes inference for the coherence magnitude parameter estimation.
In practice, it is a further development of the ML principle Adam (2023), as it is unable
to evaluate the statistical relations described above. Similar to the previous ML method,
this is a non-parametric approach and no knowledge of the statistical characteristics of the
used estimators is required. This principle makes it possible to construct many different
estimators, as numerous partitions with different subsample sizes can be generated and
various estimators can be applied to them. Figure 3.10 visualizes the overall principle and
workflow of the developed estimator with the configuration for N = 30 and subsample
estimations S = 3 and S = 30 highlighted. In this figure, the partial estimators are
abbreviated according to subsection 3.3.1 below. In practice, the algorithm is similar to a
composite estimator which is an aggregation of different estimators (Lavancier & Rochet
2016). Instead of working with N = 30 complex interferometric samples {x1,i, x2,i|i =
1, ..., N}, independent coherence estimates, e.g., P30,3 = 10 times {γ̂

(S=3)
i |i = 1, ..., 10}

and once γ̂
(S=30)
1 , are used for the training in the ML framework and for the estimation.
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Figure 3.10: Composite estimator framework. The principle and workflow of the estimator
CW_N30_G3G30, i.e., with the configuration N = 30 and subsample estimations
S = 3 and S = 30, is highlighted.

3.3.1 Estimator Configuration Notation

For this thesis, a flexible framework was implemented according to Fig. 3.10. In order
to refer to specific composite estimators that manifest themselves in a particular setup
in this framework, the following notation is introduced. It is specified in Backus–Naur
form (BNF).

<Setup> ::= ’C’<Prior>’_’<Looks>’_’<EstimatorList>
<Prior> ::= ’W’ | <LSP> | <SP>
<LSP> ::= ’L’<MaxCoherence>
<SP> ::= ’S’<MaxCoherence>
<MaxCoherence> ::= ’(’<float>’)’
<Looks> ::= ’N’<integer>
<EstimatorList> ::= <Estimator> |

<EstimatorList><Estimator>
<Estimator> ::= <SampleEstimator> | <MLEstimator>
<SampleEstimator> ::= ’G’< SubSampleSize>
<MLEstimator> ::= <MLWP> | <MLLSP> | <MLSP>
<MLWP> ::= ’W’<SubSampleSize>
<MLLSP> ::= <LSP><SubSampleSize>
<MLSP> ::= <SP><SubSampleSize>
<SubSampleSize> ::= <integer>
<integer> ::= <digit> | <integer><digit>
<float> ::= ’0.’<integer>
<digit> ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’
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The first C in the name stands for composite estimator. This identifier is followed by
an entry for the prior of the composite estimator. Accordingly, this composite estimator
was trained with this prior and the input InSAR data correspond to this prior during
the estimation. The number of InSAR sample pairs is coded next with the identifier N

and is surrounded by underscores. This number is required to determine the number of
partitions PN,S (3.45). In this thesis, compositions of the sample estimator abbreviated G,
and machine learning estimators without prior named W or with less strict prior named
L(γmax) or strict prior named S(γmax) are assessed for different configurations of subsamples
and partitions. For example, CW_N30_G3G30 corresponds to the composite estimator (C)
without prior (W) working with an InSAR sample size (N30) and aggregating all possible
estimates with subsample size S = 3 (G3) and S = 30 (G30), i.e., {γ̂

(G3)
i |i = 1, ..., 10} and

γ̂
(G30)
1 . Figure 3.11 visualizes the work- and dataflow of this specific configuration. Other

composite estimators used in this thesis are CW_N30_G2, CW_N9_G2G9, CL(0.6)_N9_L(0.6)2G9,
CS(0.6)_N30_S(0.6)2G30, CS(0.6)_N30_S(0.6)2S(0.6)30 and CW _N60_G2G30G60. CW_N30_G2 implements
the inference without prior based on P30,2 = 15 independent estimates from the sample
estimator (G2). CW_N9_G2G9 represents a composite estimation without prior from P9,2 =
4 sample estimates (G2) and a single (P9,9 = 1) sample estimate (G9). The estimator
CL(0.6)_N9_L(0.6)2G9 is trained with a less strict prior (L(0.6)), i.e., with γmax = 0.6 and does
inference from P9,2 = 4 machine learning less strict prior estimates (L(0.6)2) and a single
(P9,9 = 1) sample coherence estimate (G9).

A more complex example of this notation is CW_N30_G3G30L(0.6)3. It serves to explain an
important principle regarding the input data of the partial estimators. In this particular
configuration, the sample estimators G3 and the machine learning less strict prior esti-
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Figure 3.11: Detailed principle and workflow of the estimator CW_N30_G3G30.
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mators L(0.6)3 are working on one and the same partition, i.e., all partial estimators have
corresponding InSAR input samples. Figure 3.10 shows that the partition is fix for all
partial estimators with a given subsample size.

According to the label for the partial sample estimator, the identifier G is in this thesis also
used to refer to the corresponding standalone sample estimator. Hence, the abbreviation
G30 corresponds to the sample estimator (2.11) with N = 30 InSAR samples. However, the
abbreviations for the standalone estimators for machine learning without prior (MLWP)
and for machine learning with strict prior (MLSPγmax) are retained corresponding to
section 3.2.

3.3.2 Detailed Implementation

The implementation is more complex than the ML method from section 3.2, since these
estimators are subcomponents, as Fig. 3.10 shows. In other words, the partial machine
learning algorithms named W , L(γmax) and S(γmax) are practically implemented by MLWP,
MLLSPγmax and MLSPγmax respectively. For the implementation, Fig. 3.12 visualizes the
workflow and the functional decomposition into subcomponents. Data are shown in gray
and subfunctions in blue boxes. Arrows represent the dataflow.
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Figure 3.12: Principle of the ML framework for coherence magnitude estimation.
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Simulation

The simulation of the data and the prior are based on the same principle as described
in section 3.2.1. A covariance matrix Σ is setup according to (3.30) with simulation
parameters expected amplitudes a1 and a2 which are the primary and secondary scene’s
amplitude, InSAR phase φ and coherence magnitude γ. The simulation is based on
random values with uniform likelihoods a1 ∼ U(0, amax) and a2 ∼ U(0, amax), and the
interferometric phase with φ ∼ U(−π, π). In case of γ, the simulation PDF corresponds
to the prior of the composite estimator γ ∼ prior(γmax) = pγ(γ) as described in respective
paragraphs ML Without Prior (MLWP), ML Less Strict Prior (MLLSP) and ML Strict
Prior (MLSP). Also, the actual γ from the random process is used as the training label.
Next, the covariance matrix Σ is transformed into a random InSAR data sample S using
(3.37).

