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H I G H L I G H T S

• Applied parallax and cloud shadow shifts, estimated from gridded CTH, to cloud index images via bilinear interpolation.
• Mean rel. RMSE in GHI fell from 23.8 % to 22.1 %, with larger drops at higher satellite viewing zenith angles θsza.
• Corrected Heliosat-3 GHI shows 4–7 percentage points lower rel. RMSE than NSRDB and CAMS, for sites with similar θsza values.
• The corrections have no effect when the CTH is below 2 km.
• Swinging Door ramp score shows improvement within a range of GHI ramp threshold values relevant for cloud-induced changes.
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A B S T R A C T

Accurate estimation of Global horizontal solar irradiance (GHI) from geostationary satellite imagery is essential 
for intraday solar PV power forecasting. Tropical regions show an even more challenging situation: A typically 
much higher tropopause results in higher cloud tops and correspondingly larger parallax errors in satellite im-
agery with significantly larger cloud shadow displacements compared to mid-latitudes. This study improves GHI 
estimates from Meteosat-8 by correcting cloud parallax and shadow displacement using gridded cloud top height 
(CTH) data. Fractional or sub-pixel displacement of individual cloudy pixels is enabled by bilinear interpolation 
in contrast to prior methods that allowed only integer shifts or assigned a single CTH value to a grouping of 
adjacent cloud pixels. Validation against one year of 15-min resolution ground-based measurements at five sites 
in South and Southeast Asia shows a reduction in relative root mean square error (rel. RMSE) from 23.8 % to 
22.1 %. Improvements are more pronounced at higher satellite viewing zenith angles (θsza) and in the presence of 
high-altitude clouds. The corrected satellite-based GHI exhibits 4–7 percentage points lower rel. RMSE than 
National Solar Radiation Database (NSRDB) and 2.5 points lower than CAMS solar radiation service for similar 
θsza. Greatest error reductions occur during partly cloudy conditions for sites within 61◦ θsza, and under overcast 
skies for sites close to the edge of Meteosat-8's field of view. Improvements also depend on the co-scattering angle 
between sun and satellite with respect to the site, and the availability of sufficient upstream cloud information 
along the path of solar irradiance falling on the site. Ramp detection accuracy improves, particularly at lower 
detection thresholds, as measured using the Swinging Door Algorithm.

1. Introduction

Motivated by the drastic effects of climate change, the United Na-
tions (UN) has introduced the 2030 Sustainable Development Goals 
(SDGs). Ensuring affordable and clean energy is an integral part of these 
goals [1]. Solar PV is expected to account for half of all renewable power 

expansion worldwide from 2021 to 2026 [2], with a significant portion 
being installed in tropical regions due to abundant solar radiation. 
However, power output from solar PV is variable, primarily due to cloud 
shadows causing fluctuations in power generation [3–5]. This variability 
affects the economic operation of generators, the energy market's reli-
ability, and the secure operation of the electricity grid [6].
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Long-term estimates of global horizontal irradiance (GHI) from 
geostationary satellites are often used in deciding PV site locations in the 
absence of ground-measured data [7,8]. In Ohtake et al. [9], the authors 
estimated the PV power generation of a region from satellite images and 
validated them against measurements from the Transmission System 
Operator (TSO). Jamaly et al. [10] assessed the ability of satellite esti-
mated irradiance to track large ramps in the aggregate power output of 
PV systems distributed across an entire transmission grid area. Clouds 
are one of the most important sources of uncertainty in satellite- 
retrieved GHI [11,12]. From a system operator point of view, data on 
ramp behavior of the aggregate solar PV output induced by clouds, is 
particularly important for real-time monitoring and the control strate-
gies for maintaining load-generation balance in the electricity grid 
[13,14]. However, satellite based global horizontal irradiance (GHI) 
estimation and forecasting methods have been primarily developed for 
the mid-latitudes. Large errors in satellite-based forecasts of GHI are 
observed during the monsoon season in tropical regions due to the 
increased formation and dissipation of clouds as a result of the intense 
atmospheric convection [15].

The tropical tropopause layer (TTL) is a transition zone from the 
turbulent troposphere to the radiatively controlled stratosphere and acts 
as a physical boundary for the vertical expansion of clouds [16]. The TTL 
extends from 14 km to altitudes exceeding 18 km during periods of deep 
convection [17]. The height of the tropopause steeply drops in the mid- 
latitudes and reaches 8–12.5 km in the high latitudes [18]. Conse-
quently, clouds at higher altitudes are observed more frequently over 
the tropics that cause a larger parallax shift in cloud locations on satellite 
images and a larger displacement of cloud shadows from the actual 
cloud than observed in the mid-latitudes. In a worldwide benchmark of 
solar irradiance models, consistently lower accuracy in satellite esti-
mated GHI was observed in the tropical regions compared to the mid- 
latitudes [19]. Deep convective clouds (DCC) with cumulus towers, 
overshooting tops and accompanying outflowing cirrus clouds are 
common during the seasonal monsoons in the tropical and subtropical 
regions [20,21]. Although the Southwest summer monsoon affects 
larger parts of South and Southeast Asia, the Northeast winter monsoon 
also strongly impacts some parts in this region [22]. Pre-summer 
monsoon thunderstorms or Nor'westers are frequently observed during 
April–May in the eastern and northeastern parts of the Indian subcon-
tinent [23,24].

Several authors reported the parallax of the satellite viewing angle as 
a source of error in satellite-retrieved GHI [25–34]. The error in esti-
mated GHI at a site increases with the distance of the site from the sub- 
satellite point (SSP) at the equator due to the increasing satellite viewing 
angle [32], and with the increase in cloud top height (CTH) [35]. The 
parallax in cloud location caused by the satellite viewing angle and the 
displacement of the shadow from the actual cloud location results in 
faulty estimation of ramps from satellite images. Due to the large area 
covered by a satellite pixel, accurate information on cloud position and 
height is not easy to obtain. Accurate cloud base height (CBH) mea-
surements can be obtained from ceilometer measurements, but only for 
single points [36]. CBH and cloud top height (CTH) can be triangulated 
using multiple sky-imagers, and to a certain extent multi-camera stere-
ography can detect multi-layer clouds with voxel carving [37]. How-
ever, the spatial extent over which such information is available is 
limited by the location and size of the camera network and therefore 
cannot be derived for all locations on a satellite image of the Earth disk. 
Satellite infrared (IR) channel images can be used to derive cloud top 
temperature and height [38]. However, such estimations are also prone 
to error in situations with multi-layered clouds and very low or very 
large cloud heights [39]. The IR channel derived CTH does not produce 
suitable estimates for semitransparent clouds [40] or broken clouds 
smaller than the IR pixel resolution [41], due to the contribution from 
the part of the ground below. This introduces further inaccuracies into 
the parallax and cloud shadow displacement calculations. High eleva-
tion and complex terrain geometry can further introduce errors, as 

observed in the case of high convective clouds in Dürr et al. [42]. Marie- 
Joseph et al. [43] reported the highest errors due to the satellite viewing 
parallax in partly cloudy conditions. In the case of clouds with low CTH, 
as observed by Wu et al. [44] for coastal stratocumulus clouds with an 
average CTH of 400 m above the mean sea level (MSL), the parallax 
effect is small relative to the scale of terrain elevation changes and the 
horizontal resolution of the satellite images. Sossan [45] performed load 
flow calculations for different levels of distributed PV systems in a me-
dium and low voltage electrical network to characterize the variability 
of power flow at the Grid Connection Point (GCP). They observed the 
largest underestimation of variability from satellite data during nearly 
clear-sky days due to small clouds, reduced spatiotemporal resolution, 
and parallax effects. Kallio-Myers et al. [46] observed that the parallax 
error is more significant at higher latitudes, but the correction is harder 
to apply due to the larger satellite viewing angles. Tatsiankou et al. [47] 
estimated the lower bound of the parallax error to be somewhere be-
tween 5 % and 12 % relative root mean square error (rel. RMSE), with 
GHI data at 30 min temporal resolution. However, they did not perform 
any kind of correction to the dataset.

Some studies have already introduced methods to account for the 
parallax in the satellite viewing angle. Deneke et al. [48] attempted to 
mitigate parallax error by spatially averaging 3 × 3 pixels around any 
site, although the parallax effect is not spatially uniform across the 
entire image. Deneke et al. [49] estimated the shift by finding the pixel 
in a neighborhood around the site with the highest correlation in 
satellite-estimated GHI. Lorenzo et al. [50] corrected the geolocation of 
cloud shadows in the University of Arizona Solar Irradiance Based on 
Satellite (UASIBS) and the State University of New York GOES satellite- 
based solar model (SUNY). The optimal match between satellite esti-
mated and ground-measured GHI was found by iterating over a range of 
CTH values from 0 to 14 km, assumed to be uniform over the 75 km ×
80 km image section analyzed. However, the CTH distribution is not 
uniform in reality, especially for the large image sections needed to 
predict approaching cloud shadows hours in advance. Furthermore, 
these correlation-based approaches require real-time ground truth data, 
limiting their operational and spatial applicability. Deneke et al. [51] 
estimated the parallax shift in SEVIRI cloud images using MODIS images 
of the same area by maximizing the cross-correlation between the two. 
This method is inherently limited by the availability of Low Earth Orbit 
(LEO) satellite images, which only make limited overpasses in a day over 
a given location. In operational settings, correcting parallax in geosta-
tionary imagery requires a gridded CTH dataset updated at the same 
temporal resolution as the imagery.

