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A B S T R A C T

Linear energy system optimization plays an important role in the design of future energy systems, due to its 

availability and low computational requirements. While linear optimization offers many benefits, the rise in 

popularity of battery storage and its use cases represents a challenge, commonly causing oversimplification by 

ignoring aging and its causes. Thus, this paper aims to include battery aging and subsequently battery optimized 

operation, to lower aging, into linear system optimization. Two approaches are highlighted, namely a basic linear 

aging implementation, as well as a convex hull approximation. These are then compared against the generic 

implementation found in oemof.solph, an open source energy modeling tool, to assess the benefits and drawbacks 

of including aging. The chosen case study for evaluation models a buffer storage for an overhead line island to 

reduce peak loads, enabling connections to weaker grids. The results show up to 46.9 % lower battery aging for 

the convex approach, compared to the generic baseline. Furthermore, the amount of aging is precisely determined 

by the convex approach, with errors below 0.4 % and the computational times close to the same magnitude, due to 

the lack of mixed integer linear programming. The suggested approaches of integrating battery aging into linear 

optimization should be integrated into future models to better predict and reduce battery lifetimes, allowing for 

better cost calculations in such systems.

1. Introduction

To decrease dependence on fossil fuels and lower emissions, the 

infrastructure, industrial and mobility sectors are transforming their

systems towards electrified solutions and the optimized integration of 

renewable energy sources [1,2]. Yet, in order to ensure a successful 

transition either voluntarily or based on changing legislation [1,3],
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efficient, reliable and cost-optimized systems are vital [3,4], for keep-

ing energy prices low and maintaining competitiveness in the global 

market [3].

An important component of many new energy systems is battery stor-

age. Due to the intermittency of renewable energy sources like wind 

and solar, they are used to buffer energy and provide more continuous 

power delivery [2,5,6]. Their scale of deployment varies significantly 

depending on the use case, ranging from small systems for residential 

PV storage or microgrids, to large-scale frequency reserves or renew-

able storage. Further use cases also include the better management 

of virtual power plants, peak load reduction, or the reduction of grid 

congestion [5,6]. Modern battery storage systems are mainly based on 

lithium ion batteries, given their high efficiency, energy density and cy-

cle life. The widespread use of lithium-based solutions is underlined by 

the 77 % share of energy storage for grid stabilization they currently 

make up in the US [5]. The best lithium battery for stationary battery 

storage is the LFP battery, due to its high cycle life and relatively low 

cost [2].

Despite the widespread field of use for battery storages, one main 

drawback is the aging of batteries, over time and due to usage. Through 

the active usage of the battery and during idle, aging takes place as 

a result of chemical and physical processes like the formation of solid 

electrolyte interface (SEI) or dendrites within the battery [7,8]. While 

every type of battery has individual aging characteristics, all of them 

are influenced by external operating conditions like temperature, c-rate 

or depth of discharge [8–10]. As these parameters vary between every 

installation and use case, it is important to properly size and operate the 

battery storage, to inhibit premature failure and thus potentially high 

costs from replacement and downtime [7].

Despite declining battery costs [2], the aging effects of batteries, 

which are closely linked to the present operational conditions [10–12], 

are still an important factor in developing an energy system. Thus, many 

complex battery aging models have been created over the years trying 

to predict the aging behavior for different use cases [9–13]. However, 

despite the availability of aging models, the additional effort often leads 

to the neglect of aging, as shown by the many studies modeling energy 

systems without taking battery aging into consideration [7].

In order to optimize energy systems and batteries, linear program-

ming can be a favorable approach due to its availability and simplicity. 

Through linearization, multiple energy types like gas, electricity and oth-

ers can easily be combined and the computational effort remains low. 

These factors enable its widespread use in many fields of research, and 

especially in the energy segment the low computational effort of linear 

optimization can be used to perform design optimizations if wrapped in 

a non-linear external optimizer. This way, many different system com-

binations can be examined, offering a range of configurations to choose 

from.

Yet, due to its strictly linear nature, optimization can become prob-

lematic, as non-linear dependencies must be linearized for the model, 

introducing uncertainties [4]. Aging is highly nonlinear and thus efforts 

made include mixed integer programming (MILP) and/or decomposi-

tion methods to estimate depth of discharge (DoD) [7,14,15]. However, 

this greatly increases the computational effort, thus lowering reasonable 

timespans or temporal resolutions of the model [7], while also omitting 

other important aging factors. Since the convex hull approach can be 

realized in a purely linear fashion, it promises significant reductions 

in computational times compared to the mixed integer programming 

(MILP) methods.