Encoding

The encoding (Fig 3.10) consists of the partition algorithm and the partial estimators. In
Fig. 3.13, the partition subfunction is detailed for a sample size N = 9. The demonstrated
principle extends to other sample sizes accordingly. In particular, the partitioning is
fixed and unchangeable. Subsamples are always created that are independent inside a
subsample group. These subsamples are processed by coherence magnitude estimators
which are to be configured. In this thesis the sample estimator (2.11), and the machine
learning algorithms MLWP, MLLSPγmax and MLSPγmax from section 3.2 are implemented.
The respective prior needs to be configured for the simulation in the course of the training
as well.
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Figure 3.13: Principle of the partition subfunction for N = 9.
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ML Training

The ML training is based on the same principle as described in section 3.2.1. Technically,
it is not necessary for the partial estimators to be implemented with the same framework
as the composite estimators. However, in this thesis, Gradient Boosted Trees ML is also
implemented based on the XGBoost library with its C-API developed by Chen & Guestrin
(2016) and Chen et al. (2022). For the training of an estimator, 108 InSAR samples S
are generated using (3.37).

Estimation

In contrast to the direct estimation described in section 3.2, the input data are not rescaled
and the expected interferometric phase is also not compensated. Instead, the sample is
partitioned and the subsamples are processed by the respective configured estimators.
Finally, ML evaluates the trained regression function f̂(.) with the partial estimates as
arguments. Figure 3.10 visualizes this principle in the dashed box.





4 Experimental Results

The characteristics of the developed estimators are evaluated numerically by simulations
without simplification or modeling. All estimators are applied on one and the same sim-
ulated samples from CCG processes described in section 3.2.1 in paragraph Simulation.
Because of its practical importance, the conventional sample estimator γ̂s (2.11) is taken as
the reference and included in the comparison of the estimators. In practice, the coherence
bias is extreme when the sample size is small. This is the reason why these problem-
atic scenarios are given priority in the assessment. In order to compare the developed
estimators and demonstrate the complete characteristics, the bias

γ(bias)
∗ = E{γ̂∗ − γtrue} (4.1)

and the standard deviation

γ(σ)
∗ =

√
E{(γ̂∗ − E{γ̂∗})2} (4.2)

as well as the RMSE
γ(RMSE)

∗ =
√

E{(γ̂∗ − γtrue)2} (4.3)
are experimentally estimated by simulations because these are the relevant quality criteria
of estimators. γ̂∗ is the estimate from the respective estimator presented in section 3.1.3
for {γ̂∗ | γ̂MAP, γ̂EAP, γ̂EAPLSPγmax , γ̂EAPSPγmax , γ̂MEDAP}, in section 3.2 for {γ̂∗ | γ̂MLWP,
γ̂MLLSPγmax , γ̂MLSPγmax } and in section 3.3 for {γ̂∗ | γ̂CW_N..., γ̂CL(γmax)_N..., γ̂CS(γmax)_N...}. The
general quality criterion is the RMSE because it combines the bias (4.1) and the standard
deviation (4.2) into a single quality metric by the relation

γ(RMSE)
∗ =

√(
γ

(σ)
∗
)2

+
(
γ

(bias)
∗

)2
. (4.4)

In this thesis, the RMSE is used instead of the MSE for the characterization of the
estimator efficiency because this parameter is in the same scale as the true coherence.

As a proof of concept, the estimators are demonstrated also using real Sentinel-1 data in
Interferometric Wide swath mode. One and the same test site is used for all estimators.
The primary scene has the orbit number 30741 and was acquired on January 10, 2020.
After 12 days, the secondary scene was recorded. Their orbit number is 30916 and the
observation geometry is characterized by an effective baseline of about 27 m. Without
going into details, the oversampling in the input data is reversed and the estimation
window of 3 × 3 samples in range and azimuth (i.e., N = 9) overlaps from sample to
sample.

47
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4.1 Empirical Bayesian Estimation

4.1.1 Comparison of MAP, EAP and MEDAP Estimators

This experiment compares the three basic types of Bayesian estimators MAP (3.8), EAP
(3.9) and MEDAP (3.10) which are practically implemented by (3.25), (3.26) and (3.27)
respectively. The sample sizes N = 3 and N = 9 are chosen to check for the best method,
which is analyzed in more detail below. Figure 4.1 visualizes the comparison results for
N = 3 in the left and for N = 9 in the right column. The respective bias is provided in
Fig. 4.1a and Fig. 4.1b and the standard deviation in Fig. 4.1c and Fig. 4.1d.

All newly developed estimators, are bias free at much smaller coherences. The EAP is
bias free around a true coherence of 0.46, the MEDAP around 0.54 and the MAP around
0.8. However, after that, the bias for the EAP and MEDAP estimators becomes notably
negative.

Figure 4.1e shows for N = 3 that EAP is up to 0.54, the MEDAP method up to 0.53 and
the MAP estimator up to 0.47 more efficient than the conventional sample estimator for
all underlying coherences.

Figure 4.1f visualizes the overall performance characteristic for each estimator with N = 9.
Here, the EAP and the MEDAP methods are more efficient compared to the conventional
sample estimator for all underlying coherences up to 0.37 and 0.36 accordingly. And the
MAP is more efficient for true coherences up to 0.31.