Li et al. [52] proposed a method based on infrared brightness tem-
perature to identify and match cloud shadows, but the inability of IR 
channels to distinguish cloud shadows from water bodies limits its 
robustness. Moreover, the method's effect on GHI estimation was not 
assessed. Bieliński [53] augmented Vicente et al. [54]’s parallax 
correction to improve rain cloud localization using gridded CTH, vali-
dated against radar data, but did not extend this to cloud shadows or 
GHI accuracy.

Beyer et al. [55] calculated the satellite viewing parallax and cloud 
shadow displacements using a gridded CTH data, and applied it on the 
cloud index (CI) images in the Heliosat procedure. The accuracy of the 
method was validated by observing the improvement in the linear fit 
between ground-measured clear sky index kc and CI with two months of 
data over a limited area spanning 48◦ N to 54.2◦ N and 6.7◦ E to 13.3◦ E. 
However, the CI values were shifted in discrete steps by reassigning to 
the nearest pixel, which can introduce abrupt transitions and loss of sub- 
pixel detail. Furthermore, the reduction in error of the estimated GHI 
was not evaluated on a dataset large enough to account for the variations 
in cloud type, cloud height and sun-site-satellite geometry due to the 
seasonal influence. In Miller et al. [56], the authors grouped adjacent 
cloudy pixels into individual cloud objects with a mean height and 
averaged cloud properties before applying the geometric correction 
described in Vicente et al. [54]. While this grouping strategy reduced 
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computational complexity by applying the same parallax and shadow 
displacement to all the cloudy pixels within a group, it does not allow for 
the independent displacement of individual adjacent cloudy pixels with 
different cloud heights. As a result, introduces smoothing effects that 
could obscure variations in cloud shadow geometry for heterogeneous 
cloud fields. Furthermore, the validation of the reduction in error due to 
the correction was not shown. Bright [57] uses a pixel-shifting approach 
for correcting the parallax in satellite-estimated solar irradiance data-
sets. However, a detailed description of the method and an analysis of 
the improvement in GHI estimation is missing.

In contrast to these studies, a pixel-level parallax and cloud shadow 
correction approach for Heliosat-3 CI images using gridded CTH data 
and bilinear interpolation is proposed in this work. This addresses three 
key limitations in prior work: (1) coarse spatial correction due to nearest 
pixel rounding or group averaging, (2) dependence on sparse or delayed 
ground truth or LEO imagery; and (3) lack of validation across diverse 
weather conditions, particularly in the tropics.

Following Beyer et al. [55], we neglect Earth curvature when 
computing the parallax and cloud shadow shifted latitude-longitude 
coordinates of each cloudy CI pixel, but perform the CI remapping 
step with bilinear interpolation to allow for non-integer pixel displace-
ments. This avoids hard reassignment to the nearest pixel, as in Beyer 
et al. [55], or smoothing due to group-averaged properties, as in Miller 
et al. [56], preserving local spatial structure and making the method 
suitable for complex cloud scenes. To address typographical sign errors 
in Beyer et al. [55], corrected equations are presented in Section 2. Due 
to the long operational experience with the method, Heliosat-3 is chosen 
in this study for retrieving GHI from the BRF values of pixels. The 
improvement in the accuracy of the 15 min resolution Heliosat-3 esti-
mated GHI, by applying correction approach developed in this study, is 
validated against ground measurements from two Baseline Surface Ra-
diation Network (BSRN) stations and three reference solar irradiance 
measurement sites of the International Energy Agency's Photovoltaic 
Power Systems Programme (IEA-PVPS), located in the tropical regions 
of South and Southeast Asia. Since the clear sky model and atmospheric 
turbidity data are not changed, any change in accuracy of the estimated 
GHI occurs solely by applying the corrections on Heliosat-3 CI images. 
The accuracy of the corrected Heliosat-3 estimated GHI is benchmarked 
against two openly available datasets: (i) National Solar Radiation 
Database (NSRDB) [33] and (ii) Copernicus Atmospheric Monitoring 
Service (CAMS) for solar radiation [58], which provide estimated GHI 
using images from Meteosat-8 and Himawari-8 and cover the five 
ground measurement sites used in this study. Given that parallax and 
cloud shadow displacement effects are expected to become more pro-
nounced in high-resolution imagery from new-generation satellites like 
Himawari-9, Meteosat Third Generation (MTG), and Geostationary 
Operational Environmental Satellite (GOES-R), and that these effects are 
amplified in tropical regions due to the higher tropopause and larger 
cloud heights, this study makes the following contributions: 

(1) This study uses a gridded CTH dataset to apply the parallax and 
cloud shadow shift on individual cloudy pixels in Heliosat-3 CI 
images with the help of bilinear interpolation, allowing sub-pixel 
displacements.

(2) The reduction in the error of the 15 min resolution satellite 
estimated GHI, derived from the Heliosat-3 CI images, solely due 
to applying the parallax and cloud shadow shifts is validated with 
one year of data from five sites in the tropical region and 
benchmarked against the existing GHI datasets from NSRDB and 
CAMS radiation service.

(3) Weather situations with particular cloud types are identified for 
which the largest errors and error reductions are observed after 
correcting the CI images.

(4) The error reduction is found to be dependent on the co-scattering 
angle (ψ) between the azimuth of the sun (φ) and the satellite 

(φsaa) with respect to the sites that have sufficient cloud infor-
mation available on all sides in the vicinity.

(5) A minimum threshold value of CTH is found below which no 
change in error is observed at any of the sites

(6) The weather situation in which maximum error reduction occurs 
shifts from partly cloudy to overcast with the increase in the 
viewing zenith angle (θsza) from the satellite.

(7) The improvement in GHI ramp estimation after applying the 
correction is validated with the ramp score metric.

2. Data and method

2.1. Data

2.1.1. Global Horizontal Irradiance from satellite images
This analysis uses the 0.6 μm visible channel images from the geo-

stationary Meteosat-8 satellite, positioned over the Indian Ocean at 
41.5◦E, for the year 2018. The full-disk images have a nominal spatial 
resolution of 3 km × 3 km at the SSP and a size of 3712 pixels × 3712 
pixels, as shown in Fig. 1. These images are available at a temporal 
resolution of 15 min. For this study, the full-disk images are cropped to a 
size of 1200 pixels × 1200 pixels, covering the South and Southeast 
Asian regions, as shown in Fig. 2a, where the five selected sites are 
located. The pixel intensity values of the satellite images are converted 
to Bidirectional Reflectance Factor (BRF), following the method 
described in EUMETSAT [59], with calibration factors obtained from the 
image headers. The BRF values are then converted into Cloud Index (CI) 
and Global Horizontal Irradiance (GHI) using the Heliosat-3 method 
described in Hammer et al. [60]. Although the Heliosat method was 
originally developed for broadband High Resolution Visible (HRV) 
channel images, it has since been applied to the 0.6 μm and 0.8 μm 
channels [26]. To derive the CI of a pixel (eq. 1), the reference value of 
the cloud BRF (ρc) and the Earth surface BRF (ρg) of that pixel are 
required. ρg is estimated individually for each pixel and corresponds to 
the most frequent low BRF value (5th percentile) from the pixel's time 
series. ρc is estimated for the entire image and corresponds to the most 
frequent high BRF value (95th percentile of all values of BRF > 0.5) 
across the time series for all pixels. Both reference values are derived 
from the past 30 days of images at the same scan start time in UTC. The 
GHI is then estimated from CI, as shown in eqs. 2 and 3, while the clear 
sky irradiance GHIclear is obtained with the model from Dumortier et al. 
[61], incorporating climatological Linke turbidity data from Remund 
et al. [62]. 

CI =
(
ρ − ρg

)

(
ρc − ρg

) (1) 

where,
CI : cloud index of a pixel
ρ : actual BRF value of the pixel
ρc : reference BRF of cloud
ρg : reference Earth surface BRF for the pixel 

kc = 1.2, for n ≤ − 0.2 (2a)  

kc = 1 − CI, for − 0.2 < CI ≤ 0.8 (2b)  

kc = 1.661 − 1.7814CI+0.7250CI2, for 0.8 < CI ≤ 1.05 (2c)  

kc = 0.09, for 1.05 < CI (2d) 

where,
kc : clear sky index 

GHI = kc ×GHIclear (3) 

where,
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Fig. 1. Full disk Meteosat-8 0.6 μm visible channel image with the locations of the measurement stations

Fig. 2. South Asian section of Meteosat-8 (a) 0.6 μm visible channel image and (b) cloud top height (CTH) image from the EUMETSAT archive.
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GHI : satellite estimated GHI
GHIclear : clear sky GHI

2.1.2. Ground measurements
Ground-measured GHI data at 1 min temporal resolution is obtained 

from two BSRN stations [63,64] and three IEA-PVPS sites [65], as shown 
in Figs. 1 and 2. All sites are located in regions of South and Southeast 
Asia affected by the monsoon. The Gurgaon BSRN station is situated in a 
hot semi-arid (BSh) Köppen-Geiger climate zone of northern India, 
where the maximum cloudiness due to atmospheric convection occurs 
during the southwest summer monsoon season (June–September) [15]. 
Both the Tiruvallur BSRN station and the Central Highlands IEA-PVPS 
site are located in tropical savanna (Aw) climate zones. While the 
Central Highlands site only experiences the southwest monsoon [66], 
the Tiruvallur site is also affected by intense atmospheric convection 
during the winter northeast monsoon (October–December). The IEA- 
PVPS sites of Feni and Tri An are located in the tropical monsoon 
(Am) climate zone and are affected only by the southwest monsoon. The 
Feni region frequently experiences severe local convective storms, 
known as Nor'westers, during the pre-summer monsoon period of 
April–May [23]. The ground-measured GHI datasets from all sites are 
quality checked using the physical possible limit (PPL) and extremely 
rare limit (ERL) tests, before averaging to 15 min temporal resolution. As 
shown in Table 1, the θsza of the sites from the Meteosat-8 varies between 
46◦ and 76◦.