This paper aims to introduce battery aging without the significant 

performance drawbacks of MILP by utilizing simple linear constraints 

creating a convex hull to describe the aging processes. Both calendric 

aging based on state of charge (SoC), as well as cyclic aging based on 

full equivalent cycles (FEC), are modeled by the aging model to not only 

measure aging but also to actively reduce it by optimizing said operat-

ing conditions, thereby reducing costs and emissions [2]. A simple linear

and convex hull approach are compared against the generic storage com-

ponent form the open energy modeling framework (oemof) to assess the 

benefits and drawbacks of each approach. oemof.solph [16] is a Python 

based open source tool capable of creating linear energy system models 

for optimization.

The test case applied to the model is a buffer storage used to reduce 

the impact of load spikes caused by an overhead line island (OHLI). 

OHLIs are short sections of overhead lines primarily located at train sta-

tions, where battery-electric multiple units (BEMU) can recharge their 

batteries during their stays at the station. As a result, the load profile 

includes spikes in power for short periods of time, while idling for the 

remaining time. The buffer storage is used to mitigate the peak loads 

experienced by the grid.

By presenting a new approach to battery aging in linear energy 

system optimization this paper contributes the following:

• Accurate battery aging within linear optimization based on calendric

and cyclic aging.

• Active battery schedule optimization, reducing aging

• A strictly linear model without MILP, combining precision and low

computational effort

• A flexible model structure, allowing for easy adoption of other

battery models

• Implementation into an open source optimizer, based on a common

platform to allow for more widespread usage

This paper is structured as follows: Section 2 introduces the aging 

mechanisms responsible for battery aging, as well as the utilized aging 

model. Section 3 then outlines the methodology of the different imple-

mentation approaches, explaining the integration of battery aging into 

the linear optimization. Section 4 presents the results of the case study, 

concerning peak load reduction for battery buffer storage systems in 

overhead line islands. Section 5 discusses the results. Finally, Section 6 

states the conclusions.

2. Battery aging

The following sections introduce the mechanisms behind battery ag-

ing, the challenges of linearization and the chosen models, depicting the 

aging within this paper.

2.1. Battery aging mechanisms

Battery aging is a complicated process; thus, modeling is difficult due 

to the many different factors and subprocesses to consider. While dif-

ferences between chemistries are expected, they also occur within the 

same chemistry resulting from packaging or manufacturing processes. 

Nonetheless, the main contributors to aging in lithium iron phosphate 

(LFP) cells are the loss of active material (LAM), the loss of lithium inven-

tory (LLI) and lithium plating (Li plating). While all processes contribute 

to aging, the individual impact of each process is dependent on the oper-

ating conditions of the cell, where temperature, (dis)charge rate (c-rate), 

depth of discharge (DoD) and state of charge (SoC) represent the most 

important factors. Furthermore, aging is distinguished into cyclic and 

calendric aging, depending on whether it occurs during actively using 

the battery or in idle over time respectively [7].

LLI describes the loss of lithium through side reactions [17], with 

the formation of an SEI being the most prevalent side reaction. SEI 

forms when the electrolyte is in direct contact with lithium and acts 

as a protective layer around the anode. During cycling, this layer can 

crack, causing lithium dendrites to grow through the SEI, leading to the 

steady formation of new SEI. Thicker SEI layers in turn cause higher in-

ternal resistances and reduce the amount of available lithium, thereby 

lowering the battery’s performance and capacity. SEI formation is the 

main overall cause of aging [8] and typically occurs at temperatures 

above 25 

◦ C, high c-rates and high SoCs. LLI both causes calendric and 

cyclic aging [9].
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LAM describes the loss of lithium by means of dendrites breaking 

of the anode, causing them to be electrically isolated and no longer 

usable. This so called “dead lithium” not only reduces the capacity of 

the battery but can also create safety concerns if it damages the sep-

aration layer within the battery. Similarly to LLI, LAM mainly occurs 

at elevated temperatures, high c-rates, high SoCs and long-term cycling 

[8–10]. 

Li plating only occurs during charging and describes the process 

where lithium ions do not properly intercalate into the graphite anode, 

causing an accumulation on the surface. Contrary to the other aging 

mechanisms, Li plating is reversible through discharging (lithium strip-

ping (Li stripping)), yet the volumetric changes oftentimes accelerate the 

formation of SEI via cracking, which causes irreversible aging. Li plating 

predominantly occurs at high c-rates in combination with low temper-

atures. High SoCs and non-uniform charging can be contributingfactors 

as well [9].

