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Abstract—This paper presents an algorithm that exploits
multipath propagation for the position estimation of mobile
receivers. The proposed method utilizes two pieces of information
of this multipath signal component: First the delay and thus the
path length restricting possible reflection points to an ellipse.
And second the Doppler shift of this multipath component to
infer angular information along this ellipse. By exploiting relative
Doppler information, obtained from the phase difference between
the line-of-sight path and multipath components, the approach
eliminates the need for strict synchronization requirements. In
contrast to state-of-the-art methods that rely on the concept of
static virtual transmitters and assume idealized straight wall ge-
ometries, the proposed algorithm directly estimates the positions
of reflection points. The direct estimation of reflection points
allows simultaneous localization and mapping of environments
with arbitrary wall shapes. The feasibility of the approach
is demonstrated through simulations incorporating delay and
Doppler measurements of multipath components. Results confirm
that the method enables accurate estimation of both receiver
position and reflection points for a variety of wall geometries,
including convex and concave surfaces.

Index Terms—SLAM, swarm navigation, Doppler, multipath
propagation, MPC, relative Doppler, reflection point, Channel-
SLAM, curved wall, single antenna AoA

I. INTRODUCTION

In wireless communication systems, transmitted signals of-
ten encounter multipath propagation, where they are reflected,
diffracted, or scattered by surrounding objects. As a result,
the signal received by an antenna typically comprises multiple
delayed copies of the original transmission, commonly known
as multipath components (MPCs). In recent years, multipath
assisted positioning approaches became widely used, exploit-
ing MPCs for positioning instead of mitigating them. The
authors in [1]–[3] treat MPCs as line-of-sight (LoS) signals
from virtual transmitters (VTs) which are assumed to be
static during the movement of the receiver. Especially, with
Channel-SLAM, an algorithm was introduced which estimates
simultaneously the positions of the receiver and the VTs based
on the estimated parameters of the MPCs using a simultaneous
localization and mapping (SLAM) approach.

Several studies have also explored the use of MPCs to
estimate the positions of reflecting surfaces such as walls [1],
[4], [5]. These methods predominantly use time of flight
(ToF) measurements of MPCs for mapping walls, whereby
ToF information confine the location of the corresponding
reflection point (RP) to an ellipse [6]. However, the exact
position along the ellipse cannot be determined solely from

ToF information but needs to be resolved through successive
measurements in a dynamic system.

In order to enhance mapping capabilities, we propose to
consider an additional measurement, different from ToF, that
provides angular information to help localize the RP along
the ellipse. Possible sources of this additional information
are angle of arrival (AoA), Doppler shift, and differential
distance, defined as the change in path length over consecutive
timesteps. Measuring AoA requires an antenna array with at
least two elements [7], whereas Doppler shift and differential
distance can be derived using a single omnidirectional antenna,
provided that the system is in motion. Using these measure-
ments, the vector between the RP, transmitter (Tx) and receiver
(Rx) can determined, allowing to infer angular information [8].
For the Doppler measurement, a phase-coherent Tx-Rx pair is
necessary, but this is challenging with low-cost and thus scal-
able swarm hardware, such as ultra-wideband (UWB) based
systems [6]. To avoid the need for strict synchronization, our
approach uses relative Doppler measurements, derived from
the phase difference between LoS and MPC in the received
signal. Note that relative Doppler measurements are also used
for passive bistatic radar (PBR), where an uncooperative Tx
is used as an illuminator [9]. Compared to [1], we propose
a single antenna SLAM algorithm that directly maps the
locations of RPs and does explicitly not rely on the concept
of VTs. The proposed algorithm is thus applicable to not only
flat but arbitrary wall shapes. While flat walls can be assumed
for idealized buildings, naturally formed environments such as
caves or cluttered indoor spaces have more complex structure.
The ability to account for such structures becomes particularly
relevant when deploying robotic swarms for exploration in
unknown environments.

The algorithm is validated through simulations involving a
mobile node navigating along walls of varying shapes: straight,
convex, concave, and kinked; using only two static anchors.
These scenarios test the algorithm’s ability to simultaneously
track the mobile position and estimate RPs on walls using
ToF and Doppler measurements. Key results show that the
method enables SLAM even with non-linear wall geometries
and single-antenna setups, with reliable mobile tracking and
acceptable RP estimation accuracy. Notably, Doppler infor-
mation helps resolve angular ambiguity on MPC ellipses, and
concave walls allow faster mapping due to better geometric
alignment.