2.1.3. Datasets from NSRDB and CAMS radiation service
GHI time series data at 15 min temporal resolution, derived from 

Meteosat-8 using the Physical Solar Model (PSM) v3, are obtained from 
the NSRDB for the Gurgaon, Tiruvallur and Feni sites [33]. For the Tri 
An and Central Highlands sites, the PSM v3 GHI time series data, derived 
from Himawari-8 at the native 10 min resolution, are also obtained from 
the NSRDB. Additionally, PSM v3 cloud type time series data, derived 
from Meteosat-8 at 15 min resolution or from Himawari-8 at 10 min 
resolution (depending on data availability) is retrieved for all pixel co-
ordinates in a 21 × 21 pixels grid surrounding the location of the five 
sites in the 0.6 μm Meteosat-8 visible channel image. The cloud type 
classification is based on the Clouds from AVHRR Extended System 
(CLAVR-x) processing system, the latest iteration of several CLAVR al-
gorithms ([67],[68]), which is used for generating quantitative cloud 
products in real time. In addition, GHI estimated from Himawari-8 im-
ages using the Heliosat-4 method at 15 min resolution is obtained for the 
Tri An and Central Highlands sites from the CAMS radiation service 
[69].

2.1.4. Cloud top height
The CTH dataset for the year 2018 is obtained from the Meteoro-

logical Products Extraction Facility (MPEF) algorithm. This dataset 
provides the height of the highest cloud within a superpixel of 3 × 3 
pixels in the 0.6 μm visible channel images, with a vertical resolution of 
300 m. In the MPEF algorithm, the cloud top pressure level (in hPa) is 

estimated using data from the MSG 6.2 μm water vapour (WV) channel, 
7.3 μm WV channel, 10.8 μm IR channel and 13.4 μm IR channel. 
However, the algorithm tends to underestimate cloud top pressure, with 
an uncertainty as high as 150 hPa for liquid clouds [70]. The CTH height 
in meters is then derived by interpolating the vertical standard atmo-
spheric profile from the International Civil Aviation Organization 
(ICAO) to the estimated cloud top pressure level ([71],[72]). However, 
it must be noted that in unstable atmospheric situations, the real profile 
may differ significantly from the standard profile. Moreover, the 
retrieval of multiple cloud layer heights is not possible, as lower cloud 
layers are concealed by upper layers. The full-disk CTH images have a 
coarser resolution and a reduced image size of 1237 pixels × 1237 
pixels. These images are upscaled to 3712 × 3712 pixels—the size of the 
0.6 μm visible channel image—by bilinear interpolation of the CTH 
values, followed by smoothing with a Gaussian filter with a kernel size of 
7. Finally, the images are cropped to 1200 pixels × 1200 pixels to cover 
the South and Southeast Asian region, as shown in Fig. 2b.

2.2. Methods

2.2.1. Parallax correction
Cloudy pixels in CI images are displaced from their actual positions. 

This displacement depends on the CTH above the surface, as well as the 
satellite viewing zenith angle (θsza) and azimuth angle (φsaa) of the 
cloudy pixel, as illustrated in Fig. 3. The angles θsza and φsaa are calcu-
lated using eqs. 4 and 5, assuming positive values for longitudes to the 
east and latitudes to the north. The mean height above the Earth's sur-
face (Hsat = 35786km) and the satellite's position (Lonsat = 41.5◦E) are 
used for these calculations [73,74]. The Earth's radius (R) is assumed to 
be 6378.140 km [75]. The longitude Lonpixel and latitude Latpixel co-
ordinates for the apparent location (A) of each cloudy pixel are obtained 
from the satellite's latitude-longitude grid, which provides the center 
coordinates of each pixel. The cloud parallax displacement between the 
apparent location (A) and the actual location (B) is estimated using eqs. 
6(a) and 6(c). The displacements are subtracted from Lonpixel and Latpixel 

to obtain the parallax corrected longitude (Lonpix
parallax corrected) and lati-

tude (Latpix
parallax corrected), as shown in eqs. 6(b) and 6(d). This correction is 

applied to every cloudy pixel with a CTH greater than 0. Fig. 4 sum-
marizes the parallax correction process in the form of a flowchart. 

φpix
saa = tan− 1

(
tan
( ⃒
⃒Lonsat − Lonpix⃒⃒

)

sin
(
Latpix)

)

, ifLonpix > LonsatandLatpix > 0◦

(4a) 

φpix
saa = 180◦

+ tan− 1

(
tan
( ⃒
⃒Lonsat − Lonpix⃒⃒

)

sin
(
Latpix)

)

, ifLonpix > LonsatandLatpix

< 0◦

(4b) 

Table 1 
Descriptive statistics for the five ground measurement stations.

Site Location Climate 
type

Viewing zenith 
angle (θsza) from 
Meteosat-8

Viewing azimuth 
angle (φsaa) from 
Meteosat-8

Viewing zenith 
angle (θsza) from 
Himawari-8

Viewing azimuth 
angle (φsaa) from 
Himawari-8

Day time data 
points after 
Quality Check

Average Daytime 
Irradiance (W/ 
m2)

Gurgaon 28.42◦N, 
77.16◦E

BSh 51.12◦ 56.44◦ 74.65◦ 283.72◦ 9905 354.1

Tiruvallur 13.09◦N, 
79.97◦E

Aw 46.59◦ 74.09◦ 68.96◦ 277.44◦ 9016 418.7

Feni 22.80◦N, 
91.36◦E

Am 61.11◦ 71.90◦ 59.96◦ 288.84◦ 10,266 372.4

Central 
Highlands

12.75◦N, 
107.88◦E

Aw 75.37◦ 84.48◦ 39.85◦ 289.37◦ 10,211 428.4

Tri An 11.10◦N, 
107.04◦E

Am 74.35◦ 84.99◦ 40.16◦ 286.54◦ 10,225 428.2
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φpix
saa = 180◦

− tan− 1

(
tan
( ⃒
⃒Lonsat − Lonpix⃒⃒

)

sin
(
Latpix)

)

, ifLonpix < LonsatandLatpix

< 0◦

(4c)  

φpix
saa = 360◦

− tan− 1

(
tan
( ⃒
⃒Lonsat − Lonpix⃒⃒

)

sin
(
Latpix)

)

, ifLonpix < LonsatandLatpix

> 0◦

(4d) 

where,
φpix

saa : azimuth angle of a cloudy pixel when viewed from the satellite
Lonsat : sub satellite longitude
Lonpix : longitude of the cloudy pixel
Latpix : latitude of the cloudy pixel 

θpix
sza =90◦

− cos− 1

⎛

⎜
⎝

H×
(
sin
(
cos− 1

(
cos
(
Latpix)× cos

( ⃒
⃒Lonpix − Lonsat⃒⃒

))))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 +H2 − 2×R×H× cos
(
Latpix)×cos

( ⃒
⃒Lonpix − Lonsat⃒⃒

)√

⎞

⎟
⎠

(5) 

where,
θpix

sza : zenith angle of the cloudy pixel when viewed from the satellite
R : radius of the Earth (6378.140 km)
Hsat : mean height of the satellite from the Earth surface
H = R + Hsat : mean height of the satellite from the Earth's center 

Δ
(

Lonpix
parallax

)
=

Hpix
cloud × tanθpix

sza × sinφpix
saa

πR
× 180◦ (6a) 

Lonpix
parallax corrected = Lonpix − Δ

(
Lonpix

parallax

)
(6b) 

Δ
(

Latpix
parallax

)
=

Hpix
cloud × tanθpix

sza × cosφpix
saa

πR
× 180◦ (6c) 

Latpix
parallax corrected = Latpix − Δ

(
Lonpix

parallax

)
(6d) 

where,
Hpix

cloud : height of the cloud top from the Earth surface in the pixel

Δ
(

Lonpix
parallax

)
: shift in the longitude of the cloudy pixel due to 

parallax
Lonpix

parallax corrected : parallax corrected longitude of the cloudy pixel

Δ
(

Latpix
parallax

)
: shift in the latitude of the cloudy pixel due to parallax

Latpix
parallax corrected : parallax corrected latitude of the cloudy pixel

2.2.2. Cloud shadow projection
A cloud's shadow is not directly beneath the cloud unless the sun is 

positioned exactly at the zenith. The actual location of the shadow shifts 
throughout the day. The displacement depends on the CTH and the solar 
zenith (θz) and azimuth (φ) angles, as illustrated in Fig. 5. The angles θz 
and φ are calculated using the Solar Geometry 2 (sg2) algorithms [76]. 
The shadow's displacement from the parallax corrected cloud location is 
then estimated using eqs. 7(a) and 7(c) for longitude and latitude 
respectively, for each cloudy pixel. The CI values are assigned to the 
projected shadow coordinates, as obtained from eqs. 7(b) and 7(d). 
Assigning the projected shadow CI values to the nearest satellite 
latitude-longitude grid point results in whole-pixel displacements. 
However, by calculating the exact displacement in latitude and longi-
tude, and then bilinearly interpolating back to the original satellite grid, 
fractional pixel shifts are accounted for. The entire procedure is sum-
marized in the form of a flowchart in Fig. 6. 