2.2. Limitations of linear battery aging modeling

Next to the many interdependencies and aging processes, nearly all 

relations are non-linear [10,11,18], complicating their implementation 

into linear energy system optimization. As a result, not all relations can 

be properly modeled in oemof.solph. For example, DoD and temperature 

modeling is nearly impossible to model without binary variables, due to 

the difficulties in distinguishing between individual cycles or the non-

uniform temperatures within the stacks. While the inability to model 

DoD is a drawback, the stationary nature of the examined storage allows 

for proper cooling and temperature management, reducing the need for 

a separate temperature model. Thus, the temperature for the battery is 

assumed to be constant at 25 

◦ C. Factors like SoC or c-rates can be mod-

eled and allow for the introduction of reducing capacities and end of 

life (EoL) conditions, where the battery can “break” during the optimiza-

tion. The ability to model c-rates and SoC dependencies is valuable, since 

they are important factors, which can be influenced by adapting the op-

eration schedule of the storage. Ideally, this causes the optimization to 

produce more realistic time series compared to the current generic ap-

proach. Since only the relations for c-rates and SoC are required, pseudo 

physical models, as often seen in literature [8,11,19], are most likely too 

complex and not of great benefit.

2.3. Literature model for linearization

The cyclic aging model used is proposed in [20], as it provides the 

desired parameters of the charge rate and energy throughput. The ag-

ing model proposed by Nakama et al. [20] contains two equations to 

calculate the aging in real time applications. The first function, shown 

in Eq. (1), computes the aging per timestep n. The second function in 

Eq. (2) calculates the total aging based on those individual aging steps:

𝑄 loss,n 

= (0.0032 × exp 

(

− 

15161 − 1516 × 𝐶 r,n

𝑅 g 

× 𝑇 n

)

× (𝐴ℎ𝑍n ); 𝑍 = 0.824 (1)

(𝑄 loss,total 

) 

1
𝑍 = 

∑ 

(𝑄 loss,n 

)
1
𝑍 (2)

where 𝑄 loss 

is the capacity lost in %, Ah is the absolute amount of ampere 

hours passed through the battery, 𝑅 g 

is the gas constant and 𝐶 r 

is the 

c-rate. The temperature factor 𝑇 n 

is set to 25 

◦ C in accordance with 

Section 2.2.

The cyclic aging model is used, to calculate the trajectory for vary-

ing c-rates, with Fig. 1 showing a selection of c-rates for an LFP storage 

capable of reaching 3500 full equivalent cycles (FECs) at 1C. The model 

is scaled to this representative cycle count based on the performed 

literature research [11,12,21].

The calendric model is taken from [13], as it provides aging based on 

temperature and SoC. For the calendar aging model parameterization, 

16 cells were stored at different SoCs at each examined temperature

Fig. 1. Cyclic aging trajectories at different c-rates for the LFP storage at 25 

◦ C 

[20].

Fig. 2. Calendric aging for the LFP storage over 9 months at different state of 

charges and 25 

◦ C [13].

(25, 40 and 50 

◦ C ). Periodically a checkup sequence consisting of two 

discharge charge cycles with pauses between each phase was performed. 

Unfortunately it is not exactly stated how often this checkup sequence 

was performed over the course of the experiment. Since multiple tem-

perature levels are available in Keil et al. [13], the 25 

◦ C data is being 

used for consistency. Fig. 2 shows the calendric aging over a timespan 

of nine months at 25 

◦ C for different SoC levels.

3. Mathematical modeling

The modeling of the energy system is performed with oemof [22], 

by using its sub-package oemof.solph. oemof.solph offers the ability to 

create linear optimization problems based on energy systems and is 

available for Python. While other Python based solutions exist, many 

are based on Pyomo [23,24], including oemof, thus the findings in this 

paper are adaptable to other tools as well. The finished models shall be 

capable of calendric aging, capacity reduction and an end of life state 

for the linear model and additionally c-rate modeling for the convex 

model.
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3.1. Modeling framework (oemof.solph)

oemof.solph [22] is a Python based tool for creating energy systems 

which can subsequently be optimized with solvers like CBC or SCIP. 

Within oemof.solph energy systems are made up of several different 

components, like converters, storage, or sources and sinks, which are in-

terconnected through buses. Here, each connection between a bus and a 

component is realized as a so called flow, which can feature properties 

like costs, a maximum flow rate or fixed flows. An energy system must 

consist of at least one source, sink and bus, so that energy can enter, 

leave and flow through the system. Converters can be used to model 

technologies that interface with different energy types. For example, a 

CHP can be modeled as a Converter that converts the incoming fuel into 

heat and electricity at a certain efficiency. Generic storages can be used 

to store any kind of energy type, yet offer very little customization with 

respect to specific use cases like batteries or heat storage.