4.1.2 Comparison of EAP, EAPLSP and EAPSP Estimators

The experiment in section 4.1.1 demonstrates that the EAP estimator performs best
compared to the MAP and MEDAP estimators. For this reason, the characteristics of
the of the EAP estimator are further evaluated and compared with the variants with an
informative prior, i.e., the EAPLSP and EAPSP estimators. Figure 4.2 compares the
characteristics for N = 3 and N = 9 on the left and the right column respectively. As an
example, the maximum underlying coherence is set to γmax = 0.6. The respective general
priors are plotted in orange in Fig. 3.6.

The bias plots in Figs. 4.2a and 4.2b show that for small coherences the bias is reduced
compared to the sample estimator and becomes smaller the stricter the prior is. The effect
is all the more pronounced the smaller N is. Therefore, some numbers for N = 3 follow.
For a zero coherence, the bias is reduced from 0.534 to 0.26 (51.3 %) for the EAPSP0.6,
to 0.338 (36.6 %) for the EAPLSP0.6 and to 0.356 (33.3 %) for the EAP estimator with
uninformative prior.

For the sample estimator, the bias becomes zero at a true coherence of one. Once again,
all newly developed estimators, are bias free at much smaller coherences as well compared
to the uninformative setup. For example, for N = 3, the EAPSP0.6 is bias free around a
true coherence of 0.27, the EAPLSP0.6 around 0.42 and the EAP around 0.46.
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Figure 4.1: Characteristic of basic empirical Bayesian estimators MAP (blue), EAP (orange)
and MEDAP (green) all without prior for N = 3 (left column) and N = 9 (right
column) compared with the sample estimator γ̂s (gray).
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Figure 4.2: Characteristics of EAP estimators without (orange) and with prior information, i.e.,
EAPLSP0.6 (purple) and EAPSP0.6 (red) for N = 3 (left column) and N = 9 (right
column) compared with the sample estimator γ̂s (gray).
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4.1.3 Characteristics for N = 2

It is well-known, the concept of coherence is not relevant to individual samples which
implies N ≥ 2. It results from the fact that the principle of ergodicity is used in (2.10)
and the spatial average is used instead of the ensemble mean. Touzi & Lopes (1996)
report that equation (2.12) is only valid for N > 2 samples. However, Carter et al. (1973)
do not specify such a restriction for N . Therefore, in this section it is experimentally
tested whether the Bayesian methods also work for N = 2 samples. Figure 4.3 presents
for N = 2 the bias, standard deviation and RMSE for the estimators with uninformative
(left column) and informative (right column) general priors. The simulation shows that all
developed methods also work very well in this setup. Comparing the RMSE, especially the
informative general priors are recommended for the estimation with only two independent
InSAR samples.

4.1.4 Characteristics for Large N

In the previous sections, the advantage of the Bayesian methods is demonstrated for
small sample sizes. The characterization for large sample sizes is provided for N = 15
in Fig. 4.4, N = 30 in Fig. 4.5 and N = 60 in Fig. 4.6. The EAP estimators without
prior are visualized in the left column and with informative prior in the right column.
These examples show that even for large N , the bias of all methods is always smaller
than the sample estimator’s and still becomes negative. However, as the sample size
increases, the bias vanishes and the estimators are also asymptotically unbiased. All
EAP estimators except EAPSP0.6 approach to a similar bias, standard deviation and
RMSE characteristic. Especially, the RMSE indicates that the Bayes methods can be
recommended for all sample sizes N ≤ 15. It is noteworthy that the strict prior performs
best also with large sample sizes. A limitation of the newly developed methods is that
the performance improves only for low coherences if the sample size is small.

4.1.5 Sentinel-1 Application Demonstration

Figure 4.7a visualizes the test case with 512 × 512 i.i.d. samples by the radar backscatter
amplitude. The coherence magnitude from the sample estimator is visualized in Fig. 4.7b.
Using identical estimation windows, the respective EAP result is shown in Fig. 4.7d. In
this example, the EAP coherence magnitude is estimated locally adaptive with respect to
the prior from expected a posteriori without prior (EAPWP), EAPLSP0.6, EAPLSP0.4 or
EAPSP0.4. It can be seen that the estimation performance now depends not only on the
window size but mainly on the prior and its strictness.

To give an intuitive idea of the effect of different priors and various parameters, Fig. 4.7c
visualizes a composition of coherence estimates. In this figure from left to right, the result
from the sample estimator, EAPWP, EAPLSP0.6, EAPLSP0.4, EAPSP0.6, and EAPSP0.4
can be compared. Similar coherence magnitudes are observed for all but the last two
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Figure 4.3: Characteristic of empirical Bayesian estimators for N = 2; left column provides the
uninformative prior comparing L ∈ {γ̂s, MAP, EAP, MEDAP} and the right column
the informative prior comparing R ∈ {EAPLSP0.6, EAPSP0.6} with γ̂s and γ̂EAP.
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Figure 4.4: Characteristic of empirical Bayesian estimators for N = 15; left column provides the
uninformative prior comparing L ∈ {γ̂s, MAP, EAP, MEDAP} and the right column
the informative prior comparing R ∈ {EAPLSP0.6, EAPSP0.6} with γ̂s and γ̂EAP.
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Figure 4.5: Characteristic of empirical Bayesian estimators for N = 30; left column provides the
uninformative prior comparing L ∈ {γ̂s, MAP, EAP, MEDAP} and the right column
the informative prior comparing R ∈ {EAPLSP0.6, EAPSP0.6} with γ̂s and γ̂EAP.
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Figure 4.6: Characteristic of empirical Bayesian estimators for N = 60; left column provides the
uninformative prior comparing L ∈ {γ̂s, MAP, EAP, MEDAP} and the right column
the informative prior comparing R ∈ {EAPLSP0.6, EAPSP0.6} with γ̂s and γ̂EAP.
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columns. It follows that the less strict prior can robustly cope with an underlying coher-
ence greater than the prior parameter γmax.