Δ
(

Lonpix
shadow

)
=

Hpix
cloud × tanθpix

z × sinφpix

πR
×180◦ (7a) 

Lonpix
shadow = Lonpix

parallax corrected − Δ
(

Lonpix
shadow

)
(7b) 

Δ
(

Latpix
shadow

)
=

Hpix
cloud × tanθpix

z × cosφpix

πR
×180◦ (7c) 

Latpix
shadow = Latpix

parallax corrected − Δ
(

Latpix
shadow

)
(7d) 

where,

Fig. 3. Schematic representation of the satellite viewing parallax.
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θpix
z : zenith angle of the sun with respect to the cloudy pixel

φpix : azimuth angle of the sun with respect to the cloudy pixel

Δ
(

Lonpix
shadow

)
: shift in the longitude of the shadow from the cloudy 

pixel
Lonpix

shadow : longitude of the shadow due to the cloudy pixel

Δ
(

Latpix
parallax

)
: shift in the latitude of the cloudy pixel due to parallax

Latpix
shadow : latitude of the shadow due to the cloudy pixel

2.2.3. Pixel-by-pixel processing
In the method introduced by Beyer et al. [55], cloud shadow 

displacement was applied to the CI images using only whole-pixel shifts. 

The CTH, along with the sun and satellite viewing geometry, was used to 
estimate the geometric displacement of a cloud's shadow. However, the 
resulting displacements were applied in discrete steps by reassigning the 
CI value to the nearest satellite pixel – i.e., to the center coordinates of 
the closest grid cell. This effectively neglected sub-pixel shifts, leading to 
abrupt transitions and potential loss of spatial detail in the corrected CI 
image.

The method proposed by Miller et al. [56] addressed the difficulty of 
tracking individual cloudy pixels by grouping adjacent cloudy pixels 
into cloud objects based on spatial connectivity and similarity in 
retrieved cloud properties. All pixel in a cloud object were then assigned 
the same CTH and cloud properties, which were then used for computing 
parallax correction and shadow projection. While this grouping strategy 

Fig. 4. Parallax correction procedure.
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Fig. 5. Schematic representation of the cloud shadow projection on the ground.
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Fig. 6. Cloud shadow projection procedure.
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reduced computational complexity by applying the same parallax and 
shadow displacement to all pixels within a cloud object uniformly, it 
introduced smoothing effects that could obscure variations in cloud 
shadow geometry for heterogeneous cloud fields.

In contrast, the method presented in this study performs pixel-level 
corrections by retaining the exact displaced shadow coordinates for 
each cloudy pixel, based on its specific CTH, satellite viewing geometry 
and solar position. These shadow coordinates often do not coincide with 
the satellite pixel center coordinates and form a scattered set of sub-pixel 
positions. To estimate the CI value at any defined query point (such as a 
satellite pixel center or a ground station location), Delaunay triangula-
tion is applied to the displaced shadow coordinates, followed by bar-
ycentric bilinear interpolation. This approach produces a weighted 
average of the surrounding Delaunay triangle vertices and effectively 
captures partial pixel contributions without hard assignment to the 
nearest pixel. This preserves spatial details and makes the method well- 
suited for complex cloud scenarios.

For each image sub-section of size 1200 × 1200 pixels, the entire 
parallax and cloud shadow displacement calculation along with the 
bilinear interpolation requires 10–15 s, depending on the number of 
cloudy pixels in the image scene. This time latency is negligible 
compared to the image update interval of modern geostationary satel-
lites, which ranges from 10 to 15 min. Consequently, this approach 
could be easily integrated into operational solar forecasting systems 
without any significant latency issues.

2.2.4. Evaluation technique
The Heliosat-3 estimated GHI is validated against the ground- 

measured GHI described in Section 2.1.2, before and after the 
applying the corrections with the method described in Sections 2.2.1 
and 2.2.2. Only daytime values – timestamps where the ground- 
measured GHI exceeds 0 W/m2 – are used to compute error metrics 
such as RMSE, MAPE (mean absolute percentage error), mean absolute 
error (MAE) and ramp score (eqs. 8, 11, 12 and 14). The relative error 
metrics for any period are calculated by normalizing with the average of 
the daytime measured GHI in that period. 

RMSEmonthm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

monthm
(GHIestim − GHImeas)

2

√

(8) 

where,
RMSEmonth m : root mean square error in uncorrected or corrected 

Heliosat-3 estimated GHI for any month m
N : total number of quality controlled daytime datapoints in month m
GHIestim : Uncorrected or corrected Heliosat-3estimated GHI at 15 

min resolution
GHImeas : ground-measured GHI at 15 min resolution
To analyze the effect of sun-site-satellite geometry across different 

seasons, the datasets for each site are divided into pre-noon (φ < 180◦ ) 
and post-noon (φ > 180◦ ) periods for each month. The change in 
monthly RMSE after applying the parallax and shadow corrections is 
calculated separately for the pre-noon and post-noon periods, as 
described in eq. 9. 

ΔRMSE%month m =
RMSEuncorrected

month m − RMSEcorrected
month m⎛

⎝

∑

monthm
GHImeas

N

⎞

⎠

× 100 (9) 

where,
ΔRMSE%month m : percentage change in RMSE after performing 

parallax correction or parallax and shadow correction for any month m
RMSEuncorrected

month m : RMSE in satellite estimated GHI for any month m 
when no corrections are applied

RMSEcorrected
month m : RMSE in satellite estimated GHI for any month m after 

applying parallax correction or parallax and cloud shadow correction

The reduction in the MAE of the Heliosat-3 estimated GHI after 
applying the corrections is calculated based on the sun's varying θz and φ 
in 10◦ and 15◦ bins respectively, as shown in eq. 10. 

ΔMAE[θ1
z − θ2

z ,

φ1 − φ2]

=
1
N
.
∑

[θ1
z − θ2

z ,φ1 − φ2]

⃒
⃒GHIuncorr

estim − GHImeas
⃒
⃒−

1
N
.
∑

[θ1
z − θ2

z ,φ1 − φ2]

⃒
⃒GHIcorr

estim − GHImeas
⃒
⃒

(10) 

where,
ΔMAEθ1

z − θ2
z ,φ1 − φ2 : reduction or increase in MAE when the solar zenith 

angle is within θ1
z − θ2

z and the azimuth angle is between φ1 − φ2 in W/ 
m2

GHIuncorr
estim : Uncorrected Heliosat-3 estimated GHI at 15 min 

resolution
GHIcorr

estim : Corrected Heliosat-3 estimated GHI at 15 min resolution
To examine the performance variation with cloud height, the binned 

MAPE is computed using eq. 11 at CTH ranges of 0–2 km, 2–4 km, 4–6 
km, 6–8 km, 8–10 km, 10–12 km, 12–14 km and 14–16 km. The GHI at a 
site can be influenced not only by clouds directly overhead but also by 
clouds elsewhere in the sky dome, depending on the sun's position. To 
account for all clouds that may cast shadows at a site, especially during 
low solar elevation angles, the CTH is spatially averaged across 21 pixel 
× 21 pixel area (= 63 km × 63 km) surrounding the ground measure-
ment stations. 

MAPE[h1 − h2 ] =
1
N
.
∑

[h1 − h2 ]

|GHIestim − GHImeas|

GHImeas
(11) 

where,
MAPE[h1 − h2 ] : Mean absolute percentage error in satellite estimated 

GHI when the average CTH in a 21 × 21 pixels area around the site lies 
between h1 and h2

Datapoints are binned based on their kc values, grouped into bins of 
0.1 interval across the [0,1] range. The binned average MAE is then 
calculated for each kc group, as shown in eq. 12. 

MAE[k1
c − k2

c ]
=

1
N
.
∑

[k1
c − k2

c ]

|GHIestim − GHImeas| (12) 

where,
MAE[k1

c − k2
c ]
: Mean Absolute Error in satellite estimated GHI when the 

ground measured clear sky index lies between k1
c and k2

c
The percentage of cloudy pixels belonging to each CLAVR-X cloud 

type in a 21 × 21 pixels box around each site is computed to assess the 
dependency of the error and correction on cloud type.

The accuracy of satellite-estimated GHI ramps is evaluated using the 
ramp score metric introduced by Vallance et al. [14]. Individual GHI 
ramps for each day are identified in both the satellite estimates and the 
ground measurements using the Swinging Door Algorithm (SDA), orig-
inally published in [77], with a ramp threshold (ΔGHIrampthresh) that 
varies based on the daily maximum of the clear sky GHI, as shown in eq. 
13. 

Table 2 
R2 between the satellite estimated GHI and the ground measured GHI at 15 min 
resolution* for the year 2018.