The remainder of the paper is organized as follows: Section



II presents the system model and estimation method; Section
III details the simulation setup and results; Section IV con-
cludes the paper with key findings and future work.

II. METHOD

In this section we define the general system geometry, the
states of the system and the transition model, which describes
how these states evolve over time. Further we introduce a
measurement model and an estimator using the measurement
result as well as the transition and measurement model.

A. State model

Consider a two-dimensional system containing static anchor
nodes and dynamic mobile nodes. Next consider the system
to additionally include walls which can reflect signals that
are sent between nodes. Each RP on the wall is characteristic
for a first order reflection and thus a specific MPC in the
signal propagated between a Tx and Rx node pair. Higher
order reflections will be neglected in this work assuming they
can be filtered out due to sufficiently low signal strength [4].
In this work, the position of the anchors is known and all other
positions are treated as unknown, thus requiring localization.

Let M, A and R be the set of all mobiles, anchors and
reflection points. Then M , A and R define the cardinality of
these sets. These quantities might change with time for exam-
ple due to the visibility between nodes or the (dis)appearance
of reflection points.

We define the state of a mobile or an anchor xi, i ∈ M∪A
to include position pi = [xi, yi]

⊤ and velocity ṗi = [ẋi, ẏi]
⊤,

xi = [xi, ẋi, yi, ẏi]
⊤ . (1)

The state of the reflection point xr, r ∈ R, is defined as,

xr = [xr, yr]
⊤ = pr , (2)

only including its position, since we do not want to infer
anything about its dynamic behavior. In a more complex
system description, this dynamic could be modeled, by ex-
tending the state vector to include the velocity of the reflection
point or the normal vector of the wall at this point. Every
RP r ∈ R is generated by the signal between nodes i and
j that is reflected by a wall, so there is a direct function
f : R → {{i, j}|i, j ∈ A ∪M}. Note that depending on the
wall shape and the geometry of the system there might be
multiple reflection points {r1, r2} ⊂ R with f(r1) = f(r2).

Assembling all unknown quantities into one state vector s,
we get

s =
[(
x⊤
i

)
i∈M∪R

]⊤
. (3)

This state vector evolves over time. We denote sk the state
vector at snapshot k ∈ N and time tk, where tk+1 > tk.
Further we define the time increment between two snapshots
as ∆tk = tk+1 − tk. As a state transition model we use the
constant velocity model [10] for mobiles and a more simple

random walk model for the RP. Following these models, we
define the transition matrices as

F i(∆t) =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , i ∈ M , (4)

F r(∆t) =

[
1 0
0 1

]
, r ∈ R , (5)

F k = blkdiag
(
(F i (∆tk))i∈M∪R

)
, k ∈ N . (6)

Similar we define the process noise covariance matrices,

Qi(∆t) = σ2
i


∆t3

3
∆t2

2 0 0
∆t2

2 ∆t 0 0

0 0 ∆t3

3
∆t2

2

0 0 ∆t2

2 ∆t

 , i ∈ M , (7)

Qr(∆t) = σ2
r

[
∆t 0
0 ∆t

]
, r ∈ R , (8)

Qk = blkdiag
(
(Qi (∆tk))i∈M∪R

)
, k ∈ N , (9)

with the respective process noise variances σ2
i and σ2

r , where
the dependency on ∆t has been factored out. Bringing every-
thing together, we can define the fused state transition model,

sk+1 = F k sk + ηk , ηk ∼ N (0,Qk) . (10)

B. Measurement model

In this work we will use two types of measurements,
ToF to measure distances and Doppler measurements to infer
information on the velocity along the propagation path. In the
measurement model we will assume that distance and velocity
is measured directly, a more detailed measurement procedure
is not modeled. Note that the states of anchors, mobiles and
RPs have a different number of components, but for ease of
notation, we introduced the position p and velocity states ṗ
as partial information of the full states x. With this we can
define the distance,

dij = dji =
√

(xi − xj)2 + (yi − yj)2 =
∥∥pi − pj

∥∥ , (11)

between two positions p{i,j} with i, j ∈ A ∪ M ∪ R. The
length of a (first order) multipath is analogously defined as
dirj = dir + drj , with i, j ∈ A ∪M and r ∈ R.