(a) (b) 0 1

(c) 0 1 (d) 0 1

Figure 4.7: Sentinel-1 test case with N = 9 for Bayesian EAP estimators. (a) Radar backscatter
amplitude. (b) Coherence magnitude from sample estimator γ̂s. (c) EAP coher-
ence estimates from sample estimator, EAP, EAPLSP0.6, EAPLSP0.4, EAPSP0.6,
EAPSP0.4 from left to right. (d) EAP coherence magnitude estimated locally adap-
tive from EAPWP, EAPLSP0.6, EAPLSP0.4 or EAPSP0.4.
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4.2 Machine Learning Estimation

4.2.1 Comparison of MLWP, MLLSP and MLSP Estimators

Based on the fact that the estimation from a small sample size is the critical problem,
priority is put on such test cases, i.e., N = 3, and N = 9. The results in Fig. 4.8
show, the intuitively introduced Bayesian principle works. Any likelihood of prior can be
implemented. In contrast to the empirical Bayesian approach described in section 3.1, no
insoluble integral has to be solved and replaced by computationally ineffective numerical
integration. Similar to the experiment in section 4.1.2, the prior parameter γmax = 0.6 is
chosen because it is a typical value in InSAR.

In the plots below, the MLSP curves end at an underlying coherence of 0.6. It is apparent,
a strict prior assumes zero probability outside of this range. However, it should be noted
that the MLSP0.6 estimator provides also estimates outside of this strict range.

The bias compared in Figs. 4.8a and 4.8b is reduced for small coherences by all ML
methods. For the sample estimator, the bias becomes zero at an underlying coherence of
one. Not surprisingly, all newly developed ML estimators, are bias free at much smaller
coherences. However, this is achieved at the expense of a larger bias for higher underlying
coherence magnitude values.

The comparison of the RMSE in Figs. 4.8e and 4.8f confirms that the more information is
used and the stricter the general prior, the more accurate the estimate will be. Compared
to the conventional sample estimator, MLWP is more efficient for all underlying coherence
magnitudes up to 0.68, the MLLSP0.6 method up to 0.65, and the MLSP0.6 estimator up
to 0.58.

As the performance of the sample estimator improves with the number of samples, it can
be expected that advantages are reduced for other methods. The comparison of the bias
in Figs. 4.8a and 4.8b, of the standard deviation in Figs. 4.8c and 4.8d as well as of the
RMSE in Figs. 4.8e and 4.8f confirm this expectation. Accordingly, the reduction in bias is
less pronounced for N = 9. Also, the prior has less effect on the bias mitigation compared
to test cases with fewer samples. A similar characteristic is observed for the standard
deviation. However, some prior helps to mitigate the random variation. Nevertheless, the
ML algorithms outperform the sample estimator for small coherence magnitude values in
terms of RMSE. For N = 3 and compared to the conventional sample estimator, MLWP
is more efficient for all underlying coherence magnitudes up to 0.62, the MLLSP0.6 method
up to 0.61 and the MLSP0.6 estimator up to 0.55. For N = 9, the MLWP is more efficient
for all underlying coherence magnitudes up to 0.43, the MLLSP0.6 method up to 0.47 and
the MLSP0.6 estimator up to 0.48.
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(a) Bias γ
(bias)
T for N = 3. (b) Bias γ

(bias)
T for N = 9.

(c) Standard deviation γ
(σ)
T for N = 3. (d) Standard deviation γ

(σ)
T for N = 9.

(e) RMSE γ
(RMSE)
T for N = 3. (f) RMSE γ

(RMSE)
T for N = 9.

Figure 4.8: Characteristic of ML estimators for N = 3 left column and N = 9 right column
comparing T ∈ {γ̂s, MLWP, MLLSP0.6, MLSP0.6}.
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4.2.2 Characteristics for N = 2

Similar to section 4.1.3, it is experimentally tested whether the ML methods also work for
N = 2 samples. The results for this test case are visualized for the bias in Fig. 4.9a, the
standard deviation in Fig. 4.9b and the RMSE in Fig. 4.9c. The simulation shows that
all developed methods also work very well in this setup. The RMSE graphs in Fig. 4.9c
confirm that the more information is used and the stricter the general prior, the more
accurate the estimate will be. Compared to the conventional sample estimator, MLWP is
more efficient for all underlying coherence magnitudes up to 0.68, the MLLSP0.6 method
up to 0.65, and the MLSP0.6 estimator up to 0.58.

(a) Estimation bias γ
(bias)
∗ . (b) Standard deviation γ

(σ)
∗ .

(c) RMSE γ
(RMSE)
∗ .

Figure 4.9: Characteristic of estimators for N = 2 samples; gray: sample estimator, green:
MLWP, blue: MLLSP0.6 and orange: MLSP0.6.
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4.2.3 Characteristics for Large N

In the previous sections, the advantage of the ML methods is demonstrated for small
sample sizes. The characterization for large sample sizes is provided for N = 15 in
Fig. 4.10a and N = 30 in Fig. 4.10b. For N = 15, the RMSE of the ML methods
perform still better compared to the sample estimator. The MLWP is more efficient for
all underlying coherence magnitudes up to 0.40, the MLLSP0.6 method up to 0.44 and the
MLSP0.6 estimator up to 0.46. However, the test case N = 30 demonstrates in Fig. 4.10b,
only the MLSP0.6 performs better than the sample estimator. Practically, the ML methods
can be recommended for all sample sizes N ≤ 30. It is noteworthy that the strict prior
performs best also with large sample sizes. As a result, the ML methods improve the
performance only for low coherences if the sample size is small.

4.2.4 Sentinel-1 Application Demonstration

Figure 4.11a visualizes the test case with 512×512 i.i.d. samples by the radar backscatter
amplitude. The coherence magnitude from the sample estimator is visualized in Fig. 4.11b.
Using identical estimation windows, the respective ML result is shown in Fig. 4.11d. In
this example, the ML coherence magnitude is estimated locally adaptive with respect
to the prior from MLWP, MLLSP0.6, MLLSP0.4 or MLSP0.4. It can be seen that the
estimation performance now depends not only on the window size but mainly on the
prior and its strictness.