Site Uncorrected Heliosat-3 
GHI

Parallax and Shadow corrected 
Heliosat-3 GHI

Gurgaon 0.91 0.93
Tiruvallur 0.93 0.94
Feni 0.88 0.90
Central 

Highlands
0.81 0.83

Tri An 0.82 0.85

* Only the valid daytime datapoints mentioned in Table 1
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ΔGHIthresh,Ti = τ.max
day D
Tj∈D

(
GHIclearsky,Tj

)
for Ti ∈ D (13) 

where,
ΔGHIthresh,Ti : The minimum change in GHI above which ramps are 

detected at time Ti on the Dth day of the year
τ: A value within (0,1) representing a fraction of the maximum clear 

sky GHI
GHIclearsky,Tj : Clear sky GHI at any time Tj on the day of the year D
Hourly normalized ramps, in W.m− 2.h− 1, are computed from the 

detected ramp-up or ramp-down points in both the satellite-estimated 
and ground-measured GHI using the SDA algorithm. The ramp score 
metrics for both the uncorrected and corrected satellite-estimated GHI 
are then determined with eq. 14. 

RS =
1

tmax − tmin

∫tmax

tmin

⃒
⃒
⃒rampsat,Ti

− rampground,Ti

⃒
⃒
⃒dt (14) 

tmin: Beginning of the time period of analysis
tmax: End of the time period of analysis

3. Results and discussions

3.1. Validation of error reduction and benchmark against NSRDB and 
CAMS radiation service

As shown in Table 2, the coefficient of determination (R2) between 
the 15 min resolution Heliosat-3 estimated GHI and the ground 
measured GHI at each site increases after applying the corrections to the 
CI images. The number of datapoints used for this analysis is provided in 
Table 1. Notably, R2 values, both before and after corrections, decrease 
monotonically as the θsza increases. After applying the parallax and 
cloud shadow displacement corrections to the CI images from Meteosat- 
8, the rel. RMSE in the 15 min resolution Heliosat-3 estimated GHI de-
creases by 1.0, 1.6, 1.9, 2.1 and 2.2 percentage points at Tiruvallur, 
Gurgaon, Feni, Tri An and Central Highlands respectively (see Table 3). 
This pattern corresponds to the increase in θsza of Meteosat-8 from 

Table 3 
Rel. RMSE in satellite estimated GHI at 15 min resolution from different models for the year 2018*

Site Heliosat-3 Meteosat-8 Heliosat-3 Meteosat-8 with Parallax and Shadow Correction NSRDB Meteosat-8 NSRDB Himawari-8 CAMS Himawari-8

Gurgaon 17.1 % 15.5 % 19.8 % Not Available Not Available
Tiruvallur 13.8 % 12.8 % 16.9 % Not Available Not Available
Feni 26.3 % 24.4 % 31.4 % 34.6 % 26.9 %
Central Highlands 32.4 % 30.1 % Not Available 29.0 % 26.1 %
Tri An 31.3 % 29.3 % Not Available 27.7 % 24.8 %

* Only the valid daytime datapoints mentioned in Table 1

Fig. 7. (a) Percentage of cloudy pixels according to CLAVR-X cloud type retrieved from 21 × 21 pixels of Meteosat-8 image around the site (b) monthly rel. RMSE in 
15 min resolution Heliosat-3 estimated GHI at the Gurgaon site.
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Fig. 8. (a) Percentage of cloudy pixels according to CLAVR-X cloud type retrieved from 21 × 21 pixels of Meteosat-8 image around the site (b) monthly rel. RMSE in 
15 min resolution Heliosat-3 estimated GHI at the Tiruvallur site.
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Tiruvallur to Central Highlands, as shown in table 1.
Bieliński [53] validated the improvement in satellite estimated cloud 

optical thickness (COT) by applying parallax correction, using radar 
reflectance measurements. The study demonstrated that parallax 
correction increased the Pearson's correlation between satellite- 
estimated COT and radar reflectance from 0.556 to 0.683. However, 
the authors did not perform cloud shadow projection or validate the 
improvement in GHI. Lorenzo et al. [50] employed an optimal inter-
polation approach that reduced the RMSE of estimated GHI from 98.8 
W/m2 to 71.1 W/m2 for the UASIBS model and from 140 W/m2 to 72.7 
W/m2 for the SUNY model, when validated against four months of 
ground-measured GHI data from 22 stations. While this approach 
included corrections for cloud shadow geolocation, the specific reduc-
tion in error due to this correction was not quantified. Miller et al. [56] 
took a different approach, grouping adjacent cloudy pixels into a single 
cloud object before applying parallax and cloud shadow corrections. 
Their one-hour-ahead forecast was validated against two years of 
ground-measured GHI from four stations, with RMSE values ranging 
from 120 W/m2 to 200 W/m2. However, they did not isolate or validate 
the impact of parallax and cloud shadow corrections on GHI accuracy. In 
this study, we benchmarked the reduction of the rel. RMSE in Heliosat-3 
estimated GHI at 15 min resolution over one year. After applying the 
corrections, the rel. RMSE in GHI estimates decreased from 60 W/m2 

(17.1 %) to 55 W/m2 (15.5 %) at Gurgaon, from 58 W/m2 (13.8 %) to 
54 W/m2 (12.8 %) at Tiruvallur, from 97.9 W/m2 (26.3 %) to 90.8 W/m2 

(24.4 %) at Feni, from 138.2 W/m2 (32.3 %) to 129.1 W/m2 (30.1 %) at 
Central Highlands and from 134.1 W/m2 (31.3 %) to 125.3 W/m2 (29.3 
%) at Tri An.

The GHI estimated from Meteosat-8 images at 15 min resolution 
using the Heliosat-3 model shows 2.7 and 3.1 percentage points lower 

rel. RMSE at Gurgaon and Tiruvallur, respectively, compared to GHI 
estimates from NSRDB, which also uses Meteosat-8 images with similar 
θsza over a one-year period (see Table 3). After applying the parallax and 
cloud shadow corrections, Heliosat-3 estimated GHI shows an even 
greater improvement, with 4.3 and 4.1 percentage points less rel. RMSE 
than NSRDB at the two sites. For Feni, which has almost the same θsza 
from both Meteosat-8 and Himawari-8 (see Table 1), the uncorrected 
Heliosat-3 estimated GHI from Meteosat-8 images has 5.1, 8.3, and 0.6 
percentage points less rel. RMSE compared to GHI estimates from 
NSRDB Meteosat-8, NSRDB Himawari-8, and CAMS Himawari-8, 
respectively. After applying the corrections, the differences in rel. 
RMSE further increase to 7, 10.2, and 2.5 percentage points. At Tri An 
and Central Highlands, where the θsza from Meteosat-8 is approximately 
35 degrees higher than that from Himawari-8, Heliosat-3 estimates 
based on Meteosat-8 images have 4 and 4.5 percentage points higher rel. 
RMSE compared to CAMS Himawari-8, even after applying the correc-
tions. When compared to NSRDB Himawari-8, the Heliosat-3 estimated 
GHI from Meteosat-8 images have 1.1 and 1.6 percentage points higher 
rel. RMSE at Central Highlands and Tri An, respectively.

3.2. Influence of season on error reduction

Figs. 7–11 present the monthly rel. RMSE of the Heliosat-3 estimated 
GHI at 15 min resolution for the uncorrected, parallax corrected and 
parallax and cloud shadow corrected cases at the five sites during the 
analysis year 2018. At the Gurgaon, Tiruvallur and Feni sites – located 
relatively close to the SSP of Meteosat-8 and within 61◦ θsza (see Table 1) 
– the rel. RMSE values are comparable. However, there is a significant 
increase in rel. RMSE at the Feni site during the cloudy summer 
monsoon months (June to September) and the preceding Nor'wester 

Fig. 9. (a) Percentage of cloudy pixels according to CLAVR-X cloud type retrieved from 21 × 21 pixels of Meteosat-8 image around the site (b) monthly rel. RMSE in 
15 min resolution Heliosat-3 estimated GHI at the Feni site.
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period (April to May) (see Fig. 9). Central Highlands and Tri An show 
consistently high rel. RMSE throughout the year due to their large θsza 
values from Meteosat-8. The reference cloud BRF (ρc) used in the 
Heliosat-3 method is optimized for smaller θsza [78], and when com-
bined with the reduced pixel spatial resolution at higher θsza values, this 
contributes to the high rel. RMSE observed at Central Highlands and Tri 
An.

It is evident that applying the parallax correction to the CI image 
alone does not significantly improve the final estimated GHI. In some 
cases, it may even increase the error in the satellite-estimated GHI. This 
increase is observed during four months at Gurgaon, four months at 
Tiruvallur, three months at Feni and two months at Tri An. At Central 
Highlands, which has the highest θsza from Meteosat-8, parallax 
correction alone does not result in an increase in error during any month 
(see Fig. 10). The greatest improvement in average monthly rel. RMSE 
from parallax correction alone occurs at Gurgaon in April (from 11.1 % 
to 10.5 %), at Tiruvallur in May (from 17.2 % to 16.4 %), at Feni in May 
(from 37.3 % to 31.2 %), at Central Highlands in July (from 46.2 % to 
42.7 %) and at Tri An in December (from 25.9 % to 21.5 %).

Applying the parallax correction followed by cloud shadow projec-
tion results in a noticeable improvement in the final estimated GHI at all 
the sites. It does not lead to an increase in the monthly rel. RMSE at any 
of the sites. The highest improvement in average monthly rel. RMSE of 
the final corrected GHI is observed at Gurgaon in August (from 25.1 % to 
21.7 %), at Tiruvallur in July (from 14.5 % to 11.8 %), at Feni in May 
(from 37.3 % to 28.8 %), at Central Highlands in July (from 46.2 % to 
42.2 %) and at Tri An in December (from 25.9 % to 20.8 %).