A Doppler shift in any wave system is observed when the
propagation path length changes while the signal is transmitted
or received. Specifically, the velocity component parallel to the
propagation path, the projected velocity,

∆vij =
pj − pi∥∥pi − pj

∥∥ ·
(
ṗi − ṗj

)
, (12)

with i, j ∈ A ∪M∪R, is generating the Doppler frequency
shift

∆fij = fc
∆vij
c

, (13)

with the carrier frequency fc and the speed of light c. Since
the latter two are constants in our system, we will use ∆v
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Fig. 1. This scheme illustrates the relation between a projected velocity,
measurable as a Doppler shift in the signal, to the angular location on
the ellipse formed by possible RPs with equidistant MPC. Note that this
information is ambiguous and multiple RPs are possible for one projected
velocity value.

instead of ∆f , to define the Doppler measurement since then
the numeric orders of all measurements are similar, and the
notation is simplified.

Extending the definition of the LoS Doppler shift, we can
derive the Doppler shift of a MPC,

∆virj = ∆vir +∆vrj , (14)

with i, j ∈ A ∪M and r ∈ R, which becomes

∆virj =
(pr − pi) · ṗi

dir
+

(
pr − pj

)
· ṗj

djr
, (15)

for static reflectors such as walls in this case. In Fig. 1,
such a projection is shown for a MPC, essentially providing
information about the angular location of the RP on the ellipse
formed by the propagation length of the MPC.

Since our system uses low-cost UWB chips for communica-
tion and navigation, the Tx and Rx clocks or, more specifically,
their phase-locked loops are not synchronized. This makes it
very challenging to observe Doppler in the direct and classical
fashion, since this requires phase stability to integrate snapshot
measurements over an extended time period. In this work, we
introduce a new method of synchronization and thus Doppler
measurement to the indoor navigation challenge. If both the
MPC and the LoS component are recorded in the same channel
impulse response (CIR), then their relative phase is stable
because the synchronization offset between Tx and Rx is the
same within one CIR. Using this, we are able to track their
phase difference and extending on that, their relative Doppler
shift,

∆ṽirj = ∆virj −∆vij

= ∆vir +∆vrj −∆vij , (16)

with i, j ∈ A ∪ M and r ∈ R. Note that this method is
used similarly in PBR scenarios where, due to signal strength
restrictions, usually multiple antennas are used [9]. In an

indoor navigation scenario, the signal strength of the MPCs
is stronger due to shorter propagation paths, and thus they are
detectable in the same CIR as the LoS component [1], [11],
[12].

Combining the above we can define the measurement func-
tion

H(s) := H
(
s; (xi)i∈A

)
=

[
(dij)i∈M, j∈A∪M, i<j if j∈M ,

(dirj , virj)i∈M, r∈R, j∈A∪M, i<j if j∈M

]⊤
,

(17)

dropping the argument for the dependency on the anchor state
in the following. Next, we define the measurement model for
the measurement zk at snapshot k,

zk = H(sk) + µk , µk ∼ N (0,Σ) , (18)

with the noise value µk drawn from a normal distribution
with covariance matrix Σ. We assume that the measurements
are uncorrelated at one snapshot, uncorrelated in time and
independent of time and define the covariance matrix,

Σ = diag
((

σ2
dist

)
i∈M, j∈A∪M, i<j if j∈M ,(

σ2
dist, σ

2
vel

)
i∈M, r∈R, j∈A∪M, i<j if j∈M

)
, (19)

with σ2
dist the variance of ToF-related measurements and σ2

vel
the variance of Doppler-related measurements.

C. Estimator

We use a standard extended Kalman filter (EKF) to estimate
the true state sk with the estimated state ŝk. The filter first
predicts ŝk based on the previous state vector estimate ŝk−1

and state covariance matrix P k−1 and then updates it based
on the measurement zk of snapshot k. Following [13], the
prediction of state vector and state covariance matrix using
the transition model (10) is defined as

ŝ−k = F k−1 ŝk−1 , (20)

P−
k = Qk−1 + F k−1P k−1F

⊤
k−1 . (21)

In EKF, the Kalman filter formalism is used, but with lin-
earized functions where necessary. In our models (10) and
(18), we only have to linearize the measurement function,

H̃k = ∇sH(s)|ŝ−
k
, (22)

where the linearization is applied at the predicted state estimate
ŝ−k . Using this linearized model, we can update the state
estimate based on the measurement zk,

Kk = P−
k H̃

⊤
k

[
H̃k P

−
k H̃

⊤
k +Σ

]−1

, (23)

ŝk = ŝ−k +Kk

[
zk −H(ŝ−k )

]
, (24)

P k = P−
k +Kk

[
H̃k P

−
k H̃

⊤
k +Σ

]
K⊤

k . (25)

The estimator is initialized by perturbing the true state to
obtain the initial state estimate. For this perturbation and for
the initial state covariance matrix P k we use the process noise
Qk of the transition model (10).