3.2. Generic model

The generic model consists of the available generic storage com-

ponent provided by oemof.solph, as it is the default storage method 

within the toolbox. It offers some customization options like capac-

ity, initial storage level, loss rate, in and outflow efficiencies, costs and 

maximum power, yet it is not capable of managing the charge and dis-

charge processes beyond energy balancing. Thus, the storage does not 

differentiate between short high power bursts vs longer slower charg-

ing processes if the energy throughput is identical. As a result, erratic 

charging behavior with short charging spikes at full power, rather than 

slower charging over longer periods, is a common phenomenon with 

this type of storage implementation. Furthermore, it does not include 

any aging mechanisms, like capacity reduction or lifespan limitations. 

Despite these drawbacks, it is commonly utilized due to its simplicity and 

low computational cost. In this paper, it serves as the reference point of 

comparison, to evaluate the benefits of the linear and convex model.

3.3. Linear model

The linear aging model presented, adds calendric and cyclic aging, 

based on SoC and FEC respectively. It achieves this by combining mul-

tiple generic storage blocks and constraints with each other, which in 

combination act as one aging storage within the system. Its functionality 

is explained in depth in the following paragraphs.

The calendric aging of the storage is based on its SoC, at a tempera-

ture of 25 

◦ C. Therefore a relation between lost capacity and SoC must 

be defined, which can be implemented into the model. This is done by 

a linear regression performed on the inverted data (e.g. loss of capacity 

instead of remaining capacity) from Fig. 2 [13]. The resulting function 

is shown in Eq. (3).

𝑎𝑔𝑒 cal 

= 0.06931 × 𝑆𝑜𝐶 s + 0.035131, (3)

The next step involves the adaption of this relation to the model. 

Essentially a separate storage is added to the system, which counts up 

the aging over time. Thus the relation must be adapted to charge this 

storage each timestep according to the SoC. As the data in Fig. 2 is based 

on a 9 month period [13], and oemof operates on an hourly basis, the 

9 months relate to 6570 h. By dividing Eq. (3) with 6570, the resulting 

Eq. (4) describes the amount of calendric aging per timestep (𝑎𝑔𝑒 cal,t 

) in 

terms of the SoC (𝑆𝑜𝐶 s 

).

𝑎𝑔𝑒 cal,t = 

0.06931 × 𝑆𝑜𝐶 s + 0.035131
6570

, (4)

To implement Eq. (4), the separate generic storage is added to the sys-

tem, alongside a separate source and bus exclusively connected to the 

new storage. This storage of size 1 receives a constraint, which charges 

it every timestep based on the power defined in Eq. (4). The SoC of the 

second storage then represents the amount of lost capacity, with 0 be-

ing 0 % loss, 0.2 being 20 % loss (e.g. EoL) and 1 being 100 % loss. The

Fig. 3. Calendric aging addition (highlighted by blue surrounding) to an 

exemplary network.

Fig. 4. Cyclic aging addition to an exemplary network, highlighted by the blue 

surrounding. The full linear battery system is indicated in green.

SoC of the second storage is now used to constrain the maximum battery 

capacity of the actively cycled storage. A schematic, showing the new 

configuration is visible in Fig. 3.

For cyclic aging, the same approach of a “counting” storage is used. 

Like for the calendric aging, a separate source, bus and generic stor-

age are added to the system, to “count” the amount of occurred aging. 

The power flow into the new “counting” storage is now constrained by 

the inflow of the actively cycled storage, to store the amount of energy 

throughput the actively cycled storage experiences. Because the “count-

ing” storage cannot discharge, this does not influence the overall energy 

balance of the system, while creating an end of life condition where the 

optimizer is stopped from further utilizing the battery when the count-

ing storage is full. By now altering the counting storage’s size or the 

power relation to the cycled storage, virtually any lifespan in terms of 

full equivalent cycles can be set for the storage, causing the solver to 

utilize the battery more effectively if the EoL is reached within the sim-

ulation. During development, a 1:1 power relation between the actively 

cycled and “counting” storage at 1C has been used, so that the size of the 

“counting” storage can easily be mapped to the FEC at 1C. In addition 

to offering a predefined lifespan, the counting storage is, similar to the 

calendric aging, constrained to the cycled storage to reduce its available 

max. SoC with increased aging, simulating a linear decrease in state of 

health (SoH). A schematic, showing the full configuration is shown in 

Fig. 4.

3.4. Convex model

The linear model presents a first step into modeling battery aging, 

but as described in Section 2, the actual behavior is more intricate than 

the counting of full equivalent cycles. Thus, the convex model adds the 

ability to take different c-rates into account, since they represent an im-

portant factor for aging, as well as the operation schedule of a storage 

system. The modeling of the calendric aging remains unchanged from
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Fig. 5. Convex hull (colorful) representing the SoH relation (black) with 6 linear 

functions.

the linear implementation in Section 3.3. The main difference of the 

convex model is the constraints of the cyclic counting storage.