At all the sites, the error in Heliosat-3 estimated GHI increases with 
the increase in frequency of opaque ice, cirrus, overshooting and 

overlapping clouds around the sites. The largest reductions in monthly 
rel. RMSE after applying the corrections are also observed during pe-
riods with these cloud types. This trend is mirrored in the absolute error 
of the satellite-estimated GHI every 15 min (see Figs. A.1–A.5), where 
the error, as well as the improvement due to the corrections, is greater in 
the presence of these particular cloud types.

Sossan [45] reduced the errors in satellite-estimated GHI due to 
spatial resolution and parallax effect by statistical de-biasing. The au-
thors suggested that real-time correction may be challenging without 
highly resolved data. In our study, we used pixel-wise CTH information 
interpolated to the spatial resolution of the 0.6 μm visible channel image 
to geolocate clouds and their shadows. This resulted in a reduction in the 
monthly rel. RMSE at all sites for each of the 12 months in 2018. 
However, applying the parallax shift alone led to an increase in rel. 
RMSE during multiple months at all sites. Interestingly, sites with higher 
values of θsza from Meteosat-8, such as Feni, Central Highlands, and Tri 
An, experienced fewer months where rel. RMSE increased due to 
parallax correction alone. Beyer et al. [55] showed that the RMSE of the 
linear regression between the satellite-estimated CI and ground- 
measured kc decreased from 0.156 to 0.145 after the correction, based 
on two months of data from ground stations distributed over a relatively 
small area of approximately 700 km × 500 km. However, this average 
improvement does not provide insights into the performance of the 
correction across different seasons or under varying cloud types and 
cloud vertical extents. In contrast, our results show that applying both 
parallax and cloud shadow shifts, using bilinear interpolation, leads to 
the largest reductions in rel. RMSE during periods when opaque ice, 
cirrus, overshooting and overlapping clouds occur more frequently. 
Cirrus and overshooting clouds, in particular, contribute to the greatest 

Fig. 10. (a) Percentage of cloudy pixels according to CLAVR-X cloud type retrieved from 21 × 21 pixels of Himawari-8 image around the site (b) monthly rel. RMSE 
in 15 min resolution Heliosat-3 estimated GHI at the Central Highlands site.
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Fig. 11. (a) Percentage of cloudy pixels according to CLAVR-X cloud type retrieved from 21 × 21 pixels of Himawari-8 image around the site (b) monthly rel. RMSE 
in 15 min resolution Heliosat-3 estimated GHI at the Tri An site.
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cloud shadow displacement from the actual cloud location due to their 
considerable heights. Overshooting clouds, which are associated with 
deep convective systems, typically exhibit substantial vertical extents. 
Opaque ice clouds have a much greater impact on the extinction of 
incoming GHI than water clouds [79]. Consequently, errors in satellite- 
estimated GHI are amplified when the shadows of these clouds are 
inaccurately represented. Additionally, modeling the effects of over-
lapping or multi-layered clouds on solar irradiance extinction is inher-
ently complex [80]. These cloud types, which are predominantly 
observed during the convective monsoon period at all sites, lead to 
significant errors in GHI estimates. A significant reduction in rel. RMSE 
is also observed at Feni during the Nor'wester period from April to May. 
This is attributed to the frequent occurrence of overshooting, over-
lapping, cirrus, and opaque ice clouds, which are common during severe 
local convective storms, or Nor'westers, that prevail in the pre-southwest 
monsoon season in this region [23]. In fact, thunderstorms are more 
frequent in this region during April and May than during the peak 
monsoon months of July and August [24]. This may explain the larger 
reductions in rel. RMSE during the Nor'wester period compared to the 
summer monsoon period at Feni.

3.3. Influence of sun-site-satellite orientation on error reduction

Fig. 12 shows that the largest reductions in MAE of the 15 min res-
olution Heliosat-3 estimated GHI at Gurgaon, Tiruvallur and Feni occur 
when the co-scattering angle (ψ) – the angle between the azimuth of the 
sun and the satellite relative to the site – is large. Conversely, little to no 
reduction, or even an increase in MAE, is observed for small ψ values at 
these three sites. This is particularly observed for θz ≥ 10◦ , while for 
lower θz values the distribution of reduction or increase tends to be 
random. Fig. 13 further illustrates that the reduction in monthly RMSE 
of the 15 min resolution Heliosat-3 estimated GHI is significantly greater 
in the pre-noon period (solar azimuth angle φ < 180◦ ) than in the post- 
noon period (solar azimuth angle φ > 180◦ ), after applying the parallax 
and cloud shadow corrections. This can be explained by the sun-site- 
satellite geometry at the three sites, as shown in Fig. 14. All three are 
relatively close to the SSP of Meteosat-8 and within 61◦ θsza. Corrections 
during the pre-noon period have the largest impact, as ψ is higher during 
this period, resulting in a greater separation between the apparent cloud 
location and the actual cloud shadow. In contrast, this separation de-
creases in the post-noon period, where ψ values are lower. Performing 
parallax correction alone often increases the monthly RMSE in the post- 
noon period, while a reduction is typically seen during pre-noon. This 

Fig. 12. Polar plot of the change in MAE for different solar zenith (θz) and azimuth angle (φ) bins, with θz < 80◦ , after applying the corrections. The locations of the 
Meteosat-8 satellite with respect to the sites are shown with a green point. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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effect is particularly pronounced during the southwest monsoon season 
(June–September) for Gurgaon, Tiruvallur and Feni. At the Tiruvallur 
site, a similarly large increase in monthly RMSE is observed in the post- 
noon period of the northeast monsoon season (October–December). 
Even applying the cloud shadow displacement step does not signifi-
cantly reduce the RMSE during the post-noon period of the monsoon 
months at these sites.

The greatest reduction in the MAE of 15 min resolution Heliosat-3 
estimated GHI at Central Highlands and Tri An occurs for low ψ 

values (see Fig. 12). These two sites, located near the eastern edge of the 
Meteosat-8 field of view (see Fig. 1) with θsza exceeding 70◦ (see 
Table 1), face limitations in cloud information to the east when the sun is 
in the eastern half of the horizon during the pre-noon period. As a result, 
the potential for reducing the monthly RMSE in GHI by applying the 
parallax and cloud shadow corrections during pre-noon is significantly 
less than indicated in Fig. 14. Most cloud information in the Meteosat-8 
field of view is available from pixels west of the sites, providing suffi-
cient cloud information during the post-noon period to apply the 

Fig. 13. Monthly RMSE reduction in satellite estimated 15 min resolution GHI during pre-noon and post-noon time at (a) Gurgaon, (b) Tiruvallur, (c) Feni, (d) 
Central Highlands and (e) Tri An.
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corrections effectively. Additionally, the large θsza increases the poten-
tial for reducing monthly RMSE via parallax correction alone. Therefore, 
at these two sites, a greater reduction in RMSE is observed in the post- 
noon period.

From Fig. 14, it can also be observed that the Tiruvallur, Central 
Highlands and Tri An sites have valid GHI datapoints and finite reduc-
tion or increase in MAE for φ ∈ [315◦

,45◦

] and θz < 20◦ . This phenom-
enon occurs because these sites, located within 15◦ N of the equator, 
experience the sun to the north during mid-day in the summer months. 

Consequently, this unique positioning affects the observed GHI data.

3.4. Influence of CTH on error reduction

As shown in Fig. 15, the corrections have no impact on the median 
value of MAPE below a CTH of 2 km at any site. This aligns with the 
findings of Miller et al. [56], who simulated the displacement of the 
shadow from the apparent cloud location for various CTH and θz values. 
They observed that for low CTH values, shadow displacement is negli-
gible, except at very high θz during morning and evening. At Gurgaon 

Fig. 14. The relative position of the satellite and the sun with respect to the sites during (a) the pre-noon period φ < 180◦ shown on the top and (b) the post-noon 
period φ ≥ 180◦ shown in the bottom (apparent cloud location A, marked in red and the actual cloud shadow location B, marked in green). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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and Tiruvallur, which are the closest to the SSP of Meteosat-8, a 
noticeable reduction in MAPE (by 4–6 percentage points) is observed for 
CTH values between 4 and 10 km after applying the corrections. In 
contrast, significant reductions at Feni, Central Highlands and Tri An 
only occur when the CTH exceeds 10 km. This can be explained by the 
fact that the nominal 3 km × 3 km spatial resolution of Meteosat-8's 
visible or infrared channel images is achieved only at the SSP, and the 
pixel resolution degrades with increasing θsza. This observation is 
consistent with the explanation provided by Wu et al. [44], who noted 
that parallax effects are relatively small when CTH is low relative to the 
horizontal resolution of the satellite image pixel. The largest MAPE in 
uncorrected Heliosat-3 estimated GHI occur when CTH exceeds 10 km at 
each site, due to (i) the large displacement of cloud shadows from their 

apparent pixel locations at high CTH values and (ii) the presence of 
multi-layered cloud distributions, which often accompany large CTHs 
during certain weather conditions [81] and are not modeled in Heliosat- 
3. The greatest reduction in the median value of MAPE after applying 
corrections also occurs at high CTH values across all sites. However, the 
corrections do not account for multi-layered cloud distributions, and due 
to the coarser resolution of the original CTH dataset (9 km × 9 km at the 
SSP), misassignments of CTH values to cloudy pixels can lead to errors in 
cloud shadow displacement. These errors increase with CTH, resulting in 
relatively high MAPE values even after the corrections are applied.