To give an intuitive idea of the effect of different priors and various parameters, Fig. 4.11c
visualizes a composition of coherence estimates. In this figure from left to right, the result
from the sample estimator, MLWP, MLLSP0.6, MLLSP0.4, MLSP0.6, and MLSP0.4 can be
compared. Similar coherence magnitudes are observed for all but the last two columns. It

(a) N = 15. (b) N = 30.

Figure 4.10: RMSE characteristic of ML estimators for N = 15 (left) and N = 30 (right)
comparing the sample estimator γ̂s (gray), MLWP (green), MLLSP0.6 (blue) and
MLSP0.6 (orange).
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follows that the less strict prior can robustly cope with an underlying coherence greater
than the prior parameter γmax.

(a) (b) 0 1

(c) 0 1 (d) 0 1

Figure 4.11: Sentinel-1 test case with N = 9 for machine learning estimators. (a) Radar
backscatter amplitude. (b) Coherence magnitude from sample estimator γ̂s. (c)
Composite of coherence estimates from sample estimator, MLWP, MLLSP0.6,
MLLSP0.4, MLSP0.6, MLSP0.4 from left to right. (d) ML coherence magnitude
estimated locally adaptive from MLWP, MLLSP0.6, MLLSP0.4 or MLSP0.4.
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4.3 Composite Estimation

4.3.1 Concept Testing

As a principle test, it was checked whether any one composite estimator could be bet-
ter than available estimators, namely the sample estimator (2.11), the MLWP and the
MLSP0.6 from section 4.2. For this purpose, a composite estimator with many different
estimators and subsample sizes was implemented, which corresponds to the configuration
CW_N30_G2G3G4G5G30W 2W 3W 4W 5. Figure 4.12 shows that this estimator is better than the
standard sample estimator and the MLWP and is even better than the MLSP0.6. The
latter is particularly noteworthy because the better RMSE was achieved without a prior.

4.3.2 Test of Two Partial Estimators Only

This experiment assesses whether so many partial estimators are actually required as in
the principle test above with the configuration CW_N30_G2G3G4G5G30W 2W 3W 4W 5. It also an-
swers the questions of whether a much simpler configuration namely CW_N30_G2G30 can
work better than the known estimators and whether it makes sense to use more partial
estimates and thus accepting more computing and training effort. In section 4.2, the situ-
ation was that ML already outperforms the sample estimator. However, for large sample
sizes N , the performance of ML is decreased and needs to be improved by prior knowl-
edge, e.g., MLSP0.6 in Fig. 4.10b in order to keep the advantage. Figure 4.13 shows that
the composite estimator without prior CW_N30_G2G30 is better than the sample estimator
(G30 in gray) and the MLSP0.6 (blue) - even without prior. Clearly, the many estimators

Figure 4.12: Principle test with oversized estimator with accepted redundancy.
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in CW_N3_G2G3G4G5G3W 2W 3W 4W 5 from the principle test above are not even necessary. The
experiment confirms the expectation that it is advantageous for a composite estimator if
the statistical properties of the estimators used are as different as possible. This is the case
if the number of subsamples is as different as possible. This experiment also demonstrates
that the partial sample estimates (G3, G4, G5) and the machine learning estimates (W 2, W 3,
W 4 and W 5) do not provide any additional features. In practice, the small subsample size
of 2 is even very advantageous. It allows using all available samples if the given sample
size N is divisible by two.

4.3.3 Testing the Need for Different Statistics

This test case answers the question of whether the difference in the statistics of the
partial estimators, which is for example caused by the subsample size, is necessary. This
is answered experimentally by comparing the configurations CW_N9_G2G9 and CW_N9_G2,
i.e., the single very precise estimator G30 is left out. Figure 4.14 shows that there is a
threshold above which CW_N9_G2 is better than the sample estimator G9 (γ = 0.18) and
better than the composite estimator CW_N9_G2G9 (γ = 0.35). However, the configuration
CW_N9_G2G9 outperforms the sample estimator using all N = 9 samples in a larger range,
i.e., for all small coherences up to 0.53. It confirms the principle that different subsample
sizes are to be preferred for composite estimators.

4.3.4 Testing the Need for an Intermediate Sample

The experiments above have demonstrated that the partial estimators should be as dif-
ferent as possible. This section checks whether an additional intermediate sample is

Figure 4.13: Comparison of minimal estimator CW_N30_G2G30 with known estimators.
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Figure 4.14: Comparison of CW_N9_G2G9 and CW_N9_G2 checking for the need of two different
statistics.

worthwhile for large samples. This is an option that arises for very large samples. Prac-
tically, CW_N60_G2G60 and CW _N60_G2G30G60 are compared. Figure 4.15 shows that there is
no advantage if another estimator (G30 in this example) is added.

4.3.5 Comparison of Different Subsample Sizes

This test case examines whether it makes a difference to choose a subsample size S = 2
or S = 3. Figure 4.16 shows that it does not matter whether subsamples are formed for
the estimators G2 or G3 if the number of given samples is a divisor of 2 and 3. Finally,
the composite estimators CW_N9_G2G9 and CW_N9_G3G9 are equally good. We can therefore
choose the one that best partitions the total samples, e.g., N = 30 with 15 × 2 samples
however N = 9 with 3×3 samples. Every sample is then used and the number of features
to learn from is smaller.

4.3.6 Comparison of Strict Prior Test Cases

Now, it is assessed whether prior information can also be used in this method in accordance
with the principle from section 4.3. The strict prior is used as a test case. This means
that this prior is used for the training of the composite estimator itself and one or all
partial estimators restrict their estimation onto this prior range. I.e., the composite
estimator inherits the constraints of the partial estimator, otherwise there is a risk that
the partitioned input data do not correspond to their prior. Figure 4.17 compares the
estimators CS(0.6)_N30_S(0.6)2G30, CS(0.6)_N30_G2S(0.6)30, and CS(0.6)_N30_S(0.6)2S(0.6)30, i.e., in
the first, the frequent imprecise estimate S(0.6)2 and in the second, the precise one-time
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Figure 4.15: Comparison of CW_N60_G2G60 and CW _N60_G2G30G60 checking the the need for an
intermediate sample.

estimate S(0.6)30 is improved by the prior. The third estimator restricts the estimation
of all partial estimators into the prior range. Figure 4.17 shows that the performance is
improved best in the first configuration CS(0.6)_N30_S(0.6)2G30.