The aging model for both the capacity reduction and c-rate is based 

on [20] as shown in Eqs. (1) and (2) as well as Fig. 1. It is slightly adapted 

for implementation into oemof.solph. Initially, the aging trajectory until 

80 % SoH is calculated and normed over a range between 0 and 1. This 

is done because the SoC of the “counting” storage is used to determine 

the amount of aging. A SoC of 1 represents the fully charged “counting” 

storage and thus the EoL state at 80 % SoH. 6 linear functions are fitted 

over said trajectory, creating a convex hull over the function. The result 

can be seen in Fig. 5.

For the c-rate-dependency, multiple trajectories at different c-rates 

are calculated (similar to Fig. 1) and their cycle count at 80 % SoH ex-

tracted. The cycle counts are then normed against the cycles reached at 

0.1C, to obtain a factor (𝑓 c 

), describing how much more aging occurs at 

higher c-rates (𝐶 r 

) than 0.1C. Based on these factors, a quadratic regres-

sion is performed, yielding Eq. (5) with an R 

2 value of 0.9999, indicating 

a near perfect fit:

𝑓 c = 0.1026 × 𝐶 

2
r + 0.3374 × 𝐶 r + 0.9659 (5)

This factor is essential for the c-rate implementation, as it describes 

how much faster the counting storage must be charged in comparison 

to the cycled storage, in order to achieve the desired aging effect. If 

the counting storage receives twice the power of the cycled one, it fills 

up twice as fast, effectively halfing the batteries lifespan. Since Eq. (5) 

only represents the factor between the charge rates for each storage, it 

must be multiplied by again by the c-rate going into the cycled storage

(𝐶 r,s) to receive the c-rate for the counting storage (𝐶 r,c 

). This yields 

Eq. (6).

𝐶 r,c = (0.1026 × 𝐶 

2
r,s + 0.3374 × 𝐶 r,s + 0.9659) × 𝐶 r,s (6)

Eq. (6) is then used to fit 30 linear functions between the range of 0 and 

10C, to approximate the cubic behavior, as done for the capacity reduc-

tion above. This range is chosen for the model, because it remains within 

the empirical data for the cycling aging model ranging from 0.5C to 10C 

[25], while also allowing high power applications like the examined use 

case in Section 4. The following Fig. 6 shows the linear functions next 

to the theoretical one.

Upon generating the linear functions for the capacity reduction and 

c-rate dependencies, they are implemented by iteratively setting indi-

vidual constraints for every linear function. As mentioned before, these

Fig. 6. Linear functions (colorful) of the c-rate convex hull against the theoretical 

function (black).

constraints connect the inflow and outflow of the actively cycled stor-

age to the “counting” storage used for the cyclic aging. For the capacity 

reduction every constraint is set as an upper limit, thus eliminating the 

necessity for binary variables while still approximating the model ac-

curately. This is possible because the optimizer aims to utilize the full 

capacity of the battery when needed, consequently hitting the upper 

limit imposed by the capacity constraints. For the c-rate dependencies, 

the linear constraints are lower bounds, to approximate the nonlinear 

function. This works, since the counting storage has a price attached 

to its charging, thus causing the optimizer to favor the lowest possi-

ble charge rate limited by the constraints. The storage pricing is further 

discussed in the paragraph below. Noteworthy is, that the c-rate con-

straints are set twice, once for the charge and once for the discharge 

side.

Finally, the model must be calibrated to properly weigh the influence 

of the calendric aging and c-rate dependencies. If the model is not cali-

brated properly, either the influences of the c-rate or the calendric aging 

will predominantly determine the operation schedule, which might lead 

to sub-optimal results. The calibration can differ from case to case, and 

so it is performed on the study model used later, with the results shown 

in the results section. The factor described in the Section 4.2 represents 

that between the variable costs (cost per kWh of usage) for the count-

ing storage of the calendric and cyclic aging. The costs associated with 

the counting storages per kWh of usage are at 0.1$/kWh, which at 3500 

FEC translates to 350$/kWh investment costs. This data was taken from 

[26].

4. Case study

To validate the performance of the different approaches beyond 

synthetic tests, they are evaluated in a peak load optimization for an 

overhead line island (OHLI). OHLIs are short, electrified sections on non-

electrified railroad tracks, designed to recharge battery powered trains 

during their stays at a station. As a result, their load profile contains 

many sharp power spikes, which only last for a few seconds or minutes 

and can exceed multiple megawatts. Battery buffer storage systems are 

one proposed solution to lower the effect of these load spikes on the 

grid connection point, yet their high investment cost calls for an opti-

mized operation schedule and sizing to prolong their service lives and 

reduce costs. The used time series stems from a simulation performed on 

the railroad service between Zwiesel and Grafenau in Germany, with one 

BEMU serving this line. The maximum charging power is set to 1200 kW 

during standstill, according to EN50163 [27].
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Fig. 7. Calibration of the cost factor between the calendric and cyclic aging.