Fig. 15. Mean Absolute Percentage Error in terms of fraction for different cloud top height (CTH) bins at (a) Gurgaon, (b) Tiruvallur, (c) Feni, (d) Central Highlands 
and (e) Tri An.
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3.5. Influence of cloudiness on error and reduction

As shown in Fig. 16a, the binned MAE is highest during partly cloudy 
conditions, characterized by intermediate kc values, for both the un-
corrected and corrected Heliosat-3 GHI estimates at 15 min resolution 
across all the sites. This aligns with the findings of Marie-Joseph et al. 
[43], who observed a bell-shaped curve for the bias in GHI against the 
ground-derived clearness index kt, with the maximum bias occurring 
under partly cloudy skies. They attributed this to the parallax effect, 
noting that it is most significant when cloud cover is fragmented and 
spatially variable. In contrast, the effect is less pronounced when cloud 
cover is homogeneous or the sky is clear, as shifting uniform cloud 
conditions has little impact. This partly explains the bell-shaped curve 
observed in their study. Sossan [45] similarly reported the largest dis-
crepancies between satellite-derived and ground-based pyranometer 

measurements during partly cloudy conditions.
At Gurgaon, Tiruvallur, and Feni, the largest reduction in MAE after 

applying parallax and cloud shadow corrections occurs in partly cloudy 
conditions (see Fig. 16a). However, significant reductions are also seen 
during overcast conditions with low kc values. For Central Highlands 
and Tri An, located at the eastern edge of the Meteosat-8 field of view, 
notable reductions in the MAE of Heliosat-3 GHI estimates are also 
observed during partly cloudy conditions. However, the largest re-
ductions occur in overcast situations, as shown in Fig. 16b. This is likely 
due to the actual spatial resolution at these sites being lower than the 
nominal 3 km × 3 km resolution at the SSP, making it difficult to resolve 
fragmented clouds in any case. In contrast, overcast conditions tend to 
feature more extensive, continuous cloud coverage, often with higher 
CTH. Higher CTH combined with large θsza leads to larger parallax and 
cloud shadow displacements, explaining the greater potential for error 

Fig. 16. Variation in MAE, reduction in MAE and average CTH as a function of kc at (a) Gurgaon, Tiruvallur and Feni (shown on the left) and (b) Central Highlands 
and Tri An (shown on the right).
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correction in these scenarios. Consequently, applying parallax and cloud 
shadow corrections yields the greatest benefit during overcast condi-
tions at these two sites.

3.6. Effect of the correction on satellite estimated GHI ramps

The ramp estimation error at 15 min resolution in both the corrected 

and the uncorrected satellite estimated GHI over the entire year 2018 at 
each of the five sites is shown in Table 4 for τ = 0.18. τ value of 0.18 is 
large enough to obtain a ramp approximation error that is greater than 
the uncertainty of pyranometer measurement, as discussed in Vallance 
et al. [14]. After applying the corrections, the ramp score in Wm− 2 h− 1 is 
reduced at all sites, indicating better alignment between the satellite- 
estimated and ground-measured GHI ramps (see Table 4). Compara-
tively larger ramp scores are observed at Feni, Central Highlands and Tri 
An, which are situated at higher θsza from the Meteosat-8 satellite.

To examine the sensitivity of ramp score improvement relative to τ 
values, a practically applicable range of τ must be chosen. The average 
15-min ramp in ground measured GHI across all five sites is approxi-
mately 0.06 times the daily maximum of GHIclearsky. This value closely 
aligns with the minimum τ value of 0.08 chosen in Vallance et al. [14], 
which ensures reliable ramp detection given the inherent uncertainty in 
GHI measurements taken with pyranometers. Since this analysis focuses 
on the improvement in cloud-induced ramp detection after applying the 
corrections, the upper τ limit must ensure that the percentage of points 
detected as ramps in satellite-estimated GHI remains higher than those 

Table 4 
15-min ramp score in Wm− 2 h− 1 of the satellite estimated GHI with respect to 
the ground measured GHI* for the year 2018, when τ is set to 0.18.

Site Uncorrected Heliosat-3 
GHI

Parallax and Shadow corrected 
Heliosat-3 GHI

Gurgaon 93 89
Tiruvallur 97 96
Feni 130 125
Central 

Highlands
218 214

Tri An 193 189

* Only the valid daytime datapoints mentioned in Table 1.

Fig. 17. Change in ramp detection capability for varying τ values.
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detected solely due to the diurnal variation of GHIclearsky. As shown in 
Fig. 17, when τ reaches 0.23, the difference in timestamps classified as 
ramps between satellite-estimated GHI and clear-sky GHI falls to 1.90 
percentage points. This margin of 2 % point difference is considered 
practical, as ramp thresholds should remain low enough to distinguish 
cloud-induced fluctuations from the inherent diurnal variation in 
GHIclearsky. Testing the sensitivity of the improvement in ramp score for 
τ ∈ [0.07,0.22]) allows meaningful analysis of cloud-induced fluctua-
tions, within the context of this work.

Due to the lower spatial resolution of the satellite image pixels 
compared to the point measurements from pyranometers, satellite- 
estimated GHI cannot capture the same degree of variability as 
ground-measured GHI, particularly at a 15 min temporal resolution. 
Consequently, at lower τ values, even small-scale fluctuations in ground- 
measured data are detected as ramps across all sites, leading to higher 
ramp scores for both corrected and uncorrected Heliosat-3 GHI esti-
mates. As τ increases, much of this variability is masked due to the 
higher tolerance for fluctuations in the SDA algorithm, leading to 
improved ramp scores in both Heliosat-3 datasets. Nevertheless, the 

corrected GHI estimates consistently show lower ramp scores than the 
uncorrected estimates across the entire range of τ values considered in 
the sensitivity analysis, as shown in Fig. 18. This trend is also observed at 
all the individual sites (see Figs. B.1–B.5).

Fig. 19 provides two detailed examples to illustrate the ability of 
satellite-estimated GHI to capture actual GHI ramps measured at the 
ground surface. On July 31, 2018, at Gurgaon, applying the corrections 
improved the overall ramp score from 68 Wm− 2 h− 1 to 50 Wm− 2 h− 1. 
While the ramp score improved by 24 Wm− 2 h− 1 during the pre-noon 
period, only a smaller improvement of 13 Wm− 2 h− 1 was observed 
during the post-noon period (see Fig. 19b). Fig. 19a shows another case 
where applying the corrections led to an increase in the overall ramp 
score from 76 Wm− 2 h− 1 to 84 Wm− 2 h− 1 on February 5, 2018, at 
Gurgaon, due to deteriorating GHI ramp estimation in the post-noon 
period. These limited improvements—or even deteriorations—in the 
post-noon period can be attributed to the effect of the sun-site-satellite 
orientation, as discussed in Section 3.3.

Fig. 18. Variation of the ramp score averaged across all sites with τ ∈ (0.07,0.22).
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Fig. 19. Change in ramp score due to the parallax and cloud shadow correction (a) on 05.02.2018 and (b) 31.07.2018 at Gurgaon.
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4. Conclusion

In this study, we presented a method that applies the parallax and 
cloud shadow shifts estimated with a gridded CTH dataset on Helioat-3 
derived CI images from Meteosat-8 using bilinear interpolation to allow 
for sub-pixel displacement. By validating against one year of 15 min 
resolution ground-measured GHI data from five stations in South and 
Southeast Asia at varying viewing angles from the satellite, it has been 
shown that the rel. RMSE in the GHI estimated from the corrected CI 
images reduced from 23.8 % to 22.1 % over all the stations and the R2 

between the satellite-estimated and ground-measured GHI improved at 
each site. The reduction in rel. RMSE is found to be monotonically 
increasing with the decrease in the viewing zenith angle (θsza) of the site 
from the satellite. Similarly, the R2 values also decrease with the in-
crease in θsza of the site.

Benchmarking against the satellite estimated GHI datasets from 
NSRDB and CAMS radiation service showed that for the sites with a 
similar θsza in the three datasets, the Heliosat-3 estimated GHI from the 
corrected CI images at 15 min resolution outperformed NSRDB and 
CAMS estimated GHI by 4–7 percentage points and 2.5 percentage 
points of rel. RMSE respectively. For the two sites with 30◦ less θsza in the 
NSRDB and CAMS estimated GHI datasets, they showed 4–5 percentage 
points and 1–2 percentage points less rel. RMSE than the Heliosat-3 
estimated GHI with corrections applied.

Seasonality in the monthly rel. RMSE of the 15 min resolution 
Heliosat-3 estimated GHI was observed at all sites, with larger errors 
coinciding with periods where opaque ice, cirrus, overlapping and 
overshooting clouds frequently occur. The occurrences of these cloud 
types increase during periods with intense atmospheric convection, such 
as the monsoon and the nor'wester seasons. Cirrus and overshooting 
clouds cause the highest displacement of the actual cloud shadow from 
the apparent cloud location due to their large height, contributing to 
significant errors in GHI estimates. The higher extinction caused by 
opaque ice clouds compared to water clouds further amplifies inaccur-
acies when their shadows are misrepresented. Additionally, the 
complexity of modeling the effects of overlapping clouds introduces 
further errors. Therefore, correcting the CI images during the monsoon 
and nor'wester periods, when these cloud types are most prevalent, 
resulted in the greatest reductions in relative RMSE.