When a new RP is detected during the simulation, an initial
snapshot measurement leaves ambiguities, see Fig. 1. The
estimator must then respect all these ambiguous possibilities
and initialize the EKF multiple times and run it in parallel
until this ambiguity is resolved. This resolution happens over
time, either by the false estimate drifting towards the true RP
over time, or by including a decision mechanism that observes
the parameters of the EKF and detects when one RP estimate
uncertainty becomes strongly distinct from the other and then
terminates this less certain parallel EKF instance. To facilitate
understanding, we show here only the tracking of the true RP
and not the convergence to this RP estimate.

III. SIMULATION

In this section, we first describe the simulation scenario and
its purpose. This includes the specification of used Tx and Rx
nodes and propagation environment. Additionally, we present
and justify the specific parameter choices. We then present the
results, analyze their underlying causes, and conclude with the
implications of these results.

A. Setup

We choose a scenario with two anchors and one mobile
node. We simulate the propagation environment of a curved
wall to show the usability of the previously defined method
(Section II) for mapping wall geometries beyond the concept
of VTs [1], [12]. The main goal of this work is to demonstrate
that using Doppler information, i.e. the projected relative
velocity, it is possible to track the reflection point online
in a SLAM approach, simultaneously to tracking the mobile
position. To demonstrate the applicability of the proposed
approach to arbitrarily shaped walls, we conduct simulations
on a total of five different wall geometries. For the convex and
concave shapes of the wall, we choose both a circle segment
shape having constant curvature and a kink shape with two
sides being almost flat and a very high curvature between the
sides. We also show the case of a straight wall, for which the
estimation is well studied in literature [1], [4].

The mobile track is one realization of a random walk using
the transition model (10), with an initial velocity in the positive
x-direction, to generate a path along the wall. The RPs are then
calculated using a ray tracing method to find the local minima
in the ToF distance dikj , with i, j ∈ A ∪M, by minimizing
over the points pk along the wall. These minima are then the
reflection points k ∈ R, according to Fermat’s principle of
light choosing the shortest path [14]. Other mobile trajectories
work similarly, but moving along the wall generates RPs that
are well spread in the frame, see Fig. 2.

The measurement is generated by using the measurement
model (18) on the true state, taking the true geometric mea-
surement with H and then perturbing it with N (0,Σ). To
estimate the state of the mobile and the reflection point, we use
the estimator defined in (20-25) exploiting the transition model
(10) and the measurement model (18). Using the same models
for trajectory and measurement generation as for the estimator
reduces the model mismatch to the estimation of the RP, which

in the estimator uses the transition model and in the true state
is calculated exactly using the geometry of Rx, Tx and wall.
This reduction in model mismatch is helpful to minimize the
estimation error due to model mismatch and highlight the
performance of the Doppler assisted SLAM concept and the
measurement uncertainties therein.

We choose the parameters in this simulation based on a
rover or pedestrian situation with low-cost UWB devices,
such as the DW1000 [15] operating at fc = 3.9GHz with
a conservative ranging error of σ2

dist = 0.3m. Similarly, for
an initial speed of ṗ = [1.2m/s, 0]⊤ and dynamic mobile
behavior in this order of magnitude for the simulation du-
ration, an integration time for the Doppler measurement of
∆t = 0.2 s is possible. According to this we also choose the
simulation sampling time equivalently. This integration time is
directly related to the minimal resolvable Doppler frequency of
∆fmin = 1

∆t = 5Hz. Following this, a velocity measurement
error of σ2

vel = 0.5m/s based on (13) is chosen for this
simulation. For the estimator, we choose the process noises
σ2
i = 5m2/s3 for i ∈ M and σ2

r = 25m2/s for r ∈ R.

B. Results

The results of this simulation are presented in Fig. 2. In
general we can see that both the mobile position and the RPs
can be tracked. This means that we have achieved SLAM,
localization with respect to the mobile position and mapping
with respect to the RPs and thus the wall.