4.3.7 Characteristics for N = 9 and N = 30

The estimator characteristics are assessed with test cases N = 9 and N = 30. Figure 4.18
compares the RMSE for the sample coherence estimator and the composite estimator with
various variants.

The left column of the figure shows the results for N = 9. For small coherences, i.e.,
γ < 0.53, all composite estimators outperform the sample estimator. Clearly, the stricter
the prior, the better is the RMSE of the estimate. The bias is compared in Fig. 4.18a. For
small coherences, it is reduced in absolute value for all composite estimators. However,
the absolute bias value is larger compared to the sample estimator for a higher underlying
coherence. This figure also shows the property that, the stricter the prior, the better
is the bias of the estimate. Figure 4.18c shows that the prior significantly improves the
standard deviation of the estimation.

For N = 30, the RMSE is compared for the sample coherence estimator and different
versions of the composite estimator in Fig. 4.18f. For small coherences, i.e., γ < 0.36, all
composite estimators outperform the sample estimator. However, the less strict prior is
no longer as effective. This means that the improvement in RMSE for CL(0.4)_N30_L(0.4)2G30

(orange graph) is insignificant compared to the estimator CL(0.6)_N30_L(0.6)2G30 (blue graph).
In addition, the composite estimator without prior CW_N30_G2G30 (green graph) is even
similar to a less strict prior with γmax = 0.6 in terms of performance. In contrast, the
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Figure 4.16: Comparison of CW_N9_G2G9 and CW_N9_G3G9 checking for different subsample sizes.

Figure 4.17: Comparison of possible configurations to process strict prior, i.e.,
CS(0.6)_N30_S(0.6)2G30, CS(0.6)_N30_G2S(0.6)30 and CS(0.6)_N30_S(0.6)2S(0.6)30.
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strict prior composite estimator continues to be improving the RMSE. Figure 4.18b
showing the bias and Fig. 4.18d with the estimation standard deviation confirm the use-
fulness of the strict prior with the test cases CS(0.6)_N30_S(0.6)2G30 (light green graph) and
CS(0.6)_N30_S(0.6)2G30 (red graph).

4.3.8 Characteristics for Large N

Next, the influence of the available sample size N on the estimation performance is dis-
cussed and four characteristics are illustrated. Figure 4.19 compares similar constructed
composite estimators without and with strict prior for sample sizes N = 9, N = 30,
N = 100 and N = 200. First, the best improvements are achieved for small samples.
Quantitatively, this is described below for the most difficult case, i.e., coherence γ = 0.

Figure 4.20a shows that a relative improvement of 30.6 % is achieved for N = 3, even
without a prior. With N = 200 samples there is still an improvement of 7.4 % as Fig. 4.19d
and 4.20a show. Second, for each sample size there is a specific coherence at which the
improvement is maximum. For example, the smallest RMSE is achieved at γ = 0.28
with N = 9 and γ = 0.15 with N = 30 for the composite estimator without prior (green
graphs). For the composite estimator with strict prior (blue graph), there exist two areas
with better performance for large samples as demonstrated in Fig. 4.19c and 4.19d. Third,
Fig. 4.19 also demonstrates that the coherence range for which a better performance of
the composite estimator without prior (green graph) is achieved compared to the sample
estimator (gray graph) becomes smaller with increasing sample size. Figure 4.20b provides
the experimentally evaluated relationship. Fourth, increasing the sample size, all priors
act less as demonstrated in 4.19c and 4.19d for the strict prior. Both figures show that
the RMSE of the estimator with strict prior becomes more and more similar to the RMSE
of the estimator without prior as the sample size increases.

4.3.9 Sentinel-1 Application Demonstration

Figure 4.21a visualizes the test case with 512 × 512 samples by the radar backscatter
amplitude. The coherence magnitude from the conventional sample estimator is visualized
in Fig. 4.21b. It is universal because it does not require prior information. The composite
estimator CW_N9_G2G9 has the same general applicability since it also does not require a
prior. As Fig. 4.21c indicates, it is the better universal estimator compared to Fig. 4.21b.
Figure 4.21d illustrates the estimation performance when prior information is included
for each pixel and the estimators CW_N9_G2G9, CL(0.6)_N9_L(0.6)2G9, CL(0.4)_N9_L(0.4)2G9 or
CS(0.4)_N9_S(0.4)2G9 are applied locally adaptively.
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(a) Bias γ
(bias)
∗ for N = 9. (b) Bias γ

(bias)
∗ for N = 30.

(c) Standard deviation γ
(σ)
∗ for N = 9. (d) Standard deviation γ

(σ)
∗ for N = 30.

(e) RMSE γ
(RMSE)
∗ for N = 9. (f) RMSE γ

(RMSE)
∗ for N = 30.

Figure 4.18: Characteristic of composite estimators for N = 9 left column and N = 30 right
column.
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(a) (b)

(c) (d)

Figure 4.19: Comparison of sample size a) N = 9, b) N = 30, c) N = 100 and d) N = 200
checking the effect on the RMSE performance.

(a) Relative improvement [%] of composite estima-
tors without prior with respect to the sample es-
timator at γ = 0.

(b) Maximum coherence up to which the composite
estimator without prior is better than the sample
estimator.

Figure 4.20: Characteristic of composite estimators with respect to the sample size N .
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(a) (b) 0 1

(c) 0 1 (d) 0 1

Figure 4.21: Sentinel-1 test case with N = 9 for composite estimators. (a) Radar backscat-
ter amplitude. (b) Coherence magnitude from sample estimator (2.11). (c) Co-
herence magnitude from composite estimator CW_N9_G2G9, i.e., without prior.
(d) Coherence magnitude estimated from composite estimators locally adap-
tive from configurations CW_N9_G2G9, CL(0.6)_N9_L(0.6)2G9, CL(0.4)_N9_L(0.4)2G9 or
CS(0.4)_N9_S(0.4)2G9.