The potential for reducing MAE by applying the corrections increases 
with the increase in co-scattering angle (ψ) between the azimuth of the sun 
and the satellite from the site, as the separation between the actual shadow 
location and the apparent cloud location increases with ψ . The impact of 
this on the 15 min resolution Heliosat-3 estimated GHI was significant at 
the three sites within 61◦ θsza from the satellite. Conversely, applying the 
corrections in the post-noon period has less impact and even increases the 
RMSE during monsoon months with intense atmospheric convection and 
large cloud heights. The actual reduction in MAE achievable during pe-
riods with large values of ψ is also limited by the availability of sufficient 
pixels of cloud information along the azimuth to the sun from the site. As a 
result, the two sites close to the eastern edge of the satellite showed little 
reduction in MAE for large ψ values when the sun was located in the 
eastern horizon with respect to the two sites. However, due to the high θsza 
at these two sites, correcting the parallax shift of the available cloud pixels 
to the west of the sites is sufficient to cause a significant reduction in MAE 
for low ψ values in the post-noon period. Additionally, sites like Tiruvallur, 
Central Highlands, and Tri An lie within 15◦ N, where the sun can be 
observed to the north during mid-day in the summer. This unique 

phenomenon occurs only in the tropics and is not seen elsewhere in the 
northern hemisphere.

Comparing the reduction in MAPE of the 15 min resolution Heliosat- 
3 estimated GHI for different cloud height bins showed that applying the 
corrections make no difference below a CTH of 2 km, and the reductions 
are noticeable only when the CTH is comparable to or higher than the 
pixel horizontal resolution. The largest reduction in the median value of 
MAPE was observed for CTH values exceeding 10 km. However, the 
MAPE in GHI after applying the corrections is still high for large CTH 
values due to the coarser resolution of the gridded CTH dataset (9 km ×
9 km at SSP) and the lack of information on multi-layered clouds.

With the increase in the θsza value of the sites from the satellite, the 
degree of cloudiness for which the largest reduction in the MAE of the 
15 min resolution Heliosat-3 estimated GHI occurs shifts from partly 
cloudy to overcast situations, where clouds with higher CTH frequently 
occur. While a similar magnitude of reduction in MAE was also observed 
at the two sites close to the edge of the satellite field of view during 
partly cloudy conditions, even greater reductions were seen during 
overcast conditions, likely due to the larger parallax and cloud shadow 
displacements caused by larger cloud heights and continuous cloud 
cover. This can be attributed to a combination of larger parallax and 
cloud shadow displacements caused by higher cloud tops and contin-
uous cloud cover, as well as the lower effective spatial resolution at these 
two sites, which makes it harder to resolve fragmented clouds. In 
contrast, overcast conditions provide more easily resolvable extensive 
cloud coverage, increasing the potential for accurate corrections.

The sites with higher θsza from the satellite show larger discrepancies 
between the satellite- estimated and ground-measured GHI ramps at 15 
min resolution. For this analysis, we selected a range of τ values where 
the ramp detection threshold is large enough to filter out fluctuations 
smaller than the average 15-min ground-measured ramp, but still low 
enough to capture more fluctuations in the satellite-estimated GHI than 
in the clear-sky estimates. Reducing τ, and thereby lowering the ramp 
detection threshold ΔGHIthresh,Ti , increases the error in satellite-based 
ramp estimation, as satellite-derived GHI cannot capture all small- 
scale fluctuations. Conversely, increasing τ improves ramp estimation 
accuracy by allowing higher threshold ΔGHIthresh,Ti which masks out the 
small variations. Nevertheless, after applying parallax and cloud shadow 
correction on the CI images with bilinear interpolation, the satellite- 
estimated GHI ramps exhibit better agreement with ground-measured 
GHI ramps.

The method implemented in this study requires only the satellite 
viewing angles, CTH of the cloudy pixels and the solar position, making 
it easily applicable to images from any other geostationary platforms 
such as Meteosat-9, Meteosat-12 or Himawari-9. Similarly, the method 
could be applied to the legacy data from retired geostationary satellites 
for the long-term climatological analysis of solar energy potential at 
prospective PV sites or for studying the impact of special weather events 
on satellite retrieved GHI. The errors resulting from the use of a standard 
atmospheric profile in unstable atmospheric situations could be over-
come in future studies using profiles from numerical weather prediction 
data. A potential direction for future research is the use of machine 
learning models to infer nonlinear parallax and shadow displacement 
patterns directly from imagery. However, such approaches were not 
pursued in this study due to the lack of spatially dense ground-truth 
data, which limits the ability to train generalizable models across 
large tropical regions. This study focused on improvement in satellite 
based GHI estimation due to parallax and cloud shadow correction, as 

A. Roy et al.                                                                                                                                                                                                                                     Applied Energy 399 (2025) 126457 

24 



accurate GHI estimations are a critical foundation for developing reli-
able forecasting methods for solar PV power output. Reliable power 
output forecasts derived from satellite images enable power plant 
owners and power traders to bid more optimally in the intra-day energy 
exchange markets and reduce financial losses due to inaccurate fore-
casts. For the grid operators, this translates to fewer intra-day imbal-
ances at grid node points. Demonstrating the effectiveness of the method 
in improving GHI estimation accuracy highlights its potential applica-
bility in future forecast models.
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Appendix A. Time series of the absolute error in satellite estimated GHI and the frequency of the different CLAVR-X cloud types at all the 
individual sites

Fig. A.1. Gurgaon.
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Fig. A.2. Tiruvallur.
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Fig. A.3. Feni.
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Fig. A.4. Tri An.
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Fig. A.5. Central Highlands.

Appendix B. Variation of ramp score with τ at all the individual sites

Fig. B.1. Gurgaon.
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Fig. B.2. Tiruvallur.

Fig. B.3. Feni.
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Fig. B.4. Central Highlands.

Fig. B.5. Tri An.

Appendix C. Filtering datapoints based on the uncertainty in pyranometer measurement

Based on Kratzenberg et al. [82], the maximum uncertainty in an individual pyranometer measurement is reported to be approximately 3.7 %. To 
assess the improvements in relative RMSE and MAE under this constraint, the dataset is filtered to include only those time points where the change in 
GHI after applying the correction exceeded 3.7 %, relative to the pyranometer measurement. This ensures that any observed change in the error 
metrics is larger than what can be theoretically attributed to measurement noise.

The relative RMSE and MAE on the filtered subset shows an even greater improvement due to the corrections across all validation sites (see 
Tables C.1. and C.2). For sites with similar satellite viewing zenith angles (see Table 1), the corrected Heliosat-3 estimates still outperforms both CAMS 
and NSRDB. In fact, the improvement relative to CAMS and NSRDB becomes even more pronounced in this filtered subset.

It can be observed that restricting the analysis to only those data points where the GHI change exceeds 3.7 % results in generally higher error 
values, as these cases typically correspond to cloudy conditions with complex cloud distributions, where satellite-based estimates are known to be less 
reliable.
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Table C.1 
Relative RMSE in satellite estimated GHI at 15 min resolution.**

Table C.2 
Relative MAE in satellite estimated GHI at 15 min resolution.**

Appendix D. Sensitivity of the corrections to noise in the input cloud top height data

Due to the unavailability of a spatially dense Ceilometer network in South and Southeast Asia capable of providing ground-truth cloud top height 
(CTH) data at the pixel level across the entire satellite image section, it is infeasible to directly add noise to measured CTH values and assess the 
resulting impact on GHI estimation.

Therefore, Gaussian noise – varying in mean (μ) and standard deviation (σ) from 2 km to 8 km – is introduced into the satellite-estimated CTH data 
used as an input to the parallax correction and cloud shadow projection algorithms, and its effect on GHI estimation error is analyzed. In all cases, the 
final noisy CTH values are clipped so that they lie within the range of 0 to 16 km, consistent with the original dataset.

As shown in Table D.1, when Gaussian noise with a mean and standard deviation of 2 km or 4 km is added to the CTH data, the correction 
procedure still improves GHI estimation compared to the uncorrected Heliosat-3 values. When the noise magnitude reaches 8 km, the corrected 
estimates begin to show reduced accuracy relative to the uncorrected case at two of the five sites. These results demonstrate that the correction method 
remains robust under moderate levels of normally distributed uncertainty in CTH.

A. Roy et al.                                                                                                                                                                                                                                     Applied Energy 399 (2025) 126457 

32 



Table D.1 
Variation in GHI estimation error by adding Gaussian noise to the cloud top height (CTH) data.**

Site Heliosat- 
3

Heliosat-3 +
Corrections

+ Gaussian Noise (μ = 2 km, σ = 2 
km)*

+ Gaussian Noise (μ = 4 km, σ = 4 
km)*

+ Gaussian Noise (μ = 8 km, σ = 8 
km)*

Gurgaon 17.1 % 15.5 % 15.7 % 16.0 % 16.4 %
Tiruvallur 13.8 % 12.8 % 13.1 % 13.4 % 13.8 %
Feni 26.3 % 24.4 % 25.0 % 25.7 % 26.8 %
Central 

Highlands
32.3 % 30.1 % 30.2 % 30.8 % 31.5 %

Tri An 31.3 % 29.3 % 30.1 % 30.7 % 31.0 %
** “+ Noise (μ = x km, σ = x km” refers to adding Gaussian noise with μ = σ = x km to the satellite-estimated CTH data. All resulting CTH values were clipped to lie 

within 0–16 km.

Data availability

Data will be made available on request.
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