Further we can see in the left column, that for convex
wall shapes (top) the RPs are more concentrated compared
to concave shapes (bottom), where they are more spread.
Additionally we see that convex, straight and low curvature
concave walls produce two RPs, one for each anchor, that
exist over the whole simulation period. In contrast the stronger
curved concave kink geometry, although having temporarily up
to four RPs, generates appearance and disappearance events
for some RPs, which can be observed well in the middle
bottom frame where the distance measurements are shown.
Both of these findings have geometric reasons and imply that
concave walls can be mapped faster with this method, even
though they might create problems due to RPs having more
dynamic behaviors.

Also note that the position estimation error for the mobile
path is much lower compared to the RPs, see Fig. 2 in the
right column. This lower position error has several reasons.
First, the state description for the mobile containing position
and velocity information is more complex than the one of
the RPs only containing position information. Second, the
mobile position is updated in the filter using all measurement
data, LoS distances, MPC distances and relative Doppler
measurements. In contrast the estimation of one specific RP is
only using the distance and the relative Doppler measurement
of this specific MPC constituting a much smaller set of data.
Third, the mobile position estimation benefits from access to
direct LoS distance measurements, which offer higher fidelity.
This higher fidelity is achieved, because they depend only
on a single unknown—the mobile’s position—whereas MPC
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time are plotted, making it is easier to differentiate between the different reflection points and observe when they appear or disappear. In the right column
the RMSE of each mobile and RP position estimation is shown.



measurements also rely on the estimated positions of the
reflection points. In postprocessing this lack in accuracy for
RP estimates can be compensated by combining the multitude
of RP estimates to recover the wall shape.

Further we can observe that the RP estimation accuracy
for the convex shapes seems to be lower as for the concave
when looking at the left column, especially visible at the
kink in the top scenario in Fig. 2. However, the RMSE
does not change significantly between the different wall shape
scenarios. This consistent RMSE is likely due to the MPC
distance measurement having higher fidelity than the Doppler
measurement due to less unknown quantities influencing it and
due to the absolute measurement value being higher relative
to the respective measurement standard deviation. This results
in the measurement uncertainty not being circular in two
dimension, but rather being stretched along the ellipse with
Tx and Rx as focal points. This ellipse describes all possible
RPs when only taking into account the distance measurement
of a MPC, thus the more uncertain the Doppler measurement
is, the less information about the angular position on this
ellipse exist. Since this stretched two dimensional error bar has
more overlap with the wall in concave geometries—the ellipse
is tangentially touching the wall—compared to the convex
cases, the error spread seems lower in this case. This effect is
primarily occurring, because intuitively we assume the error
of an estimated RP to be its distance to the wall and not its
distance to the true respective RP.

This perceived error difference and the reasoning behind it
additionally show that using the velocity information indeed
provides angular information about the RP position on this
ellipse albeit this information is less accurate as the ToF
information defining the size of this ellipse. This angular
information helps to resolve the ambiguity along the MPC
ellipse for RP estimation.

IV. CONCLUSION

This paper presented an algorithm that exploits multipath
propagation for the simultaneous localization of a mobile Rx
and the mapping of the corresponding RPs. The proposed
method combines delay measurements with relative Doppler
shifts of MPCs, providing information about both the size
of the equidistant single-bounce MPC ellipse and the angular
position of the RP on this ellipse. The relative Doppler shift
is obtained from the phase difference between the LoS and
MPCs in the received signal. By relying on relative Doppler
measurements, the method eliminates the need for strict syn-
chronization, enabling deployment with low-cost hardware,
such as UWB devices.

In contrast to state-of-the-art methods that employ the
concept of static VTs and strictly rely on the assumption of
straight walls, the proposed approach directly estimates the
positions of RPs. This direct estimation of RPs allows the
mapping of environments with arbitrary wall geometries using
only a single antenna at both Tx and Rx nodes. The feasi-
bility of the method was demonstrated through simulations

incorporating delay and Doppler measurements of MPCs. The
results confirm that the approach allows accurate estimation
of both Rx position and RPs across a variety of wall ge-
ometries, including convex and concave surfaces. Simulations
further showed that RPs on convex, straight, and low-curvature
concave walls are present throughout the trajectory, with no
appearance or disappearance. In contrast, in highly concave
geometries, the appearance and disappearance of RPs depend
on the Rx position along the trajectory.

The main result, SLAM in differently shaped environment
geometries, will be useful when deploying robotic swarms
for exploration in unknown environments, such as naturally
formed caves or cluttered indoor spaces.

In the future, this method can be tested experimentally
or through simulations with even more complex wall shapes
and trajectories. This future work may require improving the
estimation algorithm and extending it to merge multiple RP
tracks for a unified wall estimate.
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