5 Discussion

5.1 On the CCG Signal Model and Simulation

In this thesis, three new methods for estimating the coherence magnitude of jointly CCG
signals are developed. This signal model is not a limitation on applicability because
the signal characteristic is fundamental in SAR and is accepted for DSs observed with
medium resolution SAR and proven by many InSAR applications. For example, it is used
by Touzi & Lopes (1996) to derive the coherence estimation characteristics (2.12), (2.17),
(2.18) and by Bamler (2000) to predict the coregistration accuracy (2.32). Furthermore,
the performance analysis, e.g., by (2.28), (2.29), and optimization of successful SAR
missions, e.g., SRTM (Breit & Bamler 1998) and TanDEM (Krieger et al. 2005) as well as
the phase-triangulation algorithms (Rocca 2007, Ferretti et al. 2011, Fornaro et al. 2015,
Cao et al. 2015) are based on this specific signal model by (2.21).

Although the ML procedures and the characterizations of the developed coherence esti-
mators are based on extensive simulations, the results are applicable to real data. This
is due to the fact that the simulation accurately generates actual CCG processes with-
out any approximations, assumptions, or models. Obviously, there is no simulation or
assumption about the components of the InSAR signal

φi = φ
(h)
i + φ

(defo)
i + φ

(atmo)
i + φ

(noise)
i , (5.1)

which are the topography phase φ
(h)
i , the displacement phase φ

(defo)
i , the atmosphere

effect φ
(atmo)
i and the noise φ

(noise)
i . The most general and realistic use case is that φi is

uniformly distributed, i.e., φi ∼ U(−π, π). Indeed, a phase simulation of the InSAR phase
components would increase the dimensionality of the problem and make simulation and
ML training more difficult. Because the simulation generates realistic data, the Sentinel-1
test cases in sections 4.1.5, 4.2.4 and 4.3.9 work so well. The only requirement for the ML
is to provide sufficient training data from simulations.

Nevertheless, the developed algorithms are only valid for CCG SHPs. However, this is
a very general and natural class of signals and also means that the procedures are not
restricted to InSAR but can generally be applied to coherence estimation problems from
joint CCG data.

In practice, SAR observes not only DSs described in section 2.1.1 but also other surfaces
and scatterers, e.g., the overlay of DSs, a single dominant PS and multiple PSs in a reso-
lution cell. Karakus et al. (2021) give a variety of statistical models for SAR data in Table
1 for cases where the CCG principle does not apply. In principle, these statistical models
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describe heterogeneous pixel areas that are not SHP, or in other words, do not consist
of i.i.d. samples. In practice, heterogeneous pixel areas can only occur in the coherence
estimation if the SHP detection was incorrect. Therefore, to avoid error propagation, a
robust coherence estimation procedure is desirable however out of scope in this thesis. For
non i.i.d. signals from DSs, e.g., the overlay of DSs, or signals from PSs, the conventional
estimator is also inappropriate because the prerequisites E{X1} = 0 and E{X2} = 0 are
not met in (2.8). It is also not surprising that the characterization of the sample coherence
cannot be transferred to heterogeneous signals or signals with outliers.

5.2 On the Estimator Characteristic

Compared to the sample estimator, the developed estimators improve the estimation of
small coherences. And, they better estimate the coherence from a small sample size. An-
other characteristic is that the smaller the sample size, the better the estimators improve
the estimation. These characteristics are expected and confirmed by the theory. Efficiency
is the criterion for the best possible estimator. An estimator is efficient if it achieves the
CRLB or the best possible MSE or RMSE. The latter two are determined by the bias and
the variance. Two properties of the sample estimator make it, for large N and coherence
magnitude close to 1, the efficient estimator that cannot be outperformed. Firstly, the
sample estimator is asymptotically unbiased, i.e., for large N and/or high coherence γ.
And secondly, the MLEs asymptotically have minimal variance. Also, the sample estima-
tor is consistent, meaning that it estimates more accurately as the sample size increases.
Of course, both cases of γ = 1 and N = ∞ are rather theoretical. In practice, however,
these facts mean that other estimators cannot be better for these extreme configurations,
and it becomes more difficult for other estimators the closer one gets to these extremes.
I.e., N is large and/or the coherence is large. This thesis has expanded the range of coher-
ence and sample size at which the developed estimators outperform the sample estimator,
starting with the empirical Bayes estimators, the ML based estimations, and finally the
composite estimators.



6 Conclusion and Outlook

6.1 Conclusion

In this thesis, three new methods for estimating the coherence magnitude of jointly CCG
signals are developed. This signal characteristic is accepted for distributed scatterer ob-
served with medium resolution SAR. First, the empirical Bayesian method estimates
from the statistic of the posterior distribution. Three statistics are tested, namely MAP,
EAP and MEDAP. Concerning the bias, the simulation shows that EAP is better than
MEDAP and the latter is better than MAP. Second, an improvement in terms of esti-
mation accuracy and computational complexity is the ML coherence estimator. Third, a
further improvement in terms of estimation accuracy is the estimator based on compo-
sition of coherence subsample estimates and ML. It extends and uses also the straight
forward ML estimator. In practice, both ML methods can be implemented with available
ML libraries and are independent of which method is used, such as a decision tree, a
random forest or a neural network.

The following characteristics of the estimators can be concluded:

• The developed estimators offer two main advantages compared to the conventional
sample estimator. All improve the estimation of small coherences. And, they better
estimate the coherence from small sample sizes. All estimators are better than the
sample estimator in their specific coherence range, which depends on the number of
InSAR samples N , the underlying coherence γ and the prior.

• Another characteristic is that the smaller the sample size, the better the developed
estimators improve the estimation.

• As the sample size increases, the bias vanishes and the estimators are asymptotically
unbiased.

• The principle of empirical Bayes improves the coherence estimation for a sample
size 2 ≤ N ≤ 15 compared to the conventional sample estimator.