4.1. Study model

The implementation of the case study into oemof utilizes essentially 

the same system presented in Fig. 4. The sink receives a fixed timeseries, 

represents the load of the OHLI, and the source with variable maximum 

power is the grid. The battery system is the only variable part between 

the approaches and is implemented as described in Sections 3.2–3.4 re-

spectively. The only change made is within the linear system, at the 

power ratio between the cyclic counting storage and actively used stor-

age. It is adjusted to 1:1.46 reflecting a charge rate of 2C based on the 

information from the aging model [20]. The battery cycle life for the 

linear and convex model is set to 3500 FEC at 1C, in accordance with 

the literature research performed [11,12,21] and the battery pricing 

remained at 350$/kWh [26].

The altered variables for this case study are the battery capacity 

and the maximum power available from the grid. The battery capacity 

ranges from 250 to 1800 kWh and the grid connection from 225 kW to 

1250 kW. For both variables, 400 linearly spaced samples are taken, re-

sulting in a 400 × 400 input matrix with a total of 160.000 samples. 

Through this method, the performance of the different modeling ap-

proaches across the entire reasonable configuration range is analyzed 

and compared. The baseline for comparison is given by the generic ap-

proach, since it is the standard method of implementing storage within 

oemof.solph. To analyze the aging performance and amount, the stor-

age charge and discharge timeseries of each model are extracted from 

the results and the battery aging is calculated based on the model pro-

posed in [13,20]. They can then be compared to the generic model’s 

performance. The evaluation of the accuracy of the linear and convex 

models is done by comparing their aging based on the theoretical model, 

to the one recorded by their “counting” storages. This way the error in 

estimating aging can be determined.

4.2. Calibration

As mentioned in Section 3.4, the convex model must be calibrated 

to function properly. Visible in Fig. 7 is the preference for higher cal-

endric costs with larger storage capacities, especially at low powers, 

while smaller storages present a minimum within the shown range.

Fig. 8. Charging behavior of the different models at 250 kWh battery capacity 

and 500 kW grid connection, with (a) being generic, (b) linear and (c) convex.

For the remaining calculations, a factor of 145.000 is used, as it bal-

ances the different battery size requirements, providing the best overall 

performance.

4.3. Results

Fig. 8 shows the charging behavior of the battery storage for the three 

modeling approaches, with (a) being generic, (b) linear and (c) convex. 

The charging strategy for (a) and (b) is similar, featuring short charge 

intervals at maximum charge power just before the actual consumption 

of the OHLI. In contrast, the convex approach in Figure (c) charges at 

a more constant and significantly lower rate, with intermittent charge 

breaks at times when the battery is discharged.

Table 1 shows the calculation time averaged across the 160.000 

samples from the case study for each approach. The computations are
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Table 1 

Avg. calculation time per sample.

Generic Linear Convex

Avg. time in [s] 2.153 6.089 21.212

Std. derivation in [s] 0.1594 0.3010 1.3138

Fig. 9. Daily aging of the generic approach, based on the operation in %.

performed on a dual EPYC7542 system with 1024 GB of ECC DDR4 run-

ning at 3200 MHz. The system runs Ubuntu 20.04.6 LTS and 64 cores 

are assigned to the multiprocessing pool with a chunk-size of 500.

4.3.1. Generic model results

Fig. 9, shows the theoretical aging resulting from the operational 

schedule of the linear approach. The amount of aging increases with 

smaller battery sizes and grid connections, with the peak being reached 

at a 250 kWh battery size and 225 kW grid power, where 0.484 % aging 

occurs per day. Furthermore, a blue hue is visible across the left side 

of the figure, indicating that smaller grid connections, relate to more 

battery aging. The lowest amount of aging at the largest battery and 

grid connection is 0.026 %.

4.3.2. Linear model results

In Fig. 10, the difference in theoretical aging between the generic 

and linear approach can be seen. Most noticeable are the several areas 

and patches within the plot with hard borders and seemingly random 

placement. In addition to these areas, a regular pattern along the x-axis 

is visible with a repetitive rise and fall of battery life savings. Important 

to note is the reduction in battery aging across the entire solution space, 

peaking at around 2.3 %.

Fig. 11 shows the relative modeling error observed between the aging 

indicated by the linear model and the theoretical aging. The deviations 

between the generic and linear model range from −25,5 to +45 %. A 

battery size of 800–1000 kWh combined with a peak load below 300 kW 

results in the modeling errors above +40 %. The negative errors are ob-

served primarily for battery sizes below 400 kWh. A narrow band across 

the plot is visible where the derivation is zero or close to it. Furthermore, 

vertical stripes at identical grid connections as in Fig. 10 are noticeable.