• The ML based estimation is advantageous for 2 ≤ N < 30 and for a larger sample
size, prior information needs to support the estimation for an advantage over the
sample estimator.

• For the composite estimator, the superior performance for large samples compared
to the sample estimator is demonstrated for the test cases N = 100 and N = 200.
Surprisingly, already 3 InSAR samples are sufficient for an improved estimation.
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• All developed estimators support prior information in form of a prior PDF p(γ).

In principle, all estimators are suitable for typical InSAR scenarios. First, the uninforma-
tive prior improves the estimation without prior knowledge and is generally applicable.
Second, the informative priors include an assumption on the maximum coherence of the
underlying coherence. Indeed, such information is available in InSAR based on time se-
ries. The strict prior limits the estimates inside the assumed range and the less strict prior
favors estimates in this range. The more information is used and the stricter the prior,
the more accurate the estimate will be. The strict prior achieves the best performance
with respect to the RMSE. The informative priors are described by a single parameter
only, i.e., the maximum underlying coherence γmax.

The performance and advantages are the reasons why the composite estimator is suitable
and recommended for implementation in operational InSAR systems. It supports small
and large sample sizes and has the best estimation performance compared to the other
methods. An advantage worth emphasizing is its estimation performance without prior.
This makes the estimator universally applicable and comparable with the conventional
sample estimator. However, it requires to also implement the direct ML estimators.

The developed estimators are not limited to InSAR, however can be generally applied to
coherence estimation problems from joint CCG processes.

6.2 Outlook

There are several ways to advance the research conducted in this thesis, and the following
subproblems offer one way to do so.

Improve Prior: In this thesis, the prior is straight forward and parameterized by a single
parameter. It is to be expected that a more complicated prior, e.g., with more parameters
and therefore a more precise prior, will lead to more accurate estimates. Furthermore,
additional prior information can be added. One example is the assumption of the same
intensity in both channels.

Improve Algorithms: The developed coherence estimators start from i.i.d. samples,
i.e., SHP. The detection of these areas is not trivial, is still an active field of research and
can be erroneous. To avoid error propagation, a robust coherence estimation procedure
is desirable. The algorithms should be gradually improved to identify and tolerate first
one, then two and finally up to 50 % outliers (i.e. a mixture of SHP or additional PSs).

Another useful extension together with the robust estimation is a recursive estimation, in
which a given SHP is extended by an InSAR sample and the intermediate results of the
previous estimation are used advantageously. This further development can be used for
SHP detection.

The estimation precision of an executed coherence estimation is the essential parameter
for the evaluation of an error propagation in an application. Estimating the estimation
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precision is therefore desirable and would also be useful with the current sample estimator,
however is typically not even implemented at present.

Operational Setup: Depending on the ML library or framework used, the computa-
tional effort for the actual estimation process differs. Fast and uncomplicated execution
is desirable. A complexity and performance analysis provide decision criteria for the se-
lection of a framework or software library that is particularly suitable for operational
systems.

Many estimation functions need to be trained for the ML methods, i.e., one for each prior
and prior parameter. This is a considerable effort in terms of the required computing
performance. The computational effort is also high, as a lot of data samples have to be
simulated for the training. The more data is simulated, the better will be the implemented
estimator. This effort should be bundled and a free library of coherence estimators should
be created and shared.

Demonstrate Applications: The developed estimators are not limited to InSAR, how-
ever can be generally applied to coherence estimation problems from joint CCG data.
It is desirable to demonstrate such use cases in different work domains that differ from
InSAR.

The composite estimation approach using ML provides a generally usable principle for
parameter estimation. It is worth to test and demonstrate any omnipresent parameter
estimation, e.g., variance, amplitude or intensity from real samples. An obvious applica-
tion for SAR data would be incoherent change detection. However, it is equally desirable
to demonstrate such use cases in work domains that differ from SAR and InSAR.
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A List of Abbreviations

ABW azimuth bandwidth

ASI Italian Space Agency

BBD Ground Motion Service Germany

BGR Federal Institute for Geosciences and Natural Resources

BNF Backus–Naur form

CAESAR Component extrAction and sElection SAR

CCG complex, circular Gaussian

CCM complex coherence map

CDF cumulative distribution function

CMM coherence magnitude map

CNN Convolutional Neural Network

DEM digital elevation model

D-InSAR differential InSAR

CRLB Cramér-Rao Lower Bound

DS distributed scatterer

DLR German Aerospace Center

EAP expected a posteriori

EAPLSP expected a posteriori less strict prior

EAPSP expected a posteriori strict prior

EAPWP expected a posteriori without prior

EGMS European Ground Motion Service

ELEVATE (Enhanced probLEm solVing with quAntum compuTErs)

ESA European Space Agency

EVD Eigenvalue Decomposition

FIM Fisher information matrix
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GAN Generative Adversarial Network

i.i.d. independent and identically distributed

InSAR interferometric SAR

LCMM logarithmic coherence magnitude map

LightGBM Light Gradient-Boosting Machine

LOS line of sight

MAP maximum a posteriori

MEDAP median a posteriori

ML machine learning

MLE maximum likelihood estimate

MLLSP machine learning with less strict prior

MLSP machine learning with strict prior

MLWP machine learning without prior

MSE mean squared error

NASA National Aeronautics and Space Administration

NEBN Noise Equivalent Beta Naught

NESZ Noise Equivalent Sigma Zero

NN neural network

PDF probability density function

PRF pulse-repetition frequency

PS point scatterer

PSI persistent scatterer interferometry

RBW range bandwidth

RNN Recurrent Neural Network

RMSE root mean squared error

RSF range sampling frequency

SAR Synthetic Aperture Radar

SAAR signal to azimuth ambiguity ratio

SCR signal-to-clutter ratio

SHP statistically homogenous pixels
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SLC single look complex

SNR signal-to-noise ratio

SRTM Shuttle Radar Topography Mission

SVD singular value decomposition

VERITAS Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy

VISAR Venus Interferometric Synthetic Aperture Radar

XGBoost eXtreme Gradient Boosting
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