4.3.3. Convex model results

The convex approach yields significant battery aging reductions com-

pared to the generic storage based model, as visible in Fig. 12. The entire 

solution space outperforms the generic model with up to 46.9 % less ag-

ing due to an improved operating schedule. In particular the range with 

high grid power and small batteries profits the most, with the highest

Fig. 10. Relative difference between the daily aging of the generic and linear 

approach.

Fig. 11. Relative error between the aging indicated by the linear model and the 

theoretical aging according to the model.

reduction occurring at 250 kWh battery size and 1085 kW grid connec-

tion. Similar to the linear approach, vertical lines and patches are visible, 

although they are less pronounced.

In Fig. 13 the relative model derivation of the convex model is shown, 

featuring an alternating pattern with 19 valleys (blue) and 19 peaks (yel-

low/green). The individual lines appear linear and the magnitude of the 

peaks while overall reducing with increasing grid connection, are gener-

ally distinguishable into four main regions, each consisting of 5(4) lines. 

The overall relative error is at +0.064 to −0.36 %, which is significantly 

lower than in the linear approach.

5. Discussion

As shown by the simulations, up to 82 % peak load reduction is pos-

sible for the examined OHLI, with storage sizes as small as 250 kWh. 

Yet, at 0.42 % aging per day, such configurations experience fast aging 

due to discharge c-rates in excess of 4C and over 8.3 FEC per day. Low 

grid power, causing high discharge c-rates and battery cycling, are the 

main drivers of aging based on the light blue coloration across the left 

of Fig. 9. At 0.026 % per day, the lowest observed aging primarily stems
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Fig. 12. Relative difference between the daily aging of the generic and convex 

approach.

Fig. 13. Relative error between the aging indicated by the convex model and 

the theoretical aging according to the model.

from calendric aging and equates to a lifetime of around 10.5 years, 

being in line with shelf lives stated in literature [21].

Comparing the generic and linear approach in Fig. 10, the main ben-

efit is the overall decrease in battery usage by up to 2.3 %. This results 

from implementing calendric aging and hence a preference for lower 

SoH states. In addition to the timing of charge processes, the overall 

charging profile remains mostly unchanged (Fig. 8a and b). Visually, 

the most distinct feature of Fig. 10 are the numerous areas and the re-

peating pattern along the x-axis, which can be attributed to the erratic 

behavior of the generic model. The pattern at the bottom results from 

the ability to charge up the storage in full power timesteps, with the 

green and yellow areas featuring non-full power timesteps, introducing 

variability and thus optimization potential. The other areas result from 

changing the charging times of the last charge process from 0 to 50 % 

SoC at the end of each simulation. If the timing aligns with the linear 

model, savings are lower, yet without a penalty in the generic approach, 

this timing can suddenly change at certain borders in the examined con-

figuration space. These borders exist in Fig. 9, showing the generic aging, 

yet due to the scale of the heatmap they are not directly visible. Thus, the 

linear approach offers a more predictable optimized operation schedule 

albeit at around three times the computational cost. Due to the lack of

c-rate dependent aging, the error in the counting storage determining 

the break condition and capacity reduction can be significant, as is vis-

ible in Fig. 11. Errors range from −25 to +45 %, resulting from the 

linear approximation of the cubic aging function. Subsequently, large 

batteries with low c-rates tend to age too fast, whereas small ones with 

high c-rates age too slowly. Accurate aging prediction is only present 

at the intersection point of the linear and cubic function at 2C, as well 

as the far-right area of the plot, where calendric aging takes over as 

the leading aging cause. The errors in aging prediction affect the lifes-

pan and capacity reduction, yet due to the short time span of one day 

and thus the small amount of aging in the shown use case, they do not 

affect the results meaningfully. In longer simulations, they potentially 

become problematic if significant aging occurs during the simulation 

period. However, if typical c-rates are known previously to the simula-

tion, the target c-rate of the model (in this case 2C) can be changed to 

better depict the aging behavior.

The convex approach is capable of reducing battery aging by up to 

46.9 %, as visible in Fig. 12. Yet, it also increases computational time, 

requiring close to ten times longer than the generic approach (compare 

Table 1). In comparison to the model proposed in [7], which requires up-

ward of 36,000 s without decomposition and around 1500 s with a two 

step decomposition to calculate 336 time steps, the convex approach still 

marks a significant improvement, taking only 20 s for 2880 timesteps. 

Other significant improvements are present at grid powers of between 

800 and 1200 kW, with battery capacities of up to 500 kWh. At lower 

grid connections and larger batteries, improvements diminish, with the 

area of least improvement (below 0.5 %) ranging from 650 to 1000 kWh 

battery size at grid connections below 250 kW. The cause of this is the 

c-rate modeling function and the fixed output schedule of the batter-

ies. At smaller grid connections, the c-rate on the charge side can reach 

maximum values of 0.225C, where the cubic function is still near linear. 

Furthermore, the discharge side experiences significantly higher c-rates, 

surpassing 4C for some cases, mainly contributing to the overall aging, 

which cannot be optimized by the model as it represents a fixed demand 

which must be fulfilled. Thus, the diminishing optimization potential on 

the charge side, with growing fixed aging on the discharge side, reduces 

the impact of the convex approach. Yet, the charging profiles of the con-

vex approach, as visible in Fig. 8c, are beneficial beyond saving battery 

aging, representing more realistic behavior within an energy system. 

Furthermore, aging is well depicted in the convex approach, with max-

imum relative errors below 0.4 %, as seen in Fig. 13. The alternating 

stripe pattern visible stems from the convex hull approximation of the 

c-rate function, with each blue valley and yellow peak, representing one 

linear function. Upon closer inspection four individual regions can be 

made out, from 225 to 600 kW, 600 to 950 kW, 950 to 1150 kW and 

above 1150 kW. These regions each contain five yellow stripes (four for 

the rightmost one), aligning with the creation of the linear functions, 

which is done in unequally spaced five function blocks, to better rep-

resent low c-rate ranges. Of the 30 total functions describing the c-rate 

only 19 are visible in Fig. 13, showcasing the importance of simulation 

specific optimizations to increase accuracy or reduce computational ef-

fort by adjusting the number of functions and their covered span to the 

occurring demands. Like the linear model, the overall aging is very low 

for the examined case, so the capacity reduction is less impactful. More 

important is the parametrization concerning the degree of impact of 

the calendric aging. As visible in Fig. 7, this can significantly impact 

the model’s performance in terms of operational strategy and thus the 

amount of aging it produces. Especially for large storage systems and 

low grid powers, c-rates are naturally low, so the additional calendric 

aging might outweigh the benefits created by the c-rate optimization. At 

a cost factor of 145,000 a good balance for this use case can be found, 

yet under different circumstances other parametrizations might deliver 

better results.

A potential drawback of the linear and convex models is the ad-

ditional work required for parameterizing new battery types. This in-

cludes model research, fitting and constraint generation and validation.
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However, if a pre-parameterized model is used, the implementation only 

varies slightly from the generic storage.

6. Conclusion

The generic approach to storage modeling offers an easy and fast 

way of including battery storage systems within energy system optimiza-

tion, at the cost of functionality and realism. Both of these problems can 

be addressed by either the linear or convex models, enabling the intro-

duction of aging, battery failures and capacity reduction. Furthermore 

they provide longer lifetimes due to optimized operation schedules. As 

shown by the case study, the convex approach is capable of precisely 

modeling aging and offering battery life savings of up to 46.9 %, with 

potentially even higher savings if the discharge side is flexible as well. 

While computation times are higher, they are magnitudes lower than 

those of existing approaches [7]. Furthermore, the convex battery mod-

eling offers significant improvements in system modeling and design, 

as battery lifetime and pricing can be assessed more accurately and op-

timized beyond simple investment calculations. By altering the linear 

functions comprising the convex hulls, this approach can be fine-tuned 

to each application while modeling most battery types. Thus, the convex 

approach is beneficial to nearly all energy system optimizations contain-

ing battery storage systems, to achieve longer battery service life and 

more realistic operation. The linear approach can offer improvements 

for calendric aging next to delivering more predictable operation sched-

ules. Due to its linear nature, modeling errors tend to be high unless 

typical c-rates are known previously and the model adjusted accord-

ingly. For both approaches, the reducing capacity and battery failure 

are less important in the examined use case due to its short runtime 

and thus low overall amounts of aging, yet in longer optimizations their 

impact will increase. Nonetheless, the linear and especially the convex 

approach proved to be suitable methods for introducing battery aging in 

linear energy system optimization by including multiple aging mecha-

nisms and effects. The convex approach in particular excels with its high 

accuracy and capability to greatly improve battery lifetime. Considering 

the long calculation times required and the simplifications performed 

in design optimization, the additional computational demands of the 

linear convex model could be problematic, despite the beneficial in-

formation they could deliver. Thus the main benefit of the linear and 

especially the convex approach is within operational scheduling and 

short term forecasting. Here overall system costs can be reduced by 

extending the battery lifetime and the more realistic charging profiles 

can be integrated into control mechanisms. Consequently, despite the 

potentially higher effort required for parametrization during the im-

plementation and longer computation times, this approach should gain 

more widespread use, to better predict the energy systems of tomorrow 

due to its many benefits in modeling energy systems.
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